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Abstract. This paper focuses on modeling and solving in a unified way two planning 
problem faced by consolidation-based freight transportation carriers: selecting and 
scheduling the set of services required to route shipments while meeting the economic goals 
of the company and the service standards customers expect, and, selecting and efficiently 
routing the resources required to provide this service, while observing governmental (and 
other) regulations. We propose a scheduled service network design model that 
simultaneously addresses strategic decisions on fleet sizing and allocation, including 
acquisition and outsourcing, and tactical decisions on building the transportation plan and 
schedule. Moreover, as a well-sized fleet and a well-designed transportation plan should be 
able to accommodate fluctuations in freight volumes, the model takes the form of a 
stochastic program explicitly addressing uncertainty in demand through the use of 
scenarios. Given the computational difficulties associated with solving stochastic programs 
exactly, we propose a column-generation-based matheuristics scheme for addressing the 
model, which decomposes the optimization problem across multiple dimensions, and 
evaluates a neighboring solution across all scenarios. This is the first heuristic scheme for 
this class of problems. Extensive computational experiments show that it is effective, and 
validate the solutions by analyzing their attributes as instance parameters vary. 
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1 Introduction

This research is focused on modeling and solving a planning problem faced by freight
transportation companies; specifically, consolidation carriers. Consolidation carriers trans-
port customer shipments that are small relative to the vehicle or convoy capacity and
have enabled, amongst other things, the liberalization and exponential growth of world
trade of consumer goods and the transformative effects of eCommerce. The operations of
less-than-truckload (LTL) motor carriers, railways moving both general and intermodal
cargo, sea and river/canal intermodal navigation, small package/parcel courier compa-
nies, as well as the emerging business and organizational model for freight transportation,
e.g., City Logistics and Physical Internet, are all based on consolidation. To illustrate
the importance of the industry, consider that in the U.S. alone, the revenue of the LTL
industry was of the order of $34.9 billion in 2016 (Cassidy, 2017), while one player alone
(UPS) in the small package/parcel industry reported $51 billion in revenue in 2016 (UPS,
2017). Consolidation carriers play a prominent role in the fulfillment of orders placed
online, in brick-and-mortar stores, and through other channels.

For a consolidation carrier to deliver goods on time in a cost-effective manner, it
must consolidate shipments, which in turn requires planning processes that coordinate
the paths for different shipments in both space and time. These planning processes have
long been assisted by solving the Service Network Design (SND) problem (Crainic, 2000;
Wieberneit, 2008), which prescribes the choice of paths for shipments and the services
or resources necessary to execute them. The main goal of the SND is to produce an
operation (or load) plan that services demand while achieving the economic and service-
quality targets of the carrier. Building such a plan involves selecting the services to
operate, their schedules (departure times), and then routing customer shipments through
the selected service network.

The set of potential plans that can be executed is directly impacted by the infrastruc-
ture a carrier has in place, including the terminals at which shipments can be handled,
and the resources necessary for transportation. Associated with many types of resources
(such as drivers) is a domicile or home terminal within the transportation network. And,
for most resources, there are rules governing the movements they can make over a period
of time. For example, for drivers, there are rules dictating that they must periodically
return to their home terminal. As such, the feasibility and cost of executing a service
network can be greatly impacted by the needs and rules that must be observed when
managing resource usage. Fundamentally, carriers face the challenge of coordinating two
different plans: (1) a plan for routing shipments that meets the service standards cus-
tomers expect, and, (2) a plan for resource movements that observes governmental (and
other) regulations.

Indeed, for many carriers, locating the resources that enable them to offer low-cost
transportation services in a manner such that they are highly utilized is a pressing con-
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cern. Carriers in the United States have long listed driver shortage as one of their major
concerns. And the severity of the shortage is often region-dependent, leading to great
variation in the compensation of drivers that is primarily due to their home region. An-
other issue carriers face is that their fleet of vehicles can be heterogeneous with respect
to fuel efficiency. While a portion of a carrier’s fleet may be (relatively) new and fuel-
efficient, there will still be vehicles that are older and have a higher cost per mile. The
resulting challenge for a carrier is to have the most fuel-efficient vehicles in positions
where they are readily available for the moves that involve the most miles.

Researchers have historically addressed the development of these plans separately,
however. Such methods typically solve the service network design problem with no recog-
nition of the need for resources to generate a set of transportation moves. Those moves
are then used to instantiate a planning problem that seeks to cover the transportation ac-
tivities with resources while observing rules regarding resource usage. Only recently have
researchers proposed models and solution methods that recognize management issues re-
lated to resources (Andersen et al., 2009b; Crainic et al., 2014b). Recently, Crainic et al.
(2017) proposed the first model and solution method for acquiring and locating resources
while designing a service network and managing the resources necessary to execute it.
However, that model presumes that customer demands are known with certainty.

Thus, to reflect industry concerns and the fact that the true cost of a fleet includes
both the money required to acquire it and the cost of the transportation plans it enables,
we propose a model that links these two levels of decision-making: (1) strategic, wherein
fleet sizing and allocation decisions are made, and, (2) tactical, wherein transportation
plans are designed and executed. As a well-sized fleet should be able to accommodate
fluctuations in freight volumes, the proposed model explicitly represents uncertainty in
freight volumes. Specifically, demand uncertainty is modeled through the use of scenarios
and the model is in fact a stochastic program. Solving this program will assist transporta-
tion companies size, locate, and use their fleet while recognizing that customer demands
for transportation services are not known with certainty. Given the computational dif-
ficulties associated with solving stochastic programs exactly, we propose a matheuristic
for addressing the model.

Matheuristics are meta-heuristics that make explicit use of the mathematical formu-
lation in some parts of the search. Such methods have (computationally) proven to be an
effective solution approach for hard combinatorial optimization problems. Matheuristics
have primarily been applied to deterministic problems wherein the values of problem
parameters are known with certainty (see Hewitt et al., 2010; Erera et al., 2013; Archetti
et al., 2008; Schmid et al., 2009; Villegas et al., 2013; Archetti et al., 2015, for some
examples). However, more and more researchers and practitioners are proposing and
attempting to solve stochastic models, wherein only a distribution is known for some
problem parameter values. This trend can be partially attributed to the increased avail-
ability of “big data” that has made possible the development of representative distribu-
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tions for problem parameter values. It can also partially be attributed to the improved
performance of commercial optimization solvers. This paper thus presents matheuristic-
based solution methods for a stochastic programming network-design model applicable
to the considered strategic and tactical planning problem that is faced by numerous
transportation companies.

The proposed matheuristic takes the form of a neighborhood-based search scheme,
where parts of the search space (variables) is fixed and the resulting restricted mix-
integer problem is solved exactly. This space-decomposition idea follows the successful
contributions of Hewitt et al. (2015), for vehicle routing, and Hewitt et al. (2010) and
Erera et al. (2013) for LTL service network design. To our best knowledge, this idea has
never been developed for stochastic (service) network design.

We believe this research makes multiple contributions. It presents the first stochastic
programming model to help transportation companies size and allocate their fleet, while
recognizing the impact of those decisions on operational (transportation) costs in different
scenarios. This model is adaptable to different operational settings, including rules that
must be followed when planning transportation schedules as well as the opportunity to
use different transportation modes (e.g., truck vs. rail). This research also presents
a computationally effective matheuristic, which decomposes the optimization problem
across multiple dimensions, and evaluates a neighboring solution across all scenarios.
This is the first heuristic scheme for this class of problems and computational experiments
suggest that it is effective.

The paper is organized as follows. We next, Section 2, describe the problem studied
in detail. A brief literature review of relevant service network design is given in Section 3.
We then present the formulation, Section 4, while Section 5 is dedicated to the solution
method. e describe the experimental design in Section 6, and present the results and
analyzes in Section 7. We conclude in Section 8.

2 Problem statement

We study and solve a problem that spans strategic and tactical planning decisions made
by a consolidation based carrier. Such a carrier transports freight through a network of
terminals on what are often referred to as “services.” As a result, the tactical decisions
correspond to selecting the services to operate and determining how freight is routed
through the resulting service network. However, these services and routes must also be
supported by resources, which are in turn assigned to terminals.

The strategic decisions determine the total number of such resources available, as
well as the assignment of each resource to a home terminal. Costs associated with these
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strategic decisions can include the purchase cost of a capital asset, salary and/or signing
bonus associated with hiring an individual, and transportation costs associated with re-
allocating a resource from one home terminal to another. These strategic and tactical
decisions can be (and often are) made independently. However, as the strategic decisions
can have a profound impact on the cost of transporting freight, we propose to solve
them jointly. In this way, and by explicitly modeling uncertainty in freight volumes, the
strategic, resource acquisition and allocation decisions can be made with an accurate
estimate of their impact on the transportation costs the carrier will ultimately incur.

This estimate will be based on the costs associated with operating services and consol-
idation terminals to transport customer demands during a representative period of time,
which is referred to as the schedule length, the resulting transportation plan, selected
services and resources, to be repeatedly executed during the tactical planning horizon
length. During this period of time, the carrier must transport a set of customer ship-
ments. The geographic (origin and destination locations) and temporal (availability time
and due arrival time) attributes of customer shipments are assumed as known. However,
to ensure decisions (both strategic and tactical) that are robust with respect to customer
demands, only the probability distributions for freight volumes are presumed as known.
In this sense, this research extends the work presented in Crainic et al. (2017), wherein
only a point forecast of customer demands was used, and thus a deterministic model
solved.

At consolidation terminals in the network, shipments are sorted and consolidated
into vehicles that will thus contain shipments from multiple customers, with different
shipments potentially having different origins or destinations or both. Direct services (no
intermediate stops) connect these terminals and specify how vehicles move. A service
is thus defined by an origin terminal and a destination terminal, as well as by the time
window during which the service will depart from the origin terminal and the time window
during which it will arrive at the destination terminal. Resources are associated with
these services and provide the means to perform them. Each resource must be assigned
to a “home” terminal. We consider a setting wherein each resource operates according to
a cyclic route that starts at and returns to its home terminal and enables it to support
services.

Shipments will thus be routed through the service network enabled by resources,
being sorted and consolidated at each intermediary terminal on this route. Shipment
routing also displays a temporal component as the carrier has to decide when a shipment
should dispatch from each terminal on its route. Indeed, shipments may be held at a
terminal for a later-departing service so that it may be possible to perform a better
consolidation with later-arriving shipments. Of course the decision to hold a shipment to
achieve greater consolidation must be balanced against the need to deliver the shipment
at the time the customer expects. There are various costs associated with executing a
service, including costs associated with terminal operations that support the service and
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the transportation itself. Similarly, there are costs associated with handling a shipment
at a terminal. Section 4 elaborates on these with the model description.

We only presume that the execution of a service requires a resource, not that a
shipment needs to be assigned to a single resource for transportation from its origin to
its destination. As such, a shipment may be transferred from one service/resource to
another when travelling on a sequence of services, with each of those services supported
by a different resource. The rules governing the movements a resource may make during
the schedule length can be complex and depend upon what the resource is; for a human
resource (say a driver) government agencies (such as the United States Department of
Transportation) specify many limits (sometimes called “hours-of-service” regulations)
upon what they may do (FMCSA, 2014). For example, a driver may drive at most 11
hours a day after 10 consecutive hours off duty (at rest).

This paper utilizes a simple set of rules governing what movements a resource may
make. Specifically, we presume that the resource must return to its home terminal at least
once during the schedule length. However, the proposed model and solution method can
be easily adapted to other cases. The sequence of movements made by a resource during
the schedule length is called an itinerary. There are also costs associated with using a
resource from a specific home terminal, such as those incurred due to maintenance.

We extend the work presented in Crainic et al. (2014b, 2017) by integrating strategic
decisions into the model. Specifically, the number of resources to use, and the home
terminal of each. However, we also consider the option that a service be supported
not by a resource owned (or leased) by the transportation company, but instead by a
third party. In this situation, the resource is “acquired” from the third party only for
the execution of this service and the carrier itself need not ensure that the resource’s
complete schedule (which may include moves for other carriers) follows the appropriate
rules. Outsourcing a service to a third party-owned resource is presumed to incur costs
that are greater than executing the service with an owned resource.

As this paper explicitly models uncertainty in customer demands (i.e., freight vol-
umes), we next identify which decisions are made before volumes are known, and which
after (i.e., the recourse). We presume that decisions related to resource acquisition and
allocation, as well as those regarding which services to execute, are made before volumes
are known. Similarly, we assume that decisions regarding which services to outsource
can be made before freight volumes are known. In this case, we are considering a situa-
tion wherein a carrier signs a long-term contract with a third party carrier. The carrier
may take two recourse actions after volumes are known: (1) to outsource the delivery
of an individual shipment from origin to destination to a third party carrier, and, (2)
to outsource the execution of a service. With this second recourse, we are considering a
situation wherein a carrier contracts a third party provider on the “spot” market. The
costs associated with outsourcing via the “spot” market are presumed to be higher than
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via long-term contract.

Ultimately, the problem the planner faces is to determine the number and allocation
of resources that best balance the extra costs associated with resource acquisition and
re-allocation with the transportation savings these decisions enable. Of course, balancing
these costs also necessitates putting them on the same scale; for a schedule length of a
week (or even a month) the transportation savings realized by purchasing a new truck
will rarely outweigh its purchase cost. As such, when defining this problem, we assume
that the acquisition and re-allocation costs are amortized or spread out over periods of
time longer than the length of the schedule length.

3 Literature review

The planning problem studied here links two types of decisions: determining the ac-
quisition and allocation of resources and how to transport customer shipments, whose
volume is not known with certainty, using those resources. The resource acquisition and
allocation decisions can be seen as facility location-type decisions, whereas determining
how to transport customer shipments whose volumes are not known can be viewed as
stochastic service network design-type decisions. As such, we next review related litera-
ture in the facility location and service network design domain. At the same time this
problem locates resources that must be managed, and thus this section concludes with a
review of the literature on service network design problems that recognize the need for
resources and how they must be managed.

We first refer the reader to the review of Contreras and Fernandez (2012), which
provides a unified view of problems that combine location and network design issues.
Melkote and Daskin (2001b) present an optimization model that chooses locations for
(uncapacitated) facilities as well as designs a transportation network based on those fa-
cilities. Building off this work, Melkote and Daskin (2001a) introduce a combined facility
location/capacitated network design problem in which facilities have capacities on the
amount of customer shipment demand they can serve. However, neither model captures
the resources that are needed to support the transportation network. Similar to this work,
Crainic et al. (2017) jointly model resource acquisition, allocation, and management de-
cisions along with decisions regarding the design of a transportation network. However,
all of the above works presume that commodity volumes are known with certainty.

Attention next turns to the literature on service network design problems that recog-
nize the need for and management of resources.

Early papers (Kim et al., 1999; Smilowitz et al., 2003; Lai and Lo, 2004) studied
problems modeling the requirement that the number of services entering and leaving a

6

Integrating Resource Acquisition and Management Decisions Into Tactical Transportation Planning Under Uncertainty 

CIRRELT-2017-52



terminal at a point in time must be equal. These models assume one type of resource
and that each service is supported by one unit of that resource. As a result, this con-
straint (often called design-balance constraints, Pedersen et al., 2009) ensures a balance
of resources at each terminal and point in time. Similar types of constraints can be found
in papers wherein the resource modeled is a container (Powell, 1986; Jarrah et al., 2009;
Erera et al., 2013).

Pedersen et al. (2009) observed that the addition of these design-balance constraints
can complicate the search for high quality solutions as rounding-based techniques are
likely to produce an infeasible solution. As a result, Pedersen et al. (2009) proposed a
two-phase tabu-search method wherein the first phase explores the space of solutions that
satisfy flow constraints but not necessarily design-balance constraints. The second phase
is entered when a solution from the first does not satisfy the design-balance constraints,
wherein a path-based neighborhood heuristic is used to convert the solution to one that
is feasible for the full problem. However, the quality of the solution depends heavily
on this second phase, which they observed required a significant number of iterations to
produce a feasible solution.

Following up on that work, Vu et al. (2013) proposed an approach that can efficiently
convert an infeasible solution (which satisfies the flow constraints but not design-balance
constraints) to a feasible one using a minimum cost maximum flow procedure. The
procedure is integrated into a three-phase matheuristic which combines tabu-search, path-
relinking and exact optimization and this solution approach was found to be effective
at finding high-quality solutions in reasonable run-times. In addition, this minimum
cost maximum flow model was also used (Crainic et al., 2014b) in a solution method
for another service network design problem that models resource constraints and was
effective in that setting as well. Simultaneously, Chouman and Crainic (2015) proposed
a competitive matheuristic based on a cutting plane approach which was able to produce
high quality solutions in short running times.

The design-balance constraints naturally imply a cycle-based formulation. As such,
Andersen et al. (2009a) compared cycle and arc-based formulations and observed that
the use of cycle-based formulations enabled a more effective search for high quality primal
solutions and yielded stronger dual bounds. As a result, Andersen et al. (2011) presented
a cycle-based branch-and-price solution method to solve this problem for moderate in-
stance dimensions.

However, these cycle-based formulations were used not as a modeling tool but rather
for their impact on algorithmic effectiveness. Crainic et al. (2014b) instead used a cycle-
based formulation to model a limit on how many resources are available at each terminal
and that there are rules regarding what a resource may do during the planning horizon.
The authors present a solution approach for this problem that combines column gener-
ation, slope-scaling, and exact optimization, together with an extensive computational
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study illustrating its effectiveness.

As this brief literature review highlights, there are few studies addressing service net-
work design with resource management concerns, with only a handful aiming to combine
strategic and tactical decisions. Moreover, to our best knowledge, none of these integrates
demand uncertainty and how it affects the design of the service and the deployment of
resources. Our contribution to addressing this issue follows.

4 The Model - A Path-based Formulation

The proposed model is based on the premise that each customer shipment has a known
origin and destination, but that there is uncertainty regarding its volume. This uncer-
tainty is incorporated into the decision-making process through the use of a two-stage,
scenario-based model. This model is similar to traditional stochastic network design
models (Lium et al., 2009; Crainic et al., 2011, 2014a), in that tactical decisions regard-
ing itineraries for resources and the associated service network are first stage decisions
and only shipment routes and outsourcing decisions can be made after shipment volumes
are revealed. However, in the model we present, the first stage also includes strategic
decisions regarding the number of resources acquired, the allocation of new resources,
and the re-allocation of existing ones. We note that this work extends that of Crainic
et al. (2017), and thus some of the model definitions are drawn from that paper.

We first discuss the modeling of tactical decision-making. We assume the carrier
transports shipments through a physical network of terminals, represented by the set
Λ. Services are used to transport shipments, with Σ denoting the set of potential direct
services between terminals in Λ, which the model will select and schedule to be included
in the plan. In a practical implementation of this model, different terminals may have
different capabilities (e.g., ports vs. ground terminals), and different services may rep-
resent different modes. However, for simplicity of presentation, we will not make any
presumptions or discuss details regarding the infrastructure, roads or rail tracks, over
which transportation is performed.

At the tactical level of planning, services are selected and scheduled over the schedule
length, which is divided into T = {1, 2, . . . , TMAX} time periods. The selected plan
will then be repeated on a schedule-length basis. Based upon these periods, we create a
time-space network, G = (N ,A), a directed graph that models transportation activities at
different points in time with different nodes and arcs. Specifically, the node set N models
the operations of terminals in different periods, i.e., N = Λ × T = {lt|l ∈ Λ, t ∈ T },
where lt represents terminal l at period t. The arc set A contains two types of arcs. The
first is a service arc (from the set Σ) and models the operation of a service between
two terminals at a particular point in time. The second is a holding arc and models the
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opportunity for a resource or shipment to idle at a terminal from one period to the next.
We denote the set of service arcs by S and holding arcs by H, and thus A = S ∪H.

Regarding service arcs, for each possible service s = (l,m) between terminals l,m ∈ Λ
and time period t ∈ {1, . . . , TMAX}, we add the arc (lt,mt′=(t+πlm)mod TMAX) to S
(assuming the service from l to m requires πlm periods of travel time). Due to the
presumption that freight demands follow a repetitive pattern, we construct the time-
space network to support designing schedules that will be repeated. Specifically, we
model a service of length πlm that departs from a terminal in period t as arriving at the
destination in period (t + πlm) mod TMAX. With a limit of us on how much shipment
demand can be carried by service s = (l,m), we set the capacity, ultmt′ , of executions
of that service at different times t to us. Regarding the holding arcs, we add to H arcs
of the form (lt, l(t+1)mod TMAX) for each terminal l and period t. While these arcs are
assumed to be uncapacitated (both with respect to shipment demands and resources) in
our experiments, terminal capacities (on shipments or resources) could be modeled by
placing capacities on these arcs.

We model a shipment that is available in terminal l in period t and must be trans-
ported to terminal m by period t

′
as a commodity with index k, origin node o(k) = lt,

and destination node d(k) = mt′ . The set of all shipments is represented by K. While the
set of commodities, and their origin and destination cities and times, are presumed as
known, we assume there is uncertainty in their volume. A set of scenarios Ψ model uncer-
tainty in demand volumes. As such, the value qkψψ represents the volume of commodity
k ∈ K in scenario ψ ∈ Ψ. Let qkψi = qkψ when i = o(k), qkψi = −qkψ when i = d(k), and
qkψi = 0 otherwise. Finally, we associate with each scenario ψ the probability φψ.

Regarding the routing of a shipment, we consider for commodity k ∈ K and scenario
ψ ∈ Ψ a set of paths, Pψk , each of which constitutes a sequence of scheduled services
(from the set S) from that commoditiy’s origin, o(k), to its destination, d(k). Each
path has a cost cp that corresponds to the total variable cost paid for the services in
that path. Specifically, ckp =

∑
(lt,mt′ )∈A∩p

ckltmt′ , where ckltmt′ is the cost of commodity k

traveling on service (lt,mt′). For a service arc, this cost parameter can model handling
costs associated with loading the shipment into a vehicle at the origin terminal and
unloading at the destination terminal. This parameter can also model the impact the
weight of a shipment can have on the cost of executing a service. For a holding arc, this
parameter can model other handling activities, or, the allocation of the cost of physical
space to shipments based on the amount of space in the terminal they require. The
decision of how to route a shipment is made after demands are observed, and thus the
continuous variable xkψp represents the fraction of commodity k’s demand that travels
along path p in scenario ψ. For each commodity, presume one path corresponds to direct
delivery of that shipment from its origin to its destination by an external carrier.

For a commodity to travel on the service arc (lt,mt
′ ) ∈ S ⊂ A, that service must
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be “executed,” and the binary decision variable yltmt′ models this choice. Executing a
service incurs a fixed cost, flm. This parameter can be used to model overhead costs,
such as facility maintenance and labor, as well as the actual transportation cost of a
resource traveling from terminal l to terminal m. This parameter can also be indexed
by the time period t for settings wherein transportation costs are time-dependent, such
as in areas where congestion-based traffic pricing is used. We also model the option of
executing that same service, albeit with the use of a third party-owned resource. The
binary variable yeltmt′ models this choice, which incurs a different fixed cost, f elm. For
most practical settings, we anticipate this parameter value will be a function of the same
overhead costs as those that contribute to the value of flm, as well as costs charged by the
third party carrier. Finally, to model the second recourse, wherein a service is outsourced
on a “spot” market after demand has been observed, we use the binary variable yσψltmt′
which incurs the fixed cost fσlm.

We model that executing a service requires the use of a resource that must periodically
return to its assigned home terminal. Similar to the research presented in Crainic et al.
(2014b), a cycle, τ , models a sequence of possible movements during the schedule length
for a resource assigned to terminal h in the graph G that begins and ends at node ht ∈ N
for some t ∈ T . We denote the set of such cycles by θht and let θh = ∪TMAX

t=1 θht , the set
of all cycles that require a resource assigned to terminal h and that depart from there
at some time period during the schedule length. The rules governing the movements a
resource may make during the schedule length are encoded in the definition of the set
θht . Note that this allows the modeling of rules that vary both by the terminal h to
which the resource is assigned and the period t during which the itinerary begins. For
our experiments, we only impose the rule that the itinerary for a resource must begin
and end at the resource’s assigned terminal. Thus a valid cycle is one that begins by
departing from h in period t and ends by arriving at l, albeit TMAX periods later. Note
that a cycle beginning at ht may return to h multiple times, and if it last returns to h in
period t

′
< t+ TMAX appended holding arcs allow it to reach ht+TMAX .

The binary variable zτh ∈ {0, 1} represents whether a resource with home terminal
h ∈ Λ executes cycle τ ∈ θh. The parameter Oτ

h models the costs associated with this
route, which can include maintenance. However, as τ also models the route traveled by
the resource, the value of Oτ

h includes the corresponding transportation costs as well. Re-
garding the pairing of services with resource itineraries, let rτltmt′ (binary) denote whether
arc (lt,mt′) ∈ A is contained in cycle τ .

Having presented the model for tactical, service network design-type decisions, at-
tention next turns to how to model the strategic, resource-related decisions the planner
must make. Conceptually, a “source” layer in the time-space network models the acqui-
sition and allocation decisions. There are two types of nodes in this layer. The first is
an “Acquisition node,” denoted by A, that represents the acquisition of a new resource.
This node connects to each of the terminals l at the beginning of the tactical planning
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horizon with an arc that represents the allocation of a newly acquired resource to that
terminal. The second type of node models the re-allocation of existing resources. As
such, we add a node for each terminal l

′ ∈ Λ to this layer and then arcs connecting that
node to each terminal, l ∈ Λ, at the beginning of the tactical planning horizon. These
arcs represent the re-allocation of a resource currently assigned to terminal l to termi-
nal l

′
. For simplicity when developing the mathematical model, we include arcs wherein

l = l
′
, in which case the resource is not re-positioned. Finally, let Λ+ denote the set of

terminals, Λ, along with the Acquisition node.

We illustrate this expanded network in Figure 1, wherein arc a between node A in
the source layer and node T3 at time period 1 models the acquision of a new resource
that is allocated to T3. Similarly, arc b between T1 in the source layer and T2 at time
period 1 models the re-allocation of a resource currently allocated to T1 to T2. Finally,
arc c between T1 in the source layer and in time period 1 models a resource that remains
at T1.

T1

T2

T3

T1

T2

T3

T1

T2

T3

A

T1

T2

T3

T1

T2

T3

T1

T2

T3

1 2 3 4 5
Tactical planning horizonSource

layer

a

b

c

Figure 1: Modeling strategic and tactical decisions (not all arcs included)

The integer variable awh, w ∈ Λ+, h ∈ Λ then represents the number of resources
acquired from source w (either through acquisition or repositioning) and assigned to
terminal h. Assigning a resource to terminal h from source w has a cost Fwh. When
w corresponds to the Acquisition node, the variable represents the purchase of a new
resource and subsequent allocation to terminal h. As such, if the resource being modeled
is equipment, Fwh could include the acquisition cost, only amortized. If the resource is
an individual, this parameter could include wages and some amortization of a signing
bonus paid to the individual. When w represents an existing terminal then the variable
awh corresponds to the allocation of a resource that is currently assigned to terminal w
to terminal h. In this case, Fwh includes any costs associated with such an action, such as
transportation. When w = h, this variable represents leaving resources at their currently
assigned terminal. Let Iw represent the number of existing resources assigned to terminal
w.
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Ultimately, we seek to solve what we call the Scheduled Service Network Design
with Resource Acquisition and Management under Uncertainty (SSND-RAMU ) prob-
lem, which in its scenario-based deterministic forms aims to

minimize
∑
w∈Λ+

∑
h∈Λ

Fwhawh +
∑
h∈Λ

∑
τ∈θh

Oτ
hz

τ
h +

∑
(lt,mt′ )∈S

flmyltmt′ +
∑

(lt,mt′ )∈S

f elmy
e
ltmt′

+ (1)

+
∑
ψ∈Ψ

φψ ∗ (
∑
k∈K

∑
p∈Pψk

ckpq
kψxkψp +

∑
(lt,mt′ )∈S

fσlmy
σψ
ltmt′

) (2)

subject to ∑
p∈Pψk

xkψp = 1 ∀k ∈ K, ψ ∈ Ψ, (3)

∑
k∈K

∑
p∈Pψk :(lt,mt′ )∈p

qkψxkψp ≤ ultmt′ (yltmt′ + yeltmt′ + yσψltmt′ ), ∀(lt,mt′) ∈ S, ψ ∈ Ψ (4)

∑
h∈Λ

awh = Iw, ∀w ∈ Λ, (5)

∑
τ∈θh

zτh =
∑
w∈Λ+

awh, ∀h ∈ Λ, (6)

yltmt′ + yeltmt′ + yσψltmt′ ≤ 1, ∀(lt,mt′) ∈ S, ψ ∈ Ψ, (7)

yltmt′ ≤
∑
h∈Λ

∑
τ∈θh

rτltmt′z
τ
h, ∀(lt,mt′) ∈ S, (8)

xkψp ≥ 0, ∀p ∈ Pψk , k ∈ K, ψ ∈ Ψ, (9)

awh ∈ Z, ∀w ∈ Λ+, h ∈ Λ, (10)

zτh ∈ {0, 1}, ∀h ∈ Λ, τ ∈ θh, (11)

yeltmt′ ∈ {0, 1}, ∀(lt,mt′) ∈ S. (12)

yσψltmt′ ∈ {0, 1}, ∀(lt,mt′) ∈ S, ψ ∈ Ψ. (13)

The objective of this model consists of two components: (1) the costs that are incurred
before demand is realized, term (1), and, (2): the expected recourse, term (2). The sum of
these costs is then minimized. Constraints (3) ensure a path is chosen for each commodity
in each scenario. Constraints (4) ensure that, in all scenarios, whenever a service is
executed (either by an owned resource, an outsourced resource that was acquired via
long-term contract, or an outsourced resource that was acquired on the spot market) its
associated capacity is sufficient to flow the total amount of demand that is transported
via the chosen paths that include the specific service. The remaining constraints in the
model are the same as those from Crainic et al. (2017), albeit defined over the set of
scenarios. Constraints (5) ensure that all resources initially assigned to a given terminal
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are allocated to a terminal (possibly the same) during the planning horizon. Constraints
(6) then limit the number of cycles chosen that originate at a terminal by the number
of resources assigned to that terminal (note that the right-hand-side of this constraint
includes acquired resources). Constraints (7) ensure that each service is executed at
most once. Constraints (8) ensure that services that are executed and require an owned
resource are covered by an owned resource. Finally, constraints (9), (10), (11), (12), and
(13) define the decision variables of the model and their domains.

5 Solution Approaches

The model consists of two sets of variables, paths and cycles, that are typically too
large to be enumerated a priori. The two solution approaches we present for the SSND-
RAMU thus integrate the dynamic generation of these variables. The first solution
approach is a standard column generation-based (CG; Bertsimas and Tsitsiklis, 1997)
heuristic (Section 5.2). This method serves as a benchmark for the second approach
presented, a matheuristic (Section 5.3). As both heuristics presented rely on solving the
linear programming relaxation, SSND-RAMULPR, of SSND-RAMU with a CG-based
procedure, we start by describing that procedure.

5.1 Solving SSND-RAMULPR

The proposed solution methods dynamically generate path, xkψp , and resource cycle vari-

ables zτh. Let’s assume we have a set of commodity paths, P̄ = ∪ψ∈Ψ,k∈KP̄ψk ⊆ P
ψ
k , and

a set of resource cycles θ̄ ⊆ θ = ∪h∈Λθh. Then, define SSND-RAMU(θ̄, P̄) (and its lin-
ear programming relaxation SSND-RAMU(θ̄, P̄)LPR) as the SSND-RAMU formulation
restricted to the paths and cycles that are present in those sets. Then, having solved
the linear programming relaxation, SSND-RAMU(θ̄, P̄)LPR, associate the dual variables
ξh (unrestricted in sign) with each constraint (6), αψk (unrestricted in sign) with each

constraint (3), βψltmt′ (non-positive) with each constraint (4), and dual variables γltmt′
with each constraint (8). We next describe how we use these duals to generate paths and
cycles.

Generating paths: With these dual variables, we have the following formula for the

reduced cost (c̄kψp ) associated with commodity k using path p ∈ Pψk in scenario ψ ∈ Ψ,

c̄kψp = ckp − α
ψ
k −

∑
(lt,mt′ )∈p

qkψβψltmt′ . Thus, after having solved SSND-RAMU(θ̄, P̄)LPR,

we seek to find paths such that c̄kψp < 0, or, such that
∑

(lt,mt′ )∈p
(ckltmt′ − q

kψβψltmt′ ) < αψk .
For a given commodity k ∈ K and scenario ψ ∈ Ψ, such a search can be formulated
as the optimization problem of finding the shortest path from o(k) to d(k) in G with
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respect to the arc costs ckltmt′ − qkψβψltmt′ . Such an optimization problem can be easily

solved with an algorithm such as Dijkstra’s (Cormen, 2009, note the graph is acyclic as
it is a time-expanded network).

Generating cycles: Given these same dual variables, we have the following formula

for the reduced cost (Ōτ
h) associated with having a resource that is assigned to terminal

h follow the itinerary dictated by cycle τ ∈ θh, Ōτ
h = Oτ

h − ξh +
∑

(lt,mt′ )∈τ
γltmt′ . Thus,

variables should be determined such that Ōτ
h < 0, or, such that

∑
(lt,mt′ )∈τ

γltmt′ < ξh−Oτ
h.

Formally, given a home terminal h, we seek to solve the optimization problem

minimize
∑

(lt,mt′ )∈τ

γltmt′

subject to
τ ∈ θh. (14)

In this research, θh is defined as the set of cycles that begin and end the planning horizon
at terminal h and return to that terminal at least κ other times during the schedule
length. The binary variable vltmt′ indicates whether arc (lt,mt′) ∈ A is in the cycle, and
the binary variable ηt indicates whether the cycle should return to the home terminal in
period t. We thus seek to solve the optimization problem Price-Cycle(h, γ):

Rh = minimize
∑

(lt,mt′ )∈S

γltmt′vltmt′

subject to
TMAX∑
t=2

ηt ≥ κ (15)

ηTMAX = 1, (16)∑
(h1,mt′ )∈A

vh1,mt′
= 1, (17)

∑
(lt′ ,ht)∈A

vlt′ ,ht = ηt, (18)

∑
(mt′ ,lt)∈A

vmt′ ,lt −
∑

(lt,nt′′ )

vlt,nt′′ = 0 ∀lt ∈ N , (19)

vltmt′ ∈ {0, 1} ∀(lt,mt′) ∈ A (20)

ηt ∈ {0, 1} ∀t = 1, . . . , TMAX (21)

Constraints (15) ensure that the cycle returns to the home terminal, h, at least k
times, whereas constraints (16) ensure that the home terminal is returned to at the
end of the planning horizon. Similarly, constraints (17) ensure that the cycle begins at
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the home terminal, h. Then, constraints (18) link the movements in the cycle to the
periods when it must return home, and constraints (19) ensure that the movements can
be decomposed into cycles. Finally, constraints (20) and (21) define the variables of the
model and their domains. Having solved Price-Cycle(h, γ), if Rh < ξh−Oτ

h, then a cycle
with negative reduced cost exists which joins the set θ̄h.

Algorithm 1 solves the SSND-RAMU(θ̄, P̄)LPR. Let θLPR,PLPR be the sets of cycles
and paths generated by the algorithm at termination. Similarly, let θ∗LPR,P∗LPR be the
sets of paths and cycles used in the final solution to SSND-RAMU(θ̄l, P̄k)LPR produced
by Algorithm 1. Note that, the presence of paths that model direct delivery (and do
not require the execution of a service) enable the algorithm to begin with each set θh
empty. As stopping criteria, we consider a maximum number of seconds executed. We
also observe that at an iteration of a column generation algorithm a dual bound can be
produced on the optimal value of the linear programming problem, thus producing an
optimality gap. As a result the algorithm is also terminated when that optimality gap is
within a pre-specified tolerance, ε.

Algorithm 1 Solve-SSND-RAMULPR

Initialize P̄ψk with path that models direct delivery, ∀k ∈ K, ψ ∈ Ψ
Set θ̄h = ∅,∀h ∈ Λ
Set θ̄ =

⋃
h∈Λ

θ̄h and P̄ =
⋃

k∈K,ψ∈Ψ

P̄ψk
while stopping criteria not met do

Solve SSND-RAMU(θ̄, P̄)LPR for dual variables ξh, α
ψ
k , β

ψ
ltmt′

, γltmt′
for all k ∈ K, ψ ∈ Ψ do

Find shortest path from o(k) to d(k) with respect to arc costs ckltmt′ − q
kψβψltmt′

If shortest path distance < αψk then add path to P̄ψk .
end for
P̄ = P̄

⋃
k∈K,ψ∈Ψ

P̄ψk
for all h ∈ Λ do

Solve Price-Cycle(h, γ) for value Rh and cycle τ
if Rh < ξh −Oτ

h then
Add τ to θ̄h

end if
end for
θ̄ = θ̄

⋃
h∈Λ

θ̄h

end while
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5.2 The CG-based heuristic

The first heuristic presented begins by solving SSND-RAMULPR to generate the sets
θLPR,PLPR. These sets of cycles and paths are then used to formulate and solve SSND-
RAMU(θLPR,PLPR) with a commercial mixed integer programming solver. Formally,
Algorithm 2 presents this approach, which we call CG-Solve.

Algorithm 2 CG-based heuristic (CG-Solve)

Solve SSND-RAMULPR with Algorithm 1
Choose all paths (PLPR) and cycles (θLPR) generated
Solve SSND-RAMU(θLPR,PLPR) with a MIP solver

5.3 IP-Solve

The second proposed algorithm for solving the SSND-RAMU(θ̄, P̄) is called IP-Solve and
is a matheuristic wherein a neighborhood of a solution is defined and searched through the
formulation and solution of a mixed integer program. At an iteration of this matheuristic,
we presume a known solution sol with Psol and θsol representing the sets of paths and
cycles used in that solution. Next, we determine the neighborhood to search, wherein a
neighborhood includes both a set of paths that can be taken in each scenario, Pnbhd =
∪ψ∈ΨPψnbhd chosen from those known, Pcand, and a set of cycles, θnbhd, chosen from those
known. Then, to search that neighborhood we solve SSND-RAMU(θsol∪θnbhd,Psol∪Pnbhd)
with an off-the-shelf optimization solver. Note that in the next discussion an overline
(e.g. z̄τ ) indicates the value of a variable in the solution sol. Algorithm 3 presents a
formal description of the methodology, its steps being then described in greater detail.

Algorithm 3 IP-based Mathheuristic (IP-Solve)

Solve SSND-RAMULPR via column generation for cycles θ∗LPR and paths PLPR
Solve SSND-RAMU(θ∗LPR,PLPR) to produce solution sol = (z̄, ȳ, x̄), θsol,Psol
Set θcand = θLPR, Pcand = PLPR
while stopping criteria not met do

Determine neighborhood to search
if searching neighborhood involves generating new cycles and paths then

Generate cycles, θnew ∈ θ \ θcand, and paths, Pnew ∈ P \ Pcand
Set θcand = θcand ∪ θnew, Pcand = Pcand ∪ Pnew.

end if
Determine θnbhd ∈ θcand \ θsol and Pnbhd ∈ Pcand \ Psol based on neighborhood
Solve SSND-RAMU(θsol ∪ θnbhd,Psol ∪ Pnbhd) for solution sol, θsol,Psol

end while
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We consider searching two different neighborhoods in the course of executing IP-Solve.
To create the first neighborhood, called CG-Nbhd, we first generate new cycles and paths
before determining which cycles to include in θcand. However, the neighborhood consists
of all known paths (e.g., we set Pnbhd = Pcand \ Psol). While the first neighborhood
consists of a subset of known cycles, but all known paths, the second neighborhood,
called ScenPath-Nbhd, does the opposite. To construct this neighborhood, we include all
known cycles, but only the paths for a limited set of scenarios. We next describe these
two neighborhoods in detail.

5.4 CG-Nbhd

To create this neighborhood, we first generate new cycles and paths, and then determine
which cycles to include in θnbhd. As noted, the neighborhood consists of all known paths
(e.g., Pnbhd = Pcand \ Psol). As such, we first describe how new cycles and paths are
generated, and then how we determine which cycles to include in θnbhd.

The solution of a restricted instance of SSND-RAMU(θcand,Pcand)LPR (with column
generation) generates new cycles and paths. To restrict the instance, we first partition
the cycles in θcand into two sets: (1) θonecand, which contains cycles that must be selected,
and, (2) θzerocand, which contains cycles that can not be selected. Then, with these sets,
fixing the value of the variable zτh to 1(0) when τ ∈ θonecand (τ ∈ θzerocand) creates a partial
solution to SSND-RAMU(θcand,Pcand)LPR. Algorithm 1 then solves this restricted in-
stance. Note that to ensure that a cycle fixed to zero (e.g., τ ∈ θzerocand) is not generated
by the column generation procedure, we modify the pricing problem, Price-Cycle(h), to
include a cardinality constraint

∑
(lt,mt′ )∈τzero

altmt′ ≤ (
∑

(lt,mt′ )∈τzero
1)− 1. We add such

a constraint to Price-Cycle(h) for each cycle with origin h that is fixed to zero.

The utilization of each cycle in the current solution informs the sets θonecand and θzerocand.
Specifically, each cycle τ ∈ θsol ∩ θcand has a score assigned,

στ =
∑
ψ∈Ψ

∑
(lt,mt′ )∈τ

φψ(
∑
k∈K

∑
p∈P̄k:(lt,mt′ )∈p

qkψx̄kψp )/ultmt′ ,

that measures the expected utilization of services in that cycle in the current solution.
Cycles in θcand \ θsol are assigned a score, στ , of zero. We then sort the cycles in θsol in
descending order of στ , and put the first F (an algorithm parameter) into the set θonecand

and the remaining in θzerocand. As a result, when solving the restricted instance of SSND-
RAMU(θcand,Pcand)LPR, Algorithm 1 will generate new cycles to complement those that
are most utilized in the current solution.

Regarding the cycles to include in θnbhd, by solving SSND-RAMU(θcand,Pcand)LPR,
an examination of the z∗LPR values determines which of the new cycles best complement

17

Integrating Resource Acquisition and Management Decisions Into Tactical Transportation Planning Under Uncertainty 

CIRRELT-2017-52



those included in θonecand. Specifically, Algorithm 1 generates new cycles, labeled θnew, sorted
in descending order of the value z∗LPR. The set θnbhd includes the first C (an algorithm
parameter) of those. New paths, Pnew, are added to Pcand and thus included in Pnbhd.
Figure 2 provides a high-level flow chart of how this neighborhood is constructed.

7

Pick cycle variables to fix to value 
in current solution based on 

expected utilization

Solve linear relaxation of LWSND-U with 
fixed variable values via column generation 

to generate new cycles and paths

Create neighborhood based on 
cycles most used in solution to 

linear relaxation

Figure 2: CG-Nbhd : A neighborhood based on generating cycles and paths

5.5 ScenPath-Nbhd

Whereas the previous neighborhood consists of all known paths and a limited set of
cycles, this neighborhood consists of all known cycles (e.g., θnbhd = θcand \ θsol) and a
limited set of paths. Specifically, each scenario ψ has a set of paths, Pψnbhd, created that
can be taken by a commodity. Thus, the selection of a subset of scenarios, Ψ̄ ⊆ Ψ,
wherein |Ψ̄| is an algorithm parameter, creates this neighborhood. Then, for ψ ∈ Ψ \ Ψ̄,
Pψnbhd includes paths p wherein x̄kwp > 0, whereas Pψnbhd = Pψcand for ψ ∈ Ψ̄. In other
words, for ψ ∈ Ψ \ Ψ̄, commodities are restricted to the paths they follow in the current
solution, whereas for ψ ∈ Ψ̄ a commodity can follow any known path. The set Ψ̄ is
determined randomly.

6 Experimental Design

We next describe the experiments used to validate the model, SSND-RAMU, and the
solutions produced by IP-Solve. We first discuss the transportation network that all
instances are based on. We then discuss the distribution for freight volumes derived from
data from a Less-than-truckload transportation (LTL) carrier in the United States and
describe how scenarios model that distribution. We finish with a discussion of the values
used for model parameters and how they were derived.

As this research is somewhat inspired by the planning operations of a Less-than-
truckload freight transportation carrier, we derive the instances used in the computa-
tional study from a network that mimics the hub-and-spoke structure often seen in LTL
networks. Specifically, all instances are based on the network illustrated in Figure 3.
Regarding transportation time, and recalling that a time-space network models time in
periods, we presume that all moves within a region require one period of time, whereas
inter-regional moves require two periods of time. With this network we model two layers
of hubs, with the first (nodes H1, H2, H5, and H6) serving as consolidation points for
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satellites and the second (nodes H3 and H4) serving as consolidation points for their
respective regions (although shipments need not be transferred at those terminals to de-
part/enter a region). Regarding the time-space network, we model a 6-day week, with
two periods per day. Thus, the time-space network on which we plan has 144 nodes
(|N | = 144) and 600 services (|S| = 600).

26

S1

S2

S3

H1

H2
H3 H4

H5

H6

S4

S5

S6

Region 1 Region 2Hubs (Hx)

Satellites (Sx)

Figure 3: Hub and spoke network used in experiments

We also presume the same set of shipments in each instance, with respect to origin
and destination terminal in the network given in Figure 3 (although as we will discuss
later we allow shipment volumes to vary). Regarding shipments, Table 1 describes their
distribution across origins and destinations in the network. Here, for each pair of nodes
of a given type (e.g. (Sx, Sx)), “Number” refers to the number of shipments for that
type. Then, “Frequency” refers to how often each shipment appears during a week. In
other words, the first line of the table indicates that there are three shipments of the form
(S1,Sx) (e.g., (S1, S2), (S1, S4), (S1,S3)), each shipment occurring only once a week. The
last line indicates that there are five shipments of the form (H1, Hx) and each appears
three times during the week. Note that we do not presume the same volumes for different
shipments with the same origin and destination. In other words, a (H1,H6) shipment
that originates in period two can have a different volume than the (H1,H6) shipment
that originates in period six. However, the service standard (the number of periods it
can take to deliver a shipment from its origin to its destination) is determined solely by
the origin and destination terminals. In sum, the instances consist of 228 commodities.

Origin Destination Number Frequency
Sx Sx 3 1
Sx Hx 5 2
Hx Sx 5 2
Hx Hx 5 3

Table 1: Shipments in instance

Attention next turns to the statistical distribution used for freight volumes. From
one week’s worth of data from a US carrier, we derived that the volumes could be
approximated with a General Beta distribution, of the form d = 150 + 21, 050Z wherein
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Z followed a beta distribution with parameters a = .057706 and b = 7.79. It was then
presumed that the volume of all 228 commodities followed this same distribution, and
that their volumes were independent. Then, given these distributions, we determined
the four moments of the distribution and used the algorithm described in Høyland et al.
(2003) to generate 24 scenarios to represent their joint distribution. Note that this
algorithm takes as input the number of scenarios to generate and reports (along with a
set of scenarios) how well the moments of the underlying distribution are matched. The
smallest number of scenarios that yielded a close approximation of the first four moments
was 24.

Regarding parameter values, we consider the cost of outsourcing a service (both via
contract and on the spot market) to be a multiple of the underlying service cost. Specif-
ically, the parameter µe sets f elm = µeflm and the parameter µσ sets fσlm = µσflm. The
following combinations of values for these parameters create the instances: (µe, µσ) =
(2, 3); (2, 4); (3, 4). Note that in the experiments, we focus on acquiring new resources
only. Thus, assume Iw = 0,∀w ∈ Λ. As such, we need not consider the parameter value
Fwh, w ∈ Λ.

We next turn to the cost associated with acquiring a resource for a terminal (param-
eter FAh). We consider four cost structures, detailed in Table 2. While the first three
structures are used to model different practical settings, the last is used to validate that
the solution approach is producing sensible solutions.

Structure Resource acquisition and allocation costs
1 $1,800 at each terminal
2 $1,800 at satellites, $2,000 at hubs
3 $2,000 at satellites, $900 at hubs
4 $1,800 at S1,H1,H3,S6; $1,900 at S2,H6,S4; $2,000 all other terminals

Table 2: Cost structures for acquiring resources

Finally, we modify the beta distribution described above to model higher volumes and
greater variance in volumes. Specifically, we generalize the formula d = 150 + 21, 050 ∗Z
for determining freight volumes to d = 150 + 21, 050 ∗ vd ∗ Z and consider the values 1
and 5 for vd. We also consider two more distributions for freight, with the first having
twice the standard deviation of the fitted distribution (mσ = 2) and the second having
three times the standard deviation (mσ = 3). Table 3 summarizes the instance parameter
values and their variation.

In summary, the problem set consists of 72 different instances, all of which are defined
on a time-space network with 144 nodes and 600 arcs. They each have 228 commodities,
whose volumes are modeled with 24 scenarios.

20

Integrating Resource Acquisition and Management Decisions Into Tactical Transportation Planning Under Uncertainty 

CIRRELT-2017-52



Parameter Values considered Parameter Values considered

µe 2,3 vd 1,5
µσ 3,4 (note we never consider µe = µσ) mσ 1,2,3

Cost structure 1,2,3,4

Table 3: Instance parameter values

7 Computational Study

An extensive computational study tested the effectiveness of IP-Solve. In all experiments,
we executed both algorithms (CG-Solve and IPS) on each of the 72 instances on a cluster
of machines with 8 Intel Xeon CPUs running at 2.66 GHz with 32 GB RAM. All linear
and mixed integer programs were solved with CPLEX 12. When executing CG-Solve, we
solved the MIP, SSND-RAMU(θLPR,PLPR), with a time limit of five hours and optimality
tolerance of 1%. We let IP-Solve execute for 90 minutes and during its execution, all MIPs
were solved with a time limit of 60 seconds and optimality tolerance of 1%. A time limit of
10 minutes bounded the solution of SSND-RAMU(θ̄, P̄)LPR at the beginning of CG-Solve
and IP-Solve. When solving SSND-RAMU(θ̄, P̄)LPR to generate neighborhood CG-Nbhd
in the context of IP-Solve, Algorithm 1 performed for one iteration. Fundamentally, IP-
Solve requires values for three parameters: F,C, and |Ψ̄|. We used the same values for
these parameters in all our experiments and present those values in Table 4.

F C |Ψ̄|
5 40 5

Table 4: Algorithm parameter values

We divide our discussion into two sections: (1) studying the ability of IP-Solve to
produce high-quality solutions and understanding its behavior, and, (2) validating the
use of the SSND-RAMU model and the solutions produced by IP-Solve.

7.1 Analyzing the performance of IP-Solve

As we execute both algorithms on each instance, each instance has two objective function
values: (1) objIP−Solve, the objective function value of the best solution found by IP-
Solve, and, (2) objCG−Solve, the objective function value of the best solution found by
CG-Solve. Finally, we also consider the objective function value, objIP−Solve−TTBCG−Solve , of
the best solution found by CG-Solve by the time IP-Solve found its best solution. The
analysis of the performance of IP-Solve begins by calculating two gaps, gapIP−SolveCG−Solve =
(objCG−Solve − objIP−Solve)/objCG−Solve, and

gapIP−Solve−TTBCG−Solve = (objIP−Solve−TTBCG−Solve − objIP−Solve)/objIP−Solve−TTBCG−Solve .
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First, note that for every instance gapIP−SolveCG−Solve is positive, meaning IP-Solve produced

a better solution than CG-Solve. Also note that the average of gapIP−SolveCG−Solve over all

instances is 5.44% and the average of gapIP−Solve−TTBCG−Solve is 5.62%. To get a clearer un-
derstanding of the relative performance of the two algorithms, Figure 4a presents the
distributions of these gaps (e.g., the percentage of instances for each % wherein the gap
is in that range). While the gaps between two and three percent are the most frequent,
nearly 60% the instances have a gap greater than 3%. Recalling that IP-Solve executes
for a little over an hour while CG-Solve executes for five hours leads to the conclusion
that IP-Solve is superior to CG-Solve.

Focusing on the length of time required by IP-Solve to find its best solution and
the improvement of that solution over the first one found provides additional insight.
Recall that the first solution is found by solving a MIP wherein only the paths and
cycles that appear in the solution to SSND-RAMU(θ̄, P̄)LPR produced by Algorithm 1
are considered. Averaging over all instances, it takes IP-Solve 3,339.43 seconds (roughly
56 minutes) to find its best solution. The gap between these solutions is gapbestfirst =
(objfirst − objbest)/objfirst, wherein objfirst is the objective function value of the initial
solution found and objbest is the objective function value of the best solution found. On
average, the best solution is 7.17% better than the initial one found (i.e., gapbestfirst =
7.17%). Figures 4b and 4c complement these summary statistics with the distributions
for each statistic. Figure 4b shows that IP-Solve often uses nearly all the time allotted
to find its best solution, suggesting it is thoroughly searching the solution space. Figure
4c indicates that IP-Solve improves upon the initial solution by more than 5% in over
half the instances.

We next study how the two different neighborhoods contribute to the search for im-
proving solutions. For each instance, we calculate what proportion of gapbestfirst can be
attributed to searching each neighborhood. Similarly, for each instance we calculate the
percentage of time when searching each neighborhood produced an improving solution.
Table 5 reports averages of these two statistics over all instances and for each neighbor-
hood. While both neighborhoods yield improving solutions, searching CG-Nbhd accounts
for the majority of the improvement and often yields an improving solution.

Table 5: Neighborhood statistics

Type % total % times
improvement found improving

CG-Nbhd 81.14% 72.15%
ScenPath-Nbhd 18.86% 64.69%

Attention next turns to the sensitivity of the algorithm to the instance parameters
reported in Table 3. To measure this, we average gapIP−SolveCG−Solve over all instances with the
same parameter value (e.g., all instances wherein µe = 3). Table 6 presents results accord-
ing to cost-based parameters, while Table 7 presents results according to demand-based
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parameters. The algorithm is relatively robust with respect to all instance parameters;
the only parameter that impacts gapIP−SolveCG−Solve is the demand multiplier, vd. We hypoth-
esize that a smaller demand multiplier leads to CG-Solve solving an integer program
with a weak linear programming relaxation, and thus makes it harder for it to find a
high-quality solution.

Table 6: Algorithm performance by cost-based instance parameters

Contract outsourcing Spot outsourcing Cost
Parameter µe µσ structure

Value 2 3 3 4 1 2 3 4

gapIP−SolveCG−Solve 5.22% 5.87% 5.72% 5.29% 6.20% 6.58% 2.58% 6.38%

Table 7: Algorithm performance by freight demand-based instance parameters

Volume Variation
Parameter vd mσ

Value 1 5 1 2 3

gapIP−SolveCG−Solve 8.43% 2.45% 5.24% 5.21% 5.86%

To produce a high-quality solution, IP-Solve must both produce the cycles and paths
that are needed for a good solution and construct a good solution out of those cycles
and paths. With this last set of experiments we test the ability of IP-Solve to produce
a high quality solution given a set of paths and cycles. To that effect, and to further
understand the quality of the solution produced by IP-Solve, we ran one more set of
experiments wherein after IP-Solve terminated, we solve SSND-RAMU(θcand, Pcand) as a
MIP with CPLEX for five hours to generate a primal solution objCPLEX−5hours and dual
bound boundCPLEX−5hours. Note that CPLEX was seeded with the best solution found by
IP-Solve as a starting solution. We then calculate the gap in the objective function value
between the best solution produced by IPS and the best solution produced by CPLEX
after solving SSND-RAMU(θcand, Pcand), calculated as primalCPLEX−5h

IP−Solve = (objIP−Solve−
objCPLEX−5hours)/objIP−Solve. We also calculate the optimality gap associated with the
solution produced by IP-Solve and the dual bound found by CPLEX, optCPLEX−5h

IP−Solve =
(objIP−Solve − boundCPLEX−5hours)/objIP−Solve. Table 8 reports averages of these gaps
over all instances with the same volume and variation multiplier.

Table 8: Comparison with CPLEX solving SSND-RAMU(θcand,Pcand) for five hours

primalCPLEX−5h
IP−Solve optCPLEX−5h

IP−Solve
Cost structure Cost structure

vd 1 2 3 4 1 2 3 4
1 2.14% 2.17% 3.41% 2.26% 25.66% 26.24% 20.03% 26.48%
5 2.23% 1.84% 1.93% 1.99% 5.91% 5.43% 4.53% 5.69%

Observation of the primalCPLEX−5h
IP−Solve results indicates that even with five hours of

solving time, CPLEX was unable to produce a solution of significantly higher quality
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than that produced by IP-Solve. Considering the optCPLEX−5h
IP−Solve results when volumes are

high, IP-Solve is producing solutions that are within 6% of optimal, given the set of
cycles θcand and paths Pcand. We believe the large optimality gaps when volumes are low
can be attributed to a weak linear programming relaxation for those instances. These
results are further evidence of the ability of IP-Solve to produce high-quality solutions.
Attention can next turn to validating the use of SSND-RAMU and the solutions produced
by IP-Solve.

7.2 Validation

To validate the model, SSND-RAMU, we first calculate the Value of the Stochastic So-
lution (VSS). Then, to validate the solutions produce by IP-, we look at how instance
parameters impact the allocation of resources to terminals and outsourcing decisions.

The mean demand for each product, q̄ =
∑

ψ∈Ψ φwq
kψ, allows for the calculation of

the mean-value scenario, ψ̄, which in turn leads to the VSS. CG-Solve executes SSND-
RAMU, formulated with just the mean-value scenario Ψ̄ and with the MIP SSND-
RAMU(θLPR,PLPR) solved for ten hours. Solving this MIP yields decisions regarding
resource acquisition (āwh), resource routes (z̄τh), services operated by owned resources
(ȳlt,mt′ ), and services operated by third-party resources (ȳelt,mt′ ). We then evaluate these
decisions in the second stage, and for each scenario, by solving SSND-RAMU(θLPR,PLPR)
with the first-stage variables fixed to those values. Doing so yields a total cost, labeled
objmean, that consists of the first-stage costs associated with those decisions and the
resulting expected costs in the second stage.

Next, for that same instance albeit with all scenarios, we execute CG-Solve, again
with the MIP SSND-RAMU(θLPR,PLPR) solved for ten hours, to derive the total cost
objSSND−RAMU . The VSS is the gap between these two costs, (objmean−objSSND−RAMU)/objmean.
Table 9 reports averages of these gaps, by variation (mσ) and cost structure.

Table 9: Value of stochastic solution

Cost structure
µσ 1 2 3 4 Average

1 6.40% 7.66% 1.06% 6.87% 5.50%
2 5.07% 4.83% 2.92% 7.08% 4.98%
3 7.50% 8.53% 2.98% 7.24% 6.56%

Average 6.32% 7.01% 2.32% 7.06% 5.68%

Not surprisingly, the largest levels of variation (µσ = 3) lead to the largest gaps.
Interestingly, cost structure 3 results in the smallest gaps. We hypothesize that the cost
structure so favors the allocation of acquired resources to hubs that explicitly modeling
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uncertainty (as done with SSND-RAMU) leads to the same first-stage decisions as not
doing so. We conclude from these results that there is value in solving the SSND-RAMU
instead of solving the mean-value scenario problem.

We next study the allocation of resources to terminals under each of the four cost
structures described in Table 2 (and repeated in each Figure). Figures 5a, 5b, 5c, and
5d report the percentage of resources allocated to each terminal, calculated as 100 ∗

pAh∑
h′∈Λ pAh′

, h ∈ Λ.

Examining these figures, we conclude that both freight volumes and resource acqui-
sition costs that vary by terminal can have an impact on where resources should be
allocated. Focusing on Figure 5a, wherein resource acquisition costs are the same for
all terminals, the distribution of resources is not even (with a greater proportion of re-
sources assigned to hubs than satellites). In this case freight volumes drive resource
allocation decisions. However, the remaining cost structures, wherein acquisition costs
vary by terminal, see a drastic change in the distribution of resources. For example, in
Figure 5c, wherein it is much cheaper to acquire resources for a hub, no resources are
acquired for satellites. And, in the (somewhat pathological) fourth cost structure (Figure
5d), the distribution of resources is correlated with the acquisition costs. For example,
over 85% of the resources acquired are assigned to one of the four cheapest terminals
(S1,H1,H3, and S6), in terms of acquisition costs. These results indicate that modeling
both (strategic) resource acquisition and allocation and (tactical) service network design
decisions can lead to better plans. They also indicate that IP-Solve is producing solutions
that exhibit expected traits. Thus, we conclude that IP-Solve is producing high-quality
solutions from this perspective as well.

We next turn our attention to how the outsource multipliers, µe, µσ impact outsourc-
ing and resource acquisition decisions. To that effect, given the best solution produced
by IP-Solve, and its objective function value obj, we calculate the following statistics:
(1)

∑
(lt,mt′ )∈S

f elmy
e
ltmt′

/obj (Out), (2)
∑

s∈Ψ ps
∑

(lt,mt′ )∈S
fσlmy

σs
ltmt′

/obj (Spot), and, (3)

hacq =
∑

h∈Λ pAh (Res-acq). The first statistic represents the percentage of costs that
can be attributed to outsourcing the execution of services on a long-term contract basis.
The second statistic is similar, albeit looks at the expected amount spent outsourcing on
the spot market. The last measures the total number of resources acquired.

Table 10 reports these statistics, for different values of µe, µσ and both baseline and
higher freight volumes. However, the table reports the values of obj and Res-acq relative
to the values seen in the solution with µe = 2, µσ = 3 for each demand volume, as absolute
numbers provide no information in this context. For example, for vd = 1, an increase
in the spot market outsourcing cost (from µσ = 3 to 4) increased the objective function
value by 2.37% and lead to a 8.21% increase in the number of resources acquired.

Both demand levels follow the same pattern. First, note that the total cost of the
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µe µσ = 3 µσ = 4
Out Spot obj Res-acq Out Spot obj Res-acq

vd = 1
2 3.80% 3.89% 100% 100% 3.84% 2.52% 97.63% 108.94%
3 - - - - 0.65% 2.70% 105.30% 128.86%

vd = 5
2 1.54% 1.20% 100% 100% 2.11% 0.94% 100.09% 96.44%
3 - - - - 0.65% 2.70% 101.53% 131.67%

Table 10: Outsourcing and acquisition decisions

solutions produced by IP-Solve does not vary significantly as the cost parameters change
(at most a 5.03% increase when both long-term and spot market outsourcing costs in-
crease). We attribute this to the increase in resources acquired and hypothesize that
IP-Solve is adapting to the cost structure with which it is presented. In a sense, this is
one advantage of using a matheuristic that explicitly captures the impact on the objective
of moving to a neighboring solution. Also, as outsourcing on the spot market becomes
more expensive (e.g., µσ = 4), more is spent on long-term, contract outsourcing. Yet, the
number of resources remains relatively constant. However, as both types of outsourcing
become more expensive, the algorithm adapts by acquiring more resources. This last
point is another validation for modeling resource acquisition and service network design
decisions in an integrated manner.

8 Conclusions and Future Work

We focused in this paper on modeling and solving in a unified way two planning problem
faced by consolidation-based freight transportation carriers: selecting and scheduling the
set of services required to route shipments while meeting the economic goals of the com-
pany and the service standards customers expect, and, selecting and efficiently routing
the resources required to provide this service, while observing governmental (and other)
regulations. We proposed SSND-RAMU, a scheduled service network design model that
simultaneously addresses strategic decisions on fleet sizing and allocation, including ac-
quisition and outsourcing, and tactical decisions on building the transportation plan and
schedule. Moreover, as a well-sized fleet and a well-designed transportation plan should be
able to accommodate fluctuations in freight volumes, we explicitly addressed uncertainty
in demand (freight volumes) through the use of scenarios, which makes SSND-RAMU
a stochastic program. Solving this program will assist transportation companies size,
locate, and use their fleet while recognizing that customer demands for transportation
services are not known with certainty.

Given the computational difficulties associated with solving stochastic programs ex-
actly, we proposed two column-generation-based matheuristics for addressing the model.
The matheuristics framework we propose decomposes the optimization problem across
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multiple dimensions, and evaluates a neighboring solution across all scenarios. This is the
first heuristic scheme for this class of problems. Extensive computational experiments
show that it is effective, the second matheuristic, called IP-Solve, being superior. We
also validated the solutions by analyzing their attributes as instance parameters vary.

The model assumes that resources remain at the terminal to which they are allocated.
However, it is not uncommon for a resource to be allocated to one terminal during one
season and then re-allocated to another terminal in the next season. As such, whereas
our model implicitly considers a single season, we are exploring extending it to instead
consider multiple seasons. This new model will capture that resources are acquired
and allocated, and then can be repositioned at the beginning of each of the subsequent
seasons. Such a model will likely be a multi-stage stochastic program and will necessitate
new algorithmic developments.

Similarly, we are exploring other heuristic strategies for stochastic programs. The
matheuristic presented calculates the resource cost explicitly for each neighboring solu-
tion (through the solution of a two stage stochastic mixed integer program). However,
researchers have had great success in other problem settings with algorithms that ap-
proximate the recourse cost, either with linear inequalities, or by explicitly recognizing a
modified (likely smaller) set of scenarios. As such we are developing a matheuristic for
two stage stochastic programs that, at each iteration, solves a stochastic program that
approximates the recourse cost.
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