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Abstract. In multilayer network design, there are several networks, each at a given layer. 
To route a set of commodities from the origins to the destinations, at each layer, appropriate 
capacitated links have to be opened by paying a fixed cost per link. So-called design 
connectivity constraints need to be enforced. They impose that a link is opened in a layer 
only if a chain of supporting links is opened in another layer. The problem is to find a 
minimum cost design and routing for all layers that satisfies capacity and connectivity 
constraints as well as demands. In this paper, we address the Multilayer Single flow-type 
Multicommodity Capacitated Fixed- Charge Network Design problem (MSMCFND), where 
commodities are routed only in the first layer. The amount of flow on each link in a particular 
layer is equal to the amount of flow on its supported links in the first layer. We propose a 
general formulation for the MSMCFND, for which we develop an efficient solution method 
based on Lagrangian relaxation to address large-scale instances. The resulting Lagrangian-
based matheuristic method is empowered by intensification, diversification, and post-
optimization procedures using long-term and short-term memories. The results show that 
the proposed algorithm is competitive with (and often significantly better than) a state-of-
the-art MIP solver on a large set of randomly generated instances, not only with respect to 
the obtained upper bounds, but also in terms of optimality gaps.  
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1. Introduction

Applications of network design models are extensive in the fields of transportation, telecommuni-

cations, logistics and production planning (Magnanti and Wong, 1984; Minoux, 1989). In network

design, given a potential network with capacitated links, several commodities such as goods, data

or people, have to be routed between the different origin and destination points. A network has

to be constructed by opening appropriate links to route the commodities. A fixed design cost has

to be paid to open a link. In addition to the fixed design costs, a per unit routing cost, or flow

variable cost, is associated with each link and has to be paid to route each unit of commodity

demand on the link. The problem is to select a set of links and route the demands from the origins

to the destinations on the constructed network such that the costs are minimized and capacities

are respected.

In this paper, we consider multilayer network design models, which have applications in the fields

of transportation (Cordeau et al., 2001; Zhu et al., 2014; Crainic et al., 2014) and telecommuni-

cations (Dahl et al., 1999; Knippel and Lardeux, 2007). Multilayer network design models differ

from a typical single-layer network design model in two main aspects. First, instead of a single

network, there are several networks, each at a given layer. Each network has its nodes, potential

links with capacities, and possibly commodities. To route the demands of the commodities from

the origins to the destinations, appropriate links have to be opened by paying a fixed cost per link.

Second, in multilayer network design, there are design connectivity and flow connectivity require-

ments between the layers. Design connectivity means that opening a link in a layer depends on

opening a chain of supporting links (a path) in another layer, named as supporting layer. Flow

connectivity states that the amount of flow on each link in a particular layer depends on the flow

on its supported links in another layer. It is possible that some layers have no commodities to

route, but these layers also support the routing of other layers through constraints that connect

the layers. In particular, when there is only one layer that has commodities to route, the problem

is a multilayer single flow-type network design.

In this paper, we address the Multilayer Single flow-type Multicommodity Capacitated Fixed-

Charge Network Design problem (MSMCFND), where commodities are routed only in layer l =

1, given a set of layers L = {1,2, .., |L|}. The amount of flow on each link in a particular layer

l ≥ 2 is equal to the amount of flow on its supported links in layer l − 1 and consequently to

the amount of flow on its supported links in layer l = 1. A comprehensive review and taxonomy

on multilayer network design models and solution methods for such problems can be found in

Akhavan Kazemzadeh et al. (2018). The MSMCFND represents a set of service network design

problems with multiple consolidation levels, which arise in transportation applications, see Zhu

et al. (2014) and Crainic et al. (2014) for example.
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Lagrangian relaxation is among the most efficient methods to address the single-layer multi-

commodity capacitated fixed-charge network design problem (MCFND), see Holmberg and Yuan

(2000), Sellmann et al. (2002), Crainic et al. (2004), and Kliewer and Timajev (2005) for example.

Motivated by these developments, we propose a Lagrangian-based matheuristic for the MSMCFND.

Although there are efficient Lagrangian-based heuristics for the MCFND, these methods cannot be

adapted in a straightforward way to the MSMCFND. Indeed, the challenge in multilayer network

design is how to handle the significant additional complexity incurred by the design connectivity

constraints between the layers. On the one hand, these additional constraints complicate the task

of developing Lagrangian relaxations that keep a balance between the quality of the lower bound

and the computational efficiency of solving the Lagrangian subproblem. On the other hand, the

derivation of effective feasible solutions becomes significantly more difficult in the presence of these

constraints.

We propose a Lagrangian-based matheuristic solution method based on a slope scaling scheme.

The idea of slope scaling is to iteratively solve a linear multicommodity flow formulation, and

to use the flow distribution to adjust the linear approximation at the next iteration. When the

slope scaling method stalls, a perturbation move changes the initial linear approximation to start

a new slope scaling procedure; for more details on slope scaling, see Crainic et al. (2004) and Kim

and Pardalos (1999). Note that Zhu et al. (2014) also used a slope scaling procedure but did not

integrate it with a Lagrangian relaxation scheme, as proposed in this paper. In particular, our

Lagrangian relaxation approach provides not only the lower bounds to assess the quality of the

obtained feasible solutions, but also guides the slope scaling search by providing initial solutions

and by defining the perturbation moves.

Our main contribution, apart from presenting a general formulation for the MSMCFND, is to

propose an efficient solution method based on Lagrangian relaxation to solve large-scale MSM-

CFND instances. In the proposed algorithm, a subgradient method is used to find lower bounds.

A primal heuristic procedure based on slope scaling is developed to find upper bounds using the

design information derived from the Lagrangian subproblem. The best upper bound is then used

to guide the subgradient method. We are comparing our results to those obtained by a state-of-

the-art mixed-integer programming (MIP) solver. We observe that the algorithm produces better

results not only in terms of the upper bounds (for 90% of the instances) but also in terms of the

optimality gaps (for 60% of the instances).

The paper is organized as follows. We state the problem and the mathematical formulation

in Section 2. In Section 3, we describe how to compute the lower and upper bounds through

Lagrangian relaxation and slope scaling. Section 4 summarizes the algorithm that combines the

Lagrangian relaxation and the slope scaling procedure. In Section 5, we present the numerical
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results on randomly generated instances. In Section 6, we summarize this work and propose future

research directions.

2. Problem Statement and Formulation

In this section, we first formally define the problem. We then present a formulation for the MSM-

CFND. Finally, we describe a preprocessing procedure that reduces the flow capacities.

2.1. Problem Definition

In the MSMCFND, multiple networks are considered, one per layer. Given a set of layers L =

{1,2, ..., |L|}, each layer l ∈L consists of nodes and potential links. There is a fixed design cost to

open a link in each layer, while the flow costs are defined only for the links of layer l = 1, called

the base layer, for which there are commodities with specific demands that have to be routed

between their origin and destination nodes. In the MSMCFND, there are two types of connectivity

requirements between the layers: design connectivity and flow connectivity. The first one, design

connectivity, means that a link opened in the base layer requires a chain of supporting links (a path)

to be opened in layer 2. Similarly, a link opened in a given layer l requires a path to be opened in

its upper layer, i.e., layer l+ 1. If link a of layer l requires a path (that includes links b and c) to

be opened in layer l+ 1, then l is said to be supported by l+ 1, and l+ 1 is said to be supporting

layer of l. In addition, a is supported by b and c, while b and c are supporting links of a. Note

that, a link in a particular layer might be in more than one path; therefore, it might support more

than one link of its lower layer, which means that the fixed design cost of the link has to be paid

as soon as one of the potential supported links of the lower layer is designed. Design connectivity

requirements include design capacity constraints, which, for link b in layer l, limits the number of

designed links in layer l− 1 supported by link b. The second type of connectivity constraints, flow

connectivity, imposes that the flow on link b in a given layer l ≥ 2 is equal to the summation of

the flows of all the links in the base layer supported by link b. In summary, in the MSMCFND,

the goal is to determine a minimum cost design and routing in all layers to satisfy demands, while

considering capacity constraints, as well as flow and design connectivity requirements.

One of the applications of the MSMCFND is the integrated rail freight service network design

problem described in Zhu et al. (2014). They proposed a three-layer network to model the problem

where a double consolidation policy is performed. First, cars are grouped into so-called blocks

(blocking process). Then, they are grouped into services to make up trains (train make-up process).

The next step is to select the services and define their schedules. To propose a formulation deter-

mining blocking, train make-up, and service selection decisions simultaneously, Zhu et al. (2014)

considered a three-layer network including: 1) a car layer that consists of links on which cars are
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moved in each terminal; 2) a block layer that includes block links from the origins to the destina-

tions of the blocks to support car movements; and 3) a service layer that includes service links to

support block movements. In the car layer, the flows of commodities are moved via the car links

and the projected block links from the block layer. Appropriate block links have to be designed or

opened to route the cars. To design a block link, a chain of supporting services has to be opened in

the service layer. The flow of each service is equal to the summation of the flows on all its supported

blocks. The problem is to find a minimum cost blocking and service design, and flow routing of the

cars to satisfy demands, while considering flow capacity of the blocks and the services, blocking

capacity of each terminal, and design connectivity of the block and the service layers. Zhu et al.

(2014) proposed a mixed-integer programming (MIP) formulation for the problem. We generalize

the problem setting and formulation to an arbitrary number of layers. Furthermore, since we focus

on the interaction between the layers, we do not consider application-specific requirements such as

terminal block-building workload constraints.

2.2. Formulation

We are given a set of layers L and a network Gl = (N,Al) for each layer l ∈ L, where N and Al

are the sets of nodes (the same for all layers) and directed arcs for layer l ∈ L, respectively. The

sets A+
l (n) and A−l (n) represent, respectively, the outward and inward arcs of node n∈N in layer

l ∈ L. A set K of commodities have to be routed through the base layer network. The amount of

each commodity k ∈K that must be routed from its origin O(k) ∈N to its destination D(k) ∈N

is dk > 0. We define ual > 0 and val (a positive integer) as the flow capacity and the design capacity

of arc a ∈ Al in layer l ∈ L, cka1 ≥ 0 as the variable flow cost of commodity k ∈K on arc a ∈ A1,

and fal ≥ 0 as the fixed design cost of arc a∈Al of layer l ∈L. We also use the following additional

notation: for each n ∈N and k ∈K, wkn = dk, if n=O(k), wkn =−dk, if n=D(k), and wkn = 0, if

n 6=O(k),D(k); for each l ∈L, a∈Al and k ∈K, hkal = min{dk, ual}.

To model the connectivity constraints, we introduce the following notation: Bal is the set of arcs

in layer l− 1 that are supported by arc a ∈Al for l ≥ 2 and Bal
1 is the set of arcs in layer 1 that

are supported by arc a∈Al, l ∈L (we assume that Ba1
1 = {a} for arc a∈A1). Two sets of decision

variables are introduced to formulate the problem: binary design variables and continuous flow

variables. The design variable yal is 1 if arc a ∈Al is selected in layer l ∈ L, and 0 otherwise. The

flow variable xka1 is the amount of flow of commodity k ∈K on arc a∈A1. The MSMCFND model

takes the following form:

min
∑
a∈A1

∑
k∈K

cka1x
k
a1 +

∑
l∈L

∑
a∈Al

falyal (1)

A Lagrangian-Based Matheuristic for Multilayer Single Flow-Type Multicommodity Capacitated Fixed-Charge Network Design

4 CIRRELT-2018-37



∑
a∈A+

1 (n)

xka1−
∑

a∈A−
1 (n)

xka1 =wkn ∀n∈N, ∀k ∈K (2)

∑
k∈K

∑
b∈Bal

1

xkb1 ≤ ualyal ∀l ∈L, ∀a∈Al (3)

∑
b∈Bal

1

xkb1 ≤ hkalyal ∀l ∈L, ∀a∈Al, ∀k ∈K (4)

∑
b∈Bal

yb(l−1) ≤ valyal ∀l ∈L, l≥ 2, ∀a∈Al (5)

yb(l−1) ≤ yal ∀l ∈L, l≥ 2, ∀a∈Al, ∀b∈Bal (6)

xkal ≥ 0 ∀a∈A, ∀k ∈K, ∀l ∈L (7)

yal ∈ {0,1} ∀a∈A, ∀l ∈L (8)

The objective of the model, (1), is to minimize the total routing and design costs. Constraints

(2) are the usual flow conservation equations, which ensure that the demands are routed from the

origins to the destinations in the base layer. The flow capacity constraints (3) ensure that the total

flow on each arc a∈Al in layer l ∈L, which is equal to the sum of the flows on the arcs supported

by a in the base layer, does not exceed its flow capacity ual. These constraints also impose that: 1)

no commodity can be routed on a link unless it is opened; and 2) if there is any flow on an arc in a

particular layer, then this flow contributes to the flow of its supporting arcs in the upper layer, and

consequently the supporting arcs will be forced to be opened. The strong linking constraints (4)

impose that no flow of any commodity can circulate on a closed arc. Although these inequalities

are redundant for the MIP formulation, our tests show that they improve the linear programming

(LP) and the Lagrangian relaxation lower bounds significantly. Similar inequalities also have been

used in the literature on network design problems to improve the lower bounds; see Chouman

et al. (2016) for example. The design capacity constraints (5) ensure that, for each arc a ∈ Al,

the number of designed arcs that are supported by a in layer l − 1 does not exceed its design

capacity val. Upward design linking constraints (6) ensure that an arc can be opened only if all its

supporting arcs in the upper layer are opened. It is easy to see that these constraints are already

satisfied by constraints (3) or by constraints (5). Although constraints (6) are redundant for the

MIP formulation, our tests show that they improve the LP and the Lagrangian relaxation lower

bounds significantly. Constraints (7) and (8) define the domains of the variables.

2.3. Preprocessing Procedure

Using the multilayer structure of the MSMCFND, we can reduce the flow capacities in two ways.

First, we know that each arc a in layer l ≤ |L| − 1 corresponds to a path in the upper layer.
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According to constraints (3), the total flow on a (hence, the capacity ual) has to be less than or

equal to the flow capacity of each corresponding arc in the upper layer:

ual ≤ min
b∈F l+1

a

{ub(l+1)} ∀l ∈L, l≤ |L| − 1, ∀a∈Al, (9)

where F l+1
a = {b ∈Al+1|a ∈Bb(l+1)}. Second, we know that any given arc a in layer l≥ 2 supports

several arcs in the lower layer, and that at most val arcs can be supported by arc a. Therefore, the

total flow on a (hence, its capacity ual) has to be less than or equal to the sum of the flow capacities

of the first val arcs in layer l− 1 supported by a, where the arcs are sorted in non-increasing order

of to their flow capacities:

ual ≤
∑
b∈B̃al

ub(l−1) ∀l ∈L, l≥ 2, ∀a∈Al, (10)

where B̃al is the set containing the first val arcs supported by arc a∈Al in the lower layer.

Based on the above arguments, we derive a preprocessing procedure that: 1) scans each layer in

descending order (from |L| − 1 to 1) and reduces the flow capacities based on (9); 2) scans each

layer in ascending order (from 2 to |L|) and reduces the flow capacities based on (10); and 3) if at

least one flow capacity is reduced in 2), goes back to 1).

3. Bounding Procedures

In this section we describe how to compute the lower and upper bounds through Lagrangian

relaxation and slope scaling, respectively. The algorithm combining these bounding procedures is

presented in the next section.

3.1. Computing Lower Bounds through Lagrangian Relaxation

Relaxing constraints (3) and (4) in a Lagrangian way, we obtain the following Lagrangian subprob-

lem:

(PLR (α,β)) ZLR (α,β) = min
∑
a∈A1

∑
k∈K

cka1x
k
a1 +

∑
l∈L

∑
a∈Al

falyal

+
∑
l∈L

∑
a∈Al

αal

∑
k∈K

∑
b∈Bal

1

xkb1−ualyal

+
∑
l∈L

∑
a∈Al

∑
k∈K

βkal

∑
b∈Bal

1

xkb1− dkalyal


(11)

s.t. (2) , (5) , (6), (7) , (8) ,

where αal ≥ 0 and βkal ≥ 0 are the Lagrange multipliers corresponding to constraints (3) and (4),

respectively. The Lagrangian subproblem decomposes into |K|+ 1 subproblems: |K| shortest path

subproblems, PkSP (α,β), one for each commodity k ∈K, in the base layer, and a subproblem that
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depends only on the design variables, called the design subproblem and denoted PD (α,β). The cost

of each arc a∈A1 in each shortest path subproblem PkSP (α,β), k ∈K, is given by:

cka1 +
∑
l∈L

∑
b∈F l

a1

(
αbl +βkbl

)
≥ 0, (12)

where F l
a1 =

{
b∈Al|a∈Bbl

1

}
. The shortest path subproblems are solved using Dijkstra algorithm.

The design subproblem is as follows:

(PD (α,β)) ZPD(α,β) = min
∑
l∈L

∑
a∈Al

(
fal−αalual−

∑
k∈K

βkald
k
al

)
yal (13)

s.t. (5) , (6), (8)

Before commenting on how we solve the design subproblem, we first ask ourselves whether or

not it has the integrality property (Geoffrion, 1974), i.e., if its LP relaxation always has an integral

optimal solution.

Proposition 1. The design subproblem does not have the integrality property.

Proof. We define an instance with two layers where all design capacities are equal to 1. Then, the

upward design linking constraints (6) are redundant for the LP relaxation of the design subproblem.

Further, we assume that all design costs on layer l = 2 are equal to 0. As a result, all design

variables for layer l = 2 assume value 1 in an optimal solution of the LP relaxation of the design

subproblem. The resulting LP relaxation of the design subproblem reduces to the LP relaxation of

the well-known set packing problem, which has fractional optimal solutions (Padberg, 1973). �

Corollary 1.

ZLD = max
α,β≥0

ZLR(α,β)≥ZLP ,

where ZLP is the optimal value of the LP relaxation. There are instances where the inequality is

strict.

This result illustrates a significant difference between the single-layer MCFND and the MSM-

CFND: when we relax the capacity and the strong linking contraints in the MCFND, the Lagrangian

subproblem has the integrality property and the Lagrangian dual bound ZLD is equal to the LP

relaxation lower bound ZLP (Crainic et al., 2001).

In Section 4, where we describe the subgradient method for solving the Lagrangian dual, we see

that the design subproblem is rarely solved to optimality: either we solve its LP relaxation or we

use a state-of-the-art MIP solver as a heuristic. In both cases, the design subproblem produces a

design solution, which can be fractional when solving the LP relaxation, but is necessarily integral

when using a MIP solver in a heuristic fashion. Note that, this approach allows us to keep the

Lagrangian subproblem tractable, but might result in a lower bound that is inferior to ZLP , even

for instances where ZLD >ZLP .
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3.2. Computing Upper Bounds through Slope Scaling

To obtain upper bounds, we develop a primal heuristic based on a slope scaling procedure, which is

repetitively called during the subgradient method described in Section 4. The following multilayer

multicommodity capacitated network flow problem (MMCNF) is solved at each iteration of the slope

scaling procedure:

min
∑
a∈A1

∑
k∈K

cka1x
k
a1 (14)

s.t. (2), (7) and∑
k∈K

∑
b∈Bal

1

xkb1 ≤ ual ∀l ∈L, ∀a∈Al, (15)

where the linearized costs c̄ are initialized, as follows, based on an input design solution ŷ (fractional

or integral) of the design subproblem obtained when performing the subgradient method:

cka1 = (cka1 + ρ0a1)(1 +M(1− ŷa1)) ∀a∈A1,∀k ∈K, (16)

where ρ0a1 =
∑

l∈L
∑

b∈F l
a1
fbl/ubl, and M is a large positive value to avoid routing on the closed

arcs. When ŷa1 = 1, a ∈ A1, the costs of the corresponding arcs are equal to the costs in the LP

relaxation of the model obtained from the MSMCFND by removing constraints (4)-(6). If ŷa1 = 0,

a ∈A1, then the costs are set to large positive values to avoid any flow on the corresponding arc.

Note that, even if ŷa1 is fractional, formula (16) can still be used: arcs with small fractional values

are then assigned large costs.

After solving the MMCNF, a flow solution x is obtained and the linearized costs are updated

using the following equation to trigger the next iteration:

cka1 =

{
cka1 + ρa1 if xka1 > 0
cka1 if xka1 = 0

∀a∈A1,∀k ∈K, (17)

where ρa1 = (
∑

l∈L
∑

b∈F l
a1
fbl)/

∑
k∈K x

k
a1. When xka1 is positive, this equation ensures that, at the

next iteration, if the flow solution remains the same, the cost on each arc is equal to the fixed

design cost plus the sum of the flow variable costs. If xka1 = 0, we keep the same cost because it is

large enough to avoid any flow. The termination condition of the slope scaling procedure is either

to obtain the same objective value for two successive iterations, as suggested in Kim and Pardalos

(1999), or to reach a predefined maximum number of slope scaling iterations itsmax.

At each slope scaling iteration, a feasible solution might be produced for the MSMCFND. Given

the flow solution x, a design solution y is obtained using the following rule:

yal =

{
1 if

∑
k∈K

∑
b∈Bal

1
xkb1 > 0

0 otherwise
(18)
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When the obtained design solution is feasible, i.e., it satisfies the design capacity constraints (5),

then an upper bound is found for the original problem.

At the end of the slope scaling procedure, an intensification step is performed using up to n of

the best feasible solutions obtained during the procedure, where n is a parameter typically set to a

small value (less than 10). For each of these feasible solutions, a restricted MMCNF is created by:

1) fixing the design variables to their values in the solution, and 2) setting the costs to the original

flow variable costs. The resulting MMCNF is solved in order to obtain an optimal flow distribution

when the design variables are fixed.

If the initial MMCNF yields a feasible solution to the MSMCFND, the slope scaling procedure

proceeds as described above. If, however, this is not the case, we solve the following auxiliary design

subproblem to obtain a feasible solution:

min
∑
l∈L

∑
a∈Âl

falyal (19)

s.t. (2), (3), (5), (7), (8),

where Âl = {a∈A|ŷal = 0}. The solution to this auxiliary design subproblem is used as input design

solution ŷ, and the linearized costs are re-initialized using formula (16). The objective of the auxil-

iary design subproblem is to select a minimum cost design among the closed arcs of the initial design

solution ŷ in such a way that all the constraints that define a feasible solution to the MSMCFND

are satisfied. Note that the redundant constraints (4) and (6) are removed in the formulation of

the auxiliary design subproblem. Since the resulting model has no commodity-dependent costs and

capacities, we can reduce the number of commodities by aggregating the commodities with the

same origin into a single commodity. This significantly reduces the computational complexity of

solving the auxiliary design subproblem. Besides, we stop solving the auxiliary design subproblem

after finding the very first feasible solution. Note that, solving the auxiliary design subproblem

only guarantees the feasibility at the first iteration of the slope scaling procedure, but not at every

iteration.

We provide a pseudo code for the primal heuristic in Algorithm 1. When a new upper bound is

found, the best upper bound found so far (since the beginning of the subgradient method), UBbest,

is updated if it is improved by the current solution. We also define the set of m best feasible

solutions found so far, F , which is updated whenever a new solution is found, where m is a large

value (we use 1000 in our experiments). The set F is a long-term memory that will be used for

further improvements described in details in the next section.
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Algorithm 1: Primal heuristic

1: Input design solution ŷ
2: Initialize the linearized costs of MMCNF problem using ŷ and formula (16)
3: Solve MMCNF problem → x, y
4: if y is feasible then
5: Compute upper bound
6: Update UBbest and feasible solution set F
7: else
8: Solve auxiliary design subproblem → ŷ
9: Re-initialize the linearized costs of MMCNF problem using ŷ and formula (16)

10: Solve MMCNF problem → x, y
11: end if
12: repeat
13: Update objective function of MMCNF problem using x and formula (17)
14: Solve MMCNF problem → x, y
15: if y is feasible then
16: Compute upper bound
17: Update UBbest and feasible solution set F
18: end if
19: until the number of iterations is less than itsmax and slope scaling does not stall
20: Perform intensification

4. The Lagrangian-Based Matheuristic

The proposed algorithm consists of three main phases: 1) initialization, where the LP relax-

ation of the original problem, PLP , is solved to initialize the Lagrange multipliers; 2) Lagrangian

phase, including a subgradient procedure to find lower bounds and the primal heuristic empowered

by intensification and diversification procedures to obtain upper bounds; 3) post-optimization,

where a restricted MIP problem, PPO, is solved to improve the upper bounds. The algorithm is

equipped by long and short term memories storing specific information obtained during the algo-

rithm execution to run the post-optimization phase as well as the intensification and diversification

procedures. In the following subsections, 4.1 to 4.3, we describe the three phases of the algorithm.

Subsection 4.4 summarizes the algorithm.

4.1. Initialization Phase

The first step in the initialization phase is to solve PLP , the LP relaxation of the MSMCFND

formulation (1)-(8), by a cutting plane method performed for a limited time tLP , where the violated

strong linking constraints (4) are added iteratively to the model. Solving PLP helps to obtain

good initial Lagrange multipliers and lower bound. The Lagrange multipliers are initialized to the

values of the dual variables associated to constraints (3) and (4). Note that, some of the strong

linking constraints do not appear in the final LP relaxation of the cutting plane procedure. For

these constraints, we initialize the corresponding Lagrange multipliers to zero. Preliminary tests

show that adding the upward design linking constraints (6) increases significantly the complexity
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of the LP relaxations. Therefore, taking into account the limited time to perform the cutting plane

method, these constraints are not added to the LP relaxation.

In the next step of the initialization phase, a graph traversal algorithm, presented in Chouman

et al. (2017), is performed to reduce the size of the shortest path subproblems. Starting from

each node, the algorithm traverses the network twice, a forward and a backward traversal, to find

the arcs that are reachable for each commodity, i.e., the arcs that belong to at least one path

between the origin and the destination of each commodity. We then restrict the network of each

shortest path subproblem to these reachable arcs, thus significantly improving the computational

complexity of the shortest path computations.

At the end of the initialization phase, a slope scaling procedure is called using the final design

solution of PLP as the input design solution ŷ. The goal is to obtain an initial upper bound to be

used in the subgradient method described in the next subsection.

4.2. Lagrangian Phase

The Lagrangian dual takes the form of a non-differentiable optimization problem:

ZLD = max
µ≥0

ZLR (µ) , (20)

where µ= (α,β). We solve the Lagrangian dual with a subgradient method. At each iteration i of

the subgradient method, the current point, µi, is moved to a new point, µi+1, using the formula

µi+1 = µi + tidi, where di and ti are the direction and the step size, respectively. The following

formula is used to compute the direction:

di = gi + θidi−1, (21)

where gi is a subgradient and θi ∈ (0,1) is a parameter adjusted by the following modified Camerini-

Fratta-Maffioli rule (Camerini et al., 1975):

θi =

{
||gi||/||di−1|| if gidi−1 < 0
0 otherwise

(22)

This rule is suggested in Crainic et al. (2001) for a subgradient method when the capacity

and strong linking constraints are relaxed in the MCFND problem. It is also recommended in

Crainic et al. (2001) to project the direction di in equation (21), meaning to set to 0 the negative

components of di. In our preliminary tests, the suggested modified Camerini-Fratta-Maffioli rule

worked well, while the results were not promising when we projected the direction in equation (21).

Therefore, in our final implementation, we use the modified Camerini-Fratta-Maffioli rule without

projecting the direction.
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The step size is computed using the following formula:

ti = λi
(
ZeDL−ZLR

(
µi
))
/gidi, (23)

where ZeDL is an estimation of the value of ZDL, and λi is a scaling factor.

The performance of a subgradient method depends on the values of its parameters, in particular,

λi and ZeDL (Crainic et al., 2001). The parameter λi is initialized to λ0 and is divided by a parameter

γ1 (typically, 2), whenever LBbest (the best known lower bound) is not improved for γ2 consecutive

iterations. The minimum value of λi is restricted to λmin. In our algorithm, ZeDL is initially set to

the upper bound provided by the slope scaling step of the initialization phase and is updated to

the best upper bound found so far by the primal heuristic, UBbest. The subgradient procedure is

limited to a maximum number of iterations γ3. For more details on the subgradient method see

Crainic et al. (2001).

The subgradient method follows a three-phase approach when handling the design subproblem.

During the first phase, performed for a limited number of subgradient iterations, itph1max, the LP

relaxation of PD(α,β) is solved by a cutting-plane method, where the upward design linking con-

straints (6) are added iteratively. During this phase, at the beginning of any given iteration of the

subgradient method, the design subproblem has the current set of added cuts, and only the costs

are modified. Therefore, we run the primal simplex, because the initial primal basis is feasible,

only the optimality must be achieved. When we enter the cutting-plane procedure, we switch to

the dual simplex, because the basis is optimal or dual feasible, only the primal feasibility must

be reached. During the second phase, performed for a limited number of subgradient iterations,

itph2max, the root node of the branch-and-bound tree of the IP design subproblem is solved. At the

beginning of phase 2, the final LP formulation of the first phase (including all the cuts added so

far) is converted to an IP model. Finally, during the third phase, performed for a limited number

of subgradient iterations, itph3max, the IP design subproblem is solved. The solution time of each IP

problem is restricted to a time limit, tDes. Since we care about the quality of the lower bound, we

force the branch-and-bound tree to emphasize the search on finding the best lower bound. After

solving the Lagrangian subproblems, a lower bound is computed for the original problem, and the

best lower bound found so far, LBbest, is updated, if a better lower bound is found.

At each iteration of the subgradient method, when a new design solution is obtained from the

design subproblem, the primal heuristic step is triggered using as input the solution ŷ of the design

subproblem if: 1) the frequency of the total number of the subgradient iterations is equal to a

predefined number, frprim, or 2) the lower bound has improved significantly since the last time the

primal heuristic was called. The improvement is considered to be significant if (LBc−LBl)/LBl >

A Lagrangian-Based Matheuristic for Multilayer Single Flow-Type Multicommodity Capacitated Fixed-Charge Network Design

12 CIRRELT-2018-37



δd, where δd is a parameter (set to 1%) and LBc and LBl are, respectively, the lower bound

computed at the current iteration and the lower bound obtained the last time the primal heuristic

was triggered.

At the end of each execution of the primal heuristic procedure, in addition to the intensification

step described in Section 3.2, a diversification step is performed if the algorithm is not able to

improve the upper bound for a predefined maximum number of primal heuristic steps, stpmax,

where a primal heuristic step is a complete slope scaling procedure with intensification. The idea

of diversification is to avoid selecting the arcs that frequently appeared in the obtained feasible

solutions. The design solution of the best upper bound found so far is considered to initialize the

linearized cost of formula (16) where a huge linearized cost is assigned not only to the closed arcs

but also to a small set of arcs (set to 10) selected randomly from the most frequently opened ones

in a percentage (set to 90%) of the obtained feasible solutions so far. Then, a new slope scaling

procedure is triggered using the new initial linearized costs. The selected arcs are marked to avoid

choosing them again in the next diversification step. Therefore, at each diversification step, a new

set of the most frequently opened arcs are penalized. We restrict the total number of slope scaling

steps in each diversification procedure and the total number of diversification steps to itdmax and

stdmax, respectively.

Three different termination conditions are considered to stop the Lagrangian phase: 1) if the

procedure elapsed time reaches a predefined time limit tLag, 2) if the subgradient norm is less than

ε, and 3) if the total number of the subgradient iterations reaches a predefined number itLag. At

the end of the subgradient procedure, a slope scaling step is called using the design solution of the

best obtained lower bound found so far in the hope of finding a better upper bound.

4.3. Post-Optimization Phase

At the end of the algorithm, a post-optimization phase is performed by solving a restricted MIP

problem, PPO, for a limited time tPostOpt. To build the restricted MIP, we use a number of elite

solutions, the feasible solutions selected from the long term memory, F , with less than δp% gap

from the best known feasible solution. The design variables that are closed in all the elite solutions

are fixed to 0. A simple iterative procedure is performed to set δp% in such a way that at least f%

of the design variables are set to 0 in the restricted MIP. At the beginning of the procedure, all

the solutions of F are selected as elite. If the percentage of the fixed variables is more than f%,

then the desired percentage is obtained; otherwise, a new set of elite solutions is built by removing

the worst solution from the elite solutions until the percentage falls into the desired range. Since

there is a huge number of arcs in large-scale MSMCFND instances, in our tests, we set f to a large

number (96%) to make the restricted MIP problem tractable.
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4.4. Summary

The algorithm is presented in Algorithm 2, which starts with an initialization phase where PLP
is solved, and the Lagrange multipliers are initialized to the obtained dual values. In this phase,

a graph traversal algorithm reduces the size of the shortest-path subproblems. At the end of

initialization phase, a slope scaling procedure is triggered using the final design solution of the

cutting plane PLP as the input design solution ŷ.

In the Lagrangian phase, we use a subgradient method to solve the Lagrangian dual. At each

iteration, Dijkstra algorithm is used to solve the shortest path subproblems. The subgradient

method follows a three-phase approach when handling the design subproblem. The algorithm finds

a lower bound at each iteration of the subgradient method. Using the obtained solution of the

design subproblem, the slope scaling heuristic, which is empowered by the intensification and

diversification procedures, finds feasible solutions. At each subgradient iteration, the best obtained

upper bound is used in the subgradient procedure to define a better search direction.

At the end of the subgradient procedure, another slope scaling step is performed using the

design solution of the best known lower bound. At the end of the algorithm, the post-optimization

phase improves the upper bound using the elite solutions stored in a long-term memory during the

algorithm.

5. Experimental Results

In this section, we present the set of randomly generated instances used to test the performance of

our algorithm. Then, we describe how we have adjusted the parameters of the algorithm. Finally,

we analyze the results of the experiments.

5.1. Instances

To generate the instances, we use a time-space network structure in which the physical nodes

(terminals) are repeated for each time period to represent the time dependency. A node in such

a network represents a terminal in a specific time period, and each arc represents a transfer from

a terminal in a time period to either the same or a different terminal in another time period, see

Zhu et al. (2014) for more details.

To generate the instances, let S = {1,2, ..., |S|} and T = {1,2, ..., |T |} be a set of terminals and a

set of time periods, respectively. Then, the set of nodes is N = {1,2, ..., |S| × |T |} where each node

i∈N corresponds to terminal s= di/|T |e and time period t= ((i− 1) mod |T |) + 1. For layer |L|,

an arc is generated between each pair of nodes (i ∈ N,j ∈ N) if the corresponding time period

of i is less than the corresponding time period of j. In other words, we generate an arc from a

terminal in a time period to either the same terminal or another terminal in a future time period.

The next layers (layer |L| − 1 to 1) are built by finding at most 50 paths between each pair of
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Algorithm 2: Lagrangian-based matheuristic for MSMCFND

1: Solve PLP → ŷ
2: Initialize Lagrange multipliers
3: Run primal heuristic using ŷ
4: it= 0
5: repeat
6: if it < itph1max then
7: solve LP relaxation of PD→ ŷ
8: else if it < itph2max then
9: solve root node of IP PD→ ŷ

10: else
11: solve IP PD for a limited time → ŷ
12: end if
13: Solve Pk

SP for each commodity k ∈K
14: Compute lower bound
15: Update LBbest → y
16: if ŷ is new and the frequency of the number of iterations is equal to frprim then
17: Run primal heuristic using ŷ
18: if number of non-improvement iterations in upper bound is greater than stpmax then
19: Perform diversification
20: end if
21: end if
22: Update Lagrange multipliers
23: it= it+ 1
24: until one of the termination conditions is met
25: Run primal heuristic using y
26: Run post-optimization by solving PPO

Table 1 Instances

Number of Instances |L| |A| |S| |T | |N | |K|
MLTS1 32 2 20612-30664 8,10 7 56,70 100,200
MLTS2 32 3 42768-64162 8,10 7 56,70 100,200

nodes of the upper layer. We set flow capacity, design capacity, and fixed cost of the arcs randomly.

The origins, the destinations and the demands of the commodities are also selected randomly. A

random origin-destination pair (o ∈ N,d ∈ N) is selected as the origin and the destination of a

commodity if the corresponding time period of o is less than the one of d.

Two different sets of instances are generated randomly using the above instance generator pro-

cedure: MLTS1 (MLTS stands for MultiLayer Time-Space) and MLTS2 with two and three layers,

respectively. Table 1 summarizes the characteristics of the instances. |L|, |A|, |S|, |T |, |N |, and |K|

are the number of layers, number of arcs, number of terminals, number of time periods, number

of nodes, and number of commodities, respectively. Note that in our instances, the flow variable

costs are the same for all commodities on a particular arc. Therefore, it is possible to aggregate

the commodities whose origins are the same into a single commodity to accelerate the solution of

the MMCNF problem of the primal heuristic.
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5.2. Parameter Setting

We use a two-phase parameter setting strategy to calibrate the parameters. In the first and second

phases, we set the subgradient and the primal heuristic parameters, respectively. Tables 2 and

3 display the tested values of the parameters for each phase. We choose 20% of the instances

randomly for the parameter setting process.

As mentioned before, the performance of the subgradient method depends on its parameters, the

most critical being λi, which is adjusted based on the parameters γ1, γ2 and λ0. To find the best

values of the important parameters (Table 2), we fix all the parameters, change one parameter at

a time, and select the value that produces better results on average for all the test instances. In

Table 2, the selected values are shown in bold. We set the values of the less-important parameters,

as suggested in Crainic et al. (2001) to: ε= 10−7 and λmin = 10−3. We set the maximum number

of total subgradient iterations to a large value (γ3 = 3000). The value of itph3max is then equal to

γ3− (itph2max + itph3max).

Table 2 Values of parameters tested for subgradient method

Name Description Tested Values
tLP time limit on solving cutting plane PLP (minutes) 3, 4, 5, 6, 7, 8, 9
tDes time limit on solving design subproblem (minutes) 0.5, 1, 5, 10
γ1 parameter to change λi 1.5, 2, 2.5, 3, 3.5
γ2 maximum number of non improvement iterations in lower bound 20, 40, 60, 80, 100, 120
λ0 initial value of subgradient scaling factor (λi) 1, 1.5, 2
itph1max number of subgradient iterations to solve LP PD 5%, 10%, 20%, 30% of γ3
itph2max number of subgradient iterations to solve PD in root node 5%, 10%, 20%, 30% of γ3

Table 3 shows the values that are tested to set the parameters of the primal heuristic. We use

the same strategy as for the subgradient procedure: we fix all the parameters, change one of them

at a time, and select the best value. The table shows the selected values in bold. Some of the

parameters of the primal heuristic can be set initially without testing different values. tPostOpt is

determined based on two previous timing parameters, tLP and tLag. The big M parameter has to

be large enough to ensure not to select the design variables that have value zero in the design

subproblem solution, and can be obtained using the following formula:

M = 10×
maxl∈L,a∈Al

{fal}
minl∈L,a∈Al

{fal}
(24)

5.3. Upper Bound Analysis

The proposed Lagrangian heuristic is evaluated using MLTS1 and MLTS2 instances. We compare

the results of the proposed algorithm to those obtained by CPLEX 12.6. We add our proposed

preprocessing procedure before starting the CPLEX solver. We also consider different scenarios to
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Table 3 Values of parameters tested for the primal heuristic

Name Description Tested Values
frprim primal heuristic frequency 5, 10, 15, 20, 25
tLag time limit on Lagrangian procedure including subgradient and primal heuristic (hours) 5, 6, 7, 8
itsmax maximum number of slope scaling iterations in each primal heuristic step 10, 15, 20
n number of intensification iterations 1, 4, 8
stpmax maximum number of primal heuristic steps with no improvement in upper bound 3, 5, 8, 10
itdmax total number of iterations in each diversification procedure 5, 10, 15, 20
stdmax total number of diversification steps 1, 3, 4, 5

Table 4 CPLEX and the proposed algorithm comparison for MLTS1 or 2-layer instances.

Optimality Gap % LB/UB Gap %

# (|A1|, |A2|, |N |, |K|, FCTI, DCTI, CDI) T(sec) GapCUB
CLB GapLUB

LLB GapCLB
LLB GapCUB

LUB

1 (19952,660, 56, 100, L, L, F) 13055.5 6.82 17.27 10.79 0.48
2 (19952,660, 56, 100, L, L, V) 26895.6 15.90 18.76 7.57 -4.32
3 (19952,660, 56, 100, L, T, F) 14321.6 13.93 20.84 9.53 -1.64
4 (19952,660, 56, 100, L, T, V) Limit 11.22 15.86 4.67 0.59
5 (19952,660, 56, 100, T, L, F) Limit 16.01 19.32 6.94 -3.12
6 (19952,660, 56, 100, T, L, V) Limit 14.27 16.05 6.30 -4.31
7 (19952,660, 56, 100, T, T, F) Limit 16.40 21.73 9.84 -3.69
8 (19952,660, 56, 100, T, T, V) Limit 16.22 16.36 3.51 -3.35
9 (19952,660, 56, 200, L, L, F) 34545.7 26.55 25.02 9.12 -10.98

10 (19952,660, 56, 200, L, L, V) Limit 75.52 19.70 7.44 -71.78
11 (19952,660, 56, 200, L, T, F) Limit 83.65 32.25 13.78 -79.20
12 (19952,660, 56, 200, L, T, V) Limit 20.32 21.22 6.74 -5.68
13 (19952,660, 56, 200, T, L, F) Limit 22.48 19.34 4.85 -8.55
14 (19952,660, 56, 200, T, L, V) Limit 26.34 18.82 4.91 -13.72
15 (19952,660, 56, 200, T, T, F) Limit 73.67 20.22 3.57 -68.17
16 (19952,660, 56, 200, T, T, V) Limit 76.87 23.52 6.21 -71.63
17 (29794,870, 70, 100, L, L, F) 31989.3 9.83 16.90 9.10 -1.36
18 (29794,870, 70, 100, L, L, V) 32681.7 6.97 12.46 7.35 -1.53
19 (29794,870, 70, 100, L, T, F) Limit 5.94 13.78 8.29 0.05
20 (29794,870, 70, 100, L, T, V) 25351.6 5.97 10.00 5.56 -1.34
21 (29794,870, 70, 100, T, L, F) Limit 8.05 16.22 8.36 0.57
22 (29794,870, 70, 100, T, L, V) Limit 15.59 18.32 7.01 -3.90
23 (29794,870, 70, 100, T, T, F) Limit 10.49 15.45 6.68 -1.21
24 (29794,870, 70, 100, T, T, V) Limit 14.27 17.18 6.91 -3.65
25 (29794,870, 70, 200, L, L, F) Limit 95.63 27.31 13.07 -94.78
26 (29794,870, 70, 200, L, L, V) Limit 94.85 15.23 6.61 -94.33
27 (29794,870, 70, 200, L, T, F) Limit 95.86 21.33 8.04 -95.17
28 (29794,870, 70, 200, L, T, V) Limit 94.59 20.43 5.36 -93.57
29 (29794,870, 70, 200, T, L, F) Limit 29.50 24.91 11.16 -16.59
30 (29794,870, 70, 200, T, L, V) Limit 94.35 14.90 6.15 -93.77
31 (29794,870, 70, 200, T, T, F) Limit 79.41 22.93 8.71 -75.61
32 (29794,870, 70, 200, T, T, V) Limit 68.40 17.30 6.67 -64.34

Average 38.93 19.09 7.52 -30.93
Minimum 5.94 10.00 3.51 -95.17
Maximum 95.86 32.25 13.78 0.59

determine whether it is suitable to add the strong linking constraints (4) and the upward design

linking constraints (6) to the model of CPLEX or not. The tested scenarios includes adding each set
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Table 5 CPLEX and the proposed algorithm comparison for MLTS2 or 3-layer instances.

Optimality Gap % LB/UB Gap %

# (|A1|, |A2|, |A3|, |N |, |K|, FCTI, DCTI, CDI) T(sec) GapCUB
CLB GapLUB

LLB GapCLB
LLB GapCUB

LUB

33 (22156,19952, 660, 56, 100, L, L, F) Limit 19.57 20.00 6.09 -5.58
34 (22156,19952, 660, 56, 100, L, L, V) Limit 29.57 24.57 7.75 -13.87
35 (22156,19952, 660, 56, 100, L, T, F) Limit 26.84 22.68 5.53 -10.62
36 (22156,19952, 660, 56, 100, L, T, V) Limit 12.53 18.34 6.27 0.40
37 (22156,19952, 660, 56, 100, T, L, F) Limit 21.73 15.95 5.49 -11.98
38 (22156,19952, 660, 56, 100, T, L, V) Limit 20.92 17.17 4.62 -8.94
39 (22156,19952, 660, 56, 100, T, T, F) Limit 23.52 16.76 5.27 -12.96
40 (22156,19952, 660, 56, 100, T, T, V) Limit 21.24 12.87 4.66 -13.81
41 (22156,19952, 660, 56, 200, L, L, F) Limit 98.32 22.76 4.30 -97.91
42 (22156,19952, 660, 56, 200, L, L, V) Limit 97.96 21.03 2.86 -97.49
43 (22156,19952, 660, 56, 200, L, T, F) Limit 98.13 22.12 4.65 -97.71
44 (22156,19952, 660, 56, 200, L, T, V) Limit 97.90 21.92 3.41 -97.41
45 (22156,19952, 660, 56, 200, T, L, F) Limit 97.66 18.15 3.64 -97.24
46 (22156,19952, 660, 56, 200, T, L, V) Limit 72.96 17.85 3.62 -68.28
47 (22156,19952, 660, 56, 200, T, T, F) Limit 97.60 20.17 4.81 -97.13
48 (22156,19952, 660, 56, 200, T, T, V) Limit 66.11 18.94 4.06 -59.88
49 (33498,29794, 870, 70, 100, L, L, F) Limit 22.30 26.30 11.40 -6.59
50 (33498,29794, 870, 70, 100, L, L, V) Limit 15.19 22.67 11.58 -3.02
51 (33498,29794, 870, 70, 100, L, T, F) Limit 21.70 31.26 11.66 0.64
52 (33498,29794, 870, 70, 100, L, T, V) Limit 18.46 20.16 7.89 -5.93
53 (33498,29794, 870, 70, 100, T, L, F) Limit 19.92 20.06 7.61 -7.45
54 (33498,29794, 870, 70, 100, T, L, V) Limit 9.57 13.52 6.00 -1.71
55 (33498,29794, 870, 70, 100, T, T, F) Limit 22.48 17.54 6.44 -12.05
56 (33498,29794, 870, 70, 100, T, T, V) Limit 34.98 18.45 6.72 -25.63
57 (33498,29794, 870, 70, 200, L, L, F) Limit 98.53 36.89 16.18 -98.05
58 (33498,29794, 870, 70, 200, L, L, V) Limit 98.32 27.39 10.97 -97.94
59 (33498,29794, 870, 70, 200, L, T, F) Limit 98.32 28.85 13.06 -97.95
60 (33498,29794, 870, 70, 200, L, T, V) Limit 98.33 29.68 13.99 -97.95
61 (33498,29794, 870, 70, 200, T, L, F) Limit 61.31 22.58 6.87 -53.46
62 (33498,29794, 870, 70, 200, T, L, V) Limit 64.62 20.52 6.36 -58.32
63 (33498,29794, 870, 70, 200, T, T, F) Limit 61.60 24.01 6.28 -52.64
64 (33498,29794, 870, 70, 200, T, T, V) Limit 71.23 23.47 9.51 -65.98

Average 53.73 21.71 7.17 -46.08
Minimum 9.57 12.87 2.86 -98.05
Maximum 98.53 36.89 16.18 0.64

of these constraints to the model of CPLEX: 1) a priori, 2) as “user cuts”, 3) as “lazy constraints”,

and 4) using cut callback functions of CPLEX. The tests show that the best case for CPLEX is

not to add any of the upward design linking constraints but to add strong linking constraints as

“user cuts” to the model.

The results are summarized in Tables 4 and 5 for MLTS1 and MLTS2 instances. We fix the total

time limit to 10 hours for CPLEX and for the proposed algorithm. The second column in these

tables shows the characteristics of the instances:

• |Al|: number of arcs in layer l;

• |N |: number of nodes;

A Lagrangian-Based Matheuristic for Multilayer Single Flow-Type Multicommodity Capacitated Fixed-Charge Network Design

18 CIRRELT-2018-37



• |K|: number of commodities;

• FCTI: Flow Capacity Tightness Index defined as the flow capacity average,

(
∑

l∈L
∑

a∈Al
ual)/|A|, divided by the total demand,

∑
k∈K d

k, L stands for loose flow capacity

(FCTI ≥ 0.05), while T refers to tight flow capacity (FCTI < 0.05);

• DCTI: Design Capacity Tightness Index defined as the design capacity average,

(
∑

l∈L,l≥2
∑

a∈Al
val)/(|A|− |A1|), divided by Bal

ave =
∑

l∈L,l≥2
∑

a∈Al
|Bal|/(|A|− |A1|), L stands for

loose design capacity (DCTI ≥ 0.3), while T refers to tight design capacity (DCTI < 0.3);

• CDI: Cost Dominance Index defined as the variable flow cost average, (
∑

k∈K
∑

a∈A1
cka1)/|A1|,

divided by the design cost average, (
∑

l∈L
∑

a∈Al
fal)/|A|, F refers to the cases where the fixed

costs are predominant relatively to the variable costs (CDI < 0.01), and V means the reverse (CDI

≥ 0.01).

The column T(sec) is the total run time of the proposed algorithm. CPLEX was not able to

converge to optimality on any of the instances in 10 hours (time limit). Therefore, the run times

of CPLEX are not reported in these tables (CPLEX run time is 10h). Let CUB and CLB be

the upper and lower bounds obtained by CPLEX, respectively. Let also LUB and LLB be the

upper and lower bounds obtained by the proposed algorithm, respectively. Columns GapCUB
CLB =

100 × (CUB − CLB)/CUB and GapLUB
LLB = 100 × (LUB − LLB)/LUB are the percentages of the

optimality gaps reported by CPLEX and the proposed algorithm, respectively. Column GapCLB
LLB =

100× (CLB− LLB)/LLB is the percentage of the gap between the lower bound of the CPLEX

and the obtained lower bound of the algorithm. Column GapLUB
CUB = 100× (LUB−CUB)/CUB is

the percentage of the gap between the upper bound of CPLEX and the upper bound obtained by

the algorithm. A negative value indicates that the Lagrangian-based matheuristic method found a

better feasible solution than CPLEX.

The results show that the algorithm is better than CPLEX in almost all the instances (90%)

in terms of the upper bounds (last column of Tables 4 and 5). The averages of the improvements

in the upper bounds are 30.93% and 46.08% for MLTS1 and MLTS2 instances, respectively. The

algorithm improves the upper bounds by more than 10% in 57% of the instances.

The proposed algorithm finds better optimality gaps than CPLEX in 60% of the instances (bold

optimality gaps in column GapLUB
LLB ). The goal of the proposed algorithm, as a matheuristic, is

to find high-quality upper bounds. However, one of the advantages of this algorithm is that it

also computes lower bounds. The obtained lower bounds enable us to evaluate the quality of the

obtained upper bounds, particularly for the instances where CPLEX ends up with more than 90%

optimality gap.

Table 6 shows the analysis of the performance of the algorithm according to the number of layers,

number of arcs and number of commodities. The table shows that the complexity of the instances
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increases when increasing the number of layers, the number of arcs, the number of nodes and,

even more significantly, the number of commodities. The algorithm improves the upper bound up

to 71.66% in average for the instances with 200 commodities, while the average is 5.34% for the

instances with 100 commodities.

Table 6 Performance analysis of the proposed algorithm in terms of |K|, |L|, |A| and |N |.

|K| |L| |A| |N |
100 200 2 3 20612 30664 42768 64162 56 70

GapLUB
CUB Average -5.34 -71.66 -30.93 -46.08 -21.82 -40.03 -49.40 -42.75 -35.61 -41.39

5.4. Lower Bound Analysis

Tables 7 and 8 show the lower bound analysis of the proposed Lagrangian relaxation for MLTS1

and MLTS2 instances, respectively. Column “Lag Time” shows the elapsed time of the bound-

ing procedure including the initialization phase and the subgradient method without the primal

heuristic and the post optimization phase. Column “Strong LP” shows 1) the elapsed time of the

strong LP relaxation solved by CPLEX where the the strong linking constraints (4) and the upward

design linking constraints (6) are added a priori to the model, and 2) the obtained Lagrangian LB

gap to the strong LP lower bound. Column “Root Node” presents 1) the elapsed time of the root

node of a branch-and-bound algorithm solved by CPLEX, and 2) the obtained Lagrangian LB gap

to the root node lower bound.

For the “Strong LP” case, we also tested a cutting plane approach where inequalities (4) and (6)

are added iteratively. The elapsed time of the cutting plane approach is much worse than the “a

priori” approach. For the “Root Node” case, we turn off the heuristic of CPLEX but allow other

possible valid inequalities to be added to the model. We introduce strong inequalities as “user

cuts” to the root node of CPLEX. We do not add the upward design linking constraints because it

takes a long time (more than 10 hours) to add them as user cuts. When CPLEX adds some other

cuts in the root note, the results can be better than the strong LP. However, since CPLEX is not

adding all the strong inequalities, as well as the upward linking constraints, it is possible that the

root lower bound of CPLEX is worse than the strong LP lower bound.

Although the lower bounds of the subgradient procedure are around 6% away, on average, from

the lower bounds of the strong LP, its average elapsed time is much less. The average elapsed time

of the subgradient process for MLTS2 instances, for example, is 1 hour and 2 minutes while it is

10 hours and 2 hours for the strong LP and the root node, respectively. The standard deviation

of the elapsed time is also much less than those of the strong LP and the root node. For MLTS2

instances, the elapsed time of the subgradient procedure varies from 36 to 120 minutes, with
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Table 7 Lower bound analysis: comparing proposed Lagrangian to CPLEX root node and strong LP for MLTS1.

Strong LP Root Node

# (|A1|, |A2|, |N |, |K|, FCTI, DCTI, CDI) Lag Time Lag gap Time Lag gap Time

1 (19952,660, 56, 100, L, L, F) 0h 14m 9.08 0h 35m 8.92 0h 11m
2 (19952,660, 56, 100, L, L, V) 0h 14m 8.38 0h 31m 8.28 0h 30m
3 (19952,660, 56, 100, L, T, F) 0h 14m 8.59 0h 21m 8.53 0h 11m
4 (19952,660, 56, 100, L, T, V) 0h 14m 4.00 0h 20m 3.83 0h 21m
5 (19952,660, 56, 100, T, L, F) 0h 14m 5.12 0h 40m 5.07 0h 7m
6 (19952,660, 56, 100, T, L, V) 0h 14m 5.61 0h 25m 5.62 0h 8m
7 (19952,660, 56, 100, T, T, F) 0h 20m 7.79 0h 28m 7.77 0h 17m
8 (19952,660, 56, 100, T, T, V) 0h 20m 2.82 0h 21m 2.88 0h 11m
9 (19952,660, 56, 200, L, L, F) 0h 32m 6.00 5h 35m 5.91 0h 37m

10 (19952,660, 56, 200, L, L, V) 0h 31m 6.48 3h 38m 6.26 0h 37m
11 (19952,660, 56, 200, L, T, F) 0h 29m 6.99 5h 20m 6.83 1h 46m
12 (19952,660, 56, 200, L, T, V) 0h 19m 5.58 2h 27m 5.51 1h 5m
13 (19952,660, 56, 200, T, L, F) 0h 19m 4.48 3h 49m 4.49 0h 47m
14 (19952,660, 56, 200, T, L, V) 0h 19m 4.50 2h 31m 4.51 0h 43m
15 (19952,660, 56, 200, T, T, F) 0h 30m 3.13 4h 3m 3.19 0h 18m
16 (19952,660, 56, 200, T, T, V) 0h 19m 4.47 2h 13m 4.47 0h 25m
17 (29794,870, 70, 100, L, L, F) 0h 18m 7.91 0h 53m 7.75 0h 40m
18 (29794,870, 70, 100, L, L, V) 0h 29m 6.71 0h 33m 6.63 0h 47m
19 (29794,870, 70, 100, L, T, F) 0h 28m 5.42 0h 27m 5.21 0h 20m
20 (29794,870, 70, 100, L, T, V) 0h 29m 4.65 0h 22m 4.53 1h 24m
21 (29794,870, 70, 100, T, L, F) 0h 19m 7.87 0h 56m 7.81 0h 38m
22 (29794,870, 70, 100, T, L, V) 0h 20m 3.42 0h 31m 3.35 1h 12m
23 (29794,870, 70, 100, T, T, F) 0h 19m 5.41 0h 51m 5.29 0h 29m
24 (29794,870, 70, 100, T, T, V) 0h 19m 3.76 0h 32m 3.66 0h 38m
25 (29794,870, 70, 200, L, L, F) 0h 28m 8.41 3h 23m 8.23 0h 50m
26 (29794,870, 70, 200, L, L, V) 0h 27m 4.78 3h 57m 4.69 0h 48m
27 (29794,870, 70, 200, L, T, F) 0h 28m 5.54 4h 13m 5.40 1h 6m
28 (29794,870, 70, 200, L, T, V) 0h 28m 3.14 2h 47m 3.02 0h 59m
29 (29794,870, 70, 200, T, L, F) 0h 29m 8.64 7h 57m 8.62 1h 15m
30 (29794,870, 70, 200, T, L, V) 0h 26m 4.96 1h 33m 4.92 0h 56m
31 (29794,870, 70, 200, T, T, F) 0h 26m 7.53 3h 35m 7.54 0h 44m
32 (29794,870, 70, 200, T, T, V) 0h 27m 5.30 2h 13m 5.31 0h 57m

Average 0h 23m 5.83 2h 7m 5.75 0h 41m
Minimum 0h 14m 2.82 0h 20m 2.88 0h 7m
Maximum 0h 32m 9.08 7h 57m 8.92 1h 46m

Standard Deviation 0h 6m 1h 57m 0h 24m

standard deviation equal to 26 minutes, while it varies from 1 hour to 25 hours for CPLEX to

solve the strong LP, with standard deviation equal to 7 hours. Finding high-quality solutions is the

primary goal of this paper, but the proposed algorithm efficiently generates effective lower bounds

to evaluate the obtained feasible solutions.

6. Conclusions

We have proposed a general formulation for the MSMCFND as well as an efficient algorithm to

solve large-scale MSMCFND instances. The algorithm has been empowered by the preprocessing
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Table 8 Lower bound analysis: comparing proposed Lagrangian to CPLEX root node and strong LP for MLTS2.

Strong LP Root Node

# (|A1|, |A2|, |N |, |K|, FCTI, DCTI, CDI) Lag Time Lag gap Time Lag gap Time

33 (19952,660, 56, 100, L, L, F) 0h 36m 5.23 6h 27m 5.64 0h 32m
34 (19952,660, 56, 100, L, L, V) 0h 37m 7.24 6h 43m 7.35 0h 52m
35 (19952,660, 56, 100, L, T, F) 0h 40m 4.69 3h 25m 5.06 0h 58m
36 (19952,660, 56, 100, L, T, V) 0h 37m 7.15 1h 0m 7.50 0h 56m
37 (19952,660, 56, 100, T, L, F) 0h 36m 4.65 3h 35m 5.29 1h 30m
38 (19952,660, 56, 100, T, L, V) 0h 38m 3.59 4h 26m 4.31 1h 3m
39 (19952,660, 56, 100, T, T, F) 0h 43m 3.57 2h 41m 4.62 0h 26m
40 (19952,660, 56, 100, T, T, V) 0h 39m 3.52 2h 3m 4.22 0h 34m
41 (19952,660, 56, 200, L, L, F) 0h 48m 3.96 21h 38m 4.28 1h 19m
42 (19952,660, 56, 200, L, L, V) 0h 46m 2.25 12h 31m 2.53 2h 11m
43 (19952,660, 56, 200, L, T, F) 0h 56m 3.41 15h 37m 3.62 1h 34m
44 (19952,660, 56, 200, L, T, V) 0h 45m 2.86 15h 13m 3.15 1h 24m
45 (19952,660, 56, 200, T, L, F) 0h 43m 2.56 16h 33m 3.43 1h 18m
46 (19952,660, 56, 200, T, L, V) 0h 43m 2.43 9h 57m 3.26 1h 11m
47 (19952,660, 56, 200, T, T, F) 1h 1m 3.42 21h 40m 3.96 2h 8m
48 (19952,660, 56, 200, T, T, V) 0h 45m 3.04 15h 11m 3.88 0h 52m
49 (29794,870, 70, 100, L, L, F) 0h 57m 6.90 8h 20m 7.17 3h 15m
50 (29794,870, 70, 100, L, L, V) 0h 58m 4.47 2h 42m 4.45 3h 6m
51 (29794,870, 70, 100, L, T, F) 1h 34m 3.89 6h 17m 3.98 2h 52m
52 (29794,870, 70, 100, L, T, V) 1h 35m 4.79 3h 25m 4.85 2h 36m
53 (29794,870, 70, 100, T, L, F) 0h 50m 6.49 2h 42m 7.19 1h 55m
54 (29794,870, 70, 100, T, L, V) 0h 47m 4.22 2h 30m 4.94 1h 13m
55 (29794,870, 70, 100, T, T, F) 1h 34m 4.49 1h 30m 5.14 1h 59m
56 (29794,870, 70, 100, T, T, V) 1h 29m 5.20 3h 35m 6.04 2h 49m
57 (29794,870, 70, 200, L, L, F) 1h 57m 4.91 15h 55m 5.13 2h 38m
58 (29794,870, 70, 200, L, L, V) 1h 9m 4.22 17h 4m 4.57 2h 42m
59 (29794,870, 70, 200, L, T, F) 1h 7m 5.21 25h 1m 5.55 3h 37m
60 (29794,870, 70, 200, L, T, V) 1h 59m 3.10 21h 55m 3.40 5h 24m
61 (29794,870, 70, 200, T, L, F) 1h 5m 3.04 18h 10m 3.79 6h 40m
62 (29794,870, 70, 200, T, L, V) 1h 12m 3.15 18h 37m 4.52 4h 9m
63 (29794,870, 70, 200, T, T, F) 2h 0m 3.15 19h 35m 4.15 3h 3m
64 (29794,870, 70, 200, T, T, V) 1h 9m 4.00 8h 58m 4.58 1h 59m

Average 1h 2m 4.21 10h 28m 4.74 2h 9m
Minimum 0h 36m 2.24 1h 0m 2.53 0h 26m
Maximum 2h 0m 7.24 25h 1m 7.50 6h 40m

Standard Deviation 0h 26m 7h 32m 1h 25m

procedure, the intensification and diversification steps, and the post-optimization phase. We can

summarize the obtained results as follows:

• The algorithm produces better upper bounds than CPLEX in 90% of the instances.

• The algorithm is better than CPLEX in 60% of the instances in terms of the optimality gap.

• The algorithm improves the upper bound by more than 10% in 57% of the instances.

• The complexity of the instances increases by increasing the number of layers, the number of

arcs and, even more significantly, the number of commodities.
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• The performance of the Lagrangian relaxation is robust in either the easy or the difficult

instances in terms of computational time, i.e., the standard deviation of the elapsed time is also

much less than those of the strong LP and the root node solved by CPLEX.

Four main interesting research avenues are: 1) Improving the algorithm using more efficient non-

differentiable optimization approaches such as the bundle method, and embedding the algorithm

into a branch-and-bound structure to derive an exact solution methodology, 2) Exploring new

solution methods particularly those that have been successfully applied before to the MCFND, 3)

Proposing branch-and-cut approaches by developing new valid inequalities based on the multilayer

structure of the problem, and 4) Considering problems where there are commodities to be routed

in all layers.
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