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Abstract. In this paper we introduce the vehicle routing problem with simultaneous pickup 
and delivery and handling costs (VRPSPD-H). In the VRPSPD-H, a fleet of vehicles 
operates from a single depot to service all customers, which have both a delivery and a 
pickup demand such that all delivery items originate from and all pickup items destinate to 
the depot. The items on the vehicles are organized as a single linear stack where only the 
last loaded item is accessible. Handling operations are required if the delivery items are not 
the last loaded ones. We implement a heuristic handling policy approximating the optimal 
policy, and we propose two bounds on the optimal policy, resulting in two new myopic 
policies. We show that one of the myopic policies outperforms the other myopic policy in all 
configurations, and that it is competitive with the heuristic handling policy if many routes are 
required. We propose an adaptive large neighborhood search (ALNS) heuristic to solve our 
problem, in which we embed the handling policies. Computational results indicate that our 
heuristic finds optimal solutions on instances of up to 15 customers. We also compare 
our ALNS heuristic against best solutions on benchmark instances of two special cases, the 
vehicle routing problem with simultaneous pickup and delivery (VRPSPD) and 
the traveling salesman problem with pickups, deliveries and handling costs (TSPPD-H). We 
find 32 out of 54 best known solutions for the VRPSPD, and we find or improve 71 out of 80 
best known solutions for the TSPPD-H. 
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1 Introduction

When consumers buy major appliances, it is common practice that the store home-delivers the newly

bought products and takes back the old machinery. These appliances are not easily moved around

in the delivery vehicle and, if pickup items are placed in front of delivery items, they may cause

obstruction issues at subsequent stops. Handling these pickup items to access delivery items is then a

time consuming task and should not be ignored when designing the set of routes to service customers,

which should show a clear trade-off between routing and handling costs. Similar situations arise in

the collection and delivery of damaged and undamaged bicycles in public sharing systems [2] or when

delivering calves to farms and collecting mature cows [8]. Recently, other studies looked at the effect

of obstruction issues in related problem settings [e.g., 19].

We refer to our problem as the vehicle routing problem with simultaneous pickup and delivery and

handling costs (VRPSPD-H), in which a fleet of homogeneous vehicles operates from a single depot

to service all customers, which have both a delivery and a pickup demand. These demands are such

that all delivery items originate from and all pickup items destinate to the depot. The items on the

vehicles are organized as a single linear stack which obeys the last-in-first-out (LIFO) policy and is

only accessible from the rear. This means that only the most recently loaded item is accessible, and

if this is not the item of interest (for instance a pickup item when a delivery is to be made), handling

operations are required before the desired service can be made.

Our problem generalizes the vehicle routing problem with simultaneous pickup and delivery (VRPSPD)

introduced by Min [12] by extending it with handling operations. It also generalizes the single vehicle

equivalent which is called traveling salesman problem with pickups, deliveries and handling costs

(TSPPD-H) as introduced by Battarra et al. [2] by allowing for the construction of multiple routes.

In this paper, we introduce, model and solve the VRPSPD-H. We compare the performance of a heuris-

tic handling policy which approximates the optimal decisions with two new myopic policies. These are

obtained by deriving bounds on the optimal handling policy. We propose a mathematical formulation

which we implement in CPLEX to solve small problem instances optimally and we propose an adaptive

large neighborhood search (ALNS) metaheuristic in which we embed the handling policies to also solve

larger problem instances. The quality of the proposed heuristic is shown by benchmarking on two

special cases and by comparison with optimal results obtained from our mathematical formulation.

A closely related line of research is Veenstra et al. [19], in which a single vehicle fulfils a set of requests.
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In contrast to our problem, a request is defined as the transportation of items from a specific pickup

location to a specific delivery location, which may both be different from the depot. The operating

vehicle also contains a single linear stack subject to the LIFO policy and handling operations are

considered as well. In Battarra et al. [2], a special case of our VRPSPD-H, employing only a single

vehicle, is introduced and the authors propose branch-and-cut algorithms to solve the problem. Due

to the complexity of the unrestricted problem, the authors introduce three handling policies and solve

instances up to 25 customers optimally. The authors show that their Policy 3, which we describe in

Section 2.1, significantly outperforms the other two policies.

A follow-up study by Erdoǧan et al. [8] focuses on Policy 3 of Battarra et al. [2]. The authors

design an exact dynamic program (DP) with quadratic complexity and an approximate, linear-time

heuristic which solve the handling sub-problem. These methods are integrated into three different

metaheuristics (tabu search, iterated local search, and iterated tabu search) which are used to solve

instances of up to 200 customers. We adopt their approach to the handling sub-problem, in addition

to our myopic policies, and integrate it with our metaheuristic for the VRPSPD-H.

Many different heuristic methods have been proposed to solve the VRPSPD, including adaptive local

search [1], ant colony systems [9, 11] and tabu search [21]. Despite the successes of these techniques,

ALNS is growing in popularity over the last years. It extends the LNS as first introduced by Shaw [17]

by an adaptive mechanism and has recently been implemented successfully in many different routing

problems. We build upon these recent successes and design an ALNS metaheuristic for our problem.

Additional to heuristic solution methods, the VRPSPD has also been solved using exact methods.

Since the VRPSPD generalizes the standard capacitated VRP, a well-known NP-hard problem, it can

be shown to be NP-hard as well. However, small instances have been solved using exact solution

methods. Dell’Amico et al. [6] use a branch-and-price method to solve instances of up to 40 customers

optimally and Subramanian et al. [18] propose a branch-cut-and-price method solving instances of up

to 100 customers. Since our problem generalizes the VRPSPD, which we formally show in Section 3.1,

our problem is NP-hard as well. We adapt the model of Dell’Amico et al. [6] to fit our problem and

use it to solve small instances optimally.

Other areas of research which are less related are the multi-vehicle pickup and delivery problem with

LIFO constraints studied in Benavent et al. [3] and the single vehicle variant with time windows in

Cherkesly et al. [4]. In contrast to our problem, these LIFO constraints prohibit delivery of an item

not on top of the linear stack, leading to a setting without handling operations. Finally, Wang and
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Chen [20] study the VRPSPD with time windows and an extension with multiple depots is studied in

Nagy and Salhi [13].

The remainder of this paper is structured as follows. In Section 2 we present a formal problem

definition and we elaborate on the heuristic handling policy, and Section 3 gives properties of the

model and shows the aforementioned generalizations. Section 4 explains the ALNS metaheuristic we

propose to solve the problem and we report the results of an extensive numerical study in Section 5.

Finally, Section 6 concludes the paper.

2 Problem definition

This section presents the model for the VRPSPD-H and is structured as follows. We formally define

the model, explain the handling policy and propose a MIP formulation in Section 2.1. We implement

this formulation in CPLEX and present the results in Section 5.3. To speed up calculation times,

we present valid inequalities in Section 2.2. Finally, we elaborate on how we approach the proposed

handling policy in Section 2.3.

2.1 Mathematical formulation

The VRPSPD-H is defined on a complete directed graph G = (V,A), with V = {0, 1, . . . , n} being

the set of vertices and A is the arc set. Let vertex 0 represent the depot, then Vc = V \{0} is the

set of customer vertices. Define Ar = {(i, 0) : i ∈ Vc} as the set of arcs which end at the depot. A

positive travel cost cij satisfying the triangle inequality corresponds to each arc (i, j) ∈ A. Customer

i ∈ Vc requires di delivery items and supplies pi pickup items. The delivery items originate from the

depot and the pickup items destinate to the depot. A homogeneous fleet of vehicles with capacity Q

is available at the depot.

We adopt the definition of an additional operation from Battarra et al. [2], which is defined as the

unloading and reloading of one item from a vehicle, with corresponding costs hd and hp for a delivery

item and a pickup item, respectively. Our handing policy corresponds to Policy 3 of Battarra et al.

[2]. Under this policy, the load in the vehicle is divided into three blocks: (i) the pickup items at

the front of the vehicle which never require additional operations at remaining stops, (ii) the delivery

items in the middle of the vehicle, and (iii) the pickup items at the rear of the vehicle which obstruct

the delivery items. At each customer, the decision of placing the pickup items either at the rear or at
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the front of the vehicle is made. If the pickup items are placed at the front of the vehicle, additional

operations for the delivery items in the vehicle are required.

(a) Placement of pickup items at the rear of the vehicle.

(b) Placement of pickup items at the front of the vehicle.

Figure 1: Illustration of handling options at a customer. In the example, the customer requires one delivery

item (light grey box) and supplies two pickup items (dark grey box).

Figure 1 depicts both options graphically. In the example, the customer demands a single delivery

item and supplies two pickup items. To make the delivery, the obstructing pickup item needs to be

unloaded in both cases. If the choice is to place the new pickup items at the rear of the vehicle (Figure

1(a)) the two new pickup items are added to the already unloaded pickup item and are placed such

that they obstruct the next delivery. Alternatively (Figure 1(b)), the two remaining delivery items

are unloaded prior to placing the pickup items at the front of the vehicle. This requires additional

operations on the two delivery items at the current stop, but results in no obstruction for the next

delivery.

In a flow based formulation, let xij be a binary variable indicating if arc (i, j) ∈ A is part of the

solution. Furthermore, yij represents the number of delivery items on board on arc (i, j) ∈ A, and

wij and zij represent the number of pickup items on board at the front and rear of the vehicle on arc

(i, j) ∈ A, respectively, such that wij + zij represents the total number of pickup items on board of

the vehicle on arc (i, j) ∈ A. Finally, we introduce the binary variable si, i ∈ Vc, indicating at each

customer whether the pickup items are placed at the front or at the rear of the vehicle. Inspired by

the models for the TSPPD-H by Battarra et al. [2] and the VRPSPD by Dell’Amico et al. [6], we
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propose the following formulation:

minimize
∑

(i,j)∈A

cijxij +
∑

(i,j)∈A\Ar

hpzij +
∑

(i,j)∈A\Ar

sjhd

(
yij −

dj
|V |

)
(1)

subject to
∑
j∈V

xij = 1, i ∈ Vc, (2)

∑
j∈V

xij =
∑
j∈V

xji, i ∈ V, (3)

∑
j∈V

yji −
∑
j∈V

yij = di, i ∈ Vc, (4)

∑
j∈V

(wij + zij)−
∑
j∈V

(wji + zji) = pi, i ∈ Vc, (5)

wij + yij + zij ≤ Qxij , (i, j) ∈ A, (6)

∑
j∈V

zij = (1− si)

∑
j∈V

zji + pi

, i ∈ Vc, (7)

xij ∈ {0, 1}, (i, j) ∈ A, (8)

si ∈ {0, 1}, i ∈ Vc, (9)

wij , yij , zij ≥ 0, (i, j) ∈ A. (10)

Here, (1) states the objective function. The first term in the objective represents the routing cost,

the second term corresponds to the handling costs for the pickup items at the rear of the vehicle and

the third term corresponds to the handling costs for the delivery items when all pickup items are

placed at the front of the vehicle. Constraints (2) force every customer to be visited exactly once, and

constraints (3)–(5) induce flow conservation. Additionally, constraints (4)–(5) prevent subtours, and

constraints (6) ensure that vehicle capacity is not violated. Constraints (7) update the location of the

pickup items according to the decision of where to place them. Finally, constraints (8)–(10) define the

nature of the variables.

2.2 Valid inequalities

In order to tighten the formulation of Section 2.1, we present some valid inequalities which strengthen

some of the constraints. For the delivery items on the arcs, we know that the delivery load in the

vehicle should be at least as large as the demand of the customer at the end of the arc, and a similar
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reasoning holds for the flow of pickup items:

∑
j∈V

yji ≥
∑
j∈V

xjidi, i ∈ Vc,

∑
j∈V

wij + zij ≥
∑
j∈V

xijpi, i ∈ Vc.

Next, capacity constraints (6) can be strengthened as follows [cf. 2]:

wij + yij + zij ≤ xij (Q+ min{0, pi − di, dj − pj}) .

Furthermore, we restrict the possibility of constructing a route from a node to itself, xii = 0. Finally

we set the number of pickup items in the vehicles when leaving the depot and the number of delivery

items in the vehicles going to the depot equal to zero,
∑

i∈Vc w0i = 0,
∑

i∈Vc z0i = 0, and
∑

i∈Vc yi0 = 0.

2.3 Heuristic handling policy

As previously mentioned, the handling policy adopted in our model corresponds to Policy 3 of Battarra

et al. [2]. Erdoǧan et al. [8] extensively studied the handling sub-problem, and we use their results

as a basis for our analysis. The main difficulty of the handling policy is to decide when to place the

pickup items of a customer at the rear of the vehicle, and when to place all pickup items at the front

of the vehicle so that they never obstruct future deliveries. This problem is modelled as a dynamic

program in Erdoǧan et al. [8] and it gives the optimal choices for any given route in O(n2) time. Due

to the time complexity of the DP, the authors also propose a linear time heuristic based on a special

case where the demands of all customers are the same.

In this heuristic, the authors experimented with four different thresholds which trigger the placement

of all pickup items at the front of the vehicle. Experiments showed that the number of pickup items

on board was the best threshold measure, which is computed as the average of all pickup items of the

remaining customers in the route. If the number of pickup items on board at the rear of the vehicle

exceeds this threshold, all pickup items are placed at the front of the vehicle. The authors conclude

that using this heuristic reduces computation time substantially at the cost of only slightly worse

solutions, which is why we include this heuristic handling policy in comparisons.
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3 Special cases and properties

In this section, we report on some useful properties of our problem. We will first prove in Section 3.1

that the VRPSPD and the TSPPD-H are special cases of the VRPSPD-H. In Section 3.2 we give two

bounds on the optimal handling policy, which we then use to define two myopic policies.

3.1 Special cases

In this section, we show that the the VRPSPD and the TSPPD-H are special cases of the VRPSPD-H.

Theorem 1. The VRPSPD-H with hd = hp = 0 is equivalent to the VRPSPD.

Proof. Let an instance be given with hd = hp = 0. As handling costs are zero, an optimal solution for

the VRPSPD, which disregards handling operations, will also be optimal here. Hence, we can omit all

constraints involving handling operations (constraints (7) and (9)) and remove variables wij entirely.

The remaining model is equivalent to the VRPSPD as in (1)–(9) in Dell’Amico et al. [6].

Theorem 2. The VRPSPD-H with a single vehicle and Q ≥ max
{∑

i∈Vc di,
∑

i∈Vc pi
}
is equivalent

to the TSPPD-H.

Proof. Let an instance be given with Q ≥ max
{∑

i∈Vc di,
∑

i∈Vc pi
}

and a single available vehicle,

where the capacity restriction is obtained from the TSPPD-H formulation of Battarra et al. [2]. Then,

the construction of a single route to service all customers is the only possibility of a feasible solution.

The solution space of the VRPSPD-H shrinks to the solution space of the TSPPD-H. The remaining

model is equivalent to the TSPPD-H as in (31)–(48) in Battarra et al. [2].

3.2 Bounds on the optimal handling policy

In this section we propose two bounds on the optimal handling policy and formulate two alternative

myopic handling policies based on these bounds. The performance of the myopic handling policies is

studied in Sections 5.4 and 5.5. We first introduce new notation before we propose the bounds.

Let a route with n ≤ |Vc| customers be denoted by a permutation φ(·) of the location indices, such that

φ(i) is the index of the i-th customer on the route. We consider the decision at customer i whether or

not to place the pickup items at the front of the vehicle, given handling decisions at all customers φ(j)
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for j < i. Consistent with our notation in Section 2.1, we use sφ(i) to represent the handling decisions,

where sφ(i) = 1 if the pickup items are placed at the front of the vehicle, and sφ(i) = 0 otherwise.

3.2.1 Upper bound

We show that there exist situations in which it is always optimal to place the pickup items at the

front of the vehicle in Proposition 1.

Proposition 1. Given handling decisions sφ(1), . . . , sφ(i−1), at customer φ(i), it is always optimal to

place pφ(i) and
∑i−1

j=1

(∏i−1
k=j

(
1− sφ(k)

)
pφ(j)

)
at the front of the vehicle if

hp

pφ(i) +
i−1∑
j=1

i−1∏
k=j

(
1− sφ(k)

)
pφ(j)

 > hd

n∑
j=i+1

dφ(j). (11)

Proof. Assume a route with n ≥ 2 customers, and that customer φ(i) is not the last customer in the

route. Let handling decisions sφ(1), . . . , sφ(i−1) be given. There are two options. Option 1 is to place

pφ(i) at the rear of the vehicle with cost hp
∑i−1

j=1

(∏i−1
k=j

(
1− sφ(k)

)
pφ(j)

)
at customer φ(i) and cost

hp

(
pφ(i) +

∑i−1
j=1

(∏i−1
k=j

(
1− sφ(k)

)
pφ(j)

))
at customer φ(i+ 1). Option 2 is to place pφ(i) and∑i−1

j=1

(∏i−1
k=j

(
1− sφ(k)

)
pφ(j)

)
at the front of the vehicle with cost hp

∑i−1
j=1

(∏i−1
k=j

(
1− sφ(k)

)
pφ(j)

)
+

hd
∑n

j=i+1 dφ(j) at customer φ(i) and cost 0 at customer φ(i + 1). Inequality (11) follows from this.

It can then be seen that placing pφ(i), and thus also
∑i−1

j=1

(∏i−1
k=j

(
1− sφ(k)

)
pφ(j)

)
, at the front of

the vehicle is always optimal if (11) holds. That is, given handling decisions at all customers visited

prior to arriving at customer φ(i), it is optimal to place the pickup items at the front of the vehicle if

the costs of handling the number of pickup items at the rear of the vehicle plus the pickup items of

customer φ(i), exceed the costs of handling the number of items that still need to be delivered.

Based on Proposition 1, we introduce myopic policy 1. Under myopic policy 1, the pickup items at

the rear of the vehicle and the pickup items of customer φ(i) are placed at the front of the vehicle if

and only if inequality (11) holds.

3.2.2 Lower bound

Similar as in Section 3.2.1, and using the same notation, we show that there exist situations in which

it is always optimal to place the pickup items at the rear of the vehicle in Proposition 2.
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Proposition 2. Given handling decisions sφ(1), . . . , sφ(i−1), at customer φ(i), it is always optimal to

place pφ(i) at the rear of the vehicle if

hp(n− i)

pφ(i) +
i−1∑
j=1

i−1∏
k=j

(
1− sφ(k)

)
pφ(j)

 < hd

n∑
j=i+1

dφ(j). (12)

Proof. Assume a route with n ≥ 2 customers, that customer φ(i) is not the last customer in the route,

and that pφ(j), i < j ≤ n are placed at the rear of the vehicle. Let handling decisions sφ(1), . . . , sφ(i−1)

be given. There are two options. Option 1 is to place pφ(i) at the rear of the vehicle at cost hp(n −

i)
∑i−1

j=1

(∏i−1
k=j

(
1− sφ(k)

)
pφ(j)

)
+ hp

∑n−1
k=i (n − k)pφ(k) for the remainder of the route. Option 2 is

to place pφ(i) and
∑i−1

j=1

(∏i−1
k=j

(
1− sφ(k)

)
pφ(j)

)
at the front of the vehicle at cost hd

∑n
j=i+1 dφ(j) +

hp
∑n−1

k=i+1(n− k)pφ(k) for the remainder of the route. It follows that if

hp

(n− i)
i−1∑
j=1

i−1∏
k=j

(
1− sφ(k)

)
pφ(j)

+

n−1∑
k=i

(n− k)pφ(k)


< hd

n∑
j=i+1

dφ(j) + hp

n−1∑
k=i+1

(n− k)pφ(k) ⇐⇒

hp

(n− i)
i−1∑
j=1

i−1∏
k=j

(
1− sφ(k)

)
pφ(j)

+ (n− i)pφ(i)

 < hd

n∑
j=i+1

dφ(j) ⇐⇒

hp(n− i)

pφ(i) +
i−1∑
j=1

i−1∏
k=j

(
1− sφ(k)

)
pφ(j)

 < hd

n∑
j=i+1

dφ(j)

holds, it is always optimal to place pφ(i) at the rear of the vehicle. That is, given handling decisions

at all customers visited prior to arriving at customer φ(i), it is optimal to place the pickup items of

customer φ(i) at the rear of the vehicle if the costs of placing the pickup items at the front of the

vehicle exceed the costs of handling the pickup items located at the rear of the vehicle at all subsequent

stops.

Based on Proposition 2, we introduce myopic policy 2. Under myopic policy 2, the pickup items of

customer φ(i) are placed at the rear of the vehicle if and only if inequality (12) holds.

We note that the pickup items of the last customer in any route never require additional operations

since the vehicle visits the depot directly thereafter, and that there is no difference between placing

the pickup items at the front or rear of the vehicle as there are no remaining delivery items in the

vehicle. Additionally, at the second last customer in any route, inequalities (11) and (12) give the

same decision, indicating that this is the optimal decision.
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4 Adaptive large neighborhood search heuristic

This section provides details about the ALNS heuristic designed to solve the VRPSPD-H. As men-

tioned in Section 1, LNS was introduced by Shaw [17] and this technique is growing in popularity over

the last years due to recent successes in diverse settings. Among these settings are problems including

simultaneous pickups and deliveries [15], handling costs [19], multiple stacks [5] and other restrictions

such as time windows [14]. This diverse and successful application of ALNS provides grounds for us

to employ this method as well. We use the framework of Ropke and Pisinger [14] as a basis for our

design, where we enrich the framework with a local search procedure. The outline of our algorithm is

given in Algorithm 1.

The procedure starts with the construction of an initial solution and by initializing the relevant

parameters. Then, the algorithm enters its iterative phase which runs until the stopping criterion is

met. In each iteration, the solution is changed by a destroy and repair mechanism. First, a destroy

operator removes a number of customers from the solution. Next, a repair operator reinserts the

removed customers to construct a new solution. If the resulting solution is better than the currently

best solution, a local search procedure is applied to potentially improve the solution further and the

best solution is updated. A simulated annealing criterion determines whether the changed solution

is accepted as the new current solution. The destroy and repair operator weights are updated based

on the performance of the selected operators in the current iteration. Finally, after a pre-specified

number of iterations the destroy and repair operator weights are reset to their original values. Each

time the weights are reset, the local search procedure is applied to the current solution to intensify

the search. If the stopping criterion is not met, the algorithm goes to the next iteration and the

process repeats. Experiments with applying the local search procedure to all accepted solutions or

to all solutions within a certain threshold of the global best solution resulted in significantly higher

calculation times without improving the solution quality.

Details on the construction of an initial solution are reported in Section 4.1, and Sections 4.2 and 4.3

explain the destroy and repair operators, respectively. Section 4.4 reports details regarding the local

search procedure, and Section 4.5 provides details about the acceptance criterion. Finally, Section 4.6

explains how the adaptive mechanism operates.

The Vehicle Routing Problem with Simultaneous Pickup and  Delivery and Handling Costs

10 CIRRELT-2018-27



Algorithm 1 Outline of ALNS heuristic

1: construct initial solution s
2: solution sbest ← s
3: repeat
4: s′ ← s
5: destroy s′

6: repair s′

7: if (f(s′) < f(sbest)) then
8: local search s′

9: sbest ← s′

10: end if
11: if accept(s′, s) then
12: s← s′

13: end if
14: update operator weights
15: if operator weights are reset then
16: local search s
17: end if
18: until stopping criterion
19: return sbest

4.1 Initial solution

An initial solution is constructed by greedily inserting a random customer at its best position in the

solution. The first customer to be inserted creates a new route, after which a random customer is

inserted at its best feasible location. If no feasible insertion can be found for the current customer, it is

inserted in a new route. This process continues until all customers are inserted at a feasible position.

4.2 Destroy operators

In the destroy phase of the heuristic, a roulette wheel selection procedure randomly selects one destroy

operator based on its weight. This operator removes a predefined number of q customers from the

solution and places them in the customer pool. A total of eight different destroy operators are used

and are described in this section. The random removal and worst removal operators are adapted from

Ropke and Pisinger [14], whereas the worst distance removal and worst handling removal operators

were introduced by Veenstra et al. [19]. The related removal operator was described by Shaw [17] and

the route removal and minimum quantity removal operators are also commonly seen in the destroy

phase of a LNS heuristic. We newly introduce the cross route removal operator, inspired by the cluster

removal operator described in Ropke and Pisinger [15]. The destroy operators are explained below.
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1. Random removal

The random removal operator selects q customers randomly and removes them from the solution.

2. Worst removal

The worst removal operator removes q customers based on their cost. It computes the cost of

all customers in the solution as ci(s) = f(s)− f(s−i), which denotes the difference in objective

value of the current solution s compared to the solution in which customer i ∈ Vc is removed,

s−i. It then selects the y-th worst customer, with y ∼ dU [0, 1]p · nse, where ns is the number

of customers in the current solution and p is a measure of randomness. When a customer is

removed, the costs of the remaining customers are recalculated and the process repeats until q

customers are removed, as in Algorithm 2.

Algorithm 2 Outline of worst removal operator

1: while number of customers in the pool < q do
2: ci(s)← f(s)− f(s−i), ∀i ∈ Vc
3: y ∼ dU [0, 1]p · (number of customers in the solution.)e
4: remove customer with y-th highest ci(s)
5: end while

3. Worst distance removal

The worst distance removal operator is similar to the worst removal operator. The difference is

in the evaluation of the cost of customer i ∈ Vc. This cost, c̃i(s) = fd(s)− fd(s−i), is now only

the difference in routing cost. Again here, the y-th worst customer is removed.

4. Worst handling removal

The worst handling removal operator is similar to the worst distance removal operator. The

cost of customer i ∈ Vc is computed solely as the difference in handling cost.

5. Minimum quantity removal

The minimum quantity removal operator removes customers with low demand quantity, com-

puted as the sum of pickup and delivery demand per customer. The intuition behind this

operator is that customers with low demand do not affect capacity restrictions much and are

therefore more easily moved around than customers with high demand. Selection of the customer

to be removed is similar as for the worst removal operator.

6. Route removal

The route removal operator randomly selects a route from the solution. This selection is purely
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based on the number of routes and does not take into account the length of the routes, such

that smaller routes are selected as often as larger routes. This is a desirable property due to the

ease of diversification of the search when removing a small route. If the number of customer in

the selected route, qr, is smaller than q, the route is removed and the route removal operator

restarts with q′ = q−qr. If there are more than q customers in the route, the operator randomly

selects q customers from the given route and removes them.

7. Related removal

The related removal operator removes customers which are related to each other. Such customers

are likely to be exchanged more easily whereas more unique customers are often repaired in

their original position and hence do not aid much in the diversification of the search process.

For the related removal we define the relatedness measure R(i, j) between customers i and j,

i, j ∈ Vc, i 6= j, as the inverse of their mutual distance so that customers located close to each

other have a high relatedness score. That is, R(i, j) =
1

cij
.

When the customer pool is empty, the related removal operator selects a random customer in the

solution and removes both this and a related customer from the solution. Then, as long as the

customer pool does not contain q customers, a random customer from the pool is selected and a

related customer in the solution is found which is then removed as well. The selection of a related

customer is similar to the worst removal operator. Experiments with including the pickup and

delivery demands as a term in the relatedness measure yielded no significant improvement.

8. Cross route removal

In the cross route removal operator, a random customer in the solution is selected, as well as the

customer directly before and the customer directly after the selected customer, if present. Next,

using the relatedness measure R(i, j), a related customer in a different route and its neighboring

customers are selected. All these customers, or at most q, are removed from the solution, and

this process repeats until there are q customers in the pool. This operator intensifies variation

between routes as route chunks with related customers from different routes are destroyed in

one iteration.

4.3 Repair operators

After a destroy operator has placed q customer in the customer pool, a repair operator is randomly

selected which inserts all customers back into the solution. Similar to the selection of the destroy
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operator, a roulette wheel selection procedure randomly selects a repair operator based on its weight.

The three repair operators employed in the reparation phase are explained is this section. The random

repair operator is commonly seen in the literature, and the sequential best insertion operator is adopted

from Veenstra et al. [19]. We have created a perturbed version of the sequential best insertion operator

to prevent repeating the same insertions. The repair operators are explained below.

1. Random repair

The random repair operator randomly selects a customer from the pool and inserts it at a

random feasible location in the solution.

2. Sequential best insertion

The sequential best insertion operator randomly selects a customer from the customer pool and

inserts it at its best feasible location. It is a greedy, but therefore fast, operator.

3. Perturbed sequential best insertion

The perturbed sequential best insertion operator diversifies the sequential best insertion operator

to break out of potential local optima. It randomly selects a customer from the customer pool

and inserts it at its y-th best location, where y is a random integer between 0 and min{3, number

of feasible insertion locations}.

We have also experimented with two more calculation-intensive repair operators, both originating from

Ropke and Pisinger [14]. These are the best insertion operator, which inserts the overall best customer

and recalculates the costs for the remaining customers after each insertion, and regret insertion op-

erator, which inserts the customer with largest difference between its best and second best insertion

location and recalculates regret values for the remaining customers after each insertion. However,

inclusion of these operators did not improve the solution quality while calculation times increased

significantly, so we excluded them from our final heuristic.

4.4 Local search

When a new best solution is found or when the destroy and repair operator weights are reset, a local

search procedure is performed to try and improve the current solution. The following five operators are

used: 10exchange, 11exchange, intra 2-opt, inter 2-opt and inter 3-opt. The 10exchange operator finds

the best reinsertion of a single customer, and the 11exchange operator performs the best exchange
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of two customers. The intra 2-opt operator performs the best possible 2-opt move within a route,

whereas inter 2-opt performs the best 2-opt move between two routes. Finally, the inter 3-opt operator

removes a block of two or more successive customers and inserts it at its best position in a different

route. Whenever an operator finds an improvement and changes the solution, the process restarts by

applying 10exchange again. The process continues until no improvement can be found. An outline of

the local search procedure is presented in Algorithm 3.

Algorithm 3 Outline of local search procedure

1: for k in 1 : 5 do
2: improve ← true
3: while improve do
4: improve ← false
5: Apply operator k to solution
6: if improvement found then
7: k ← 1
8: improve = true
9: end if

10: end while
11: end for
12: return (improved) solution

4.5 Acceptance decision

A new solution s′ is accepted based on a simulated annealing decision rule. If the new solution is

better than the previous one (s), it is always accepted. Otherwise we accept it with probability

P (accept s′) = exp

{
−f(s′)− f(s)

T

}
, (13)

where T is the temperature at the current iteration. The starting temperature is determined at the

start of the heuristic, and it is decreased in every iteration by multiplying the temperature of the

previous iteration with the cooling rate γ ∈ (0, 1).

4.6 Updating operator weights

The updating procedure is based on the work of Ropke and Pisinger [14]. In order to update the weights

of the destroy and repair operators, their performance is determined by means of three measures: (i)

a new best solution is found, (ii) the current solution is improved, yet the global best remains the

same, and (iii) the solution is accepted as the new one without improving its objective. Each of these

three events leads to increasing the weight of both the destroy and repair operator used in the current
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iteration by a factor σi, i = 1, 2, 3. Since we cannot differentiate the effect of the destroy and repair

operators in one iteration, both are updated with the same amount. If none of the three scenarios

occurs, the weights remain the same. After a predetermined number of iterations, the weights are

reset to their initial values since different phases of the search may require different operators. Ropke

and Pisinger [14] reset the operator weights at the start of a new segment to values which depend on

the performance in the previous segment. However, we found that resetting the weights to the original

values results in equally good solutions.

5 Computational results

The ALNS heuristic was programmed in C++ and the mathematical model of Section 2.1 was imple-

mented in C++ and solved with CPLEX 12.7.1. All our experiments were run on a 2.7 GHz Intel Core

i5 processor. We provide details on the parameter configuration in Section 5.1. We test our ALNS

heuristic on well-known benchmark instances of the VRPSPD and TSPPD-H, which are special cases

of our problem, in Section 5.2. A comparison with optimal solutions for our problem is made in

Section 5.3. We compare the performance of the heuristic handling policy and the two myopic policies

in Section 5.4. Finally we investigate the influence of the number of available vehicles on the trade-off

between routing and handling costs in Section 5.5.

5.1 Tuning

This section provides details about the parameter settings of the proposed ALNS heuristic. For the

purpose of tuning the parameters we generated new instances for the VRPSPD-H. First, we created

80 new instances based on the 40 instances for the VRPSPD of Dethloff [7] by setting the handling

cost parameters equal to h = hd = hp = 0.1, 0.5. Additionally, we tested our algorithm on the same

40 of instances Dethloff [7] for the VRPSPD and on instances for the TSPPD-H by Erdoǧan et al. [8].

As a starting point for the parameter tuning, we used the values reported by Ropke and Pisinger

[15]. The starting temperature of the simulated annealing procedure is set such that, in the first

iteration, a solution with an objective up to 5% worse than the current solution is accepted with

probability 0.5, and the cooling rate is set such that the temperature in the last iteration is 0.2

percent of the start temperature. The randomness parameter p is initialized with value 3, and we

remove q ∈ [0.15|Vc|, 0.3|Vc|] customers in each iteration. We find that setting the maximum number
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of iterations equal to 25,000 yielded good solutions compared to computation times. We sequentially

changed the values of these parameters without finding significant improvements, which is in line with

the conclusions of Ropke and Pisinger [15] and Veenstra et al. [19], indicating that the algorithm is

robust.

Since the handling cost component significantly increases the problem complexity, evaluation of solu-

tions is rather time consuming. Experiments showed that the destroy operators are all relatively fast

compared to the repair operators. We forego a further extensive study on which operators to select

since the adaptive mechanism increases the weights of well-performing operators.

5.2 Benchmarks on special cases

To test the quality of our heuristic when applied to special cases, we use it to solve various instances

for both the VRPSPD and the TSPPD-H. Our obtained results are then compared to results from

the literature to check the quality of our heuristic. We note that calculation times may not be

competitive compared to heuristic methods especially designed for one of the two special cases, since

the generalizations made in this paper result in unnecessary overhead when it comes to the special

cases.

5.2.1 Performance on the VRPSPD

Two well-known sets of benchmark instances for the VRPSPD are solved. The 40 instances of Dethloff

[7] contain 50 customers each, divided into four different configurations of 10 instances. The capacity is

such that the minimum number of vehicles required is either 3 or 8, and customers are either scattered

uniformly over a square area or a fraction of the customers is clustered to resemble a more urban

area. Furthermore, 14 instances adopted from Salhi and Nagy [16] are solved. These instances range

in size from 50 to 199 customers. We note that all best known solutions for instances of Dethloff [7]

are proven to be optimal in Subramanian et al. [18].

Table 1 reports the results on the 40 instances of Dethloff [7]. We solved each instance 10 times and

report our best found solution as well as the average objective value over these 10 runs. Our heuristic

finds 30 out of 40 best known solutions, and on average over all 40 instances the gap with the best

known solutions is 0.14%. The results on the benchmark instances by Salhi and Nagy [16] are reported

in Table 2. Of the 14 instances, we find 2 best known solutions and our gap is on average 0.84%. We
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note that performance on the CMT11X and CMT11Y instances is not in line with the other results,

which are more competitive.

Table 1: Computational results for the VRPSPD benchmark instances of Dethloff [7].

Instance n BKS Our best Our average Gap (%) Time (s)

SCA3-0 50 635.62 636.06 640.81 0.07 19.14
SCA3-1 50 697.84 697.84 698.37 0.00 19.91
SCA3-2 50 659.34 659.34 659.52 0.00 20.03
SCA3-3 50 680.04 680.60 680.60 0.08 19.72
SCA3-4 50 690.50 690.50 692.28 0.00 19.09
SCA3-5 50 659.90 659.90 663.83 0.00 21.57
SCA3-6 50 651.09 651.09 651.46 0.00 19.60
SCA3-7 50 659.17 666.15 670.76 1.06 18.57
SCA3-8 50 719.47 719.48 719.48 0.00 19.75
SCA3-9 50 681.00 681.00 681.02 0.00 19.14
SCA8-0 50 961.50 961.50 971.97 0.00 16.34
SCA8-1 50 1049.65 1049.65 1059.10 0.00 16.55
SCA8-2 50 1039.64 1050.14 1050.35 1.01 16.83
SCA8-3 50 983.34 983.34 1002.43 0.00 15.76
SCA8-4 50 1065.49 1065.49 1068.07 0.00 15.89
SCA8-5 50 1027.08 1027.08 1037.69 0.00 15.93
SCA8-6 50 971.82 971.82 972.91 0.00 15.75
SCA8-7 50 1051.28 1063.22 1067.14 1.14 16.08
SCA8-8 50 1071.18 1071.18 1074.33 0.00 15.89
SCA8-9 50 1060.50 1060.50 1064.55 0.00 15.98
CON3-0 50 616.52 619.09 627.28 0.42 16.69
CON3-1 50 554.47 554.47 556.90 0.00 17.10
CON3-2 50 518.00 521.38 521.38 0.65 16.97
CON3-3 50 591.19 591.19 592.43 0.00 16.08
CON3-4 50 588.79 588.79 593.12 0.00 16.49
CON3-5 50 563.70 563.70 575.21 0.00 16.02
CON3-6 50 499.05 500.80 502.58 0.35 16.13
CON3-7 50 576.48 576.48 583.77 0.00 16.13
CON3-8 50 523.05 523.05 526.04 0.00 15.87
CON3-9 50 578.25 578.25 585.32 0.00 16.19
CON8-0 50 857.17 857.17 860.97 0.00 15.66
CON8-1 50 740.85 740.85 749.66 0.00 16.04
CON8-2 50 712.89 712.89 713.38 0.00 16.45
CON8-3 50 811.07 811.07 819.24 0.00 16.38
CON8-4 50 772.25 772.25 774.55 0.00 16.51
CON8-5 50 754.88 754.88 759.22 0.00 15.96
CON8-6 50 678.92 684.69 691.66 0.85 15.94
CON8-7 50 811.96 811.96 814.92 0.00 16.05
CON8-8 50 767.53 768.64 777.62 0.14 16.31
CON8-9 50 809.00 809.00 810.63 0.00 16.81

Average 758.54 759.66 764.06 0.14 17.08

5.2.2 Performance on the TSPPD-H

A third benchmark is performed on the instances proposed by Erdoǧan et al. [8]. The authors adapted

10 instances containing 200 customers proposed by Gendreau et al. [10]. Smaller instances were created
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Table 2: Computational results for the VRPSPD benchmark instances of Salhi and Nagy [16].

CMT n BKS Our best Our average Gap (%) Time (s)

1X 50 466.77 466.77 468.576 0.00 9.60
1Y 50 466.77 466.77 468.97 0.00 9.50
2X 75 684.21 684.75 692.231 0.08 19.78
2Y 75 684.21 684.89 694.103 0.10 19.74
3X 100 721.27 722.094 725.411 0.11 37.84
3Y 100 721.27 722.09 724.746 0.11 37.44
4X 150 852.46 854.17 862.785 0.20 85.07
4Y 150 852.46 855.70 863.951 0.38 84.70
5X 199 1029.25 1033.93 1050.22 0.45 147.77
5Y 199 1029.25 1032.76 1051.16 0.34 144.26
11X 120 833.92 873.89 888.03 4.79 59.66
11Y 120 833.92 874.15 878.56 4.82 59.86
12X 100 662.22 663.50 677.462 0.19 37.79
12Y 100 662.22 663.50 674.06 0.19 37.11

Average 750.01 757.07 765.73 0.84 56.44

by considering only the first 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 customers, respectively.

The handling cost parameters are chosen such that h = hd = hp, where the product h|Vc| = 20 is kept

constant. For further details concerning the exact configuration of these instances we refer to Erdoǧan

et al. [8]. In our results, we left out the instances with |Vc| = 80, 100. For these instances, the results

reported in Erdoǧan et al. [8] have objectives smaller or close to those of the |Vc| = 60 instances, while

adding 20 and 40 customers to the same set of 60 customers, respectively. All other instances display

a logical growth in objective values when the number of customers increases.

To be able to solve the instances for the TSPPD-H we adapt our heuristic so that it will only create a

single route. For instance, operators which by design require multiple routes (e.g., cross route removal

and 3-opt) were excluded from the heuristic, and feasibility issues which normally lead to construction

of new routes have been solved. We solve the handling sub-problem with both the exact DP and

the approximation as proposed by Erdoǧan et al. [8] and compare these outcomes with their best

overall and best heuristic solutions. Note that in the heuristic approximation, neighborhood searches

are evaluated with the heuristic method but when a change in the solution is made, the costs are

computed with the DP. We present the results in Table 3.

Our ALNS with heuristic policy finds or improves 64 out of 80 best known solutions, which were found

with the DP in Erdoǧan et al. [8], and the average gap is −0.73%. Our ALNS with heuristic policy

improves the heuristic policy of the authors on all 80 instances. The average time needed to compute

these solutions is competitive with the exact evaluation in Erdoǧan et al. [8]. Evaluation of our ALNS

with optimal DP further improves the results, finding or improving best known solutions on 69 out of
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80 instances with an average gap of −0.99%, while average calculation times are on average 13 times

higher.

Table 3: Computational results for the TSPPD-H instances of Erdoǧan et al. [8].

|Vc| Id. Erdoǧan et al. [8] Our ALNS with heuristic policy Our ALNS with optimal policy

Optimal Heuristic Gap (%) Best Average Gap (%) Time (s) Best Average Gap (%) Time (s)

20 1 633.00 634.00 0.16 633.00 633.00 0.00 3 633.00 633.00 0.00 9
2 584.00 587.00 0.51 584.00 584.30 0.00 3 584.00 584.00 0.00 9
3 573.00 590.00 2.97 573.00 574.40 0.00 3 573.00 573.00 0.00 9
4 706.00 712.00 0.85 706.00 706.00 0.00 3 706.00 706.00 0.00 9
5 501.00 507.00 1.20 501.00 501.00 0.00 3 501.00 501.00 0.00 9
6 578.00 578.00 0.00 578.00 578.00 0.00 3 578.00 578.00 0.00 9
7 612.00 619.00 1.14 612.00 612.00 0.00 3 612.00 612.00 0.00 9
8 567.00 571.00 0.71 567.00 567.00 0.00 3 567.00 567.00 0.00 9
9 604.00 625.00 3.48 604.00 604.00 0.00 3 604.00 604.00 0.00 10

10 574.00 588.00 2.44 565.00 565.00 −1.57 3 565.00 566.70 −1.57 9
40 1 909.50 915.50 0.66 909.50 912.70 0.00 15 913.50 913.50 0.44 78

2 885.00 902.00 1.92 883.00 885.25 −0.23 15 883.00 886.15 −0.23 79
3 815.50 864.00 5.95 815.50 817.30 0.00 15 815.50 815.50 0.00 79
4 898.00 919.50 2.39 898.00 898.40 0.00 15 898.00 898.00 0.00 81
5 743.50 751.50 1.08 743.50 744.40 0.00 15 743.50 744.55 0.00 77
6 901.00 903.00 0.22 883.50 883.50 −1.94 15 883.50 883.50 −1.94 80
7 798.50 833.50 4.38 798.50 799.40 0.00 15 798.50 800.15 0.00 80
8 795.00 811.00 2.01 795.00 795.40 0.00 15 795.00 795.00 0.00 79
9 876.50 895.50 2.17 876.50 878.90 0.00 15 876.50 876.50 0.00 79

10 866.00 901.50 4.10 862.50 862.50 −0.40 15 862.50 862.50 −0.40 80
60 1 1060.12 1063.79 0.35 1051.00 1052.07 -0.86 45 1051.00 1051.00 −0.86 299

2 1051.13 1060.91 0.93 1046.67 1047.27 −0.42 45 1044.33 1047.03 −0.65 301
3 990.36 1012.39 2.22 993.67 993.67 0.33 45 993.67 993.67 0.33 289
4 1061.45 1086.32 2.34 1066.00 1070.13 0.43 45 1066.00 1066.00 0.43 294
5 986.93 1033.69 4.74 989.67 991.07 0.28 45 989.67 990.07 0.28 295
6 1086.31 1131.28 4.14 1078.00 1079.87 −0.76 46 1067.67 1070.50 −1.72 296
7 1005.43 1017.97 1.25 1007.33 1008.47 0.19 45 1007.33 1007.33 0.19 298
8 1027.19 1059.54 3.15 1031.00 1033.37 0.37 45 1031.00 1032.80 0.37 295
9 1001.43 1013.90 1.25 1004.33 1004.33 0.29 45 1004.33 1004.33 0.29 290

10 1062.11 1081.74 1.85 1048.67 1050.07 −1.27 45 1048.67 1061.57 −1.27 297
120 1 1472.49 1526.53 3.67 1434.67 1444.50 −2.57 317 1436.17 1439.95 −2.47 3197

2 1482.29 1540.24 3.91 1460.67 1467.47 −1.46 321 1451.00 1455.97 −2.11 3200
3 1510.05 1550.10 2.65 1474.67 1481.60 −2.34 325 1464.17 1472.95 −3.04 3306
4 1563.50 1628.78 4.18 1546.50 1553.22 −1.09 323 1539.67 1553.45 −1.52 3250
5 1457.05 1542.96 5.90 1438.00 1452.65 −1.31 320 1428.33 1436.93 −1.97 3208
6 1546.25 1622.27 4.92 1531.67 1539.52 −0.94 323 1527.83 1538.97 −1.19 3256
7 1557.27 1610.88 3.44 1522.83 1529.47 −2.21 322 1512.00 1517.55 −2.91 3254
8 1524.07 1599.61 4.96 1508.33 1519.90 −1.03 315 1504.83 1509.27 −1.26 3257
9 1547.95 1620.27 4.67 1531.67 1537.65 −1.05 323 1538.17 1540.50 −0.63 3243

10 1573.87 1622.36 3.08 1546.67 1554.38 −1.73 320 1556.83 1561.42 −1.08 3054
140 1 1575.20 1645.60 4.47 1595.71 1603.97 1.30 503 1577.14 1587.50 0.12 5471

2 1605.80 1670.76 4.05 1594.57 1608.89 −0.70 505 1584.71 1600.02 −1.31 5546
3 1583.68 1634.40 3.20 1581.86 1595.21 −0.11 506 1568.00 1577.02 −0.99 5520
4 1712.66 1760.56 2.80 1677.29 1703.31 −2.07 509 1668.43 1703.89 −2.58 5581
5 1547.40 1610.50 4.08 1551.71 1559.17 0.28 506 1541.14 1557.62 −0.40 5552
6 1662.28 1741.18 4.75 1644.86 1667.60 −1.05 507 1650.71 1669.40 −0.70 5539
7 1664.42 1691.36 1.62 1620.57 1637.01 −2.63 504 1623.29 1640.76 −2.47 5561
8 1646.08 1698.12 3.16 1610.00 1633.63 −2.19 499 1619.71 1636.15 −1.60 5550
9 1629.10 1700.02 4.35 1645.14 1653.60 0.98 513 1640.00 1647.40 0.67 5665

10 1693.82 1717.34 1.39 1683.71 1696.27 −0.60 499 1663.29 1687.65 −1.80 5637
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Table 3 (continued)

|Vc| Id. Erdoǧan et al. [8] Our ALNS with heuristic policy Our ALNS with optimal policy

Optimal Heuristic Gap (%) Best Average Gap (%) Time (s) Best Average Gap (%) Time (s)

160 1 1741.75 1836.63 5.45 1724.88 1739.76 −0.97 749 1702.75 1713.65 −2.24 9302
2 1773.63 1820.50 2.64 1726.12 1742.97 −2.68 751 1716.12 1739.70 −3.24 9177
3 1690.88 1748.38 3.40 1688.88 1712.74 −0.12 745 1676.50 1687.03 −0.85 9137
4 1858.13 1962.63 5.62 1841.88 1853.05 −0.87 756 1815.88 1847.88 −2.27 9177
5 1667.75 1756.75 5.34 1668.12 1680.65 0.02 748 1664.75 1675.57 −0.18 9515
6 1813.00 1844.50 1.74 1736.50 1752.01 −4.22 748 1735.62 1735.81 −4.27 9480
7 1774.25 1835.38 3.45 1734.50 1758.09 −2.24 760 1756.62 1759.37 −0.99 9326
8 1770.75 1820.50 2.81 1757.00 1769.17 −0.78 745 1758.00 1758.50 −0.72 9554
9 1800.88 1893.50 5.14 1801.50 1808.16 0.03 751 1795.25 1796.32 −0.31 9612

10 1764.38 1809.38 2.55 1762.25 1778.99 −0.12 746 1755.62 1773.25 −0.50 9681
180 1 1854.21 1936.01 4.41 1834.33 1851.64 −1.07 1065 1831.67 1834.95 −1.22 14971

2 1863.32 1927.48 3.44 1849.33 1870.47 −0.75 1070 1823.11 1831.78 −2.16 14969
3 1858.41 1889.87 1.69 1843.22 1864.76 −0.82 1067 1840.44 1848.17 −0.97 14824
4 1988.19 2059.51 3.59 1928.67 1958.78 −2.99 1095 1939.22 1948.22 −2.46 15116
5 1795.81 1853.72 3.22 1805.56 1814.12 0.54 1082 1790.00 1790.28 −0.32 15739
6 1817.47 1873.17 3.06 1832.67 1854.29 0.84 1065 1827.89 1841.00 0.57 15386
7 1868.04 1929.56 3.29 1831.78 1853.41 −1.94 1077 1842.56 1862.15 −1.36 14612
8 1883.40 1930.46 2.50 1875.22 1889.18 −0.43 1079 1852.67 1863.52 −1.63 15093
9 1931.44 2004.60 3.79 1926.56 1940.56 −0.25 1122 1900.67 1926.35 −1.59 15119

10 1852.51 1896.85 2.39 1864.44 1876.29 0.64 1082 1846.22 1862.08 −0.34 15170
200 1 1976.30 2060.60 4.27 1949.40 1972.11 −1.36 1475 1956.20 1958.3 −1.02 22068

2 1982.00 2074.90 4.69 1982.70 2001.94 0.04 1473 1966.00 1978.37 −0.81 17012
3 1976.70 2037.10 3.06 1971.10 1997.51 −0.28 1483 1964.60 1964.6 −0.61 23778
4 2119.50 2211.90 4.36 2054.00 2078.57 −3.09 1516 2038.80 2042.25 −3.81 23102
5 1905.60 1974.20 3.60 1894.30 1913.63 −0.59 1482 1925.30 1939.2 1.03 23301
6 2011.10 2042.30 1.55 1960.70 1982.89 −2.51 1471 1945.70 1967.67 −3.25 24744
7 1983.00 2046.50 3.20 1943.00 1962.02 −2.02 1468 1933.90 1955.61 −2.48 24455
8 2000.30 2096.30 4.80 2020.50 2035.87 1.01 1459 1992.60 2004.72 −0.38 24246
9 2052.70 2131.60 3.84 2040.90 2056.52 −0.57 1486 2008.50 2041.85 −2.15 24616

10 1977.90 2009.40 1.59 1928.90 1951.89 −2.48 1453 1918.20 1927.91 −3.02 25680

Average 1408.27 1453.97 3.00 1396.06 1406.17 −0.73 525 1391.41 1399.18 −0.99 7121

5.3 Benchmark optimal solutions

Since we are the first to model and solve the VRPSPD-H, for this problem no solutions in the literature

exist for us to compare with. We have implemented the model of Section 2.1 in CPLEX and compare

our heuristic with the optimal solutions on small instances. We have generated new instances by

selecting the first 5, 10 and 15 customers of four VRPSPD instances of Dethloff [7]. For these 12

instances, we set the handling cost parameters to 10
|Vc| and 20

|Vc| and we limit the number of available

vehicles to 4. The results are reported in Table 4. We solved each instance with CPLEX on a single

thread with a maximum run time of six hours. Instances not solved to optimality are indicated with

an asterisk, and the gap with the best lower bound is reported in the column of the calculation time.

We compare the results with 10 runs of our ALNS heuristic with the optimal handling policy. CPLEX

finds 17 out of 24 optimal solutions in the given time limit, and the remaining 7 instances could not
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be solved to optimality. Our ALNS heuristic finds all 17 optimal solutions in every run. Of the 7 best

integer solutions, our ALNS heuristic finds the same solution as CPLEX on 4 instances, and beats the

CPLEX solutions on the remaining 3 instances. The average time our heuristic needs is 2.28 seconds,

compared to 6755.58 seconds for CPLEX.

Table 4: Comparison of ALNS with optimal results on small instances for the VRPSPD-H.

Instance n h MIP ALNS: best ALNS: average Time (s)

Objective Time (s) Objective Gap (%) Objective Gap (%)

SCA3-0 5 2 317.735 0 317.74 0.00 317.74 0.00 0.71
5 4 322.077 0 322.08 0.00 322.08 0.00 0.71

10 1 467.774 22 467.77 0.00 467.77 0.00 1.91
10 2 560.026 17 560.03 0.00 560.03 0.00 1.87
15 0.67 664.25* 12.4% 664.25 0.00 664.25 0.00 4.58
15 1.33 905.09* 20.6% 905.09 0.00 905.09 0.00 4.49

SCA8-1 5 2 384.117 0 384.12 0.00 384.12 0.00 0.71
5 4 406.795 0 406.80 0.00 406.80 0.00 0.71

10 1 598.174 100 598.17 0.00 598.17 0.00 1.97
10 2 747.89 68 747.89 0.00 747.89 0.00 1.93
15 0.67 726.14 10460 726.14 0.00 726.14 0.00 4.19
15 1.33 937.35* 2.1% 937.35 0.00 937.35 0.00 4.14

CON3-0 5 2 291.803 0 291.80 0.00 291.80 0.00 0.73
5 4 319.817 0 319.82 0.00 319.82 0.00 0.70

10 1 667.942 35 667.94 0.00 667.94 0.00 1.90
10 2 893.871 88 893.87 0.00 893.87 0.00 1.86
15 0.67 907.26* 10.5% 907.26 0.00 907.26 0.00 4.27
15 1.33 1295.60* 25.2% 1289.31 −0.49 1289.31 −0.49 4.21

CON8-1 5 2 203.827 0 203.83 0.00 203.83 0.00 0.71
5 4 218.311 0 218.31 0.00 218.31 0.00 0.71

10 1 496.609 66 496.61 0.00 496.61 0.00 1.90
10 2 694.643 64 694.64 0.00 694.64 0.00 1.87
15 0.67 738.037* 9.0% 694.53 −5.90 694.53 −5.90 3.91
15 1.33 1079.68* 23.5% 977.28 −9.48 977.28 −9.48 3.98

Average 618.53 6755.58 612.19 −0.66 612.19 −0.66 2.28

* indicates best integer solution for instances not solved to optimality.

5.4 Comparison of handling policies

We now compare the performance of the heuristic handling policy compared to myopic policies 1 and

2, respectively. All three handling policies are embedded in our ALNS structure. We have created

40 new VRPSPD-H instances based on the VRPSPD instances of Dethloff [7]. Our additions to the

original instances are the handling cost parameter, which is set to 0.2 for all instances. This resulted

in a distinct trade-off between routing and handling costs. Furthermore, we have imposed a limit on

the number of available vehicles K, as otherwise solutions resulted in the unrealistic construction of

many short routes to decrease handling as much as possible. The results of the experiments are given

in Table 5, where we report the average objective values and computation times over 10 runs.

The Vehicle Routing Problem with Simultaneous Pickup and  Delivery and Handling Costs

22 CIRRELT-2018-27



We see that myopic policy 1 outperforms myopic policy 2 on all instances in similar computation times,

and that myopic policy 2 never improves the solution found by the heuristic policy. On average, myopic

policy 1 has a gap of 0.25% compared to the heuristic policy, and the average gap of myopic policy

2 is 8.47% as compared to the heuristic policy. However, myopic policy 1 finds better solutions than

the heuristic policy on 18 out of 40 instances, and its average computation time is around 15% lower.

These improvements are mostly obtained when K = 12. This is an intuitive result as the importance

of handling decisions declines when routes get shorter. Hence, there exist scenarios in which myopic

policy 1 is competitive with the heuristic policy. We characterize such scenarios in Section 5.5.

5.5 Varying number of vehicles

We observed that the heuristic tends to create many short routes to decrease handling costs which

may result in unrealistic scenarios. This section focuses on how the number of available vehicles

impacts the trade-off between routing and handling costs. For these computational experiments, we

iteratively increase the maximum number of allowed routes on various instances where we ignore

capacity constraints. We solve instances with n = 50, h = 0.1, 0.3, 0.5 and increase the maximum

number of allowed routes K from 1 to 10 with both myopic policies and the heuristic policy. We

explicitly distinguish between the routing and handling cost components. The results are presented in

Figure 2. The reported values are averages over 10 runs of our ALNS heuristic, for all configurations

and handling policies. We see that routing costs stay fairly constant in all scenarios when increasing

the maximum number of allowed routes, while the handling costs drastically decrease at first and

stabilize eventually. This trend is true for all policies and all handling cost parameter values.

Figure 3 shows the gaps of both myopic policies as percentages of heuristic policy. In line with the

observation of Section 5.4, we see that myopic policy 1 outperforms myopic policy 2 in all configura-

tions. When the number of routes is small, the handling cost component is the major driver of the

objective value and it declines when an increasing number of routes is constructed. This leads to the

property that the performance of myopic policy 1 as compared to the heuristic policy increases with

the number of routes, and even becomes competitive with the heuristic policy when K ≥ 5. From a

practical perspective, it makes sense to use myopic policy 1 rather than the heuristic policy since it is

an uncomplicated rule which the vehicle drivers can easily understand and execute and it computes

solutions 15% faster than the heuristic policy.
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Table 5: Comparison of handling policies.

Instance n h K Heuristic Myopic policy 1 Myopic policy 2

Objective Time(s) Objective Gap (%) Time (s) Objective Gap (%) Time (s)

SCA3-0 50 0.2 5 1432.74 11.21 1439.85 0.50 9.53 1631.7 13.89 9.26
SCA3-1 50 0.2 5 1484.42 11.20 1515.07 2.06 9.51 1704.65 14.84 9.13
SCA3-2 50 0.2 5 1546.68 11.02 1547.11 0.03 9.38 1782.57 15.25 9.05
SCA3-3 50 0.2 5 1560.34 11.01 1585.06 1.58 9.40 1776.23 13.84 9.16
SCA3-4 50 0.2 5 1738.41 10.96 1736.3 −0.12 9.28 2035.65 17.10 9.07
SCA3-5 50 0.2 5 1471.7 11.08 1513.31 2.83 9.30 1677.71 14.00 9.09
SCA3-6 50 0.2 5 1438.45 11.10 1458.78 1.41 9.94 1618.83 12.54 9.19
SCA3-7 50 0.2 5 1551.41 11.07 1574.86 1.51 9.71 1779.3 14.69 9.10
SCA3-8 50 0.2 5 1570.08 11.15 1579.22 0.58 10.19 1739.29 10.78 9.27
SCA3-9 50 0.2 5 1471.68 11.25 1499.12 1.86 9.43 1663.73 13.05 9.15
SCA8-0 50 0.2 12 1383.11 8.28 1382.47 −0.05 8.46 1422.72 2.86 7.48
SCA8-1 50 0.2 12 1481.79 8.11 1482 0.01 7.89 1510.21 1.92 7.32
SCA8-2 50 0.2 12 1518 7.89 1504.1 −0.92 7.73 1568.41 3.32 7.14
SCA8-3 50 0.2 12 1467.67 8.07 1474.61 0.47 7.74 1509.61 2.86 7.39
SCA8-4 50 0.2 12 1632.09 8.08 1629.83 −0.14 7.69 1665.73 2.06 7.44
SCA8-5 50 0.2 12 1476.65 8.16 1463.19 −0.91 8.07 1515.55 2.63 7.37
SCA8-6 50 0.2 12 1393.23 8.17 1389.4 −0.27 7.68 1424.84 2.27 7.22
SCA8-7 50 0.2 12 1493.32 8.12 1488.21 −0.34 7.47 1528.76 2.37 7.32
SCA8-8 50 0.2 12 1549.21 8.36 1551.53 0.15 7.40 1589.07 2.57 7.34
SCA8-9 50 0.2 12 1487.35 8.09 1494.1 0.45 7.25 1527.5 2.70 7.17
CON3-0 50 0.2 5 1416.98 11.61 1427.57 0.75 9.22 1612.38 13.79 8.91
CON3-1 50 0.2 5 1501.88 11.20 1512.28 0.69 9.01 1726.62 14.96 9.15
CON3-2 50 0.2 5 1309.42 11.35 1304.96 −0.34 9.45 1560.96 19.21 9.93
CON3-3 50 0.2 5 1453.35 11.33 1430.26 −1.59 9.20 1704 17.25 9.36
CON3-4 50 0.2 5 1492.16 11.40 1499.88 0.52 9.06 1718.11 15.14 9.77
CON3-5 50 0.2 5 1326.91 12.08 1329.7 0.21 9.25 1495.05 12.67 9.18
CON3-6 50 0.2 5 1185.9 11.47 1175.92 −0.84 9.08 1298.11 9.46 9.18
CON3-7 50 0.2 5 1399.18 11.98 1408.22 0.65 8.88 1605.44 14.74 9.11
CON3-8 50 0.2 5 1383.91 12.01 1405.49 1.56 8.82 1637.1 18.30 8.89
CON3-9 50 0.2 5 1284.01 11.84 1279.69 −0.34 8.90 1443.85 12.45 9.03
CON8-0 50 0.2 12 1254.23 8.97 1257.37 0.25 7.41 1280.02 2.06 7.49
CON8-1 50 0.2 12 1235.43 9.20 1228.63 −0.55 7.53 1256.36 1.69 7.65
CON8-2 50 0.2 12 1118.18 9.44 1120.33 0.19 7.53 1162.2 3.94 7.75
CON8-3 50 0.2 12 1235.54 8.77 1232.04 −0.28 7.52 1267.15 2.56 7.59
CON8-4 50 0.2 12 1244.13 8.67 1239.87 −0.34 7.52 1277.91 2.72 7.67
CON8-5 50 0.2 12 1132.77 8.66 1131.36 −0.12 7.52 1169.97 3.28 7.55
CON8-6 50 0.2 12 1019.48 8.64 1023.63 0.41 7.45 1029.04 0.94 7.69
CON8-7 50 0.2 12 1236.91 8.72 1230.04 −0.56 7.38 1277.07 3.25 7.64
CON8-8 50 0.2 12 1216.22 8.63 1208.21 −0.66 7.41 1250.85 2.85 7.52
CON8-9 50 0.2 12 1166.35 8.49 1165 −0.12 7.22 1188.47 1.90 7.47

Average 1394.03 9.92 1397.96 0.25 8.46 1515.82 8.47 8.33
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Figure 2: Different cost components for myopic policies 1 and 2 and the heuristic policy for K = 1, . . . , 10 and
h = 0.1, 0.3, 0.5.
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Figure 3: Objective gaps of myopic policies 1 and 2 compared to the heuristic policy for h = 0.1, 0.3, 0.5.
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6 Conclusion

We have introduced the vehicle routing problem with simultaneous pickup and delivery and han-

dling costs (VRPSPD-H). We show that our problem generalizes both the vehicle routing problem

with simultaneous pickup and delivery (VRPSPD), the variant without handling operations, and the

single-vehicle variant called the traveling salesman problem with pickups, deliveries and handling costs

(TSPPD-H). We studied a heuristic handling policy which approximates the optimal handling deci-

sions, and we derived two new bounds on the optimal policy which were used to define two myopic

policies.

To solve our problem, we propose an adaptive large neighborhood search (ALNS) heuristic in which

we embedded all three handling policies, and we implement the mathematical formulation in CPLEX

to solve small instances optimally. With the ALNS heuristic, we also solve instances of the VRPSPD

and the TSPPD-H. Results on these special cases showed that our ALNS heuristic finds 32 out of

54 best known solutions for the VRPSPD, and the average gaps are 0.14% and 0.84% on two sets of

benchmark instances, respectively. For a set of 80 benchmark instances for the TSPPD-H, we find or

improve 64 best known solutions with the heuristic handling policy. The optimal handling policy, at

the cost of significantly higher calculation times, performs slightly better, improving 69 best known

solutions. The average gaps for the two policies are −0.73% and −0.99% respectively. Furthermore,

we show that our proposed heuristic finds optimal solutions on instances of up to 15 customers. It

also beats 3 out of 7 best integer solutions of CPLEX for instances not solved to optimality within

the given time limit, matching the remaining 4.

We also study the quality of the two myopic policies and the impact of the number of constructed

routes on the objective values, where all three handling policies are embedded in our ALNS structure.

We see that when the number of constructed routes increases, routing costs stay fairly constant

while the handling cost component, and thus the objective value, decreases significantly and stabilizes

eventually. Myopic policy 1 outperforms myopic policy 2 in all configurations, and the difference

between myopic policy 1 and the heuristic policy declines when the number of available vehicles is

increased. Furthermore, the computation times of both myopic policies are similar and are 15% lower

than the computation time when applying the heuristic policy. From a practical perspective, it may

then be preferred to implement the simple myopic policy 1 rather than the more complicated heuristic

policy when the two have similar performance.
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[5] J.-F. Côté, M. Gendreau, and J.-Y. Potvin. Large neighborhood search for the pickup and delivery

traveling salesman problem with multiple stacks. Networks, 60(1):19–30, 2012.

[6] M. Dell’Amico, G. Righini, and M. Salani. A branch-and-price approach to the vehicle routing

problem with simultaneous distribution and collection. Transportation Science, 40(2):235–247,

2006.

[7] J. Dethloff. Vehicle routing and reverse logistics: The vehicle routing problem with simultaneous

delivery and pick-up. OR Spektrum, 23(1):79–96, 2001.
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