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Abstract. The context of this paper lies on the application of the Vendor-Managed Inventory 

paradigm in city-logistics. We formally model and solve the problem as a Multi-Depot 

Inventory Routing Problem (MDIRP). In general, the MDIRP is an NP-hard problem that 

aims at optimizing the trade-off between inventory and transportation management in an 

integrated way. With respect to the state of the art, a different context is presented, 

characterized by a complex urban environment. We formulate the problem, we design a 

branch--and--cut algorithm to solve it and then we propose a three--phase matheuristic to 

solve the problem efficiently. The urban space is partitioned into clusters allowing us to 

generate feasible routes for the MDIRP. In the first phase of the matheuristic, an integer 

program is solved to build clusters, while the second phase generates routes. Finally, in the 

third phase, a route-based formulation of the problem is solved to provide a feasible MDIRP 

solution. More emphasis is devoted to simultaneously balancing several factors that impact 

the clustering and route construction phases: distances, demand and inventory levels, time 

horizon extension and vehicle capacity. Computational experiments show that the 

matheuristic is very effective. 
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1 Introduction

In the last decades companies increased their interest in optimizing their supply chains.

The spread of globalization and the development of information and communication tech-

nologies stimulated research towards the development of integrated logistics models with

the aim of improving coordination. The main contributions in this direction are devoted

to develop optimization models focused on two or more sequential logistics activities in the

supply chain, such as inventory and routing, production or inventory, location and routing.

All the resulting optimization models are based on two–echelon networks, in which one or

more suppliers provide freight to many retailers or customers. Our problem falls within

the field of two–echelon optimization problems in which customers must be supplied from

different depots over a finite planning horizon, while transportation and inventory costs

are minimized.

In this setting, Vendor-Managed Inventory (VMI) gained importance in different com-

panies. VMI consists of a vendor/supplier, and a set of customers/retailers located in a

given geographical area. The supplier monitors the inventory and decides on the replen-

ishment policy of each retailer. The VMI setting assigns to the supplier the role of leading

actor in the decisional process, in order to establish when and how much to deliver. This

system applies a win-win strategy, because it guarantees an overall reduction of the logistic

cost for the supplier and saving in the ordering cost for the customers. The development of

the VMI setting derives from successful industrial applications in different fields: Procter

& Gamble and Walmart (Barratt and Oliveira [2001]), chemical products (Dauzère-Pérès

et al. [2007]), oil and gas (Bell et al. [1983], Grønhaug et al. [2010], Shen et al. [2011]), fuel

(Popović et al. [2012]) and maritime cement transportation (Christiansen et al. [2011]).

For an in depth overview of VMI applications we refer to Andersson et al. [2010].

The optimization problem that integrates VMI with routing is the well–known In-

ventory Routing Problem (IRP ). In comparison to the classical Vehicle Routing Problem
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(V RP ), the IRP shows an added complexity due to the integration of the inventory com-

ponent into the multi-period decisional process. Usually, an IRP deals with minimizing

the sum of inventory and routing costs during the planning horizon, while avoiding stock–

outs at the customers. Three main decisions are relevant in an IRP : when and how much

to deliver to customers and which routes to use. Uncertain IRP is not widely investigated

due to the increased complexity of the problem (see Solyalı et al. [2012], Bertazzi et al.

[2013], Coelho et al. [2014], Bertazzi et al. [2016]). Despite the fact that supply chains are

usually characterized by a great level of uncertainty, the literature demonstrates that good

results also derive from deterministic analysis. Deterministic IRP s are common both from

a practical standpoint or as a research area. The single–product and single–vehicle IRP

is studied in Bertazzi and Speranza [2002], Archetti et al. [2007], Solyalı and Süral [2008].

Several papers investigate the single–product and multi–vehicle IRP , including Coelho

et al. [2012] and Adulyasak et al. [2013]. The multi–product and multi-vehicle IRP is

studied in Coelho and Laporte [2013] and Cordeau et al. [2015]. Exact algorithms for the

IRP include branch–and–cut, branch–and–price, and more recently, branch–price–and–

cut (Desaulniers et al. [2015]).

Heuristic methods were successfully applied to large IRP instances. A basic heuristic

approach consists of decomposing the IRP in sub–problems solved in hierarchical order.

Recent years have seen a large use of hybrid heuristic algorithms, in which mathemati-

cal programming models are embedded into heuristic frameworks. These algorithms are

denoted matheuristics, and provide good results in solving IRP s, as shown by Bertazzi

and Speranza [2011] and Archetti et al. [2017]. A decomposition approach to tackle large

scale instances of the IRP can be found in Campbell and Salvesbergh [2004], and Cordeau

et al. [2015], while a matheuristic procedure is designed in Archetti et al. [2017]. For an

in depth analysis of the state of the art, the reader can refer to the surveys and tutorials

by Bertazzi and Speranza [2013] and Coelho et al. [2013].

City logistics refers to the management of urban freight transportation, based on inte-

The Multi-Depot Inventory Routing Problem: An Application of Vendor-Management Inventory in City Logistics

2 CIRRELT-2017-54



grated logistic systems with consolidation and coordination, aimed at increasing efficiency

and reducing environmental damage (see Crainic et al. [2009], Bektas et al. [2015], Koç

et al. [2016], Savelsbergh and Van Woensel [2016]). In these systems, two main types of

facilities are used: City Distribution Centers (CDC), where storage, sorting, consolidation

activities are carried out, and Satellites, where transdock-type of operations are carried

out, with no storage. A typical application is when logistics is managed in mega-cities. A

mega–city can be defined as a metropolitan area with a total population in excess of ten

million people. This enormous urban space is usually affected by social and infrastructural

problems related to energy consuption, traffic congestion and air pollution. To face the

high complexity of logistics in mega–cities, the main idea is to split the urban space into

districts (clusters), each one with an independent inventory management of its stores. The

best practice implemented by many companies (e.g., Procter & Gamble and Walmart) in

mega–city areas is to locate a depot in each district to control the inventories of all the

stores by using a VMI setting.

We study an IRP in which VMI is applied to the customers of a company located in

a mega–city. Given a set of depots, we want to determine the vehicles assigned to each

depot, the customers served by each depot on each day, when and how much to deliver

to each customer, and which delivery routes to use. These depots are supplied on each

day to face the orders they have to serve on that day. Inventory levels of the customers

are managed by the supplier. However, the corresponding inventory cost is paid by the

customers. Therefore, suppliers minimize their routing cost only, but guarantee that no

stock–out occurs at the customers. This problem is a multi–depot and multi–vehicle IRP

(MDIRP ). The main difference of our problem with respect to the practice implemented

in many companies is that the assignment of customers to depots is not fixed, hence we

are more flexible.

In this paper we define, model and solve a multi–vehicle and multi–depot IRP by

proposing an effective three-phase matheuristic algorithm. In the first phase, an integer
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program is used to build clusters on the basis of a quantitative measure of customers’

critical level. In the second phase, a set of intra and inter-cluster routes is generated by

considering the limited amount of resources in terms of vehicle capacity and maximum

number of customers that can be served from a supplier. In the third phase, a route–

based mixed-integer linear programming (MILP ) formulation is solved to obtain a feasible

solution for the problem. The results are compared with the ones obtained by solving a

MILP formulation using a commercial solver, through a branch–and–cut algorithm. The

proposed matheuristic largely outperforms the branch–and–cut in terms of solution quality

and computational time.

The remainder of the paper is organized as follows. The problem is formally described

in Section 2. In Section 3 a mathematical formulation of the multi–depot and multi–

vehicle IRP is presented. A branch–and–cut algorithm to solve the problem is described

in Section 4. A matheuristic algorithm is presented in Section 5. In Section 6 extensive

computational results are presented and discussed. Finally, conclusions are drawn in

Section 7.

2 Problem description

We consider a complete undirect graph G = (V,E), where V is the set of vertices and

E is the set of edges. We partition the set V in such a way that V = P ∪ I, where

P = {1, 2, . . . ,m} is the set of depots that deliver a product to the set of customers I =

{m+1,m+2, . . . ,m+n} over a finite and discrete time horizon H. Let T = {1, 2, . . . ,H}

be the corresponding set of time periods. A non–negative cost cij is associated with each

edge (i, j) ∈ E. We assume that G is an Euclidean graph, so the triangular inequality

holds. A set K = {1, 2, . . . ,M} of vehicles, with the same capacity C, is available to

perform deliveries. Each vehicle k ∈ K can be assigned to one depot p ∈ P for each time

period t ∈ T . Each customer i ∈ I can be served by different vehicles in the same time
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period t ∈ T , either assigned to the same or different depots. A maximum inventory level

Ui and a given starting inventory level Ii0 are associated with each customer i ∈ I. We

assume that both Ui and Ii0 are integer. In each time period t, a deterministic integer

demand dit of each customer i must be satisfied. The inventory level of each customer i

cannot be negative in each time period t ∈ T ∪ {H + 1}, i.e., stock–out is not allowed.

The aim is to determine:

1. the set of vehicles to assign to each depot at each time period,

2. the quantity of product to deliver to each customer at each time period by using

each vehicle,

3. the set of routes to travel at each time period,

that minimize the total transportation cost over the time horizon.

3 Mathematical formulation

We now present a mathematical formulation of the problem, which is adapted from

Archetti et al. [2007], in which the multi–depot multi-vehicle case is tackled by using

binary variables. We introduce the following notation. Let δ(S) be the set of edges (i, i′)

incident to the vertices i ∈ S ⊂ V (edge cutset); for the sake of notation, if S = {i}, we

denote the corresponding edge cutset as δ(i). Let E (U) be the set of edges (i, j) such that

i, j ∈ U , where U ⊆ I is a given set of customers. Our mathematical formulation is based

on the following variables:

• Iit: inventory level at customer i at the beginning of time period t;

• yiktp: quantity to deliver to customer i in time period t by vehicle k starting the

route from depot p;
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• xijktp: binary variable equal to 1 if vehicle k starting from depot p travels directly

from vertex i to vertex j in time period t, and equal to 0 otherwise;

• ziktp: binary variable equal to 1 if vehicle k from depot p visits customer i in time

period t, and equal to 0 otherwise;

• zpktp: binary variable equal to 1 if vehicle k, assigned to depot p, starts its route

from depot p in time period t, and equal to 0 otherwise.

The mathematical formulation is described by (1)–(14).

min
∑
t∈T

∑
(i,j)∈E

∑
k∈K

∑
p∈P

cijxijktp (1)

s.t. Iit = Iit−1 +
∑
k∈K

∑
p∈P

yikt−1p − dit−1 ∀t ∈ T ∪ {H + 1}, ∀i ∈ I (2)

Iit +
∑
p∈P

∑
k∈K

yiktp ≤ Ui ∀t ∈ T, ∀i ∈ I (3)

∑
i∈I

yiktp ≤ C zpktp ∀t ∈ T, ∀p ∈ P,∀k ∈ K (4)∑
i∈I

yiktp ≥ zpktp ∀t ∈ T, ∀p ∈ P,∀k ∈ K (5)

yiktp ≤ C ziktp ∀i ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K (6)

zbktp = 0 ∀t ∈ T, ∀p, b ∈ P, p 6= b,∀k ∈ K, (7)∑
p∈P

zpktp ≤ 1 ∀t ∈ T, ∀k ∈ K (8)

∑
j∈I:(j,i)∈E

xjiktp +
∑

j∈I:(i,j)∈E

xijktp = 2ziktp ∀i ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K (9)
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∑
(i,j)∈E(S)

xijktp ≤
∑
i∈S

ziktp − zuktp ∀S ⊆ I, |S| ≥ 2,∀t ∈ T, ∀k ∈ K,∀p ∈ P, u ∈ S(10)

xijktp, xpjktp, xjpktp ∈ {0, 1} ∀i, j ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K (11)

Iit ≥ 0 ∀i ∈ I, ∀t ∈ T ∪ {H + 1} (12)

yiktp ≥ 0 ∀i ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K (13)

ziktp ∈ {0, 1} ∀i ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K. (14)

The objective function (1) minimizes the total transportation cost. Constraints (2)

balance the inventory flow at the customers. Note that the variable Ii1 is equal to the

initial inventory level Ii0. Constraints (3) guarantee that the maximum inventory level of

each customer does not exceed Ui. Constraints (4) ensure that the total quantity loaded

on vehicle k departing from depot p in period t does not exceed the capacity C, and,

together with constraints (5) guarantee that, if the total quantity is greater than 0, then

the corresponding vehicle is used. Constraints (6) enforce that, if a positive quantity of

product is delivered to customer i with vehicle k starting from depot p in time period

t, then customer i is visited. Constraints (7) guarantee that a vehicle k assigned to

depot b in time period t cannot start a route from a different depot p in the same time

period. Constraints (8) impose that each vehicle k can be assigned to at most one depot

p in each time period t. Constraints (9) and (10) control the degree of the vertices and

prohibit subtours, respectively. Finally, constraints (9)–(14) define the integrality and

non-negativity conditions for the variables. Note that constraints (12) also guarantee that

no stock-out occurs at each customer i ∈ I.

4 Branch–and–cut algorithm

We design a basic branch–and–cut algorithm to solve the problem. The initial linear

programming relaxation (LP ) is obtained by removing constraints (10) from the problem

formulation (1)–(14), adding the following constraints that guarantee that each customer
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i is visited at most once from vehicle k in each time period t:∑
p∈P

ziktp ≤ 1 ∀t ∈ T, ∀k ∈ K,∀i ∈ I, (15)

and then by adding violated subtour elimination constraints for each period, for each

vehicle and for each depot. Constraints (15) are redundant in model (1)–(14), but they

can increase the value of the corresponding LP . Subtour elimination cuts are separated

heuristically along the lines of the procedure designed by Ahr [2004]. More precisely,

the heuristic finds all the connected components in the auxiliary graph induced by all

the edges such that xijktp ≥ ε + τ , where xijktp is the value of variable xijktp on edge

(i, j) in the current LP while ε ∈ {0, 0.25, 0.50} and τ is a tolerance. Whenever a subset

of customers Sp disjoint from depot p is found, the corresponding subtour elimination

constraint is added for u = argmaxi∈Sp {ziktp}, where ziktp is the value of variable ziktp

in the current LP . This heuristic procedure is also applied to any integer solution of the

relaxed formulation, so that the best integer solution of the branch–and–cut is connected

to the depot. The branching rule to be used is determined by the MIP solver.

In order to improve the quality of the root node lower bound, the following valid

inequalities are added to the LP described so far:

1. Priority inequalities:

ziktp ≤ zpktp, ∀i ∈ I, ∀k ∈ K,∀p ∈ P,∀t ∈ T. (16)

These valid inequalities were presented by Archetti et al. [2007] to improve the

performance of the proposed branch-and-cut for the single–vehicle IRP .

2. Logical inequalities:

xipktp + xpiktp ≤ 2 ziktp, ∀i ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K (17)

xijktp ≤ ziktp, ∀i, j ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K. (18)
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These inequalities are inspired by the logical cuts of Fischetti et al. [1998] and

Gendreau et al. [1998]. Inequalities (17) impose that if the depot p is the predecessor

or the successor of customer i in the route executed in period t by vehicle k starting

from depot p, then customer i has to be visited in period t by vehicle k starting from

depot p. Inequalities (18) impose that if customer j is the successor of customer i in

the route performed in period t by vehicle k starting from depot p, then customer i

has to be visited in period t by vehicle k starting from depot p.

3. Disaggregate parity inequalities:

∑
(i,j)∈δ(S)\(F )

xijktp ≥
∑

(i,j)∈(F )

xijktp − |F |+ 1,

∀t ∈ T, ∀p ∈ P,∀k ∈ K,∀F ⊆ δ(S), |F | odd (19)

4. Depot–Aggregate parity inequalities:

∑
p∈P

∑
(i,j)∈δ(S)\(F )

xijktp ≥
∑
p∈P

∑
(i,j)∈(F )

xijktp − |F |+ 1,

∀t ∈ T, ∀k ∈ K,∀F ⊆ δ(S), |F | odd (20)

These inequalities are added dynamically to the LP in each node of the branch–and–

cut algorithm. Parity inequalities were introduced by Barahona and Grötschel [1986]

as co–circuit inequalities. They are effective for problems with binary variables, in

case that the parity of vertices is required. An example of application of these

inequalities is presented by Padberg and Rinaldi [1990] for the Symmetric TSP

polytope. Inequalities (19) and (20) are separated heuristically according to the

procedure described by Aráoz et al. [2009]. Note that aggregate parity inequalities

over all the vehicles are not valid, since split delivery is allowed.

An initial solution of the branch-and-cut is computed as follows. We solve a relaxed

formulation of (1)–(14), named RMDIRP in the sequel, in which the routing cost in the
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objective function is replaced by
∑

t∈T
∑

k∈K
∑

p∈P
∑

i∈I cpiziktp, where cpi is the cost of

the edge (p, i) ∈ E connecting the depot p to the customer i. Moreover, all the routing

constraints (9) and (10) and the corresponding variables xijktp are temporarily removed

from the mathematical formulation. A set of feasible clusters (one for each vehicle) is

defined on the basis of the values of variables ziktp in any optimal RMDIRP solution.

For each cluster, the optimal TSP tour is computed and the corresponding value of the

objective function (1) is then determined. The relaxed formulation is solved repeatedly by

adding at every iteration the following diversification constraints, with the aim of obtaining

different solutions:

1. Let Zktp = {i ∈ I : ziktp = 1} be the set of the customers served by vehicle k in

period t from depot p in the current feasible RMDIRP solution. A set of feasible

routes is built by solving a TSP on the sub–graph induced by Zktp ∪ {p}, for each

k, t and p.

2. The average routing cost is computed over the set of routes returned in step 1.

All the routes with a cost greater than the average routing cost are considered as

candidates for diversification.

3. For each candidate route, a set of moving nodes, Bktp, is built as follows. The vertices

served in the route are ordered according to their non–decreasing insertion cost. The

insertion cost of the vertex i is defined as the difference between the optimal TSP

tour cost to serve all the customers in the route and the optimal TSP tour cost to

serve all the customers in the route except i. The first

⌊
|Zktp|

2

⌋
vertices are inserted

in the set Bktp.

4. The diversification constraint is formulated as follows:

∑
i∈Bktp

(1− ziktp) +
∑

i∈I\Bktp

ziktp ≥
⌈
|Bktp|
|P |

⌉
. (21)

10
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Observe that the number of customers that can be moved among the routes decreases

with the number of depots. Inequalities (21) are added to the RMDIRP and the

new problem is re-optimized. For each problem with diversification constraints, a

time limit of 20 minutes is imposed.

5. The procedure ends when a maximum number ω of iterations is reached or GAP =

(cW−cB)
cB

100 ≥ ϑ, where cW and cB are the costs of the worst and the best RMDIRP

solutions respectively, while ϑ is a gap limit.

At the end of the procedure the best solution found is used as starting solution for the

branch–and–cut algorithm.

The pseudocode of this procedure is provided in Algorithm 1.

5 Matheuristic for the MDIRP

We propose a matheuristic algorithm for the solution of the MDIRP able to solve

realistic–size instances. It is based on the following three–phase decomposition approach:

• Clustering phase: an integer linear programming model is solved to generate a par-

tition of the set of customers into a set of clusters, one cluster for each depot p ∈ P .

• Routing construction phase: a set R of routes is built for the clusters generated

in the first phase. The routes are generated on the basis of several replenishment

policies and assuming different vehicle capacities. Two types of routes are generated:

intra-cluster routes and inter-cluster routes. In the first type, each route can visit

only customers in the cluster, while in the second type each route can also visit

borderline customers, i.e., customers not in the cluster, but close enough to it. This

latter type of routes is introduced to add flexibility in the construction of the routes.

• Optimization phase: a binary linear programming model, referred to as Route-based
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Algorithm 1 Initial solution for the branch-and-cut algorithm

Set κ = 0;

Let sRMDIRP be a solution for the RMDIRP

Set WsRMDIRP = BsRMDIRP = sRMDIRP ; where WsRMDIRP is the worst

RMDIRP solution, whose cost is cW and BsRMDIRP is the best RMDIRP solution

whose cost is cB;

Set GAP = 0, k = 0

while Problem is feasible and GAP ≤ ϑ and κ ≤ ω do

determine the route set Rκ;

determine the average routing cost cκR of routes in Rκ

for each route r ∈ Rκ do

if cr ≥ cκR then

build set Bktp

add diversification constraint (21)

end if

end for

Solve the RMDIRP with diversification constraints , and let sRMDIRP be the

corresponding solution.

if csRMDIRP < cBsRMDIRP then

Set BsRMDIRP = sRMDIRP

end if

if csRMDIRP > cWsRMDIRP then

WsRMDIRP = sRMDIRP

end if

GAP = (cB−cW )
cB

100

κ = κ+ 1

end while
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MDIRP , is optimally solved to obtain a feasible solution of the MDIRP , selecting

routes from the set R and determining delivery quantities to each customer in a

given period of the time horizon. This quantity can be different than the one used

to generate the routes in the previous phase.

We now describe these three phases in detail.

5.1 Clustering phase

The aim of this phase is to partition the set of customers I into a set of clusters C =

{C1, C2, . . . , C|P |}. We identify critical customers and build clusters having two main fea-

tures: a limited number of customers and a maximum average critical level. The idea to

identify critical customers in an IRP was proposed by Campbell and Salvesbergh [2004],

where a qualitative definition of critical customers is proposed. Here, we provide a quan-

titative measure, computed on the basis of the minimum number of deliveries needed to

serve the customer over the time horizon, and of the average distance of the customer

from the depots. The corresponding critical level CLi is computed as:

CLi = αRi + (1− α)Mi, (22)

where α takes values between 0 and 1, while Ri and Mi are respectively the minimum

number of deliveries to customer i over the time horizon and the average delivery cost

for each customer i with respect to all the depots. These parameters are obtained by

computing:

R̂i =

max

{
0,
∑
t∈T

dit − Ii0
}

Ui

M̂i =

∑
p∈P

DCpi

|P |
,
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where DCpi = cpTST − c
p
TST\{i} is an estimated transportation cost to serve customer i

from depot p, computed as the difference between the optimal TSP tour cost to serve

all customers in I from depot p ∈ P (cpTST ) and the optimal TSP tour cost to serve

all customers I\ {i} from depot p ∈ P (cpTST\{i}). The values of Ri and Mi in (22) are

obtained by normalizing R̂i and M̂i in the interval [0, 10], where 0 is assumed to be the

minimum value and 10 to be the maximum value.

The values of CLi are the input data of the following binary linear programming model

aimed at building the clusters. Let CC be the maximum number of customers for each

cluster, TC be the maximum value of the average critical level for each cluster computed

with respect to CC, and bpi a binary variable equal to 1 if customer i belongs to the cluster

Cp, and 0 otherwise. Then, the model is formulated as follows:

min
∑

(p,i)∈E

cpi bpi (23)

s.t.
∑
i∈I

bpi ≤ CC ∀ p ∈ P (24)∑
p∈P

bpi = 1 ∀ i ∈ I (25)

∑
i∈I

CLibpi/CC ≤ TC ∀ p ∈ P (26)

bpi ∈ {0, 1} ∀ p ∈ P, ∀i ∈ I. (27)

The objective function (23) minimizes the total distance between customers and de-

pots. Constraints (24) enforce the total number of customers in each cluster to be within

the maximum number CC. Constraints (25) impose that each customer is assigned to

exactly one cluster. Constraints (26) enforce the average critical level of each cluster to

be not greater than the maximum value TC. Constraints (27) define variables bpi.

In the following, we will refer this procedure as the one that receives an instance of

the MDIRP as input, IMDIRP , and returns a set of clusters C =
{
C1, . . . , C|P |

}
, that is:
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C ← Clustering (IMDIRP ).

5.2 Routing construction phase

The aim of the second phase is to generate a restricted number of routes for the MDIRP

on the basis of the clusters generated by model (23)–(27), and on the basis of some

replenishment policies. Two classes of routes are generated: intra-cluster and inter-cluster

routes. The first class is composed of all routes serving customers that are in the same

cluster, while the second class is composed of all the routes that serve also borderline

customers. A similar idea is presented by Salhi et al. [2014] for a multi–depot multi–

vehicle V RP . They divided customers in two sets: the first one composed of customers

served by the depot nearest to them, and the second serving borderline customers. They

define borderline customers as “the customers that happen to be situated approximately

halfway between its nearest and its second nearest depots”. They use this classification as

starting point for routes generation. Here, we use a different clustering procedure, strongly

focused on the nature of the MDIRP .

Let us first describe the intra-cluster routes we generate. For each cluster Cp, we focus

on direct delivery routes from the depot to one customer and on routes built aggregating

the customers served in the same time period based on the following replenishment policies:

• Order–up–to level policy. This policy aims at restoring the maximum inventory level

at customer i. This policy is referred to as g1. For each customer i in the cluster Cp

and for each time period t ∈ T , the replenishment quantity ŷit(g1) is computed as

follows:

ŷit(g1) =


Ui − Îit−1(g1), if dit ≥ Îit−1(g1)

0, otherwise

where Îit−1(g1) = Ii0 +
t−2∑
h=1

ŷih(g1)−
t−2∑
h=1

dih.
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• Maximum level policy. This policy aims to have an inventory level equal to the

demand, whenever the current inventory level is lower than the demand. This policy

is referred to as g2. For each customer i in the cluster Cp and for each time period

t ∈ T , the replenishment quantity ŷit(g2) is computed as follows:

ŷit(g2) =


dit − Îit−1(g2), if dit ≥ Îit−1(g2)

0, otherwise

where Îit−1(g2) = Ii0 +
t−2∑
h=1

ŷih(g2)−
t−2∑
h=1

dih.

• Initial–inventory–level policy. This replenishment policy aims at restoring the max-

imum between the initial inventory level Ii0 and the demand dit in each time period,

whenever the current inventory level is lower than the demand. We refer to this

policy as g3. For each customer i in the cluster Cp and for each time period t ∈ T ,

the replenishment quantity ŷit(g3) is computed as follows:

ŷit(g3) =


max

{
Ii0 − Îit−1(g3), dit − Îit−1(g3)

}
, if dit ≥ Îit−1(g3)

0, otherwise

where Îit−1(g3) = Ii0 +
t−2∑
h=1

ŷih(g3)−
t−2∑
h=1

dih.

• Critical–customers–level policy. This replenishment policy aims at delivering the

demand or twice its value, depending on the value of the critical level CLi, to the

customers not having enough inventory level to satisfy the demand. We refer to this

policy as g4. For each customer i in the cluster Cp and for each time period t ∈ T ,

the replenishment quantity ŷit(g4) is computed as follows:

ŷit(g4) =


min {2dit, Ui} , if dit ≥ Îit−1(g4), and CLi ≥ 6

dit, if dit ≥ Îit−1(g4), and CLi < 6

0, otherwise
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where Îit−1(g4) = Ii0 +
t−2∑
h=1

ŷih(g4)−
t−2∑
h=1

dih.

Note that the threshold on the critical level CLi has been set equal to 6, that is an

average value in the scale from 1 to 10.

Each replenishment policy allows us to define a set of customers served in each time

period. If the vehicle capacity is respected, then a TSP route is generated starting from

the depot and visiting all the served customers. If the capacity constraint is exceeded,

some deliveries are moved to the previous or to the next day until feasibility is recovered.

More precisely, the following steps are executed to construct a feasible delivery schedule:

• For each period t = 1, . . . ,H − 1, if the vehicle capacity is exceeded, the customers

to be served in t are sorted in non–decreasing value of the critical level CLi and,

following this ordering, they are moved to time period t + 1 until the capacity

constraint is satisfied. In t + 1 all the replenishment quantities of the postponed

customers are re-computed according to the replenishment policy.

• If the capacity constraint is violated in period t = H, customers are sorted in

non–increasing value of the critical level CLi and, following this ordering, they are

moved to period t − 1 until the capacity constraint is satisfied. In t − 1 all the

delivery quantities of the anticipated customers are re-computed according to the

replenishment policy. This procedure is repeated until t = 2.

• For each time period, a delivery route is built by solving a TSP on the sub–graph

induced by all the customers to be served in that time period and the corresponding

depot.

This generation of intra-cluster routes for cluster Cp is executed with three different values

of the capacity Cap of the vehicle: C, C/2 and C/3. This meets the aim of generating dif-

ferent routes. In the following, we will refer to this procedure as Intra–cluster Route Gener-

ation (INTRARG), which operates on the basis of a given time horizon H, replenishment
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policy g, cluster Cp and capacity Cap, and returns a set of TSP routes over H supplying

customers of Cp with policy g, TSPRgCp
, that is: TSPRgCp

← INTRARG (H, g, Cp, Cap).

Let us now describe how inter-cluster routes are generated. For each cluster Cp:

• Build the corresponding rectangular convex hull, i.e., the smallest rectangular area

including all the points associated with the geographical coordinates of the cus-

tomers in the cluster. Let Xp
min, Xp

max, Y p
min and Y p

max be the minimum and the

maximum values of customers’ coordinates, respectively, of the cluster Cp. The cor-

responding rectangular convex hull is built over the following vertices: (Xp
min, Y

p
min),

(Xp
min, Y

p
max), (Xp

max, Y
p
min) and (Xp

max, Y
p
max). Let DGp be the diagonal of this

rectangular convex hull (see Figure 1).

• Build the set Bordp of the borderline customers: this set is composed of all the

customers not included in Cp whose distance from the nearest extreme vertex of the

rectangular convex hull is less than λDGp, where 0 < λ < 1 is a parameter set on

the basis of the number of clusters.

• Build the inter-cluster routes serving the customers in the set Bordp ∪Cp: they are

built using the same procedure adopted to generate intra–cluster routes, in which

only g1, g2 and g3 and capacity Cap equal to C, C/2 and C/3 are considered (see

Figure 1).

In the following, we will refer to this procedure as Inter–cluster Route Generation

(INTERRG), which operates on the basis of a given time horizon H, replenishment policy

g, cluster Bordp ∪ Cp and of capacity Cap, and returns a set of TSP routes over H sup-

plying customers of Bordp ∪Cp with policy g, TSPRgBordp∪Cp
, that is: TSPRgBordp∪Cp

←

INTERRG (H, g,Bordp ∪ Cp, Cap).

A set R of delivery routes is built from the union of the set of all the intra–cluster

routes and of the set of all the inter–cluster routes, excluding all duplicated routes.
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Figure 1: Examples of rectangular convex hull and inter-cluster routes.

5.3 Optimization phase

In the third phase, the following route-based MDIRP , based on the set of routes R,

is solved to determine a feasible solution of the MDIRP . We introduce the following

parameters that use an explicit index of the routes r ∈ R:

• cr: cost of route r ∈ R

• air: binary parameter equal to 1 if customer i is served in route r, 0 otherwise

and the following decision variables:

• mirt: quantity shipped to customer i in route r in time period t

• Invit: inventory level of customer i at the beginning of time period t ∈ T ∪ {H + 1}

• nrt: binary variable equal to 1 if route r is used in time period t and 0 otherwise.

The problem is then formulated as follows:
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min
∑
t∈T

∑
r∈R

cr nrt (28)

s.t. Invi,t = Invit−1 +
∑
r∈R

mirt−1 − dit−1, ∀i ∈ I, ∀t ∈ T ∪ {H + 1} (29)∑
r∈R

mirt + Iit ≤ Ui, ∀t ∈ T, ∀i ∈ I (30)∑
i∈I

mirt ≤ C nrt, ∀r ∈ R, ∀t ∈ T (31)

mirt ≤ C air, ∀i ∈ I, ∀r ∈ R,∀t ∈ T (32)∑
r∈R

nrt ≤M, ∀t ∈ T (33)

Invit ≥ 0, ∀i ∈ I, ∀t ∈ T ∪ {H + 1} (34)

mirt ≥ 0, ∀i ∈ I, ∀r ∈ R,∀t ∈ T (35)

nrt ∈ {0, 1} , ∀r ∈ R, ∀t ∈ T. (36)

The objective function (28) minimizes the total routing cost. Constraints (29) define

the inventory level at each customer i at each time period t. Constraints (30) enforce the

maximum inventory level of each customer i at each time period t to be not greater than

Ui. Constraints (31) enforce the total amount delivered with each route r in time period

t to be within the vehicle capacity, while constraints (32) guarantee that a quantity can

be delivered to customer i by vehicle r in period t only if customer i is served by route r.

Constraints (33) enforce the number of routes used in each time period t to be within the

fleet size M . Finally, constraints (34)–(36) define the decision variables.

The overall scheme of the matheuristic algorithm designed for theMDIRP is described

in Algorithm 2.
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Algorithm 2 Matheuristic for the MDIRP

R := ∅

Phase 1: clustering

for i ∈ I do

compute parameter Ri, Mi, CLi = αRi + (1− α)Mi

end for

solve the clustering problem (23)–(27), C ← Clustering (IMDIRP )

Phase 2: Routing construction

for each cluster Cp ∈ C do

for each customer i ∈ Cp do

determine the direct delivery routes rpi from depot p ∈ Cp to i

add this route to R: R := R∪ {rpi }

end for

for each replenishment policy g1, g2, g3, g4 do

for each capacity Cap ∈
{
Q, Q2 ,

Q
3

}
do

for each customer i ∈ Cp do

for each t ∈ T do

compute the replenishment quantity ŷit(g);

end for

end for

determine TSPRg
Cp
← INTRARG (H, g, Cp, Cap)

update R: R = R∪ TSPRg
Cp

determine TSPRg
Bordp∪Cp

← INTERRG (H, g,Bordp ∪ Cp, Cap)

update R: R = R∪ TSPRg
Bordp∪Cp

end for

end for

end for

Phase 3: Optimization

eliminate from R all the duplicated routes

solve the route-based MDIRP formulation (28)–(36)
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6 Computational results

The branch-and-cut algorithm described in Section 4 and the matheuristic described in

Section 5 were coded in C++ and compiled with g++ -O3. Computational experiments

were carried out on a PC equipped with an Intel Core i7-6500U CPU running at 2.50 GHz,

with 8 GB of RAM with the scientific Linux 6.6 operating system. We use the MIP solver

IBM CPLEX 12.6.1 using its default settings. To solve the TSP we use the Concorde TSP

Solver.

The performance of the algorithms is evaluated on a set of instances derived from the

benchmark set of Archetti et al. [2007]. We maintain the original depot as the first depot

and we generate the remaining p − 1 depots randomly. Our data set is composed of 100

instances with 5 to 50 customers. For each number of customers, a group of five instances

is generated with a number of depots increasing from 2 to 6 according to the size of the

instance.

The time horizon H is 3 and 6. In order to generate multi–vehicle instances, we

consider a fleet of 3 vehicles with a capacity that is reduced by 1
3 up to 1, with respect

to the capacity in the original instances. Instances are labelled as SnNdDhH, where S

indicates the instance number, N is the number of customers in the instance, D is the

number of depots, and H is the number of periods. A time limit of 3 hours was imposed to

CPLEX for solving the mathematical model given by (28)–(36), while the branch-and-cut

was run with a time limit of 6 hours. The following parameters are set after preliminary

tests on a subset of instances: ε = 0.2, ω = 10, α = 0.2, TC = 6, CC ∈ {3, . . . , 15} and

λ ∈ {0.2, . . . , 0.5}.
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6.1 Branch-and-cut performance

Tables 1 and 2 provide results for the branch–and–cut algorithm in the instances with H =

3 and H = 6, respectively. The tables are organized as follows. Column Instance provides

the instance name. Column MIPstart provides the value of the initial feasible solution.

Column Best LB provides the value of the best lower bound returned by the branch–and–

cut at the end of the time limit, column Cost reports the cost of the best solution found

by the branch–and–cut algorithm, column Time (s) shows the computational time in

seconds, while column Nodes provides the number of nodes processed in the branch-and-

cut algorithm. Columns Subtours, Dis Parity Ineqs and Aggr Parity Ineqs report

the number of added sub–tour elimination constraints, disaggregate parity and aggregate

parity inequalities that are added dynamically to the current LP , in any node of the

branch–and–cut tree, respectively. Finally, column Gap (%) provides the optimatility

gap. These results show that, even if an initial solution is provided and several families of

cuts are used, the problem remains very challenging to be solved exactly. Even for small

instances with 10 customers and 3 periods, optimality is not achieved for all instances.

Several instances with more than 35 customers used all the computational time at the

root node only, and the average gap was 31.24% for instances with 3 periods and 31.59%

for those with 6 periods.

6.2 Matheuristic algorithm performance

Tables 3 and 4 show the results provided by the matheuristic algorithm. These tables are

organized as follows. Column Instance denotes the instance name. Column N. Clust.

reports the number of generated clusters, while column |Ci| reports the cardinality of

each cluster. Column N. Routes provides the number of intra–cluster and inter–cluster

routes. The computational time of the algorithm, expressed in seconds, is reported in

column Time (s), while the cost of the best solution is reported in column Cost. Finally,
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Instance MIPstart Best LB Cost Time (s) Nodes Subtours Dis Par. Ineqs Aggr Par. Ineqs GAP %

1n5d2h3 1148.80 1148.80 1148.80 89.71 500 99 209 118 0.00

2n5d2h3 1043.20 956.24 956.24 434.76 1041 112 165 155 0.00

3n5d2h3 2294.50 1801.02 1801.02 360.51 535 163 374 287 0.00

4n5d2h3 1486.91 142.39 1425.39 1537.42 11851 75 193 134 0.00

5n5d2h3 1808,40 1808.40 1808.40 60.09 260 87 162 98 0.00

1n10d2h3 2177.98 1980,2831 2177,9892 t.l. 6621 917 741 553 10.91

2n10d2h3 2916.24 2376.56 2427.66 21700 7749 897 699 500 2.11

3n10d2h3 1651.54 1651.54 1651.54 1854.78 1609 424 365 218 0.00

4n10d2h3 2650.52 2449.3 2449.3 1994.27 473 285 287 157 0.00

5n10d2h3 1982.90 1982.90 1982.90 734 428 305 319 190 0.00

1n15d2h3 4588.88 3333.99 4588.88 21700 2022 1540 1110 721 27.35

2n15d2h3 2637.48 2436.43 2436.43 20955 5707 841 773 550 0.00

3n15d2h3 3826.82 3075.69 3075.69 6602.50 1846 853 753 442 0.00

4n15d2h3 2708.29 1986.95 2481.13 21700 1951 1654 1071 753 20.00

5n15d2h3 3321.56 2106.66 2912.07 21700 1923 1659 1046 675 37.69

1n20d3h3 3925.25 2632.99 3263.25 21700 834 1890 1462 678 19.32

2n20d3h3 5077.94 3487.4 4395.27 21700 276 1277 1562 812 20.66

3n20d3h3 4423.09 2916.28 3399.42 21700 808 1808 1673 818 14.21

4n20d3h3 4779.5359 3565.98 4501.08 21700 141 1117 1272 632 20.78

5n20d3h3 4848.89 3303.17 4338.40 21700 290 1141 1516 660 23.86

1n25d4h3 4203.45 2861.09 4203.45 21700 51 1187 1790 815 31.93

2n25d4h3 4570.13 2942.65 4570.13 21700 149 1721 1871 796 35.61

3n25d4h3 4537.87 2746.15 4127.82 21700 155 1619 1411 655 33.47

4n25d4h3 5722.98 3311.13 5722.99 21700 28 1374 2128 824 42.14

5n25d4h3 6214.81 2686.02 6214.81 21700 46 1253 1137 460 56.78

1n30d4h3 5206.49 3466.25 5206.49 21700 17 1270 1757 761 33.42

2n30d4h3 4805.12 3078.97 4805.12 21700 44 1583 2484 1023 35.92

3n30d4h3 5344.53 3674.43 5344.53 21700 11 712 1762 733 31.25

4n30d4h3 4805.12 2748.57 4805.12 21700 23 1040 1015 429 42.80

5n30d4h3 4693.64 2906.89 4693.64 21700 49 1366 1663 791 38.07

1n35d5h3 7013.75 4282.38 7013.75 21700 0 530 2477 798 38.94

2n35d5h3 6138.55 3362.17 6138.55 21700 12 1368 1446 618 45.23

3n35d5h3 6228.25 2977.10 6228.25 21700 2 872 768 250 52.20

4n35d5h3 6660.30 3481 6660.3 21700 5 733 769 237 47.73

5n35d5h3 5771.25 3078.37 5771.25 21700 3 1094 946 305 46.66

1n40d5h3 7080.27 3561.34 7080.27 21700 0 534 2189 625 49.70

2n40d5h3 7128.72 2940.72 7128.72 21700 3 1664 1233 575 58.75

3n40d5h3 6434.14 3394.62 6434.14 21700 3 1187 1932 882 47.24

4n40d5h3 5742.3 3357.24 5742.3 21700 3 1169 1473 743 41.54

5n40d5h3 5191.53 1938.53 5191.53 21700 2 1369 1766 707 62.70

1n45d6h3 7272.02 3922.67 7272.02 21700 0 502 3171 1483 46.06

2n45d6h3 6634.67 3677.20 6634.67 21700 1 1196 1402 705 44.58

3n45d6h3 6721.43 3267.56 6721.43 21700 1 1028 1243 610 51.39

4n45d6h3 6292.32 4091.47 6292.32 21700 1 1100 943 531 34.98

5n45d6h3 5650.86 2974.26 5650.86 21700 0 531 620 352 47.37

1n50d6h3 7881.37 3762.88 7881.37 21700 0 509 1957 918 52.26

2n50d6h3 7432.51 3293.44 7432.51 21700 1 672 1920 818 55.69

3n50d6h3 7611.76 3570.26 7611.76 21700 0 530 864 512 53.10

4n50d6h3 7740.36 3458.57 7740.36 21700 0 545 832 506 55.32

5n50d6h3 6509.11 3095.87 6509.11 21700 0 508 1348 627 52.44

Average 18052.46 31.24

Table 1: Branch–and–cut performance for instances with H = 3
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Instance MIPstart Best LB Cost Time (s) Nodes Subtours Dis Par. Ineqs Aggr Par. Ineqs Gap %

1n5d2h6 2804.46 2595.14 2595.14 8685.16 13970 370 691 344 0.00

2n5d2h6 3296.32 2841.92 3296.32 21700 10034 339 811 534 13.79

3n5d2h6 5287.78 4488.81 5145.63 21700 33006 474 654 522 12.76

4n5d2h6 2963.12 2604.27 2963.12 21700 10975 305 486 394 12.11

5n5d2h6 3120.91 2717.77 3120.91 21700 8894 514 937 639 12.92

1n10d2h6 5102.45 3237.99 5102.45 21700 1871 1304 1456 756 36.54

2n10d2h6 6071.31 3968.77 5501.12 21700 1823 1344 1462 657 27.86

3n10d2h6 5964.91 3755.90 5617.17 21700 2212 1450 1778 914 33.14

4n10d2h6 6345.62 4301.26 5849.66 21700 2310 1654 1377 723 26.48

5n10d2h6 5651.00 3708.58 5077.5 21700 2283 1395 1312 666 26.96

1n15d2h6 9904.03 6772.05 9904.03 21700 599 1833 2232 917 31.62

2n15d2h6 10202.70 6862.56 10202.70 21700 377 1563 1753 764 32.74

3n15d2h6 9276.72 5629.02 9276.72 21700 1205 1845 1142 571 39.34

4n15d2h6 9717.60 6376.08 8875.49 21700 732 1717 1230 631 28.16

5n15d2h6 10439.87 6710.09 8997.26 21700 709 1679 1566 707 25.42

1n20d3h6 11433.4 11433.40 7273.57 21700 22 1171 1284 2286 36.44

2n20d3h6 9094.27 5466.73 9094.27 21700 64 1343 1970 858 39.89

3n20d3h6 10807.75 7825.83 10807.75 21700 34 1604 1967 847 27.59

4n20d3h6 12965.1 6365.89 12965.1 21700 46 1771 2749 1224 50.90

5n20d3h6 13545.80 6736.51 13545.80 21700 34 1592 2497 1174 52.93

1n25d4h6 11949.99 6751.13 11949.99 21700 10 1915 1127 598 31.62

2n25d4h6 10369.70 5901.98 10369.70 21700 3 1383 1178 619 43.08

3n25d4h6 10511.30 6293.80 10511.30 21700 1 1205 2842 1287 40.12

4n25d4h6 10457.1 5685.74 10457.1 21700 1 1145 1080 485 45.63

5n25d4h6 9556.95 5530.76 9556.95 21700 1 1093 1085 472 42.13

1n30d4h6 12757.90 6397.71 12757.90 21700 1 1160 1464 773 49.85

2n30d4h6 12848.94 b7117.92 12848.94 21700 1 1282 1572 732 44.60

3n30d4h6 11921.20 6454.06 11921.20 21700 0 515 2506 1130 45.86

4n30d4h6 11420.40 6633.43 11420.40 21700 1 1248 1512 692 41.92

5n30d4h6 9960.2 6499.14 9960.2 21700 1 784 2558 1228 34.75

1n35d5h6 12924 7768.89 12924 21700 0 424 361 243 39.89

2n35d5h6 11561.1 6631.83 11561.1 21700 1 1199 1102 641 42.64

3n35d5h6 11676.10 6923.28 11676.10 21700 1 984 1176 698 40.71

4n35d5h6 11004.45 7015.47 11004.45 21700 0 555 924 673 36.25

5n35d5h6 15450.90 8937.02 15450.90 21700 0 513 1115 806 42.16

1n40d5h6 12802.5 7350.23 12208.5 21700 1 803 950 624 42.59

2n40d5h6 13999.70 9062.14 13999.70 21700 0 518 1756 1086 35.27

3n40d5h6 10887.50 6144.44 10887.50 21700 1 1701 1253 744 43.84

4n40d5h6 12554.70 6584.41 12554.70 21700 0 440 325 184 43.02

5n40d5h6 13283.7 797.05 13283.7 21700 0 458 499 341 39.96

1n45d6h6 10884.9 6872.81 10884.9 21700 0 505 466 271 36.86

2n45d6h6 11596.40 6837.06 11596.40 21700 0 552 1038 774 41.04

3n45d6h6 11639.20 6896.55 11639.20 21700 0 625 774 950 40.75

4n45d6h6 12116.65 6608.97 12116.65 21700 0 575 440 362 45.65

5n45d6h6 13737.20 7627.50 13373.20 21700 0 595 584 348 44.48

1n50d6h6 14031.9 7288.71 14031.9 21700 0 159 144 120 48.06

2n50d6h6 14635.32 6775.59 14635.32 21700 0 605 590 470 41.78

3n50d6h6 13721.20 7205.80 13721.20 21700 0 160 175 143 47.48

4n50d6h6 13202.43 7332.91 13202.43 21700 0 115 123 106 44.46

5n50d6h6 13676.2 6805.53 13676.2 21700 0 174 173 114 50.24

Average 21439.71 36.22

Table 2: Branch-and-cut performance for instances with H= 6
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column MHIRP GAP% shows the percentage gap provided by CPLEX to solve model

(28)–(36) within the time limit of 3 hours. Unlike the exact method, our matheuristic

provided solutions within a few minutes of computing time. The results show that clusters

are balanced in terms of number of customers and that the number of generated routes is

very small with respect to the possible number of routes. The average number of routes

that are generated to 462 for the set with H = 3, and is equal to 492 for the set with

H = 6. The number of routes exceeds 1000 in only 6% of the instances, the ones with the

largest number of customers. The average computational time is 88 seconds for the data

set with H = 3, while is around 1965 seconds for the data set with H = 6.
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Instance N.Clust. |Ci| N. Routes Time (s) Cost MHIRP GAP %

1n5d2h3 2 4,3 10 0.09 1148.80 0.00

2n5d2h3 2 4,3 16 0.1 956.24 0.00

3n5d2h3 2 3,4 13 0.13 1801.02 0.00

4n5d2h3 2 3,4 12 0.12 1425.39 0.00

5n5d2h3 2 3,4 10 0.08 1808.4 0.00

1n10d2h3 2 5,7 71 1.76 2112.53 0.00

2n10d2h3 2 5,7 75 2.21 2425.97 0.00

3n10d2h3 2 8,4 65 0.83 1651.54 0.00

4n10d2h3 2 7,5 59 0.81 2449.30 0.00

5n10d2h3 2 7,5 62 0.89 1982.90 0.00

1n15d2h3 2 7,10 188 3.76 3891.56 0.00

2n15d2h3 2 7,10 169 4.3 2436.43 0.00

3n15d2h3 2 9,8 176 3.84 3189.5 0.00

4n15d2h3 2 8,9 180 3.88 2298.16 0.00

5n15d2h3 2 6,11 222 1.93 2329.42 0.00

1n20d3h3 3 7,11,5 255 11.66 3095.91 0.00

2n20d3h3 3 7,11,5 255 6.44 4074.56 0.00

3n20d3h3 3 7,11,5 269 5.79 3361.74 0.00

4n20d3h3 3 8,10,5 252 7.88 4151.87 0.00

5n20d3h3 3 5,11,7 273 27.81 4235.63 0.00

1n25d4h3 4 6,10,5,8 277 13.97 3354.83 0.00

2n25d4h3 4 9,7,5,8 263 11.07 3654.25 0.00

3n25d4h3 4 9,8,6,6 258 13.93 3870.56 0.00

4n25d4h3 4 11,5,8,5 330 43.8 4925.73 0.00

5n25d4h3 4 9,9,9,2 343 9.88 4475.17 0.00

1n30d4h3 4 6,13,5,10 533 76.56 4262.32 0.00

2n30d4h3 4 5,14,6,9 562 22.2 3733.09 0.00

3n30d4h3 4 7,13,4,10 533 18.94 4649.11 0.00

4n30d4h3 4 11,11,1,11 608 18.26 358.22 0.00

5n30d4h3 4 11,13,5,5 560 21.9 4199.74 0.00

1n35d5h3 5 8,9,6,4,13 529 21.98 5351.66 0.00

2n35d5h3 5 11,7,7,4,11 531 28.02 5213.10 0.00

3n35d5h3 5 7,10,6,6,11 483 27.83 4790.49 0.00

4n35d5h3 5 11,10,5,3,11 581 31.33 5430.31 0.00

5n35d4h3 5 11,11,4,1,13 734 32.59 4545.17 0.00

1n40d5h3 5 11,4,3,17,10 1085 58.14 5810.59 0.00

2n40d5h3 5 10,7,8,10,10 598 57.39 5543.21 0.00

3n40d5h3 5 13,4,5,13,10 836 70.95 5568.42 0.00

4n40d5h3 5 13,4,7,13,8 798 49.24 5112.32 0.00

5n40d5h3 5 10,5,10,10,10 637 98.69 4695.32 0.00

1n45d6h3 6 15,4,3,15,2,12 654 136.24 6547.97 0.00

2n45d6h3 6 10,7,4,14,6,10 816 149.27 5896.87 0.00

3n45d6h3 6 10,4,7,10,10,10 683 69.24 6084.01 0.00

4n45d6h3 5 10,3,9,13,6,7 1059 47.41 6420.13 0.00

5n45d6h3 6 13,5,7,13,7,6 821 76.56 5002 0.00

1n50d6h3 6 7,16,16,5,2,10 1432 2047.59 7238.44 0.00

2n50d6h3 6 7,7,16,8,3,15 1302 197.92 6131.18 0.00

3n50d6h3 6 10,10,10,8,8,10 720 61.17 6788 0.00

4n50d6h3 6 8,7,13,4,11,13 999 70.88 6283.02 0.00

5n50d6h3 6 9,7,13,8,7,12 893 362.70 5914.12 0.00

Average 461.82 87.78 0.00

Table 3: Matheuristic performance for instances with H = 3
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Instance N. Clust. |Ci| N. Routes Time (s) Cost MHIRP GAP%

1n5d2h6 2 4,3 19 0.17 2595.14 0.00

2n5d2h6 2 4,3 15 3.76 3296.32 0.00

3n5d2h6 2 4,3 18 0.8 5145.63 0.00

4n5d2h6 2 4,3 26 6.59 2963.12 0.00

5n5d2h6 2 4,3 26 86.09 3117.05 0.00

1n10d2h6 2 5,7 81 11.5 4363.89 0.00

2n10d2h6 2 5,7 86 369.07 5271.25 0.00

3n10d2h6 2 8,4 82 64.52 5290.70 0.00

4n10d2h6 2 4,8 115 665.89 5649.83 0.00

5n10d2h6 2 4,8 135 565.2 5052.26 0.00

1n15d2h6 2 7,10 239 3466.42 8942.68 0.00

2n15d2h6 2 10,7 233 1995.81 9072.41 0.00

3n15d2h3 2 8,9 260 1693.07 8775.99 0.00

4n15d2h6 2 12,5 272 5516.63 8690.27 0.00

5n15d2h6 2 9,8 236 473.50 890.,06 0.00

1n20d3h6 3 5,10,8 297 6614.13 9616.51 0.00

2n20d3h6 3 8,8,7 321 1596.92 8386.92 0.00

3n20d3h6 3 8,8,7 306 1405.85 10895.99 0.00

4n20d3h6 3 10,8,5 294 89.36 6826.68 0.00

5n20d3h6 3 13,9,1 495 1577.32 11343.97 0.00

1n25d4h6 4 15,7,2,5 617 9574 11276.2 0.00

2n25d4h6 4 9,7,5,8 397 3728.45 9172.41 0.00

3n25d4h6 4 9,8,6,6 251 92.81 9575.81 0.00

4n25d4h6 4 6,10,7,6 314 37.63 9215.81 0.00

5n25d4h6 4 8,10,6,5 353 538.80 8869.16 0.00

1n30d4h6 4 8,13,7,6 466 10800 12255.30 1.12

2n30d4h6 4 6,11,6,11 545 1575.14 12001.80 0.00

3n30d4h6 4 8,11,4,11 639 2542.20 10675.78 0.00

4n30d4h6 4 11,11,6,6 531 600.42 9875.90 0.00

5n30d4h6 4 11,11,6,6 536 2841.61 9325.37 0.00

1n35d5h6 5 9,10,10,4,7 501 61.94 11029.50 0.00

2n35d5h6 5 10,9,7,4,10 605 76.15 11195.46 0.00

3n35d5h6 5 8,10,6,6,10 651 1877.39 10747.05 0.00

4n35d5h6 5 10,8,10,6,6 435 71.3 10389.20 0.00

5n35d5h6 5 10,9,11,5,5 607 714.18 14750.82 0.00

1n40d5h6 5 11,8,11,10,5 763 1185.19 12152.40 0.00

2n40d5h6 5 10,7,8,10,10 812 4330.62 13797.56 0.00

3n40d5h6 5 10,5,10,10,10 865 4939.05 10840.55 0.00

4n40d5h6 5 14,8,10,6,7 790 124.50 12337.50 0.00

5n40d5h6 5 14,5,16,5,5 1149 2672.15 12673.98 0.00

1n45d6h6 6 7,13,8,11,6,6 761 576.78 10940.30 0.00

2n45d6h6 6 10,7,4,10,10,10 713 323.05 11323.10 0.00

3n45d6h6 6 7,8,8,13,7,8 680 640.15 11606 0.00

4n45d6h6 6 8,11,11,10,5,6 701 2236.47 11838.5 0.00

5n45d6h6 6 9,13,2,13,6,8 964 2836.15 12392.35 0.00

1n50d6h6 6 13,6,13,11,6,7 1049 5049.94 12892.30 0.00

2n50d6h6 6 10,10,10,8,8,10 954 1013.1 14529.04 0.00

3n50d6h6 6 10,10,10,8,8,10 918 2778.32 13245.80 0.00

4n50d6h6 6 16,11,16,2,4,7 1511 13186.52 13186.52 0.00

5n50d6h6 6 11,8,13,10,6,8 939 4175.72 12588.10 0.00

Average 492 1965.4 0.00

Table 4: Matheuristic performance for instances with H = 6
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6.3 Performance comparison

In this section the comparison between the results of the matheuristic algorithm and

the branch–and–cut is presented. Table 5 provides the results for all the instances with

time horizon H = 3 and H = 6. The table is organized as follows. Column Instance

provides the instance name. Columns MH and TimeMH (s) provide the cost of the

matheuristic solution and the corresponding computational time, respectively. Columns

B&C and TimeB&C (s) report the cost of the best branch–and–cut solution obtained

within the time limit allowed and the corresponding computational time, respectively.

Finally, column Gap % provides the gap between the two approaches, computed as

GAP =
MH −B&C

B&C
100

The Multi-Depot Inventory Routing Problem: An Application of Vendor-Management Inventory in City Logistics

CIRRELT-2017-54 29



Instance MH TimeMH (s) B&C TimeB&C (s) Gap % Instance MH TimeMH (s) B&C TimeB&C (s) Gap %

1n5d2h3 1148.80 0.09 1148.80 89.71 0.00 1n5d2h6 2595.14 0.17 2595.14 8685.15 0.00

2n5d2h3 956.24 0.10 956.24 434.76 0.00 2n5d2h6 3296.32 3.76 3296.32 21700 0.00

3n5d2h3 1801.02 0.13 1801.02 360.51 0.00 3n5d2h6 5145.63 0.80 5145.63 21700 0.00

4n5d2h3 1425.39 0.12 1425.39 1537.42 0.00 4n5d2h6 2963.12 6.59 2963.12 21700 0.00

5n5d2h3 1808.40 0.08 1808.40 60.09 0.00 5n5d2h6 3117.05 86.09 3120.91 21700 -0.12

1n10d2h3 2112.53 1.76 2177.99 21700 -3.00 1n10d2h6 4363.89 11.5 5102.45 21700 -14,47

2n10d2h3 2425.97 2.21 2427.66 21700 -0.06 2n10d2h6 5271.25 369.07 5501.12 21700 -4.18

3n10d2h3 1651.54 0.83 1651.54 1854.78 0.00 3n10d2h6 5290.71 64.52 5617.17 21700 -5.81

4n10d2h3 2449.30 0.81 2449.30 1994.27 0.00 4n10d2h6 5649,83 665,89 5849,66 21700 -3,42

5n10d2h3 1982.90 0.89 1982.90 734 0.00 5n10d2h6 5052.26 565.20 5077.50 21700 -0.50

1n15d2h3 3891.56 3.76 4588.88 21700 -15.20 1n15d2h6 8942.69 3466.42 9904.03 21700 -9.71

2n15d2h3 2436.43 4.30 2436.43 20955 0.00 2n15d2h6 9072.41 1995.81 10202.70 21700 -11.08

3n15d2h3 3189.50 3.84 3075.69 6602.50 3.70 3n15d2h6 8775.07 1693.07 9276.72 21700 -5.41

4n15d2h3 2298.16 3.88 2481.13 21700 -7.37 4n15d2h6 8690.27 5516.63 8875.49 21700 -2.09

5n15d2h3 2329.42 1.93 2912.07 21700 -20.01 5n15d2h6 8905.06 473.50 8997.27 21700 -1.03

1n20d3h3 3095.91 11.66 3263.25 21700 -5.13 1n20d3h6 9616.51 6614.13 11433.40 21700 -15.89

2n20d3h3 4074.56 6.44 4395.27 21700 -7.29 2n20d3h6 8386.92 1596.92 9094.27 21700 -7.78

3n20d3h3 3361.74 5.79 3399.42 21700 -1.11 3n20d3h6 10895.99 1405.85 10807.75 21700 0.82

4n20d3h3 4151.87 7.88 4501.08 21700 -7.76 4n20d3h6 6826.68 89.36 12965.10 21700 -47.34

5n20d3h3 4235.63 27.81 4338.40 21700 -2.37 5n20d3h6 11343.97 1577.32 13545.80 21700 -16.25

1n25d4h3 3354.83 13.97 4203.45 21700 -20.19 1n25d4h6 11276.20 9574 11949.99 21700 -5.64

2n25d4h3 3654.25 11.07 4570.13 21700 -20.04 2n25d4h6 9172.41 3728.45 10369.70 21700 -11.54

3n25d4h3 3870.56 13.93 4127.82 21700 -6.23 3n25d4h6 9575.81 92.81 10511.3 21700 -8.90

4n25d4h3 4925.73 43.80 5722.99 21700 -13.93 4n25d4h6 9215.81 37.63 10457.10 21700 -11.87

5n25d4h3 4475.17 9.88 6214.81 21700 -27.99 5n25d4h6 8869.16 538.70 9556.95 21700 -7.20

1n30d4h3 4262.32 76.56 5206.49 21700 -18.13 1n30d4h6 12255.30 10800 1275.90 21700 -3.94

2n30d4h3 3733.09 22.20 4805.12 21700 -22.31 2n30d4h6 12001.80 1575.14 12848.94 21700 -6.59

3n30d4h3 4649.11 18.94 5344.53 21700 -13.01 3n30d4h6 10675.78 2542.20 11921.20 21700 -10.45

4n30d4h3 3580.22 18.26 4805.12 21700 -25.49 4n30d4h6 9875.90 600.42 11420.40 21700 -13.52

5n30d4h3 4199.74 21.90 4693.64 21700 -10.52 5n30d4h6 9325.37 2841.61 9960.20 21700 -6.37

1n35d5h3 5351.66 21.98 7013.75 21700 -23.70 1n35d5h6 11029.50 61.94 12924 21700 -14.66

2n35d5h3 5213.10 28.02 6138.55 21700 -15.08 2n35d5h6 11195.46 76.15 11561.10 21700 -3.16

3n35d5h3 4790.49 27.83 6228.25 21700 -23.08 3n35d5h6 10747.05 1877.39 11676.1 21700 -7.96

4n35d5h3 5430.31 31.33 6660.30 21700 -18.47 4n35d5h6 10389.2 71.3 11004.45 21700 -5.59

5n35d5h3 4545.17 32.59 5771.25 21700 -21.24 5n35d5h6 14750.82 714.18 15450.90 21700 -4.53

1n40d5h3 5810.59 58.14 7080.27 21700 -17.93 1n40d5h6 12152.40 1185.19 12208.50 21700 -0.46

2n40d5h3 5543.21 57.39 7128.72 21700 -22.24 2n40d5h6 13797.56 4330.62 1399.70 21700 -1.44

3n40d5h3 5568.42 70.95 6434.14 21700 -13.45 3n40d5h6 10840.55 4939.05 10887.50 21700 -0.43

4n40d5h3 5115.32 49.24 574,3 21700 -10.92 4n40d5h6 12337.50 124.50 12554.70 21700 -1.73

5n40d5h3 4695.32 98.69 5196.53 21700 -9.65 5n40d5h6 12673.9875 2672.15 13283.70 21700 -4.58

1n45d6h3 6547.97 136.24 7272.02 21700 -9.96 1n45d6h6 10940.30 576.78 10884.90 21700 0.51

2n45d6h3 5896.87 149.27 6634.67 21700 -11.12 2n45d6h6 11323.10 323.05 11596.40 21700 -2.53

3n45d6h3 6084.01 69.24 6721.43 21700 -9.48 3n45d6h6 11606 640.15 11639.20 21700 -0.29

4n45d6h3 6420.13 47.41 6292.32 21700 2.03 4n45d6h6 11838.5 2236.47 12166.64 21700 -2.29

5n45d6h3 5002 76.46 5650.86 21700 -11.48 5n45d6h6 12392.35 2836.15 13373.20 21700 -7.33

1n50d6h3 7238.44 2407.59 7881.37 21700 -8.16 1n50d6h6 12892.30 5049.94 14031.90 21700 -8.12

2n50d6h3 6131.18 197.92 7432.50 21700 -17.51 2n50d6h6 14529.04 1013.1 14635.36 21700 -0.73

3n50d6h3 6788 61.17 7611.76 21700 -10.82 3n50d6h6 13245.80 2778.32 13721.20 21700 -3.46

4n50d6h3 6238.02 70.88 7740.36 21700 -18.83 4n50d6h6 13122.22 4054.4 13202.47 21700 -0.60

5n50d6h3 5914.12 362.70 6509.11 21700 -9.14 5n50d6h6 12588.10 4175.72 13676.20 21700 -7.96

Average 87.78 18052.46 -10.47 Average 1965.40 21439.75 -5.98

Table 5: Performance comparison
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The results shown in Tables 3 and 4 demonstrate that the matheuristic algorithm

is significantly more effective than the branch–and–cut. It is clear that instances with

a longer time horizon are more difficult to solve. Nevertheless, the results provided by

the matheuristic are good for both data sets. The result demonstrates that the route

generation phase is not affected by the time horizon dimension. For this reason, it is

possible to solve the instances with H = 6 without increasing the number of route–

variables in formulation (28)–(36). Instead, the branch–and–cut algorithm can solve only

small and medium size instances, while the possibility to find optimal solutions decreases

with the instance size. Futhermore, the branch–and–cut algorithm is effective only to

solve single-vehicle and single-product IRP instances. The branch–and–cut algorithm is

able to solve to optimality only 11 small instances. As a consequence, the time limit of 6

hours is reached in 89 instances.

In the set with H = 3, the average duality gap is equal to 31.24%, while in the set

with H = 6 this gap is equal to 36.22%. There is no sensitive difference between the gaps

of the two data sets. This is due to the good quality of the initial solution built with the

procedure described in Section 4, and used as starting solution for the branch–and–cut

algorithm. The availability of this good initial solution allows to reduce the number of

nodes to explore in the branch–and–cut tree, mainly in the data set with H = 6. The

drawback of the branch–and–cut is that in large instances all the computational time is

spent adding cuts to the LP formulation at the root node. Table 5 shows the comparison

of the matheuristic against the branch–and–cut. In 96% of all the cases, the matheuristic

is able to find a solution in a smaller computational time than the one provided by the

branch–and–cut algorithm. For the data set with H = 3, the matheuristic provides a

feasible solution with a total cost lower than the one of the solution found by the branch–

and–cut by 10.47%, on average. The matheuristic is able to find the best solution within

a computational time that is 17964.68 seconds smaller on average than the ones of the

branch–and–cut. For the data set with H = 6, the matheuristic finds a feasible solution
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that is better by 5.98% on average than the best solution provided by the branch–and–cut,

and in a computational time that is 19474.7 seconds smaller on average than the ones of

the branch–and–cut.

7 Conclusion

In this study, the MDIRP with a homogeneous fleet of vehicles is studied. While classical

IRPs have been studied extensively, the multi-depot case represents a variant not well

investigated despite the possibility offered by this problem to model real cases in city

logistics. A MILP formulation is presented. An effective matheuristic algorithm based on a

new clustering phase to solve the MDIRP is designed and implemented. The matheuristic

was tested over two data sets of randomly generated instances with up to 50 customers,

and compared with a branch–and–cut algorithm. The computational results show that

the matheuristic is able to find better solution in a smaller computational time. Future

research could be devoted to investigate possible improvements of the clustering phase

in matheuristic, or to study the multi-product MDIRP in order to better adapt to real

cases.
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