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Parallel Meta-Heuristics and Cooperative Search

1 Introduction

The development of meta-heuristics that take advantage of parallel computing aims for
two major goals. The first is common to all parallel computing development efforts: solve
larger problem instances, faster. That is, address larger problem instances than what is
achievable by sequential methods, and do this in reasonable computing times. The second
is proper to approximate solution methods, e.g.,simple heuristics, meta-heuristics, and
matheuristics, and it concerns the method’s so-called robustness, that is, its capability
to offer a consistently high level of performance over a wide variety of problem settings
and instance characteristics. In appropriate settings, e.g., the cooperative multi-search
strategies (Section 6), parallel meta-heuristics proved to be much more robust than se-
quential versions. Moreover, they also generally require less extensive, and expensive,
parameter-calibration efforts.

The objective of this chapter is to present an overview of parallel meta-heuristics
field in a unified manner. It thus recalls the main concepts and general strategies for the
design of parallel meta-heuristics, including the main approaches to instantiate them for
neighborhood- and population-based meta-heuristics. Note that the chapter focuses on
the design of the new class of algorithms parallel meta-heuristics create, and, thus, not on
their implementation on particular computing architectures. We do, however, identify
new trends, challenges, and opportunities that some of the new computing-platform
developments bring to the field. We complete the chapter with a number of major open
questions and research challenges.

As the chapter follows and updates Crainic and Toulouse (2010), it focuses on more
recent developments (typically, from 2005 to 2017) and, in particular, on cooperation-
based strategies, which display remarkable performances for a broad range of optimization
problems. In addition to the references provided in the following sections, the reader may
consult a number of surveys, taxonomies, and syntheses, e.g., Alba (2005); Alba et al
(2013); Crainic and Hail (2005); Crainic (2008); Crainic and Toulouse (2010); Crainic
et al (2014); Crainic (2017); Melab et al (2006); Pedemonte et al (2011); Talbi (2009).

The chapter is organized as follows. Section 2 is dedicated to a general discussion of
the potential for parallel computing in meta-heuristics, a brief description of performance
indicators for parallel meta-heuristics, and the taxonomy used to structure the presen-
tation. Section 3 addresses strategies focusing on accelerating computing-intensive tasks
without modifying the basic algorithmic design. Methods based on the explicit separation
of the search space are treated in Section 4, while strategies based on the simultaneous
exploration of the search space by several independent meta-heuristics constitutes the
topic of Section 5. Cooperation principles and strategies are discussed in Section 6 and
are detailed in Sections 6.1, 6.2, and 7. We conclude in Section 8.
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2 Meta-heuristics and Parallelism

This section is dedicated to a brief overview of the main potential sources for parallel
computing in meta-heuristics, followed by a discussion of performance indicators for
parallel meta-heuristics. The section concludes with the criteria used in this paper to
describe and classify parallelization strategies for meta-heuristics.

2.1 Sources of parallelism

Parallel /distributed /concurrent computing means that several processes work simultane-
ously on several processors addressing a given problem instance and aiming to identify
the best (or a) solution for that instance. Parallelism thus follows from a decomposition
of the total computational load and the distribution of the resulting tasks to available
processors. According to how “small” or “large” the tasks are in terms of algorithm work
or search space, the parallelization is called fine- or coarse-grained, respectively.

The decomposition may concern the algorithm, the search space, or the problem
structure. Functional parallelism (Section 3) corresponds to the first case, according to
which computing-intensive parts of the algorithm are decomposed into a number of tasks
(processes), working on the same data or on a dedicated part, are allocated to different
processors and run in parallel, possibly exchanging information. The concurrent execu-
tion of the innermost loop iterations, e.g., evaluating neighbors, computing the fitness of
individuals, or having ants forage concurrently, provides the main source of functional
parallelism for meta-heuristics This is often also the only source of readily available par-
allelism in meta-heuristics, the execution of most other steps in the algorithm depending
on the status of the search, e.g., what has been performed up to the respective point
and the values of the decision variables, which requires either the computation of the
previous steps to be completed, or the synchronization of computations; and synchro-
nization generally yields significant delays, which may make such parallel computation
non relevant. Traditionally, functional parallelism was therefore interesting as a low-level
component of hierarchical parallelization strategies, or when addressing problem settings
requiring a significant part of the computing effort to be spent in inner-loop algorithmic
components. The rapid development of the utilization of the graphical processing units
(GPU), ubiquitous within most computers, is changing this statement as very impressive
reductions in computing times may be obtained (Section 3).

Search space separation, constitutes a second major class of parallel strategies. We
find under this umbrella the two other cases mentioned above. The general idea is to
decompose the problem domain, or the associated search space (for brevity reasons and
without loss of generality, the latter term is used in this chapter), and to address the
problem on each of the resulting components using a particular solution methodology.
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Indeed, there are no data dependencies between the evaluation functions of different
solutions and, thus, these may be computed in parallel. Moreover, theoretically, the
parallelism in the solution or search space is as large as the space itself when a processor
is assigned to each solution. Obviously, the latter strategy is not practical and the search
space is separated into subspaces assigned to different processors. Such a separation still
leaves a search space for each processor too large for explicit enumeration, however, and,
thus, an exact or heuristic search method is required to implicitly explore it.

Space separation is exploited in many of the strategies described in this chapter, but
raises a number of issues with respect to an overall meta-heuristic search strategy, e.g.,
how to separate; how to control an overall search conducted separately on several com-
ponents of the original space; how to create a complete solution out of the ones obtained
on each component; how to allocate resources for an efficient exploration avoiding, for
example, regions with poor-quality solutions. The answers to these questions yield sev-
eral classes of algorithms described in the following sections. These may be grouped,
however, into two main approaches: domain decomposition and multi search. The former
explicitly separates the space yielding a number of subproblems to be addressed simulta-
neously, their solutions being then combined into solutions to the original problem, while
the latter performs the separation implicitly, through concurrent explorations by several
methods, named solvers in the following, which may exchange information or not.

The meta-heuristic or exact solvers involved in a multi-search meta-heuristic may
address either the complete problem at hand, or explore partial problems defined by
decomposing the initial problem through mathematical programming or attribute-based
heuristic approaches. In the former case, the decomposition method implicitly defines
how a complete solution is built out of partial ones. In the latter case, some processors
work on the partial problems corresponding to the particular sets of attributes defined
in the decomposition, while others combine the resulting partial solutions into complete
solutions to the original problem. Multi-search strategies, particularly those based on
cooperation principles, are at the core of most successful developments in parallel meta-
heuristics and are the object of the later sections of this chapter.

2.2 Performance measures

The traditional goal when designing parallel solution methods is to reduce the time
required to “solve”, exactly or heuristically, given problem instances or to address larger
instances without increasing the computational effort. For exact solution methods that
run until the optimal solution is obtained, this translates into the well-known speedup
performance measure, computed as the ratio between the wall-clock time required to solve
the problem instance in parallel with p processors and the corresponding solution time of
the best-known sequential algorithm. A somewhat less restrictive measure replaces the
latter with the time of the parallel algorithm run on a single processor. See Barr and
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Hickman (1993) for a detailed discussion of this issue, including additional performance
measures.

Speedup measures are more difficult to define when the optimal solution is not guaran-
teed or the exact method is stopped before optimality is reached, which is obviously also
the case for meta-heuristics. Moreover, most strategies to build parallel meta-heuristics
yield solutions that are different in value, composition, or both from those of the se-
quential versions (when they exist). Hence, an equally important objective for parallel
meta-heuristics is to to what extend they outperform their sequential counterparts in
terms of solution quality and, ideally, computational efficiency. In other words, the par-
allel method should not require a higher overall computation effort than the sequential
method or should justify the effort by higher quality solutions.

Search robustness is another characteristic increasingly expected of parallel heuris-
tics, robustness with respect to a problem setting being meant in the sense of providing
“equally” good solutions to a large and varied set of problem instances, without exces-
sive calibration, neither during initial development, nor when addressing new instances.
Multi-search methods, particularly those based on cooperation, generally display a be-
havior different from those of the sequential methods involved, offering enhanced perfor-
mances compared to sequential methods and other parallelization strategies in terms of
solution quality and method robustness (see Crainic and Toulouse, 1998, 2003, for a dis-
cussion of these issues). They are thus generally acknowledged as proper meta-heuristics
Alba (2005).

2.3 Parallel meta-heuristics strategies

We adopt the classification of Crainic and Hail (2005), generalizing that of Crainic et al
(1997), to describe the different parallel strategies for meta-heuristics. This classification
is sufficiently general to encompass the principal parallel meta-heuristic classes, while
avoiding a level of detail incompatible with the scope and dimension limits of the chapter.

The three dimensions of the classification define how the global problem-solving pro-
cess is controlled, how information is exchanged among processes and how, eventually,
new information is created, and the diversity of searches involved, respectively. Table 1
synthesizes the dimensions and categories of the classification, which are now detailed.

The first dimension, Search Control Cardinality, specifies whether the global search
is controlled by a single process or by several processes that may collaborate or not. The

two categories are identified as 1-control (1C) and p-control (pC), respectively.

The second dimension, relative to the type of Search Control and Communications,
addresses the issue of information exchanges and the utilization of the exchanged in-
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Table 1: The parallel meta-heuristics taxonomy

Dimension Categories

Control Cardinality 1C pC
Control €& Commu- RS KS C KC
nications

Differentiation SPSS SPDS MPSS MPDS

formation to control or guide the search. In parallel computing, one generally refers
to synchronous and asynchronous communications. In the former case, all concerned
processes stop and engage in some form of communication and information exchange at
moments (number of iterations, time intervals, specified algorithmic stages, etc.) exoge-
nously determined, either hard-coded or imposed by a control (master) process. In the
latter case, each process is in charge of its own search, as well as of establishing com-
munications with other processes, and the global search terminates once all individual
searches stop. Four categories are defined to reflect the quantity and quality of the in-
formation exchanged and shared, as well as the additional knowledge derived from these
exchanges (if any); two for synchronous settings, Rigid (RS) and Knowledge Synchro-
nization (KS), and, symmetrically, two for asynchronous strategies, Collegial (C) and
Knowledge Collegial (KC).

More than one solution method or variant (e.g., with different parameter settings)
may be involved in a parallel meta-heuristic, and such solvers may be (meta-)heuristics
or exact solution methods. The third dimension thus indicates the Search Differentia-
tion or diversity: do solvers start from the same or different solutions, and are they the
same or not? Note that one characterizes two solvers as “different” even when based
on the same methodology (e.g., two tabu searches or genetic algorithms) if they use dif-
ferent search strategies in terms of components (e.g., neighborhoods or selection mecha-
nism) or parameter values. The four classes are: SPSS, Same initial Point/Population,
Same search Strategy; SPDS, Same initial Point/Population, Different search Strate-
gies; MPSS, Multiple initial Points/Populations, Same search Strategies; MPDS, Mul-
tiple initial Points/Populations, Different search Strategies, where “point” relates to
neighborhood-based, single-solution methods, while “population” is used for population-
based ones.

3 Low-Level Parallelization Strategies

Functional-parallelism-based strategies, exploiting the potential for task decomposition
within the inner-loop computations of meta-heuristics, aim to accelerate the search, with-
out modifying the algorithmic logic, the search space and behavior of the sequential meta-
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heuristic. Hence the label “low level” often associated with such strategies. Typically,
the exploration is initialized from a single solution or population, and proceeds according
to the sequential meta-heuristic logic, while a number of intensive-computation steps are
decomposed and simultaneously performed by several processors.

Most low-level parallel strategies belong to the 1C/RS/SPSS class and are usually
implemented according to the classical master-slave parallel programming model. A
“master” program executes the (1-control) sequential meta-heuristic, separating and dis-
patching computation-intensive tasks to be executed in parallel by “slave” programs.
Slaves perform the tasks and return the results to the master which, once all the results
are in, resumes the normal logic of the sequential meta-heuristic. The master thus has
complete control on the algorithm execution; it decides the work allocation for all other
processors and initiates communications. No communications take place among slave
programs.

The neighborhood-evaluation procedure of the local search heuristics, used alone or
as component of neighborhood- or population-based meta-heuristics (implementing ad-
vanced “schooling” for offspring in the latter case) is generally targeted in 1C/RS/SPSS
designs. The master groups the neighbors into tasks and sends them to slaves. Each
slave then executes the exploration/evaluation procedure on its respective part of the
neighborhood, and sends back the best, or first improving, neighbor found. The master
waits for all slaves to terminate their computations, selects the best move and proceeds
with the search. The appropriate granularity of the decomposition, that is, the size of the
tasks, depends upon the particular problem and computer architecture, but is generally
computationally sensitive to inter-processor communication times and work-load balanc-
ing. Thus, for example, Davidovi¢ and Crainic (2015) discusses several decomposition
policies for the permutation-based local search neighborhood applied to the scheduling
of dependent tasks on homogeneous processors, and shows that the uniform partition
usually called upon in the literature is not appropriate in this context characterized by
neighborhoods of different sizes. The authors also show that a fixed coarse-grained non-
uniform decomposition, while offering superior results, requires calibration each time the
problem size or the number of processors varies. The best performing strategy, called
dynamic fine-grained by the authors, defines each neighbor evaluation as a single task,
the master dynamically dispatching these on a first-available, first-served basis to slave
processors as they complete their tasks. The strategy partitions the neighborhood into
a number of components equal to the number of available processors, but of unequal
size with a content dynamically determined at each iteration. The dynamic fine-grained
strategy provides maximum flexibility and good load balancing, particularly when the
evaluation of neighbors is of uneven length. The uniform distribution appears more ap-
propriate when the neighbor evaluations are sensibly the same, or when the overhead
cost of the dynamic strategy for creating and exchanging tasks appears too high.

Similar observations may be made regarding population-based meta-heuristics. In

6 CIRRELT-2017-58



Parallel Meta-Heuristics and Cooperative Search

theory, all genetic-algorithm operators may be addressed through a 1C/RS/SPSS de-
sign, and the degree of possible parallelism is equal to the population size. In practice,
the computations associated to most operators are not sufficiently heavy to warrant
parallelizing, while overhead costs may significantly reduce the degree of parallelism and
increase the granularity of the tasks. Consequently, the fitness evaluation is often the tar-
get of 1C/RS/SPSS parallelism for genetic-evolutionary methods, usually implemented
using the master-slave model.

The 1C/RS/SPSS parallelism for ant-colony and, generally, swarm-based methods
lies at the level of the individual ants. Ants share information indirectly through the
pheromone matrix, which is updated once all solutions have been constructed. There
are no modifications of the pheromone matrix during a construction cycle and, thus,
each individual ant performs its solution-construction procedure without data dependen-
cies on the progress of the other ants. Many parallel ant-colony methods proposed in
the literature implement some form of 1C/RS/SPSS strategy according to the master-
slave model (e.g., Doerner et al, 2006, and references herein). The master builds tasks
consisting of small colonies of one or a few ants, and distributes them to the available
processors. Slaves perform their construction heuristic and return their solution(s) to
the master, which updates the pheromone matrix, returns it to the slaves, and so on. To
further speed up computation, the pheromone update can be partially computed at the
slave level, each slave computing the update associated to its solutions. This fine-grained
version with central matrix update outperformed the sequential version of the algorithm
in most cases. It is acknowledged, however, that it does not scale when implemented on
“traditional” (i.e., exploiting the central processing units - CPUs) processors, and that,
similarly to other meta-heuristics, it is outperformed by more advanced multi-search
methods.

Scatter search and path relinking implement different evolution strategies, where a
restricted number of elite solutions are combined, the result being enhanced through a
local search or a full-fledged meta-heuristic, usually neighborhood-based. Consequently,
the 1C/RS/SPSS strategies discussed above apply straightforwardly as in Garcia-Lépez
et al (2005, 2006, 2003) for the p-median and the feature-selection problems. A different
1C/RS/SPSS strategy for scatter search may be obtained by running concurrently the
combination and improvement operators on several subsets of the reference set. Here,
the master generates tasks by extracting a number of solution subsets, which are sent
to slaves. Each slave then combines and improves its solutions, returning its results
to the master for the global update of the reference set. Each subset sent to a slave
may contain the exact number of solutions required by the combination operator or a
higher number. In the former case, the slave performs an “iteration” of the scatter search
algorithm Garcia-Lépez et al (2005, 2006, 2003). In the latter case, several combination-
improvement sequences could be executed and solutions could be returned to the master
as they are found or all together at the end of all sequences. Load-balancing capabilities
should be added to the master to avoid differences in work quantity and computing times
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between slaves.

To conclude, low level, 1-control parallel strategies are particularly attractive when
neighborhoods or populations are large, or the neighbor or individual evaluation is costly.
Computing time gains may then be obtained, as illustrated by many early contributions
discussed in the surveys indicated in the Introduction. Even more impressive gains
may be obtained by taking advantage of the current computing platforms integrating
multi-core central processing units (CPUs - the “traditional” processor) and graphical
processing units (GPUs) enhanced with data streaming, i.e., hardware data parallelism
providing the means for each processor to perform the same task on different parts of the
distributed data (e.g., Brodtkorb et al, 2013a,b). This hardware technology offers the
possibility of extensive very low-level parallelization reminiscent of the work performed
for the massively parallel computers of the late eighties. The neighborhood evaluationin
local search heuristics, the fitness evaluation of evolutionary methods, and the evolution of
individuals in swarms may clearly benefit from such a hardware-oriented parallelization,
spectacular speedups having been observed (e.g., Melab et al, 2011; Brodtkorb et al,
2013a,b; Delévacq et al, 2013; Cecilia et al, 2013; Tan and Ding, 2016; Van Luong et al,
2013). A number of remarks are in order, however. First, the utilization of this technology
is not straightforward, and work must be dedicated to its conceptual, technical and
experimental aspects. Second, there is also the need to examine the sequential and
parallel meta-heuristic designs to identify and valuate where this technology would bring
the most benefits, besides those already identified. The work of Rios et al (2017) is a
step on this research path. Finally, as discussed in the following sections, more advanced
multi-search strategies outperform low-level strategies in most cases, in particular with
respect to solution quality. Consequently, hierarchical settings combining multi-search
strategies and 1C/RS/SPSS evaluation procedures, all on CPU-based architectures, are
generally used currently. More research is needed in this area to account for the massively
parallel possibilities of GPUs.

4 Domain Decomposition

We group under this title the strategies that separate the search space explicitly. The
basic idea is intuitively simple and appealing: separate the search space into smaller
subspaces, address the resulting subproblems by applying the sequential meta-heuristic on
each subspace, collect the respective partial solutions, and reconstruct an entire solution
out of the partial ones. This apparently simple idea may take several forms, however,
according to the type of separation performed, the permitted links among the resulting
subproblems, the possible iterative modification of the separation and the type of control
of the parallel meta-heuristic.

Regarding the separation type, the resulting subspaces may constitute a partition
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of the complete space (disjoint subspaces, their union being the full space), or a cover
allowing a certain amount of overlap among the subspaces. Note that covers may be
defined implicitly by allowing the search within a given subspace to reach out to some
part of one or several other subspaces through, e.g., neighborhood moves or individual
CTOSSOVers.

The separation may be obtained by identifying a subset of variables, and correspond-
ing constraints, eventually, and discarding or fixing the other variables and constraints,
the goal being to obtain smaller, easier to address subproblems. Note that it is not always
possible, even desirable, to discard. Thus, if one may easily discard the customers in a
Vehicle Routing Problem (VRP) that do not belong to a given subspace (the depot must
be included in each subspace) and solve the resulting partial VRPs separately, doing the
same is much more difficult to implement when considering the commodities and arcs of a
Multicommodity Capacitated Network Design problem (MCND). Separation by variable
fixing (and projection of the corresponding constraints) appears more flexible as one still
works on smaller subproblems, but considering the complete vector of decision variables,
some of which are fixed. It is also a more general approach, as we find it in advanced
cooperative search methods (e.g., Lahrichi et al, 2015).

Strict partitioning restricts the solvers to their subspaces, resulting in part of the
search space being unreachable and the loss of exploration quality for the parallel meta-
heuristic. Covers, through explicit or implicit overlapping, partially address this issue;
indeed, to guarantee that all potential solutions are reachable, one must make overlapping
cover the entire search space, which would negate the benefits of decomposition. To avoid
these drawbacks, one can change the separation and start again. This idea translates
into a strategy encountered quite frequently in strict partitioning, where the separation
is modified periodically, and the search is restarted using the new decomposition. A
complete-solution reconstruction feature is almost always part of the procedure. Note
that this approach provides also the opportunity to define non-exhaustive separations,
i.e., where the union of the subspaces is smaller than the complete search space.

This strategy is naturally implemented using master-slave 1C/RS schemes, with
MPSS or MPDS search differentiation. The master process determines the separation
and sends partial subsets (or information to define them out of the initial space - this
reduces the communication overhead) to slaves, synchronizes them and collects their so-
lutions, reconstructs complete solutions, modifies the separation, and determines when
stopping conditions are met. Slaves concurrently and independently perform the search
on their assigned subsets. Most implementations addressed problem settings for which a
large number of iterations can be performed in a relatively short time and restarting the
method with a new decomposition does not require an unreasonable computational ef-
fort (e.g., Gendreau et al, 2001, for real-time ambulance fleet management), a full-fledged
meta-heuristic being generally used on each subspace.

CIRRELT-2017-58 9
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Explicit space separation may also be performed in a pC, collegial decision-making,
framework with MPSS or MPDS search-differentiation. The separation in a pC/KS
strategy is collegially decided and modified through information-exchange phases (e.g.,
round-robin or many-to-many exchanges) activated at given synchronization points. The
KS label comes from exchanging not only the best solutions in each subspace (e.g., routes
in a VRP), but also from the so-called context information (e.g., un-serviced customers
and empty vehicles in a VRP Taillard, 1993) that is used to modify the separation. In
the initial proposition by Taillard (1993) for the VRP (simulated on a sequential ma-
chine), the customer set was partitioned, vehicles were allocated to the resulting regions,
each subproblem was solved by an independent tabu search, synchronization occurred
after a number of iterations that varied according to the total number of iterations al-
ready performed, and exchanges took place between adjacent processors (corresponding
to neighboring regions). The method allow at the time to address successfully a number
of problem instances, but the synchronization inherent in the design of the strategy hin-
dered its performance. A parallel ant-colony approach for the VRP based on this idea
was presented in Doerner et al (2006) with good speedup results when the number of
customer increased.

Domain decomposition methods induce different search behavior and solution quality
compared to those of the sequential meta-heuristic. Such methods appear increasingly
needed as the dimensions of the contemplated problem instances continue to grow. Given
the increased complexity of the problem settings, work is also required on how to best
combine search-space separation and the other parallelization strategies, cooperation in
particular. The Integrative Cooperative Search (Lahrichi et al, 2015) is a step in this
direction (see Section 7).

5 Independent Multi-search

We dedicate a section to the Independent multi-search as it was among the first paral-
lelization strategies proposed in the literature, and is also the most simple and straight-
forward p-control parallelization strategy, generally offering an interesting performance.

Independent multi-search seeks to accelerate the exploration of the search space to-
ward a better solution (compared to sequential search) by initiating simultaneous solvers
from different initial points (with or without different search strategies). It thus paral-
lelizes the classical multi-start strategy by performing several searches simultaneously on
the entire search space, starting from the same or from different initial solutions, and
selecting at the end the best among the best solutions obtained by all searches. In-
dependent multi-search methods thus belong to the pC/RS class of the taxonomy. No
attempt is made to take advantage of the multiple solvers running in parallel other than
to identify the best overall solution at the final synchronization step.

10 CIRRELT-2017-58
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The efficiency of independent multi-search follows from the sheer quantity of comput-
ing power it allows one to apply to a given problem (Battiti and Tecchiolli, 1992; Taillard,
1994; Stutzle, 1998; ten Eikelder et al, 1999). The surveys identified in the Introduction
describe numerous contributions of applying the pC/RS independent multi-search strat-
egy to a variety of combinatorial optimization problems.

Independent multi-search offers an easy access to parallel meta-heuristic computation,
offering a tool when looking for a “good” solution without investment in methodological
development or coding. Such methods are generally outperformed by cooperative strate-
gies, however, through mechanisms enabling the independent solvers to share, during
the search, the information their exploration generates. As explained in the following
sections, this sharing and the eventual creation of new information out of the shared one,
yields in most cases a collective output of superior solutions compared to independent
and sequential search.

6 Cooperative Search

Cooperative multi-search has emerged as one of the most successful meta-heuristic method-
ologies to address hard optimization problems (e.g. Talukdar et al, 2003; Alba, 2005;
Crainic, 2005; Crainic and Hail, 2005; Crainic, 2008; Crainic and Toulouse, 2008; Talbi,
2006; Crainic and Toulouse, 2010). While independent multi-search strategies seek to
accelerate, compared to sequential search, the exploration toward a better solution by
initiating simultaneous searches from different initial points, cooperative search strate-
gies go further and integrate cooperation mechanisms to share, while the search is in
progress, the information obtained from this diversified exploration of the same problem
instance. The sharing and, eventually, creation of new information out of the exchanged
data (Section 7), yields in many cases a collective output with better solutions than a
parallel independent search.

Cooperative-search strategies are thus defined by the solver components engaged in
cooperation, their interaction mechanism, and the nature of the information shared. The
solvers define trajectories in the search space from possibly different initial points or pop-
ulations, by using possibly different search strategies (including, possibly exact methods).
The information-sharing cooperation mechanism specifies how these independent solvers
interact, how the exchanged information is used globally (if at all), and how each solver
acts on the received information, using it within its own search and, thus, transforming
it before passing it to other solvers.

The information-sharing cooperation mechanism specifies how these independent solvers

interact, the global search behavior of the cooperative parallel meta-heuristic emerging
from the local interactions among them, which makes it a “new” meta-heuristic in its own
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right (Crainic and Toulouse, 2008). The similarity between this behavior and that of sys-
tems where decisions emerge from interactions among autonomous and equal “colleagues”
has inspired the name collegial control associated to cooperative-search strategies in the
taxonomy used in this chapter. The various cooperation mechanisms proposed in the
literature are described in the next sections.

Exchanged information must be meaningful and exchanges must be timely. The
goals are 1) to improve the performance of the receiving solvers, and 2) to create as
much as possible a global, “complete” image of the status of the cooperative search
to enable guiding it, through its participating solvers, toward a better performance in
terms of solution quality and computational efficiency than the simple concatenation of
results obtained by non-cooperating solvers. Toulouse et al (1996) proposed a list of
questions related to addressing this challenge. The list is still relevant when designing
cooperative parallel strategies: What information is exchanged? Between what processes
is it exchanged? When is information exchanged? How is it exchanged? How is the
imported data used? Implicit in their taxonomy and explicitly stated in later papers, the
issue of whether the information is modified during exchanges or whether new information
is created completes this list.

“Good” solutions are the most often exchanged type of information, usually taking
the form of the overall best solution or the current-best solution of a solver being sent to
the others. It was observed, however, that sending out all current-best solutions a solver
identifies is often counter productive, particularly when the solver performs a series of
improving moves or generations, as solutions are generally “similar” (particularly for
neighborhood-based procedures), and the receiving solvers have no chance to act on the
in-coming information (unless special receiving mechanisms are embedded in all solvers)
before receiving a new solution, or may embark on explorations similar to that of the
sending solver. It was also observed that always sending the overall best solution to all
cooperating solvers is generally bad as it rapidly decreases the diversity of the search,
increasing the amount of worthless computational work (many solvers will search in the
same region) and bringing an early “convergence” to a not-so-good solution. Sending
out the local optima after a series of improving moves, exchanging groups of solutions,
and implementing random selection procedures for the solutions to send out, the latter
generally biased toward good or good-and-different solutions, are among the strategies
aimed at addressing these issues.

Contert information may also be shared profitably when embedded in the mecha-
nisms used to guide the search. Context information refers to data collected by a solver
during its own exploration, such as the statistical information relative to the presence
of particular solution elements in improving solutions (e.g., the medium and long-term
memories of tabu search), the impact of particular moves on the search trajectory (e.g.,
the scores of the moves of large adaptive neighborhood search), population diversity mea-
sures, individual resilience across generations, etc. A limited number of studies indicate
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the interest of context-information exchanges (see Section 7), but more research is needed
on this topic.

Cooperating solvers may exchange information directly or indirectly. Direct exchanges
of information occur either when the concerned solvers agree on a meeting point in
time to share information, or when a solver broadcasts its information to one or several
other solvers without prior mutual agreement. The latter case is to be avoided as it
requires solvers to include capabilities to store received information without disturbing
their own search trajectories until they are ready to consider it. Failure to implement such
mechanisms generally results in bad performances, as observed for strategies combining
uncontrolled broadcasting of information and immediate acceptance of received data.

Indirect exchanges of information are performed through independent data structures
that become shared resources of data solvers may access asynchronously and according to
their own internal logic to post and retrieve information. Such data structures are called
blackboard in the computer-science and artificial-intelligence vocabulary, while memory,
pool, and data warehouse (reference and elite set are also sometimes used) are equivalent
terms found in the parallel meta-heuristic literature. The term memory is used in this
chapter.

Centralized-memory mechanisms have been used in most parallel meta-heuristic con-
tributions. They receive, eventually process, and post information received from all
cooperating solvers, which, in turn, may retrieve this information independently. Dis-
tributed memory mechanisms may be contemplated, where a number of memories are
inter-connected, each servicing a number of solvers. Such hierarchical structures, with
several layers of solvers and memories, appear interesting when a large number of pro-
cessors is involved, when computations are to take place on grids or loosely coupled
distributed systems, and for integrative cooperation strategies. Issues related to data
availability, redundancy, and integrity must then be addressed, as well as questions rel-
ative to the balancing of workloads and the volume of information exchanged. More
research is needed on this topic.

Communications proceed according to an interaction topology represented by a com-
munication graph specifying the processes that may engage in direct exchanges and, thus,
directing the flow of information within the cooperative search. Each node of the graph
represents a solver or a memory. Edges define pairs of solvers or a solver-memory pair.
The projection of this graph on the physical interconnection topology of the parallel
computer executing the parallel program is generally part of the implementation design.

When and how information is shared specifies the frequency of cooperation activities,
who initiates them and when, and whether the concerned solvers must synchronize, i.e.,
each stopping its activities and waiting for all others to be ready, or not. These two
cases are identified as synchronous and asynchronous communications, respectively, and
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are discussed in the following sections. A general observation for both cases, however, is
that exchanges should not be too frequent to avoid excessive communication overheads
as well as premature “convergence” to local optima (Toulouse et al, 1999a, 2004, 1998,
2000).

Two observations to conclude this general discussion about cooperation. First, it
is worth noticing that cooperation is somewhat biased toward intensifying the search in
regions of the space that have already been explored and where interesting solutions have
been identified. This is particularly true for “simple” cooperation mechanisms based on
synchronization or that exchange current-best solutions only. It is thus important to
equip the cooperation mechanisms with diversification capabilities, e.g., probabilistic or
diversity-driven selection of exchanged solutions (as proposed by Vidal et al, 2012, for
example) or creation of new solutions and guidance information (Lahrichi et al, 2015).

Second, the main principles of cooperative parallelization are the same for neighborhood-
and population-based meta-heuristics, even though denominations and implementation
approaches may differ. We thus structure the presentation that follows based on these
principles and general strategies, rather than by meta-heuristic class. The next two sub-
sections discuss the classic synchronous and asynchronous strategies, while the advanced
methods based on creation of new information out of the shared one are the topic of
Section 7.

6.1 pC/KS Synchronous Cooperative Strategies

Synchronous cooperation follows a p-control (pC), knowledge synchronous (pC/K) strat-
egy, with any of the SPDS, MPSS or MPDS search differentiation approaches. All partic-
ipating solvers stop their activities at particular moments and engage in an information-
exchange phase, which must be completed before any solver can restart its exploration
from that synchronization point. Synchronization moments may be determined by con-
ditions imposed exogeneously to all solvers (e.g., number of iterations from the last
synchronization point), or detected by an a priori designated solver.

The goal of synchronous cooperative strategies is to re-create a state of complete
knowledge at particular points in the global search and, thus, to hopefully guide it into
a coordinated evolution toward the problem solution. This goal is generally only par-
tially attained, however, even though these strategies have generally outperformed the
sequential versions as well as simpler parallelization strategies. Moreover, synchroniza-
tion results in significant time inefficiencies as communications are initiated only when the
slowest search thread is ready to start. Asynchronous information sharing thus intuitively
appears more promising and, indeed, cooperation based on asynchronous exchanges, de-
scribed in the following sections, generally outperformed synchronous methods. Conse-
quently, few contributions relying on synchronous cooperation were proposed in recent
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years.

We therefore restrict this section to recalling the main concepts used in synchronous
cooperation, some of which found their way into more advanced strategies, encouraging
interested readers to consult the surveys indicated in the Introduction for details and
references.

Synchronization may use a complete communication graph or a more restricted, less
densely connected communication topology (e.g., ring, torus, and grid graph). Global ex-
changes of information among all solvers take place in the former case, while information
follows a diffusion process through direct, local, exchanges among neighboring processes
in the latter.

In a restricted view of the concept, a number of proposed pC/KS cooperative search
meta-heuristics based on global exchanges use a designated communication master pro-
cess, which may or not include one of the participating solvers. The communication
master manages the synchronization mechanism in a master-slave implementation. It
initiates the global search starting the solvers, stops all solvers at synchronization points,
gathers the information, updates the global data, verifies the termination criteria of
the search and, either effectively terminates it or distributes the shared information (a
good solution, generally, the overall best solution in many cases) and sends a signal
to the solvers to continue the search (e.g., Garcia-Lépez et al, 2002; Rego, 2001). For
coarse-grained island implementations of cooperating genetic methods, synchronization
means the communication master initiates the migration operator to exchange among
the independent populations the best or a small group of some of the best individuals
in each (Czech, 2000; Solar et al, 2002). For ant-colony systems, this strategy divides
the colony into several sub-colonies individually assigned to solvers, the master updating
the pheromone matrix, and starting a new search phase, based on the received solver
results (Drias and Ibri, 2003). A more sophisticated approach was proposed in Niar and
Fréville (1997), where the master dynamically adjusted the search parameters of coop-
erating tabu searches according to the results each had obtained so far. The method
performed well on the 0-1 Multi-dimensional Knapsack Problem, which is encouraging,
as the idea of dynamic adjustment of the search parameters may be generalized to more
sophisticated cooperation mechanisms.

A truer global pC/KS cooperative scheme empowers solvers to initiate synchroniza-
tion. Once it reaches a pre-determined status, a solver thus sends the stopping signal,
broadcasts its data (current best solution or group of solutions, in most cases), followed
by similar broadcasts performed by the other solvers. Once all information is shared, each
solver performs its own import procedures on the received data and proceeds with its
exploration of the search space until the next synchronization event. Most synchronous
coarse-grained island parallelizations of genetic-based evolutionary methods fall under
this category, where migration operators are applied at regular intervals (e.g., Flores
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et al, 2003; Hidalgo et al, 2003, the later implementing a hierarchical method with the
fitness computation performed at the second level through a master-slave implementa-
tion; the overhead due to the parallelization of the fitness became significant for larger
numbers of processors). For ant-colony application, where each colony evolves its own
pheromone matrix, global synchronization mean that, after a fixed number of iterations,
colonies exchange elite solutions that are used to update the pheromone matrix of the
receiving colony (Michels and Middendorf, 1999; Middendorf et al, 2002).

Synchronization based on global exchanges of information assumes that making avail-
able to all solvers the entire information shared will result in superior performances.
Other than the often excessive communication overhead, the main drawback is that
solvers relying heavily on the same information end up by exploring the same regions of
the search space, resulting in loss of diversity and efficiency. Two approaches have been
proposed to overcome this drawback.

First, do not share and use uniquely the local best solutions, as in the pC/RS/MPDS
iterated tabu search proposed for the VRP by Cordeau and Maischberger (2012). In this
work, solvers synchronized after a number of consecutive iterations without improvement
within the individual improvement phases. Synchronization involved the exchange of the
good solutions obtained by the solvers and, then, each individual solver built a new
starting solution by selecting routes probabilistically among those received and its own.
Computational results showed this method to be flexible and efficient for several classes
of routing settings with several depots, periodicity of demands, and time windows.

The second approach is based on diffusion. In such strategies, direct communications
at synchronization points are possible only with neighboring solvers, i.e., with nodes
adjacent in the sparse communication graph. The quantity of information each solver
processes and relies upon is thus significantly reduced. Information is still shared between
non-adjacent solvers but at the reduced diffusion speed of chains of local exchanges and
data modification by the intervening solvers. This idea was less explored compared to
the global-exchange strategy, even though synchronous cooperative mechanisms based on
local exchanges and diffusion have a less negative impact on the diversity of the search-
space exploration, and have yielded good results (e.g., Tongcheng and Chundi, 2002;
Middendorf et al, 2002).

6.2 pC/C Asynchronous Cooperative Strategies

Historically, independent and synchronous cooperative methods were the first multi-
search approaches to be developed. The focus has shifted, however, to asynchronous
cooperation strategies, which may be considered as defining the “state-of-the-art” in
parallel multi-search meta-heuristics.
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A cooperation strategy is asynchronous when programs initiate cooperation activities
according to their own internal logic, without coordination with other solvers or memo-
ries. Thus, e.g., a solver may make available its current best solution by posting it on a
memory, or may ask for an external solution when it failed to improve the quality of its
best solution for a certain number of iterations.

Asynchronous communications provide the means to build cooperation and infor-
mation sharing among search threads without incurring the overheads associated with
synchronization. They also bring adaptability to cooperation strategies, to the extend
that the parallel cooperative meta-heuristic may more easily react and dynamically adapt
to the exploration of the search space than independent or synchronous search. These
benefits come with potential issues one must care for. For example, the information
related to the global search that is available when a solver must take an action may be
less “complete” than in a synchronous environment. On the other hand, too frequent
data exchanges, combined with simple acceptance rules for incoming information, may
induce an erratic solver behavior, the corresponding search trajectories becoming similar
to random walks. Hence the interest for applying information-sharing based on qual-
ity, meaningfulness, and parsimony principles (Crainic et al, 1996, 1997; Toulouse et al,
1996).

Asynchronous cooperative strategies follow either pC/C or pC/KC collegial princi-
ples, the main difference between the two being that in the latter “new” knowledge is
inferred on the basis of the information exchanged between solvers; pC/KC strategies are
addressed in the next section.

In most pC/C asynchronous strategies in the literature, the shared information corre-
sponds to a locally improving solution or individual(s), the most successful contributions
sharing local optima only. The principles mentioned above also resulted in mechanisms
to diversify the shared information (Crainic et al, 1996). Thus, always selecting the best
available solution out of an elite set of good solutions, sent by potentially different solvers,
proved less efficient in terms of quality of the final solution than a strategy that selected
randomly, but biased by quality, among the same elite set.

When to initiate and perform cooperation activities, as well as how to use the incom-
ing information is particular to each type of meta-heuristic. Most strategies proposed
in the literature follow the same idea, however, to send and request information jointly.
There is no need to do this, however, even though it can decrease the amount of commu-
nication. It may thus be interesting for neighborhood-based methods to make available
right away their newly found local optima or improved overall solutions, and not wait
for the algorithmic step where examining external information is appropriate. Similarly,
population-based methods could migrate a number of individuals when a significant im-
provement is observed in the quality and diversity of their elite group of individuals.
Regarding the request of external information, it may be based on a pre-fixed number
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of iterations, but this approach should be restricted to meta-heuristics without search-
diversification steps, e.g., tabu search based on continuous diversification. In most other
cases, the principle of parsimonious communications implies selecting moments when
the status of the search changes significantly, e.g., when the best solution or the elite
subpopulation did not improve for a number of iterations. At such moments, solvers
generally engage into some form of search-diversification phase, e.g., diversification in
tabu search, change of neighborhood in variable neighborhood search, and complete or
partial re-generation of population in population-based meta-heuristics, which involves
the choice or modification of the current solution to initiate a new phase. External in-
formation, which generally includes at least one good solution, may prove particularity
interesting at that moment. How it is to be used depends on the particular logic of
the receiving solver; in may be used to initiate a diversification phase, to modify the
search trajectory through a combination with a “local” solution, or to modify the solver
behavior in the long run through an insertion in an elite set or population. As already
mentioned, however, one tries to avoid frequent imports followed by a replacement of the
current solution or population, which will result in a random search.

Direct and indirect exchange pC/C strategies may be used with any meta-heuristic.
Historically, however, most genetic-based evolutionary asynchronous cooperative meta-
heuristics relied on direct communications over complete communication graphs (Canti-
Paz, 2005). These methods generally implement a coarse-grained island model, migration
being triggered by conditions within individual populations, selected migrant individuals
being directed toward either all other populations or a dynamically-selected subset. The
work of Vallada and Ruiz (2009) illustrates this approach, where migration is initiated
by an island that identified a new best solution, which it sends to all other islands.
The migrant individual is accepted by the solver of another island only when different
from the local population and better than the worst individual in that population. We
also mention the work of Izzo et al (2009) who introduced genetic solvers with different
strategies, which was a novelty in the GA-island field (previously, all island populations
were evolved by the same algorithm), and observed significant improvements compared
to more traditional island-based pC/C models. The parallelization of ant-colony methods
may use the same approach, where partitions of the initial colony play the role of islands.
The contribution of Ling et al (2012) is interesting in this context for novel way of
selecting the receiving subcolony (island). Here, a solver initiates an exchange when the
evolution of its colony becomes stagnant (no longer improving) by selecting an exchange
partner probabilistically based on the relative distance (the most different best solution)
and fitness (of the best solution); it then requests the current best solution from the
selected partner, and, upon reception, updates its pheromone matrix and continues the
search.

Notice that complete communication graphs are not compulsory. Indeed, one could

use particular graphs and information-diffusion processes tailored to the problem at hand.
Yet, despite encouraging results (e.g., Sevkli and Aydin, 2007, proposing VNS pC/C
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strategies over uni and bidirectional ring topologies), too few experiments have been
reported yet.

Historically, the sharing of information in most asynchronous cooperative search
strategies outside the genetic-evolutionary community is based on some form of indi-
rect communications through a centralized device - data repository / processor -, often
called central memory (Crainic, 2005; Crainic et al, 1996, 1997). A solver involved in
such a cooperation deposits good solutions, local optima generally, into the central mem-
ory, from where, when needed, it also retrieves information sent by the other cooperating
solvers. Classical retrieval mechanisms are based on random selection, which may be uni-
form or biased to favor solutions with high rankings based on solution value and diversity.
The central memory accepts incoming solutions for as long as it is not full, acceptance
becoming conditional to the relative interest of the incoming solution compared to the
“worst” solution in the memory, otherwise. Diversity criteria are increasingly considered,
a slightly worse solution being preferred if it increases the diversity of solutions in the
central memory. Population culling may also be performed (deleting, e.g., the worst half
of the solutions in memory).

Central-memory-based cooperative search strategies are described in the literature for
most meta-heuristic classes. To the best of our knowledge, Crainic et al (1996) were the
first to propose a central-memory approach for asynchronous tabu search in their compar-
ative study for a multi-commodity location problem with balancing requirements. Their
method, where individual tabu searches sent to the memory their local-best solutions
when improved, and imported a solution selected probabilistically biased by rank before
engaging in a diversification phase, outperformed in terms of solution quality the sequen-
tial version as well as several synchronous and broadcast-based asynchronous cooperative
strategies. The same approach was applied to the fixed cost, capacitated, multicommod-
ity network design problem with similar results (Crainic and Gendreau, 2002).

pC/C with some form of central memory were proposed for a variety of problems,
including cutting (Blazewicz et al, 2004), container loading (Bortfeldt et al, 2003), labor-
constrained scheduling (Cavalcante et al, 2002), VRP with time windows (VRPTW)
(Le Bouthillier and Crainic, 2005). On the other hand, several studies focused on pC/C
strategies with some form of central memory for particular classes of meta-heuristics, e.g.,
simulated annealing (e.g. Lee and Lee, 1996; Sanvicente-Sanchez and Frausto-Solis, 2002;
Banos et al, 2013, the latter for multi-objectiven problem setting), VNS (e.g., Crainic
et al, 2004; Polacek et al, 2008, the latter proposing a self-adapting mechanism for the
main search parameters based on recent performance, and solution selection out of the
ten-best present in memory), GRASP (e.g., Ribeiro and Rosseti, 2007, with cooperation
based on applying path relinking to solutions from memory) and tabu search (e.g., James
et al, 2009, with memory hosting a reference set and long-term global memories built on
short-term local memories sent by solvers).
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Notice that cooperating solvers need not belong to the same meta-heuristic class.
The next section will show several examples where different meta-heuristics collaborate
within pC/KC strategies. We find, in the classical pC/C case, contributions following
the same broad strategy described above when calling sequentially on meta-heuristics
belonging to different types. The two-phase approach of Gehring and Homberger (2002)
for the VRPTW is a typical example of such a method, where each solver first applies
an evolution strategy to reduce the number of vehicles, followed by a tabu search to
minimize the total distance traveled. A somewhat different two-phase pC/C parallel
strategy was proposed in Bastos and Ribeiro (1999) for the Steiner problem, where each
phase, using reactive tabu search and path relinking, respectively, implemented the pC/C
asynchronous central memory strategy, all processes switching from the first to the second
phase simultaneously.

Multi-level cooperative search proposes a different pC/C asynchronous cooperative
strategy based on controlled diffusion of information Toulouse et al (1999b). Solvers are
arrayed in a linear, conceptually vertical, communication graph and a local memory is
associated with each. Each solver works on the original problem but at a different level
of aggregation or “coarsening”, the first-level solver working on the complete original
problem. It communicates exclusively with the two solvers directly above and below,
that is, at higher and lower aggregation levels, respectively. The local memory is used to
receive the information coming from the immediate neighbors and to access it at moments
dynamically determined according to the internal logic of the solver. In the original im-
plementation, solvers were exchanging improved solutions, incoming solutions not being
transmitted further until modified locally for a number of iterations to enforce the con-
trolled diffusion of information. Excellent results have been obtained for various problem
settings including graph and hypergraph partitioning (Ouyang et al, 2000, 2002), net-
work design (Crainic et al, 2006b), feature selection in biomedical data (Oduntan et al,
2008), and covering design (Dai et al, 2009). It is noteworthy that one can implement
multi-level cooperative search using a central memory by adequately defining the com-
munication protocols. Although not yet fully defined and tested, this idea is interesting
as it opens the possibility of richer exchange mechanisms combining controlled diffusion
and general availability of global information.

The central-memory pC/C asynchronous cooperation strategy is generally offering
very good results, yielding high-quality solutions. It is also computationally efficient as
no overhead is incurred for synchronization. No broadcasting is taking place and there is
no need for complex mechanisms to select the solvers that will receive or send information
and to control the cooperation. It has also proved efficient in handling the issue of
premature “convergence” in cooperative search, by diversifying the information received
by the solvers through probabilistic selection from the memory and by a somewhat large
and diverse population of solutions in the central memory; solvers may thus import
different solutions even when their cooperation activities are taking place within a short
time span. The central memory is thus an efficient algorithmic device that allows for a
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strict asynchronous mode of exchange, with no predetermined connection pattern, where
no solver is interrupted by another for communication purposes, but where any solver
may access at all times the data previously sent out by the other solvers.

The performance of central-memory cooperation and the availability of exchanged
information (kept in the memory) has brought the question of whether one could design
more advanced cooperation mechanisms taking advantage of the information exchanged
among cooperating solvers. The pC/KC strategies described in the next section are the
result of this area of research.

7 pC/KC Cooperation Strategies - Creating New
Knowledge

Cooperation, particularly in the central-memory asynchronous form, offers many possi-
bilities for algorithm development. Particularly noteworthy are the flexibility in terms of
the different meta-heuristic and exact methods that can be combined, and the popula-
tion of elite solutions being hosted in the central memory and continuously enhanced by
the cooperating solvers. One can thus select cooperating methods that complement each
other, some of which heuristically construct new solutions, execute neighborhood-based
improving meta-heuristics, evolve populations of solutions, or perform post-optimization
procedures on solutions in memory.

The study of Crainic and Gendreau (1999) illustrates the interest of these ideas. The
authors combined a genetic solver and several solvers executing the pC/C tabu search for
multicommodity location-allocation with balancing requirements of Crainic et al (1996).
The tabu searches were aggressively exploring the search space, building the elite solution
set in the central memory, while the genetic method contributed toward increasing the
diversity, and hopefully the quality, of the solutions in the central memory, which the
cooperating tabu search methods would than import. The genetic method was launched
once a certain number of elite solutions identified by the tabu searches were recorded in
the central memory, using this memory as initial population. Asynchronous migration
subsequently transferred the best solution of the genetic pool to the central memory, as
well as solutions of the central memory toward the genetic population. This strategy did
perform well, especially on larger instances. It also yielded an interesting observation:
while the best overall solution was never found by the genetic solver, its inclusion allowed
the tabu search solvers to find better solutions, more diversity among solutions in memory
translating into a more effective diversification of the global search.

Crainic and Gendreau (1999) and several other studies showed that it is beneficial
not only to include solvers of different types in the cooperation, but also to use the
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elite population these solvers built in memory to construct an approximate image of the
status of the global search, e.g., to learn about the parts of the search space already
explored, the relations between the values of certain decision variables (e.g., arcs in a
VRP or design solution) and the value of the corresponding solution, the performance of
the cooperating solvers on the particular instance given the information they receive from
the central memory, etc. This information may then be used to create new knowledge,
new and diverse solutions, solution components, “ideal” target solutions, etc., and guide
the search. Population-based meta-heuristics are particularly appropriate to generate
solutions that add quality and diversity to an elite set.

Cooperative strategies including mechanisms to create new information and solutions
based on the solutions exchanged belong to the p-control knowledge collegial (pC/KC)
class. Most contributions to this field have solvers work on the complete problem and
make the bulk of the section. We conclude the pC/KC section with a discussion on recent
developments targeting multi-attribute problem settings where the problem at hand is
decomposed and solvers work on particular parts of the problem or on integrating the
resulting partial solutions into complete ones.

Historically, two main classes of pC/KC cooperative mechanisms are found in the lit-
erature, both based on the idea of exploiting a set of elite solutions, and their attributes,
exchanged by cooperating solvers working on the complete problem, but differing in the
information kept in memory. Adaptive-memory methods (Rochat and Taillard, 1995)
store and score partial elements of good solutions and combine them to create new
complete solutions that are then improved by the cooperating solvers. Central-memory
methods exchange complete elite solutions among neighborhood and population-based
meta-heuristics and use them to create new solutions and knowledge to guide the co-
operating solvers (Crainic, 2005; Crainic and Toulouse, 2003; Crainic et al, 1996). The
latter method generalizes the former and, the vocabulary used in the various papers not
withstanding, the two approaches are becoming increasingly unified.

The adaptive-memory terminology was coined by Rochat and Taillard in a paper
(Rochat and Taillard, 1995) proposing tabu search-based heuristics for the VRP and the
VRPTW that are still among the most effective ones for both problems (see Badeau
et al, 1997; Glover, 1996; Taillard et al, 1997, for more on adaptive-memory concepts)
The main idea is to keep in memory the individual components (vehicle routes in VRP)
making up the elite solutions found by the cooperating solvers, together with memories
counting for each component its frequency of inclusion in the best solutions encountered
so far, as well as its score, and rank among the population in memory, computed from
the attribute values, in particular the objective value of its respective solutions. Solvers
construct solutions out of probabilistically selected (biased by rank) solution components
in memory, enhance it (tabu search in the initial contribution), and deposit their best
solutions in the adaptive memory The probabilistic selection yields, in almost all cases, a
new solution made up of components (routes) from different elite solutions, thus inducing
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a diversification effect. A number of early developments provided insights into algorithmic
design. Worth mentioning are Schulze and Fahle (1999) for the VRPTW, who proposed
a set-covering heuristic to select the solution components in memory used to generate
the new initial solution of a cooperating solver and Gendreau et al (1999), for real-time
vehicle routing and dispatching, actually implementing a hierarchical, two-level parallel
scheme: a pC/KC/MPSS cooperating adaptive memory meta-heuristic at the first level,
while each individual tabu-search solver implemented the route decomposition of Taillard
(1993) with the help of several slave processors on the second level.

Generalizing the pC/C and adaptive-memory strategies, pC/KC central-memory mech-
anisms keep full solutions, as well as attributes and context information sent by the solvers
involved in cooperation. Solvers, which indirectly exchange complete elite solutions and
context information though the central memory, may perform constructive, improving
and post-optimization heuristics (e.g., Le Bouthillier and Crainic, 2005; Le Bouthillier
et al, 2005; Lahrichi et al, 2015), neighborhood- (e.g., tabu search Di Chiara, 2006; Jin
et al, 2012, 2014; Lahrichi et al, 2015) and population-based methods like genetic al-
gorithms (e.g., Le Bouthillier and Crainic, 2005; Le Bouthillier et al, 2005; Di Chiara,
2006; Lahrichi et al, 2015) and path relinking (e.g., Crainic et al, 2006a), as well as
exact solution methods (Groér and Golden, 2011) on possibly restricted versions of the
problem.

The particular solvers to include in cooperation depend on the application. They
should be efficient for the problem at hand, of course. Additionally, they should also aim
to cover different regions of the search space in such a way that they contribute not only
to the quality but also to the diversity of the elite population being built in the central
memory.

Other than the information received from the cooperating solvers, the central mem-
ory keeps newly created information out of these exchanged data. Statistics-building,
information-extraction and learning, and new solution-creation mechanisms provide this
new “knowledge”. Memories recording the performance of individual solutions, solution
components, and solvers may be added to the central memory, and guidance mechanisms
based on this knowledge may be gradually built.

Central-memory mechanisms thus perform two main tasks: data-warehousing and
communications with solvers, on the one hand, and information-creation and search-
guiding, on the other hand. To distinguish between the two, we single out the latter as the
Search Coordinator (SC'). The simplest SC mechanism was used in the pC/C strategies of
the previous section, where solutions in memory were ordered and rank-biased randomly
extracted to answer solver requests. The functions of the SC in pC/KC methods include
creating new solutions, extracting appropriate solution elements, building statistics on
the presence and performance of solutions, solution elements, and solvers (these belong
to the family of memories, well-known in the meta-heuristic community), creating the
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information to return when answering solver requests, the latter being part of the so-
called guidance mechanisms.

The cooperative meta-heuristic proposed by Le Bouthillier and Crainic (2005) for the
VRPTW used a simple pC/KC mechanism, involving four solvers, two simple genetic
algorithms with order and edge recombination crossovers, respectively, and two tabu
search methods that perform well sequentially, Unified Tabu Search (Cordeau et al, 2001)
and TABUROUTE (Gendreau et al, 1994). The cooperating solvers shared their respective
best solutions identified so far. The SC in central memory performed post-optimization
(2-opt, 3-opt, Or-opt, and ejection-chain procedures to reduce the number of vehicles
and the total traveled distance) on the received solutions before making them available
for sharing. Solvers requested solutions from the central memory when needed, i.e., the
genetic algorithms for crossover operations, the Unified Tabu at regular intervals, and
TABUROUTE at diversification time. This algorithm, without any calibration or tailoring,
proved to be competitive with the best meta-heuristics of its day in linear speedups.

Le Bouthillier et al (2005) enhanced this SC with an innovative learning and guidance
mechanism. The authors aimed for a mechanism that, not only returned meaningful
information to solvers, but was also independent of particular problem characteristics,
e.g., routes in their VRPTW application, and could be broadly applied to network-
based problem settings. The SC mechanism is thus based on an atomic element in
network optimization, the arc. Starting from the classical memory concepts pioneered
for tabu search (Glover, 1989, 1990; Glover and Laguna, 1997), Le Bouthillier et al
(2005) combined two ideas: first, that an arc appearing often in good solutions and less
frequently in bad solutions may be worthy of consideration for inclusion in a tentative
solution, and vice versa, and, second, that this worthiness increases when the behavior
appear stable in time. The authors thus considered the evolution of the frequency of
inclusion of arcs in solutions of different quality, that is, in the elite (e.g., the 10% best),
average (between the 10% and 90% best), and worst (the last 10%) groups of solutions
in the central memory. Patterns of arcs were then defined representing subsets of arcs
(not necessarily adjacent) with similar frequencies of inclusion in particular population
groups. Guidance was obtained by transmitting arc patterns to the individual solvers
indicating whether the arcs in the pattern should be “fixed” or “prohibited” to intensify
or diversify the search, respectively. The solvers accounted for these instructions by
using the patterns to bias the selection of arcs for move or reproduction operations.
A four-phase fixed schedule (two phases of diversification at the beginning to broaden
the search, followed by two intensification phases to focus the search around promising
regions) was used (see Le Bouthillier, 2007, for a dynamic version of this mechanism),
with excellent results in terms of solution quality and computing efficiency compared to
the best-performing methods of the day.

The pC/KC/MPDS method proposed in Groér and Golden (2011) for the VRP illus-
trates how specialized solvers may address different issues in a cooperative meta-heuristic,
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including the generation of new knowledge. Two types of solvers were defined. The
so-called heuristic solvers improved solutions received from the SC associated with the
central memory (called master in Groér and Golden, 2011), through a record-to-record
meta-heuristic (Chao et al, 1995; Golden et al, 1998; Li et al, 2005). On completing the
task, the solvers returned the 50 best solutions found and the corresponding routes (a
post-optimization procedure was first run on each route). Simultaneously, exact solvers
aimed to identify new solutions by solving series of set covering problems starting from
a limited set of routes. Each time a set covering problem was solved, the solution was
returned to the central memory and the set of the current 10 best solutions was retrieved
for the next run. Set-covering solvers had also access to the ordered list of best routes
in memory and they selected within to complete their problems. The number of routes
selected to set up a set covering problem was dynamically modified during the search
to control the corresponding computational effort. The method performed very well,
both in terms of solution quality and computational effort (an almost-linear speedup was
observed).

Jin et al (2014) proposed a different SC mechanism for a pC/KC meta-heuristic with
tabu search solvers for the VRP. Data sharing was relatively simple; solvers periodically
(after a number of iterations or when the solution did not improve for a number of it-
erations) sent best solutions to the central memory, and received a solution back from
it, the search being resumed from the received solution. The SC mechanism aimed to
identify and extract information from the solutions in memory to guide solvers toward
intensification and diversification phases. This was obtained by dynamically (on recep-
tion) clustering solutions according to the number of edges in common. Thus, solutions
in a given cluster share a certain number of edges, this cluster of edges and solutions
being assumed to represent a region of the search space. Search history indicators were
associated with clusters giving the number of solutions in the cluster and the quality
of the solutions. This information was used to infer how thoroughly the corresponding
region had been explored and how promising it appeared. Clusters were sorted according
to the average solution value of their feasible solutions, and the cluster with the lowest
value, that is, with the largest number of very good solutions, was selected for inten-
sification, while the solution with the lowest number of good solutions was selected for
diversification. A solution was then selected in the corresponding cluster and it was sent
to the requesting solver. Excellent results were obtained in terms of solution quality and
computation effort (an almost linear speedup was observed with up to 240 processors)
compared to the state-of-the-art methods of the day.

We complete this section by addressing recent developments targeting multi-attribute,
“rich”, problem settings where the problems at hand display a large number of attributes
characterizing their feasibility and optimality structures. Traditionally, such problems
were simplified, or sequentially solved through a series of particular cases, where part of
the overall problem was fixed or ignored, or both. The general idea of the new generation
of pC/KC meta-heuristics is to decompose the problem formulation along sets of decision
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variables, which is called decision-set attribute decomposition in Lahrichi et al (2015).
The goal of this decomposition is to obtain simpler but meaningful problem settings, in
the sense that efficient solvers, can be “easily” obtained for the partial problems either
by opportunistically using existing high-performing methods or by developing new ones.
The central-memory asynchronous cooperative search framework then brings together
these partial problems and their associated solvers, together with integration mechanisms,
reconstructing complete solutions, and search-guidance mechanisms.

According to our best knowledge, Crainic et al (2006a) (see also Di Chiara, 2006) were
the first to propose such a methodology in the context of designing wireless networks,
where seven attributes were considered simultaneously. The proposed pC/KC/MPDS
meta-heuristic had tabu search solvers working on limited subsets of attributes, the others
being fixed, and a genetic method combining the partial solutions generated by the tabu
search procedures into complete solutions to the initial problem.

The general method, called Integrative Cooperative Search ICS), was introduced in
Lahrichi et al (2015) (for earlier versions, see Crainic et al, 2009a,b) and illustrated
through an application to the multi-depot periodic vehicle routing problem (MDPVRP)
(Mingozzi, 2005; Vidal et al, 2012). The main components of ICS, to be instantiated for
each application, are 1) the decomposition rule; 2) the Partial Solver Groups (PSGs)
addressing the partial problems resulting from the decomposition; 3) the Integrators se-
lecting partial solutions from PSGs, combining them, and sending the resulting complete
solutions to the Complete Solver Group (CSG); and 4) the CSG, providing the cen-
tral memory functionalities of ICS. Notice that, in order to facilitate the cooperation, a
unique solution representation, obtained by fixing rather than eliminating variables when
defining partial problems, is used throughout ICS.

The selection of the decision-sets for decomposition is specific to each application case,
decision variables being clustered to yield known or identifiable optimization problem
settings. Thus, an opportunistic rule decomposed the MDPVRP along the depot and
period decision sets to create two partial problems, a periodic VRP(PVRP) and a multi-
depot VRP (MDVRP), high-quality solvers being available in the literature for both
problems.

The PSG may contain one or several solvers targeting particular subsets of attributes.
Thus, two PSGs were defined in Lahrichi et al (2015), one for the PVRP and the other for
the MDVRP. Each PSG was organized according to the pC/KC paradigm and was thus
composed of a set of Partial Solvers, a central memory where elite solutions were kept, and
a Local Search Coordinator (LSC) managing the local central memory and interfacing
with the Global Search Coordinator. Two algorithms were used as partial solvers, the
hybrid genetic algorithm HGSADC of Vidal et al (2012) and GUTS, a generalized version
of the Unified Tabu Search Cordeau et al (2001).
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Integrators build complete solutions by mixing partial solutions with promising fea-
tures obtained within the PSGs. Integrators aim for solution quality, the transmission of
critical features extracted from the partial solutions, and computational efficiency. The
simplest Integrator consists of selecting high-quality partial solutions (with respect to
solution value or the inclusion of particular decision combinations) and passing them
directly to the Complete Solver Group. Population-based meta-heuristics make natural
integrators, as well as solvers of optimization formulations combining solutions or solu-
tion elements (e.g., set covering for VRP) to yield complete solutions to the problem
at hand. The work of El Hachemi et al (2015) belongs to the latter category, propos-
ing particular optimization models for rich VRP settings, which preserve desired critical
variables (desired attributes), present in partial solutions, when selecting and combining
routes.

Several Integrators can be involved in an ICS meta-heuristic, increasing the diversity
of the population of complete solutions. Four Integrators were thus included in the
MDPVRP application, the simple one passing good solutions to the CSG, the crossover
and individual education (enhancement) operators of HGSADC, and two of the methods
proposed by El Hachemi et al (2015), the first transmitting the attributes for which there
was “consensus” in the input solutions, while the second “promoted” them only through
penalties added to the objective function. The last three integrators started from pairs
of partial solutions randomly selected among the best 25% of the solutions in the central
memories of the two PSGs.

The Complete Solver Group includes the central memory, where the complete solu-
tions are stored, together with the context information and the guiding solutions built by
the Global Search Coordinator (GSC). Complete solutions are received from Integrators
and, when solvers are present in the CSG, these solutions are further enhanced. The GSC
1) builds the contextual information (e.g., the frequency of appearance of each (customer,
depot, pattern) triplet in the complete solution set for the MDPVRP, together with the
cost of the best solution containing it), 2) generates new guiding solutions to orient the
search toward promising features, and 3) monitors the status of the solver groups, sending
guiding instructions (solutions) when necessary.

Monitoring is performed by following the evolution of the PSGs (e.g., the number
of improving solutions generated during a certain time period) to detect undesired sit-
uations, such as loss of diversity in the partial or complete populations, stagnation in
improving the quality of the current best solution, awareness that some zones of the solu-
tion space - defined by particular values for particular decision sets - have been scarcely
explored, etc. Whenever one of these situations is detected, the GSC sends guidance
“instructions” to the particular PSG. The particular type of guidance is application
specific, but one may inject new solutions or elements, modify the values of the fixed
attributes for the PSG to orient its search toward a different area, change the attribute
subset under investigation (i.e., change the decomposition of the decision-set attributes),
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or modify /replace the solution method in a Partial Solver or Integrator. The last two
should not occur too frequently. In Lahrichi et al (2015), guidance took the form of three
solutions, which were either randomly selected from the complete solution set, or were
built by the GSC out of promising solution elements with respect to the search history.

Lahrichi et al (2015) reported very good results even when compared to the state-of-
the-art meta-heuristic. The experimental results also indicated that 1) one should use
solvers with similar time performances in order to have them contributing reasonably
equally to the cooperation; 2) when using genetic solvers in a PSG it is preferable for
long runs to define a local population for each such solver, while using the central memory
as population for all cooperating genetic solvers appears better for short runs; and 3)
embedding good solvers in the CSG enhances slightly the already excellent performance
of the ICS parallel meta-heuristic.

8 Conclusions

This chapter presented an overview and state-of-the-art survey of the main parallel meta-
heuristic ideas, discussing general concepts and algorithm design principles and strategies.
Four main classes of parallel meta-heuristics strategies were described: low-level decom-
position of computing-intensive tasks with no modification to the original algorithm,
decomposition of the search space, independent multi-search, and cooperative multi-
search, the latter encompassing synchronous, asynchronous collegial and knowledge-
creating asynchronous collegial strategies. It is noteworthy that this series also reflects
the historical sequence of the development of parallel meta-heuristics, which are now
acknowledged, cooperative search strategies in particular, as making up their own class
of meta-heuristics.

It must be emphasized that each of these strategy classes fulfills a particular type
of task and all are needed at some time. Thus, the idea that everything seems to be
known regarding low-level parallelization strategies is not true. Most studies on acceler-
ating computing-intensive tasks targeted the evaluation of a population or neighborhood
in classic meta-heuristic frameworks but, as a number of more recent studies show, the
best strategy to accelerate a local-search procedure may prove less effective when the
local search is embedded into a full meta-heuristics or hierarchical solution method. On
the other hand, the evolution of computing infrastructure, in particular, the integra-
tion of graphical processing units within computing platforms, opens up interesting but
challenging perspectives. In both cases, more research is needed to understand their be-
havior and identify the most appropriate combination of strategies, particularly low-level
and cooperative search, for various meta-heuristics, problem settings, and computing
platforms.
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Search-space decomposition also seems to have been thoroughly studied, and has
been overlooked in the last years, maybe due to the rapid and phenomenal increase in
the memory available and the speed of access. Let us not forget, however, that most
optimization problems of interest are complex and that the dimensions of the instances
one faces in practice keep increasing. Research challenges exist in dynamic search-space
decomposition and the combination of cooperative search and search-space decomposi-
tion. The Integrative Cooperative Search is a first answer in this direction, but more
research is needed.

Asynchronous cooperation, particularly when relaying on memories as communication
mechanisms, provides a powerful, flexible and adaptable framework for parallel meta-
heuristics that consistently achieved good results in terms of computing efficiency and
solution quality for many meta-heuristic and problem classes. A number of challenging
research issues are worth investigating.

A first issue concerns the exchange and utilization of context data locally generated
by the cooperating solvers, to infer an image of the status of the global search and
generate appropriate guiding instructions. Thus, contrasting the various local context
data may be used to identify regions of the search space that were neglected or over
explored. The information could also be used to evaluate the relative performance of the
solvers conducting, eventually, to adjust the search parameters of particular solvers or
even change the search strategy. So-called “strategic” decision variables or parameters
could thus be more easily identified, which could prove very profitable in terms of search
guidance.

A related issue concerns the learning processes and the creation of new information
out of the shared data. Important questions concern the identification of information
that may be derived from the exchanged solutions and its usefulness in inferring the
status of the global search, and determining the appropriate guiding information to be
sent to solvers. Research in this direction is still at the very beginning but has already
proved its worth, in particular in the context of the integrative cooperative methods.

A third broad issue concerns the cooperation of different types of meta-heuristics, as
well as the cooperation of meta-heuristics with exact solution methods. The so-called
hybrid and matheuristic methods, representing the former and latter types of method
combination, respectively, are trendy in the sequential optimization field. Very few stud-
ies explicitly target parallel methods, however. How different methods behave when
involved in cooperative search and how the latter behaves given various combinations
of methods is an important issue that should yield valuable insights into the design of
parallel meta-heuristic algorithms, cooperative ones in particular. A particularly chal-
lenging but fascinating direction for cooperative search and ICS is represented by the
multi-scenario representation of stochastic optimization formulations, for which almost
nothing beyond low-level scenario-decomposition has been proposed yet. Transversal
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studies comparing the behavior and performance of particular parallel meta-heuristic
strategies over different problem classes, and of different parallel strategies and imple-
mentations for the same problem class, would be very valuable in this context, as in the
broader field of parallel meta-heuristics.
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