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Abstract. It has been shown that credibility of wood supply optimization models can be 

improved by using a bilevel formulation that anticipates industrial fibre consumption. The 

upper level model corresponds to the standard long-term wood supply optimization model, 

and the lower level corresponds to a short-term network flow optimization model. The lower-

level model maximizes profit from sale of primary forest products to exogenous markets. To 

compile such a model, we must be able to disaggregate species-wise timber volume output 

from the upper-level model into assortments of logs, and estimate value-creation potential 

of these assortments. Wood supply models used in many jurisdictions (including those used 

in Quebec, Canada) do not feature value-creation potential performance indicators. We 

describe a methodology for retro-fitting value-creation potential indicators to these wood 

supply models, based on exiting data sources and a previously-published volume 

disaggregation method.  Our methodology greatly simplifies the otherwise onerous task of 

compiling value-creation potential indicators from available data. Although our method is 

specifically designed to be compatible with data and model structure used in Quebec, it 

could also be adapted to other contexts with relative ease, as a first step in implementing a 

value-driven forest planning process. 
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1 Introduction

Paradis et al. (2018) describe a bilevel wood supply model formulation that
reduces risk of wood supply failures. They demonstrate a potential application
of their bilevel model formulation using a realistic synthetic dataset. Linking
upper- and lower-level models requires disaggregation of harvest volume output
from the upper-level model into log assortments (by size, species, and quality)
which are dispatched to different processing units in the lower-level model. The
lower-level model simulates processing these logs into primary forest products,
and sale of products to exogenous markets. The objective function of the lower-
level model maximizes total network profit, which is estimated from the sum
of revenue net of fibre procurement cost, processing cost, and transportation
cost. Implementing such a bilevel model in practice presupposes availability of
disaggregation coefficients for upper-level volume output, as well as unit value-
creation potential (VCP) coefficients to estimate unit profit for all possible fibre
flow paths through the lower-level network.

In practice, neither the disagregation coefficients nor the VCP coefficients
have been compiled for wood supply models in Quebec, Canada. Furthermore,
the task of compiling these coefficients is sufficiently complex and fraught with
technical and methodological challenges so as to represent a substantial im-
pediment to implementation of value-driven forest management planning. We
endeavor to bridge this gap by developing reproducible and computationally
tractable methodology, complete with purpose-built software implementation,
which can be applied immediately using readily-available data.

This documents extends the methodology for compiling the disaggregation
coeffients, described in Paradis and LeBel (2017a), by linking disaggregated vol-
umes to value-creation data from an existing database and finally re-aggregating
these into useful VCP coefficients that can be retro-fit to existing wood supply
models. We present this method here, along with some sample output for man-
agement unit UA 064-51.

The remainder of this paper is organized as follows. We present some back-
ground information in §2 and describe our methodology in §3. Sample results
from application of the method to management unit UA 064-51 are presented
in §4, followed by discussion in §5 and concluding remarks in §6.

2 Background

Determining AAC in Quebec is the responsibility of the Bureau du forestier en
chef (BFEC), an independent branch of the provincial government. BFEC an-
alysts use the Woodstock modelling platform to model long-term wood supply,
for each of 71 management units that constitute the public forest of Quebec.
The Woodstock software does not feature a scripting interface, so any changes to
the model input files must be applied manually (i.e., via keyboard and mouse).
Furthermore, Woodstock models in Quebec are automatically generated by an
in-house model-compiling interface (Horizon CPF), which results in relatively
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verbose models. For example, the Woodstock model for management unit UA
064-51, which we use as a test dataset to illustrate our methodology, contains
over 600 000 lines of code. The task of retro-fitting value-creation-potential in-
dicators (compiled using our methodology) to these models by manually editing
the Woodstock code is too time-consuming to be practical. To make the retro-
fitting task more tractable and results less error-prone, we use the ws3 software
library1, which simplifies the tasks of importing and interpreting wood supply
model input files, retro-fitting complex new indicators to these models, and in-
terfacing with downstream software modules to create a modelling pipeline. We
describe this workflow in more detail later in this document.

A branch of the Quebec government responsible for marketing fibre har-
vested from public forests (Bureau de mise en marché des bois, or BMMB) has
published a simulation model (MERIS) which can be used to estimate value-
creation potential of a stand, given a detailed stand table describing current
inventory (in terms of the 45 standard species codes used in the Quebec for-
est inventory, and 26 2-cm-wide stem diameter size classes). BFEC Woodstock
model output is aggregated in terms of 10 species group codes (with no stem
diameter size class information). Paradis and LeBel (2017a) describe a method-
ology for compiling disaggregation coefficients that can be used to bridge the
gap between these two models. We developped a methodology that uses these
disaggregation coefficients to map wood supply model output to value data in
the MERIS database and re-aggregate the value data to match the original
wood supply model output aggregation level, effectively retro-fitting new value-
creation potential indicators to the existing wood supply model. As mentionned
earlier, the technical complexity of the process (combined with the large size of
the original wood supply models) makes it virtually impossible to apply this
method without a purpose-built intermediate software layer.

Our methodology can be applied with relative ease (compared to an ad hoc
approach) to any forest management unit in Quebec, thereby making the bilevel
wood supply modelling approach described by Paradis et al. (2018) much more
accessible for researchers and forest practitioners. The method can be used to
compile VCP coefficients for network flow optimization models, for example the
LogiLab model described in Jerbi et al. (2012) and Bouchard et al. (2017), or
other forest sector supply chain models. Alternatively, the method can be used
to compile a priori value-creation indicators for long-term wood supply models
(as opposed to post hoc injection of these indicators into the optimal solution, as
we show here), in support of a potential shift towards value-driven wood supply
planning.

Note that we developed this methodology in the context of a larger study,
whose goal is to explore innovative business models to realize value-creation-

1See http://ws3.readthedocs.io for documentation of the ws3 software library, which is
freely downloadable from http://github.com/gparadis/ws3. The use-case described here was
implemented using Jupyter Notebooks—the notebooks are available from the corresponding
authour upon request. Please note that running the notebooks requires specific datasets—
although these datasets are readily available upon request, terms of use of these datasets do
not allow us to distribute the data directly.

Retro-Fitting Value-Creation Potential Indicators to Long-Term Supply Models

2 CIRRELT-2018-23

http://ws3.readthedocs.io
http://github.com/gparadis/ws3


potential from Quebec forests—our government and industry partners expect
concrete, implementable solutions to relevant problems. We mention this to
clarify why we tailored our methodology so specifically to the MERIS database
and the Woodstock model format used by the BFEC in Quebec. Notwith-
standing the Quebec-specific details and model design choices, we hope that
the methodology presented here will be a useful framework for researchers and
practitioners in other jurisdictions wishing to link long- and short-term models.

As an example of the application of our method and software framework, we
compile value-creation potential of simulated harvest volume from a Woodstock
model for management unit UA 064-51. We express output in terms of the 10
species groups, 3 cover types, 3 treatment types, and 26 stem size classes used
in Paradis and LeBel (2017a).

3 Methods

The BFEC Woodstock models and the BMMB MERIS model were not designed
to be compatible with each other. However, they are both designed to model
forest management activities from public forests in Quebec, albeit at different
scales. Thus, much of the information represented in these models is conceptu-
ally compatible, although the data used to represent this information is stored
at different aggregation levels.

Documentation of the code structure of the BFEC Woodstock models and
the MERIS database are limited, and both are quite complex. Not surprisingly,
the methodology we developed to link these two models is also complex—a com-
mon consequence of working with real data and real models. We endeavoured
to keep the description in this document as short as possible, while providing
sufficient detail to facilitate replication of our methods.

The rest of this section is divided into two subsections. The first subsection
provides an overview of the main steps in the methodology, and the second
subsection describes each step in more detail.

3.1 Overview

In summary, our methodology extracts information from the MERIS database
and post hoc injects VCP performance indicators into the development types
harvested in the solution of a Woodstock wood supply model. This task (of
retro-fitting VCP performance indicators into existing wood supply models)
represents the culmination of the first phase in a larger modelling process—the
second phase of this process, which we describe in Paradis and LeBel (2018),
uses the VCP-augmented wood supply model as input for a network flow model
that simulates fibre consumption behaviour of a network of profit-maximizing
mills. Our methodology can be broken down into two steps.

In the first step, we compile 90 disaggregation coefficient vectors using the
methodology described in Paradis and LeBel (2017a). These vectors of coeffi-
cients allow us to disaggregate harvest volume into the same 26 stem size class
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bins used to store VCP data in the MERIS database. Each of these vectors
maps to one of the 90 cases of an intermediate aggregation scheme. This in-
termediate aggregation scheme was chosen such that (a) it is compatible with
the Woodstock model format, (b) it is compatible with the MERIS database
format, and (c) data is available to compile reasonable disaggregation coeffi-
cients for each case of this scheme. It is composed of 90 combinations of 10
species groups (documented in Table A1), 3 cover types (softwood, mixedwood,
hardwood), and 3 harvest treatment types (clearcut, selection cut, commercial
thinning).

In the second step, which is the focus of this document, we map value-
creation potential data from the MERIS database onto our disaggregated vol-
umes, and re-aggregate the data to produce the value-creation indicators we
need for subsequent phases of our fibre supply modelling project. The MERIS
database actually contains two distinct value-creation models. The first value
model in MERIS represents financial VCP, from the perspective of an indus-
trial facility that procures raw fibre from public forests, transforms this fibre
into one or more primary forest products (and co-products, such as chips), and
sells these products to end-customers in external markets at exogenously-defined
prices. This is the model we use, when importing data from MERIS. We will
be referring to this model in the remainder of this document, unless otherwise
specified. The second value model in MERIS represents economic VCP, from
the perspective of a government steward managing fibre flow from public forests
for the benefit of society as a whole. Note that the first step of the methodology
we describe here (i.e., disaggregation of wood supply model harvest volume)
could potentially also be used to map wood supply models to the economic
value model in MERIS, although we have not tested this.

The financial VCP model in MERIS is composed of six components: fixed
cost, harvest cost, sylviculture credits, stumpage cost, transportation cost, and
product values. The fixed cost component includes fixed costs related to fibre
procurement (i.e., general administrative costs, access road planning and amor-
tization costs)—it is expressed on an area (i.e., ha−1) basis. The harvest cost
component includes all variable costs associated with fibre extraction, including
cost of loading logs onto trucks for transportation to processing facilities—it
is expressed on a volume (i.e., m−3) basis. In Quebec, cost of implementing
prescribed non-commercial sylviculture treatments must be assumed by the li-
cencee that harvests the fibre, however this cost is (mostly) offset by a credit
applied to future stumpage fees. The sylviculture credit component this credit—
it is expressed on an area (i.e., ha−1) basis. In Quebec, a stumpage fee must
be paid for each unit of fibre harvested from public forest. This corresponds
to the stumpage cost component—it is expressed on a volume (i.e., m−3) basis.
The transportation cost component estimates cost of transporting fibre from the
harvesting site to the processing facility (not including loading cost, but includ-
ing unloading cost)—it is expressed on a volume (i.e., m−3) basis. The product
value component estimates revenue from sale of all primary products and co-
products that will be produced from a given unit of fibre, net of processing cost
and cost of transporting products to markets.
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Figure 1 provides a schematic overview of the various steps in our modelling
methodology.

Phase 1 (compile input data for network flow model)

Step 1

Compile diameter distribution 
vectors (Paradis and LeBel, 2017)

Compile harvest probability 
vectors (Fortin, 2014)

Compile stem form factor
vectors (MFFP, 2016)

Compile volume disaggregation 
coefficient vectors

Step 2
Load Woodstock model(s) 

[as ws3.ForestModel instance]

Augment ws3.ForestModel with 
missing attributes (cover type, 
treatment aggregations, etc.)

Compile value components 
(harvest cost, sylviculture credits, 

fixed costs, stumpage cost, 
transportation cost, product value) 

Compile commodity volumes

Save ws3.ForestModel instance 
(for phase 2)

Save disaggregation coefficient 
vectors (for step 2)

Figure 1: Schematic representation of modelling methodology for phase 1 (in-
cludes step 1, as described in Paradis and LeBel, 2017a).

The next subsection provides a more detailed description of our methodology.

3.2 Detailed Methods

As described earlier, the method is decomposed into two sequential steps, which
we describe below.

The first step, disaggregation of harvest volume, is documented in Paradis
and LeBel (2017a). An important part of this first step is modelling of stem
diameter distribution, is documented in Paradis and LeBel (2017b)). The text
below provides a high-level overview of this first step, and also documents a
few of the key implementation details that we needed to address to apply the
method to the UA 064-51 test case.

The second step, compiling value-creation indicators, is the main topic of
this document, and is described in more detail.
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3.2.1 Step 1: Disaggregating harvest volume

We start by importing a Woodstock model into ws3, loading the solution stored
in the model (i.e., the solution used to determine AAC) into memory, and
simulating its application sequentially for all planning periods.

In Woodstock lingo, a development type is equivalent to the combination of
a forest stratum (i.e., unique combinations of stratification variables, or themes)
and an ageclass. Woodstock solutions are composed of units of area of a given
development type on which a given treatment is applied at a given period.

We want to aggregate our data by broad cover type (softwood, mixedwood,
hardwood), but there is no attribute in the BFEC Woodstock models that
directly maps to this aggregation level. We can, however, use yield components
yg g gf (hardwood basal area) and yg g gr (softwood basal area) to deduce the
cover type of a given development type—we can then inject a new cover type
attribute (i.e., yield component) into each development type in the model. We
define softwood cover type as having at least 75% softwood, hardwood cover
type as having at least 75% hardwood, and the rest is mixedwood. We analyse
basal area at optimal rotation age (i.e., maximum mean annual increment),
so as to maximize classification accuracy of stands at maturity. This should
correspond to the age at which the yagemat yield component equals 0 in our
BFEC Woodstock models, but we found this attribute to be unreliable so instead
we use ws3 to compute maximum mean annual increment (MAI) age on the
fly from the total volume yield component yv s—this age corresponds to the
optimal rotation age, which should be highly correlated with harvest age in
even-aged stands in the harvest schedule.

We need to aggregate treatments in the Woodstock dataset into 3 types
(1: final cut, 2: selection cutting, 3: commercial thinning) so we can disaggre-
gate harvest volume using function pcst(x), as described in Paradis and LeBel
(2017a). So, we add three aggregate actions to our model corresponding to
these. Although some actions are difficult to classify, one must bear in mind
that these values will be used to select the best volume disaggregation function
for each treatment. The type 1 disaggregation profile assumes all stems are har-
vested, and so the stem size distribution matches standing inventory. Type 2
and 3 disaggregation profiles are based on a model published by Fortin (2014).
Note that, for the softwood cover type, we restricted our stem size distribu-
tion analysis to high density (class A and B), high basal area (28+ m3ha−1)
stands. Applying commercial thinning treatments to mixedwood or hardwood
cover types is just bad silviculture, so we are assuming that this will not come
up in the model.

Next, we map the 45 species codes in the forest inventory to the 10 species
group names used in the MERIS database. Fortunately (although not entirely
coincidentally), there is a 1:1 match between the 10 species group definitions in
MERIS and in the BFEC Woodstock models. See Table A1 for details.

Finally, we compile 90 vectors of 26 disaggregation coefficients (one per DBH
stem size class), using the methodology described in Paradis and LeBel (2017a).

Retro-Fitting Value-Creation Potential Indicators to Long-Term Supply Models

6 CIRRELT-2018-23



3.2.2 Step 2: Compiling value-creation indicators

We will now describe in more detail how data for each of the six value compo-
nents are extracted from the database and compiled into a performance indicator
that can be retro-fitted to the Woodstock model solution.

Although this step is somewhat complex, its execution is relatively straight-
forward using our scripted Python implementation. The first few steps involve
importing product distribution, stumpage fee, transportation cost, and product
value data from MERIS database. Once all the required data has been im-
ported from the MERIS database and loaded into memory, we begin compiling
this data to create the 6 value components described earlier, which we inject
directly into a live ws3 simulation.

The MERIS system defines two profiles, corresponding to hardwood and
softwood sawmills. Some value component values vary depending on the pro-
file selected by the user. We import fixed cost data from both hardwood and
softwood sawmill profiles, assigning values from the hardwood sawmill profile
to hardwood development types and values from the softwood sawmill profile
to softwood and mixedwood development types.

Next, we import stumpage rate data from the MERIS database. Stumpage
rates in Quebec vary by tarification zone. The geographical boundaries of these
tarification zones do not always line up with management unit boundaries.
Thus, each management unit may overlap several zones. The BFEC Wood-
stock models include a theme (i.e., a stratification variable), that specifies the
tarification zone of each development type. Within a stumpage tarification zone,
rates are specified in terms of species group and product. The MERIS database
defines empirical product distributions for each combination of 45 species and 26
stem size classes. 8 merchantable products are defined in MERIS: veneer logs,
4 hardwood sawlog grades (F1, F2, F3, F4, according the classification scheme
defined in Petro and Calvert, 1976), 2 softwood sawlog grades (small sawlogs
correspond to DBH size classes 10 through 14, and large sawlogs correspond to
DBH size classes 16 and up), and pulpwood. 3 unmerchantable products are
defined in MERIS: rot, unutilized, and other. Note that stumpage is defined by
species (rather than species group), so we must compile species-wise weight pa-
rameter vectors for each of the 30 combination of species group and cover type
from the permanent sample plot data used in step 1 (see Paradis and LeBel,
2017a for details).

Next, we import transportation cost data from the MERIS database. Trans-
portation cost coefficients in MERIS are compiled, for each stumpage zone, using
10 product-species groupings (henceforth referred to as commodities). Note that
we split white and yellow birch pulpwood into two commodities (we will need
this to map to timber licence contract aggregation level further downstream,
when compiling the network flow optimization model), although both species
are modeled as one commodity (birch pulpwood) in MERIS. Transportation
cost coefficients in MERIS are compiled by stumpage tarification zone, using
the mean transportation distance for the closest three processing facilities ac-
cepting a given commodity.
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Next, we import product value data from the MERIS database. Product
values are keyed on species and product class, with unit values for all combi-
nations of species and product class specified for both hardwood and softwood
sawmill profiles. The assumption is that a hardwood mill may accept softwood
logs, but will pay a lower price for these logs than the softwood mill (to account
for the trouble of having to store these logs until they can be dispatched to a
softwood sawmill). The inverse goes for softwood sawmills. We will use these
values to build a network flow optimization model (in a subsequent modelling
phase, beyond the scope of the current document), which will only allow valid
commodity-processor flows, so we import the higher of the profile-wise prices
for each combination of species and product class.

Next, we compile harvest cost and sylviculture credit for each decision in
the Woodstock optimal solution. Both harvest cost and sylviculture credit are
derived from complex arithmetic functions (rather than being imported directly
from the MERIS database). Independent input variables for these functions
include harvested volume and mean piece size.

Harvest cost is estimated using a predictive model, compiled by BMMB
staff for use in the MERIS system. The BMMB model is an amalgam of ma-
chine productivity functions, originally compiled from machine time study data,
combined with several assumptions regarding frequency ratio of machines that
compose different systems, relative proportions of system utilization, intensity
of harvest prescriptions (final cut versus partial cut), mean skidding distances,
roadside sorting complexity, etc. These productivity assumptions are combined
with rental rate assumptions, and machine utilization ratio assumptions. The
model mixes productivity functions for feller-bunchers, single-grip harvesters,
grapple skidders, forwarders, delimbers, and slashers. The end result is a pre-
diction of unit harvest cost on a volume basis, as a function of cover type,
harvest intensity, and mean piece size. The harvest cost model is presented in
an appendix (see §A1.2).

Sylviculture credit value is estimated for each component of the harvest
schedule using arithmetic functions the published by government for the pur-
pose of calculating silviculture credit. The sylviculture credit model is made
up of 7 different functions. First, we classify (using expert judgement) each
partial cut treatment in the wood supply model to one of three classes (used
by government-defined criteria for selecting sylviculture credit formulas): pro-
gressive cut, selective cut, commercial thinning. We were able to simplify the
model down to 4 functions (1, 2, 4, 7). For treatments classified as commer-
cial thinning, we use function 1 for softwood and mixedwood cover types, and
function 2 for hardwood cover types. For treatments classified as selection cuts,
we use function 4. For treatment classified as progressive cuts, we use function
7 for softwood and mixedwood cover types, and function 4 for hardwood cover
types. The formulas are a function of harvest volume, mean piece size of har-
vested stems, and mean piece size of standing inventory before harvest. The
four retained formulas are presented in an appendix (see §A1.3).

Mean piece size is estimated from Woodstock model yield curve data (quo-
tient of total volume and stem density curves). Although they are accurate
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(confirmed with David Pothier, personnal communication, October 2015), the
stem density regressions are rather imprecise (i.e., we can expect a large ran-
dom error, evenly distributed about the mean). The harvest cost prediction
model has an overall inverse exponential shape (i.e., inverse J shape). Thus,
underestimating mean stem size would tend to induce a relatively large in-
crease in estimated harvest cost, whereas overestimating mean stem size would
induce a relatively small increase in harvest cost. The BFEC Woodstock mod-
els use a combination of two different growth models (NATURA for even-aged
stands, and ARTEMIS for uneven-aged stands). If we can estimate the error
distributions of both total volume and stem density curves for NATURA and
ARTEMIS models, then we can calculate the error distribution of the quotient
of these random variates, which we can then use to calculate the expected value
of the harvest cost function.

We implemented a help class in ws3.common.rvquot gen, which encapsu-
lates functions from the pacal library for calculating the quotient of two nor-
mally distributed random variates. rvquot gen subclasses scipy.stats.rv continuous,
so we can simply call rvquot.expect(...) on an instance of our class (which
has been instantiated with appropriate scale and location parameters for the
numerator and denominator random variates) to output the expected value of
the harvest cost function. The pacal library has functions for numerical inte-
gration of complex arithmetic functions of random variates. We tried solving
the harvest cost and sylviculture credit functions (with random variates) us-
ing the pacal numerical integration functions to estimate the expected value
of these functions, but the algorithm failed to converge after 24 hours of CPU
time. In the end, we implemented a brute-force Monte Carlo algorithm within
ws3 to approximate the expected values of the functions, which converges in a
reasonable time.

We contacted the developers NATURA model, and confirmed that the er-
ror terms for both total volume and stem density are normally distributed.
The standard deviations for these error terms are documented in the NATURA
documentation (Pothier and Auger, 2011)—Tables 8 and 11 of the NATURA
documentation list standard deviations (REMQ) for stem density and total vol-
ume, by bio-climactic subdomain (i.e., sous-domaine bioclimatique, or SDB).
UA 064-51 is in SDB 3ouest, for 3 groups of strata (by simulation horizon
length). We calculated the weighted-average standard deviation, using normal-
ized strata counts in each group as weight coefficients. The mean standard
deviations, expressed as a proportion of estimator value, are σ = 0.386 for total
volume and σ = 0.245 stem density. Note that these error values seem to con-
tractict annecdotal information we obtained from David Pothier (error on stem
density estimate is higher than error on total volume). Unfortunately, these are
not the errors we utimately seek, because the yield curves in our BFEC models
are the result of aggregating several (NATURA or ARTEMIS, depending on the
case) curves to form composite curves. Assuming that the error at all points on
the BFEC composite curves is IID Gaussian distributed, and assuming that we
treat each component curve as a single sample (i.e., use the value of component
curves directly, ignoring that they are themselves IID Gaussian distributed, as
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discussed above), we can estimate the standard error σi of a given composite
curve at any age class i ∈ I from the the values of its component curves j ∈ J
at the same age

σŷi
=

√√√√∑
j∈J (yij − ŷi)2

|Ŷ| − 1
(1)

where ŷi represents the value of the BFEC composite curve at age class i, and
yij is the value of component curve j at age class i.

NATURA and ARTEMIS component curves can allegedly be obtained from
MFFP. However, we also need a mapping of component curves to composite
curves—we were unsuccessful obtaining this information. Without these map-
pings, we cannot estimate σŷi

as described above. For the sample results pre-
sented in this study, we use a conservative value of σ = 0.5 to model both total
volume and stem density as random variates, for the purposes of estimating the
expected values of harvest cost and sylviculture credit functions in the sample
results presents later in this document.

Note that, although we were unable to obtain a copy of all the data required
to correctly estimate the error distribution on mean piece size, this data is
readily available in-house to government analysts. Thus, there should not be
any problem, in practice, applying the methodology described here to correctly
estimate expected value of harvest cost and sylviculture credit functions.

Finally, we use all the data we just assembled to compile VCP indicators
that can be injected post hoc into the Woodstock model optimal solution. For
each harvesting decision, we compile a total of 144 new indicators (6 value com-
ponents plus net merchantable harvest volume, compiled at three aggregation
levels [total, commodity-wise, and species-group–wise]). We compile net mer-
chantable harvest volume indicators by multiplying total volume at harvest age
by treatment-wise coefficients embedded in the Woodstock model code. At this
point, we have not automated the process of extracting these coefficients from
the Woodstock models (i.e., they must be manually extracted by an expert).
These net merchantable harvest volume indicators will facilitate compilation of
the network flow model in a subsequent phase.

A Jupyter Notebook containing Python code implementing our methodology
for management unit UA 064-51 (the notebook includes detailed explanations of
each step, mixed in with the blocks of code) is available from the corresponding
author upon request.

In the following section, we show the result of applying our methodology to
UA 064-51. As mentionned earlier, we designed our methodology to be easilty
applicable to any one of the 71 management units that make up the public forest
of Quebec, and have already collected all the data required to proceed with a
province-wide deployment of our method.
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4 Results

As an example, we present results of applying our methodology to management
unit UA 064-51. Consistently with the methodology described in the previ-
ous section, model output is aggregated in terms of 3 cover types (softwood,
mixedwood, hardwood), 3 harvest treatment types (clearcut, selection cut, and
commercial thinning), and 10 species groups2.

Figures 2 through 5 show results of applying our methodology to compile
VCP for management unit UA 064-51 in Quebec, Canada. Figures 2 and 3 show
unit VCP ($m−3), whereas Figures 4 and 5 show total VCP ($, i.e., product
of unit VCP and harvest volume). Species group is fixed for a given row of
subfigures, and cover type is fixed for a given column of subfigures. Treatment
type 1 (circles) corresponds to clearcut harvesting, treatment type 2 (squares)
corresponds to selection cut, and treatment type 3 (crosses) corresponds to
commercial thinning.

2The original wood supply models we obtained from government analysts feature 11 species
groups, however we merged the red pine group into the white pine group, resulting in 10 species
groups. The merging was motivated by the relative scarcity of red pine observations in the
PSP dataset, which made it difficult to reliably model stem diameter distributions to observed
stem data.
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Figure 2: Unit value-creation–potential for management unit UA 064-51 in Que-
bec, Canada. Species group is fixed for a given row of subfigures, and cover type
is fixed forn a given column of subfigures. Treatment type 1 (circles) corresponds
to clearcut harvesting, treatment type 2 (squares) corresponds to selection cut,
and treatment type 3 (crosses) corresponds to commercial thinning.
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Figure 3: [Continued from Figure 2] Unit value-creation–potential for manage-
ment unit UA 064-51 in Quebec, Canada. Species group is fixed for a given
row of subfigures, and cover type is fixed forn a given column of subfigures.
Treatment type 1 (circles) corresponds to clearcut harvesting, treatment type
2 (squares) corresponds to selection cut, and treatment type 3 (crosses) corre-
sponds to commercial thinning.
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Figure 4: Total value-creation–potential compiled for management unit UA 064-
51 in Quebec, Canada. Species group is fixed for a given row of subfigures, and
cover type is fixed forn a given column of subfigures. Treatment type 1 (circles)
corresponds to clearcut harvesting, treatment type 2 (squares) corresponds to
selection cut, and treatment type 3 (crosses) corresponds to commercial thin-
ning.
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Figure 5: [Continued from Figure 4] Total value-creation–potential compiled for
management unit UA 064-51 in Quebec, Canada. Species group is fixed for a
given row of subfigures, and cover type is fixed forn a given column of subfig-
ures. Treatment type 1 (circles) corresponds to clearcut harvesting, treatment
type 2 (squares) corresponds to selection cut, and treatment type 3 (crosses)
corresponds to commercial thinning.
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Unit VCP data in the ordinate axis of all subfigures in Figures 2 and 3 is
shown in the same range (i.e., -60 to +60). Similarly, total VCP data in the
ordinate axis of all subfigures in Figures 4 and 5 is shown in the same range
(i.e., -100000 to +100000).

Note that the data aggregation method we use to compile unit VCP results
defaults to a null (0) value if no data is available to model a given combination
of cover type, species group, treatment type, and stem size class. Also, some
combinations of cover type and species group have little or no representation in
the current inventory for our test case—total VCP value will show a null value
(0) if no volume is harvested for a given combination of cover type, species
group, treatment type, and stem size class.

5 Discussion

Our method simplifes the task of retro-fitting financial value performance in-
dicators to existing wood supply models. The method works well, and was
specifically designed to be applicable to all 71 mangement units that constitute
the public forest of Quebec. However, the method relies on a custom-built soft-
ware framework built on top of Jupyter Notebooks technology, requires a large
amount of RAM to run (30 Gb or more in our tests), and requires a large and
complex collection of input data to run.

Thus, application of our method, although a vast improvement over an ad
hoc workflow, nonetheless requires advanced technical expertise to collect and
assemble all the required data components and correctly connect these to the
software prototype, run the model, and validate that output is reasonable at
each (of many) steps in the data processing pipeline. Although we provide
many helpful comments and explanations at each step in the notebook, and to
document the method in a series of four technical report, applying our method
remains a daunting task.

To mitigate the technical challenges associated with applying our method,
we are currently working with government analysts to develop an additional
software layer wrapping the existing prototype, which will further automate the
process of importing and pre-processing input data, running the model, and
automate quality assurance testing and reporting throughout the process. Also,
the complexity of the processing requires several hours of CPU time to run the
method on a single forest management unit. We are currently working on an
enhanced prototype so that we can run multiple forest management units in
parallel, as long as processing capacity and memory are available.

We tested our method on a real dataset, and compiled 90 distinct vectors
of VCP values (one vector per combination of cover type, species group, and
treatment type). As seen in Figures 2 and 3, several combinations of species
group, cover type, treatment type, and stem diameter class yielded negative
unit VCP values. If enough of these negatively-valued stems are present in a
given stand, harvesting this stand will likely induce a financial loss. A profit-
maximizing agent that is free to harvest any subset of AAC will therefore likely

Retro-Fitting Value-Creation Potential Indicators to Long-Term Supply Models

16 CIRRELT-2018-23



avoid harvesting these stands altogether. Some combinations of cover type,
species group and treatment type yielded extemely negative unit VCP values
(e.g., poplar

Generally, unit VSP values tend to increase as a function of stem diameter.
This is consistent with the notion that larger stems contain larger proportions
of veneer and sawlog product classes, which tend to have higher unit values. A
step-wise pattern in unit value can be observed for most combinations of cover
type, species group, and treatment type—this is an artifact of undocumented
data aggregation in the MERIS database we used, and not a side-effect of our
methodology.

There seems to be a pattern (for several combinations of cover type, species
group, and treatment type) of step-down in unit value in the 50–60 cm stem
size class range. Again, this is an artefact of financial data values we imported
from the MERIS database, rather than a by-product of our method.

Unit VSP of stems harvested using a commercial thinning type treatment
tends to be substantially higher than VSP of similar stems harvested using
selection cut or final cut treatment types. Results presented here are derived
from a complex disagregation-reaggregation process, including complex multi-
variate models used to approximate harvest cost and sylviculture credits, so
identifying the cause of specific patterns such as this is not always easy. More
analysis is required to identify the root causes of patterns such as this in VSP
model output.

Note the discontinuity of unit VCP values for the sepm (i.e., spruce-pine-fir-
larch) species group in the r (i.e., softwood) cover type between the 14 and 16
cm stem size classes—this discontinuity is attributable to the two-tier stumpage
model for this species group and cover type. Indeed there is a sharp jump in unit
stumpage price for 16-cm-and-up sepm stems. This discontinuity is amplified
in the total VCP results, as the unimodal frequency distribution of harvested
stem sizes happens to peak around the 15-cm threshold value (see Paradis and
LeBel 2017a).

Figures 4 and 5 show that total VCP is null (or near null) for most combi-
nations of cover type, species group, treatment type, and stem size class. We
would not recommend spending too much time on further analysis of null or
near-null VCP combination. Rather, we would recommend prioritizing further
analysis and data refinement effort on dominant combinations, e.g., sepm (all
cover types), bop (with particular attention to m and f cover types), peu (es-
pecially m cover type).

We would recommend that further validation and calibration efforts concen-
trate on auditing the data in the MERIS database (which we have not done,
assuming that in this study that it could be used as-is) and testing additional
sources of sample plot data for the diameter distribution modelling step (e.g.,
abundant temporary sample plot data is available, and might be integrated into
the analysis). We recomment further validation and calibration of the method
prior to deployment on all 71 management units in Quebec.

Finally, we would like to draw attention to the fact that these results are
compiled using a complex harvest schedule, which represents only one of a vir-
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tually infinite number of possible harvest schedules that could have been output
from the Woodstock wood supply model. Different schedules may induce very
different output from our VCP estimation model. Furthermore, the Woodstock
optimization model used to generate the harvest schedule does not feature any
financial performance indicators (the objective function maximized even-flow
harvest volume, subject to a complex set of constraints, none of which directly
account for value of harvested fibre or mill demand). Our methodology could
be used to compile value-driven performance indicators, which could be inte-
grated into the Woodstock optimization model (either in the objective function
or in constraints, or both), thereby potentially producing harvest solutions with
improved value-creation potential.

In the next phase of this research project, we use the VCP coefficients com-
piled here as input to hybrid simulation-optimization model that emulates fibre-
consumption behaviour of a network of profit-maximizing fibre-consuming mills,
documented in Paradis and LeBel (2018).

6 Conclusion

We develop and present a method to simplify the task of retro-fitting VCP
performance indicators to existing wood supply models, thereby improving the
accessibility of the bilevel modelling approach described in Paradis et al. (2018).
We designed and implemented a prototype software tool that automates the
workflow, and test our method on real data from Quebec, Canada.

In a subsequent phase of this research project (beyond the scope of the
current document), the VCP-indicator-enhanced wood supply models compiled
in this phase are linked to a new network flow optimization model that will
simulate profit-maximizing behaviour of a network of centrally-managed fibre-
consuming mills.

Using only readily-available data, our methodology can be applied, as-is,
to compile VCP indicators for any of the other 70 forest management units in
Quebec. Our methodology could also adapted for use in other jurisdictions,
assuming that input data is available to compile the disaggregations coefficients
and to populate the MERIS database (or a similar database) with appropriate
value data.
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Appendix

A1.1 Species aggregate mapping

Table A1 details mapping of species group names to species common and Latin
names.

A1.2 Harvest cost model

The model used to estimate harvest cost is adapted from the function used in
the MERIS system.
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Table A1: Mapping of species group names to species common and Latin names.
Alternate names are shown in parentheses.

Species Group Common Name Latin Name

Other Hardwoods (white, American) ash Fraxinus americana
black ash Fraxinus nigra
(green, red) ash Fraxinus pennsylvanica
(North) American beech Fagus grandifolia
(American, white, water) elm Ulmus americana
slippery elm Ulmus rubra
(rock, cork) elm Ulmus thomasii
American hophornbeam Ostrya virginiana
American linden (basswood) Tilia americana

White Birch grey birch Betula populifolia
(white, paper) birch Beutul papyrifera

Yellow Birch yellow birch Betala alleghaniensis
Oak-Hickory (bitternut, swamp) hickory Carya cordiformis

shagbark hickory Carya ovata
([wild, mountain] black, rum) cherry Prunus serotina
white oak Quercus alba
swamp white oak Quercus bicolor
bur oak Quercus macrocarpa
(northern, eastern) red oak Quercus rubra
(butternut, white walnut) Juglans cinerea

Spruce-Pine-Fir white spruce Picea glauca
black spruce Picea mariana
Norway spruce Picea abies
red spruce Picea rubens
hybrid larch Larix X marschlinsii
Japanese larch Larix leptolepis
([eastern, American] larch, tamarack) Larix larincina
European larch Larix decidua
pitch pine Pinus rigida
([eastern, black] jack, grey, scrub) pine Pinus banksiana
Scots pine Pinus sylvestris
balsam fir Abies balsamea

Other Maples (silver, silverleaf) maple Acer saccharinum
black maple Acer nigrum
red maple Acer rubrum

Sugar Maple (sugar, rock) maple Acer saccharum
Poplar balsam poplar Populus balamifera

eastern cottonwood (poplar) Populus deltoides
(large-tooth, big-tooth) aspen Populus grandidentata
hybrid poplar Populus sp X P. sp.
([quaking, trembling] [aspen, poplar] Populus tremuloides

Pine white pine Pinus strobus
red pine Pinus resinosa

Hemlock-Cedar (eastern, Canadian) hemlock Tsuga canadensis
(eastern, northern) white-cedar Thuja occidentalis
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fHC(p, s1, s2, s3) =eA−(B ln p)+(Cs1)+(Ds2)−(E(1−s3)) + ((Fs3) + (G(1− s3))) +K

where p represents piecesize (m3 per stem). If p is a random variate, then
we need to estimate the expected value of fHC , given a distribution of p. The
implementation of this function in the ws3 package includes an optional switch
to automate the process of estimating the expected value of the function.

s1, s2, and s3 are binary switches that activate or deactivate different parts
of the function, depending on the case. s1 is set to 1 to model taking extra care
during partial cutting (reduces productivity), and 0 otherwise. s2 is set to 1 if
the treatment is a final cut, and 0 otherwise. s3 is set to 1 if partial cutting in
a tolerant hardwood stand, and 0 otherwise.

Coefficents A, B, C, D, E, F, G, and K are given in Table A2.

Table A2: Coefficient values used in the harvest cost function.

Coefficient Value

A 1.970
B 0.450
C 0.169
D 0.164
E 0.202
F 13.600
G 8.830
K 0.000

A1.3 Sylviculture credit model

Note that the sylviculture credit model used in Quebec is updated annually.
The model presented here is the one currently implemented in ws3 and used
to generate the simulation results presented in this paper–it corresponds to the
model published by the BMMB for the 2014-2015 period by Bureau de mise en
marché de bois (2014).

The model is actually composed of seven different sub-models, corresponding
to different combinations of treatment type, intensity, and cover type. For our
analysis, we only retained four of these sub-models (1, 2, 4, 7). We manually
map each treatment option in the wood supply model to a sub-model code, and
the functions we built into ws3 dispatch processing to the correct sub-model on
the fly for each component of the simulated harvesting schedule.

Each submodel resturns a sylviculture credit value (expressed in $ha−1),
given volume harvested (ha−1) p, mean piece size of harvested stems (m3) vr,
and mean piece size of standing inventory before harvesting (m3) vp.
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If P , vr and vp are random variates, then we need to estimate the expected
value of f , given a distribution of p. The implementation of this function in the
ws3 package includes an optional switch to automate the process of estimating
the expected value of the function.

Submodel functions are presented below.

fSC1(P, vr, vp) =K1p(C1av
C2a
r − eC7d ln vp+C8d + C15he

C16hp − C17ip + C18j) + K2

fSC2(P, vr, vp) =K1p(eC3b ln vr+C4b − eC7d ln vp+C8d + C11fv
−C12f
r − C13gv

−C14g
p + C15he

C16hp

− C17ip + C18j) + K2

fSC4(P, vr, vp) =K1p(eC3b ln vr+C4b − eC7d ln vp+C8d + C11fv
−C12f
r − C13gv

−C14g
p + C15he

C16hp

− C17ip + C18j) + K2

fSC7(P, vr, vp) =K1p(eC3b ln vr+C4b − eC7d ln vp+C8d + C15he
C16hp − C17ip + C18j) + K2

Coefficents values used in each submodel are given in Tables A3 through A6.

Table A3: Coefficient values used in sylviculture credit submodel 1.

Coefficient Value

C1a 4.5110
C2a -0.6280
C7d -0.3910
C8d 1.9390
C15h 3.9120
C16h -0.0094
C17i 0.0698
C18j 9.2529
K1 1.0000
K2 0.0000
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Table A4: Coefficient values used in sylviculture credit submodel 2.

Coefficient Value

C3b -0.2370
C4b 2.5920
C7d -0.2370
C8d 2.2470
C11f 4.3546
C12f 0.3400
C13g 4.3543
C14g 0.3400
C15h 3.9120
C16h -0.0094
C17i 0.0698
C18j 7.1029
K1 1.0000
K2 0.0000

Table A5: Coefficient values used in sylviculture credit submodel 4.

Coefficient Value

C3b -0.2370
C4b 2.5920
C7d -0.2370
C8d 2.2470
C11f 4.3546
C12f 0.3400
C13g 4.3546
C14g 0.3400
C15h 3.9120
C16h -0.0069
C17i 0.0517
C18j 7.1029
K1 1.0000
K2 0.0000
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Table A6: Coefficient values used in sylviculture credit submodel 7.

Coefficient Value

C3b -0.3910
C4b 2.2000
C7d -0.3910
C8d 1.9390
C15h 3.9120
C16h -0.0069
C17i 0.0517
C18j 7.1029
K1 1.0000
K2 0.0000
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