
Logic-Based Benders Decomposition
for Scheduling a Batching Machine

Simon Emde
Lukas Polten
Michel Gendreau

October 2018

CIRRELT-2018-40

Logic-Based Benders Decomposition for Scheduling

a Batching Machine
Simon Emde1, *, Lukas Polten1, Michel Gendreau2

1 Technische Universität Darmstadt, Fachgebiet Management Science / Operations Research,
Hochschulstraße 1, 64289 Darmstadt, Germany

2 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)
and Department of Mathematics and Industrial Engineering, Polytechnique Montréal, P.O. Box
6079, Station Centre-Ville, Montréal, Canada H3C 3A7

Abstract. This paper investigates the problem of scheduling a set of jobs on a single

batching machine to minimize the maximum lateness, where jobs may be subject to

precedence constraints and incompatibilities. Single batching machine scheduling has

many applications, but this study is particularly motivated by single crane scheduling in an

automated storage and retrieval system (AS/RS): given a set of transport requests, which

requests should be processed together in the same dual command cycle, and in what order

should the cycles be processed? Since storage and retrieval requests may refer to the same

physical item, precedence constraints must be observed. Moreover, the crane may not be

capable of handling multiple storage or retrieval requests in the same cycle, hence the need

to account for incompatibilities. We present a novel exact algorithm based on branch &

Benders cut, which is shown to solve even large instances with more than 100 jobs to

optimality in many cases. For the special case without precedence constraints and

incompatibilities, it improves on several best-known upper bounds from the literature.

Keywords: Benders decomposition, single batching machine, automated storage and

retrieval, precedence constraints, maximum lateness.

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily
reflect those of CIRRELT.
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: emde@bwl.tu-darmstadt.de
Dépôt légal – Bibliothèque et Archives nationales du Québec
 Bibliothèque et Archives Canada, 2018

© Emde, Polten, Gendreau and CIRRELT, 2018

1 Introduction

We consider the problem of batching a set of jobs with given processing times and due dates on
a single batching machine. Each batch can contain a given maximum number of jobs, which are
processed in parallel such that the processing time of the entire batch equals the processing time of
the longest job in the batch. Jobs can be incompatible with each other, in which case they must not
be assigned to the same batch, and they may be restricted by precedence relations. The goal is to
minimize the maximum lateness. In triple notation as originally introduced by Graham et al. (1979),
this corresponds to the triple [1|prec; incompatible; batch(b)|Lmax].

Batching machine scheduling problems have a multitude of applications in manufacturing indus-
tries, particularly chemical, microelectronic, and metalworking. More specifically, special cases of
the problem treated in this paper, without precedence constraints and incompatibilities, have been
observed in the context of semiconductor burn-in, where burn-in ovens are equivalent to batching
machines (Lee et al., 1992). However, this research is originally motivated by an automated storage
and retrieval system (AS/RS) we encountered at a major German machine manufacturer.

The system is a unit-load AS/RS served by one crane performing one retrieval and one storage
operation in-between returns to the front-end input / output point (dual command cycle). The AS/RS
is used to store parts for a closely interfaced assembly system. Parts required in final assembly are
requested from the storage system with a certain lead time (between two to four hours in practice) and
are presented to one of multiple order picking stations. The parts retrieved from the AS/RS are then
packed into standard size bins in so-called kits, sorted to conform to the production sequence. After
parts have been picked, partially empty unit-load devices may be returned to storage. Further storage
requests may also ensue from arriving parts. One of the biggest challenges involved with operating
an AS/RS in the context of just-in-time production is ensuring that parts required in the assembly hall
be ready on time. Production and in-house part delivery schedules are fixed, and planning cycles are
short, leaving little room for error. In the worst case, if an important part is critically delayed, the
entire production line must be halted until the part is available. Consequently, requests should not be
delayed past their due date if at all possible.

We can interpret the crane as a batching machine which can process at most two requests (jobs)
at a time. Since the total shelf access time for all requests is constant and usually dominated by
travel times, the longest processing time (i.e., the farthest travel time) of any request in a command
cycle can be an adequate approximation of travel times. However, only storage and retrieval requests
can be mixed, since the shuttle can only carry one unit-load device at a time, hence some jobs are
incompatible with each other. Moreover, there may be a precedence relation between some requests
(jobs), because they actually refer to the same unit-load device. E.g., one request is for fetching a
specific pallet, and another is for returning it to its storage location. Obviously, the pallet cannot be
returned before it is retrieved.

The contribution of this paper consists of modelling this problem as a batching machine scheduling
problem, which is a generalization of the problem considered in Lee et al. (1992) and Cabo et al.
(2015). We develop a logic-based Benders decomposition algorithm, which is, to the best of our
knowledge, the first exact procedure for this problem. In a computational study, our algorithm com-

2

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

pares favorably to the procedures proposed by Cabo et al. (2015). We also generate new test instances
from an AS/RS context to study the performance of the algorithm in the face of precedence relations
and incompatibilities between jobs.

The remainder of this paper is structured as follows. In Section 2, we review the germane literature.
In Section 3, we formally describe the problem and present a MIP model. We investigate a special case
that is solvable in polynomial time and develop a novel algorithm based on Benders decomposition for
the general case in Section 4. In a computational study (Section 5), we compare our procedure against
a default solver and a state-of-the-art procedure from the literature. Finally, Section 6 concludes the
paper.

2 Literature review

Batching machine scheduling has a long history, with a great number of papers published over the past
decades. Pinedo (2016) gives an overview over machine scheduling problems in general. Batching
machine scheduling in particular is surveyed by Potts and Kovalyov (2000) and Zhu and Wilhelm
(2006); a meta-analysis of the literature is provided by Abedinnia et al. (2017).

Batching machine scheduling problems are often distinguished by the machine environment and
the processing time of the batches. Regarding the former criterion, we consider a single machine
environment, and regarding the second, the processing time of a batch equals the longest processing
time of any job assigned to it (also referred to as a burn-in model, Brucker et al., 1998). Such machines
are commonly encountered in many industrial settings, like semiconductor manufacturing (e.g., Jia
et al., 2015) or chemical processing (e.g., Méndez et al., 2006).

The particular single machine batching problem tackled in this paper is a generalization of the
problem presented by Cabo et al. (2015), who in turn take up a problem introduced by Lee et al.
(1992), who model the burn-in operations at a semiconductor manufacturing plant: before shipping,
chips must be stress tested in an oven at a given temperature. Each chip has an individual prescribed
burn-in time it must spend in the oven, which may be exceeded but not underrun. Therefore, the
processing (i.e., burn-in) time of a given batch of chips depends on the longest prescribed burn-in time
of any of the chips in the batch. Since it is critical that chips be ready for delivery on time, scheduling
objectives usually revolve around minimizing lateness. Lee et al. (1992) develop polynomial time
exact procedures for some special cases of this problem (e.g., agreeable processing times and due
dates), as well as prove worst-case performance bounds for some priority rules.

Cabo et al. (2015) propose a mixed-integer programming model for this problem. They solve it
heuristically by decomposing it into two stages. In the first stage, the sequence of jobs is determined.
In the second stage, for the given job sequence an optimal schedule is created in polynomial time
via a dynamic programming based approach. The authors use this dynamic programming scheme to
search heuristically in a so-called split-merge neighborhood. We report on their results in more detail
in Section 5.

The problem has recently been extended by Cabo et al. (2018) to include a bi-criterial objective
function to minimize both the maximum lateness and the number of batches. A MIP model and a

3

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

genetic algorithm are presented to find Pareto-optimal solutions. Similarly, Zhou et al. (2018) develop
a particle swarm optimization algorithm for a single batching machine problem with lateness objective
where the jobs have non-identical sizes (i.e., the maximum number of jobs per batch depends on the
size of the jobs) and non-zero release dates.

Apart from applications in production, batching machine scheduling problems can also be ap-
plied to different domains. In particular, this research is inspired by an AS/RS, where the shuttle is
equivalent to a batching machine and the retrieval and storage requests correspond to jobs. Decision
problems concerning AS/RS are surveyed by Roodbergen and Vis (2009) and Gagliardi et al. (2012).
Single crane scheduling in AS/RS has recently been surveyed by Boysen and Stephan (2016), who
also note the similarities to some machine scheduling problems. The AS/RS literature almost ex-
clusively focuses on a makespan objective; time windows – although quite common in just-in-time
systems – are rarely taken into account. Among the few exceptions are Linn and Xie (1993), who
present a simulation study, and Lee and Kim (1995), who assume a common due date and develop
priority rule based heuristics.

3 Problem description

Let J = {1, . . . , n} be the set of jobs to be processed in batches on a single machine. Between some
jobs, there may be precedence relations (e.g., in the AS/RS context, if the same partially empty pallet
needs to be first retrieved and then returned to storage). Precedence relations are expressed by tuples
(j, j′) ∈ E, denoting that job j′ ∈ J must be processed in a batch after job j ∈ J . Moreover, some
jobs are incompatible with each other and cannot be assigned to the same batch (e.g., two retrieval
or two storage requests cannot be combined). Incompatibilities are expressed by tuples (j, j′) ∈ I ,
indicating that job j ∈ J and job j′ ∈ J must not be processed in the same batch. Each job j ∈ J
takes pj time units of processing time and should be finished not later than its due date dj . Finally,
batches must not contain more jobs than the given maximum batch size b.

A schedule consists of a partition of the job set J into r subsets B1, . . . , Br and a permutation Σ =

〈σ(1), . . . , σ(r)〉 of index set {1, . . . , r}, indicating the order in which the batches are processed on the
single machine, i.e., batchBσ(k) is the k-th batch to be processed, ∀k = 1, . . . , r. Note that the number
of batches r is not given but can obviously not be greater than n. We define P (Bi) = maxj∈Bi{pj}
as the processing time of batch Bi, i.e., the longest processing time of any of the jobs assigned to Bi.
The completion time of batch Bσ(k) is τk =

∑k
k′=1 P (Bσ(k′)). For notational simplicity, let π(j) = k

such that j ∈ Bσ(k) be the sequence position of the batch job j is assigned to. We consider a schedule
feasible if and only if it satisfies the following conditions.

• The maximum batch size is not exceeded, i.e., for each i ∈ {1, . . . , r}, it must hold that |Bi| ≤
b.

• Precedence relationships between jobs must be observed, i.e., for each tuple (j, j′) ∈ E, it must
hold that π(j) < π(j′).

4

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

• Incompatible jobs must not be assigned to the same batch, i.e., for each tuple (j, j′) ∈ I , it must
hold that π(j) 6= π(j′).

Among all feasible schedules, we seek one which minimizes the maximum lateness of jobs, i.e.,
we minimize

Lmax = max
j∈J
{τπ(j) − dj | τπ(j) > dj}. (1)

Note that, in the context of AS/RS, the maximum travel time for a request in a command cycle (i.e.,
the batch processing time) may only be a lower bound on the actual travel time of the crane, depending
on the technical capabilities and layout of the AS/RS. In the literature, the Chebyshev metric is often
used to measure distances, because the S/R machine can typically move independently in the vertical
and horizontal directions (Van Den Berg, 1999). However, abstracting from technical details like
acceleration and deceleration of the crane (Chang et al., 1995) or using surrogate distance objectives
(e.g., De Koster et al., 1999, Chen and Wu, 2005) is common in the order batching literature.

Regarding the computational complexity, single batching machine scheduling with a lateness ob-
jective is shown to be NP-hard in the strong sense even if b = 2 by Brucker et al. (1998). Since our
problem is a generalization, the same complexity status holds.

3.1 Example of a schedule

Consider the example AS/RS schematically depicted in Figure 1b. There are n = 6 jobs in total, 3
storage requests (labeled S1, S2, and S4 in the figure) and 3 retrieval requests (R3, R5, and R6). The
due dates and processing times are in Table 1a. Moreover, let E = {(2, 3), (1, 5), (5, 4)} be prece-
dence constraints, i.e., storage request S2 must be processed before retrieval request R3, S1 before
R5, and R5 before S4. Finally, only at most one storage and one retrieval request can be processed per
batch, i.e., the batch size is b = 2 and I = {(S1, S2), (S1, S4), (S2, S4), (R3, R5), (R3, R6), (R5, R6)}.

j 1 2 3 4 5 6

pj 10 6 8 6 12 8
dj 28 25 21 20 19 18

(a) Example problem data. (b) Schematic depiction of the AS/RS
in the example; slots with same
background shade are processed
in the same command cycle.

Figure 1: An example problem.

A feasible and optimal solution consists of r = 3 batches B1 = {S1, R6}, B2 = {S2, R5},
B3 = {S4, R3}, processed in that order (i.e., Σ = 〈1, 2, 3〉). This implies that batch 1 finishes at
τ1 = 10, batch 2 at τ2 = 22, and batch 3 at τ3 = 30. Consequently, job R5 is late by 3 time units, job
S4 by 10 and job R3 by 9, leading to an objective value of Lmax = max{3, 9, 10} = 10.

5

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

3.2 MIP model

J set of jobs, J = {1, . . . , n}
C set of batches, C = {1, . . . , n}
E set of precedence relations; (j, j′) ∈ E indicates that job j must be

processed in an earlier batch than job j′

I set of incompatible jobs; (j, j′) ∈ I indicates that the jobs j and j′

can not be in the same batch
pj processing time of job j
dj due date of job j
b maximum batch size
M big integer
xc,j binary variable: 1, if job j is assigned to batch c; 0, otherwise
τc continuous variable: completion time of batch c
Pc continuous variable: processing time of batch c
Lmax continuous variable: maximum lateness

Table 1: Notation.

Using the notation summarized in Table 1, we adapt the mixed-integer linear programming model
originally proposed by Cabo et al. (2015) as follows.

Minimize f(x, τ ,P , Lmax) = Lmax (2)

subject to

∑
c∈C

xc,j = 1 ∀j ∈ J (3)∑
j∈J

xc,j ≤ b ∀c ∈ C (4)

Pc ≥ pj · xc,j ∀c ∈ C, j ∈ J (5)

τc = τc−1 + Pc ∀c ∈ C \ {1} (6)

τ1 = P1 (7)

Lmax ≥ τc − dj −M · (1− xc,j) ∀c ∈ C, j ∈ J (8)∑
c∈C

c · xc,j ≤
∑
c∈C

c · xc,j′ − 1 ∀(j, j′) ∈ E (9)

xc,j + xc,j′ ≤ 1 ∀c ∈ C, (j, j′) ∈ I (10)

xc,j ∈ {0, 1} ∀c ∈ C, j ∈ J (11)

Lmax ≥ 0 (12)

Objective function (2) minimizes the maximum lateness. Constraints (3) and (4) ensure that each
job is assigned to exactly one batch and no batch contains more than b jobs, respectively. Inequalities

6

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

(5) set the batch processing times, (6)-(7) set the batch completion times, and (8) set the maximum
lateness. Constraints (9) enforce the precedence relations, and Inequalities (10) do not allow assigning
incompatible jobs to the same batch. Finally, (11) and (12) define the domain of the variables.

4 Solution methods

4.1 Polynomially solvable special case

While single batching machine scheduling is generally NP-hard if the batch size b is restricted, there is
one important special case that can be solved in polynomial time. If there are no precedence relations
and incompatibilities, and all jobs have the same common due date, the problem becomes tractable.
Note that common due dates are not unusual in settings with fixed planning periods. For example,
Lee and Kim (1995) describe an AS/RS in a just-in-time context with such characteristics. Moreover,
by setting D = maxj∈J{dj} a solution to this special case may also serve to calculate a lower bound
on the optimal objective value of the general problem.

Proposition 4.1. [1|dj = D; batch(b)|Lmax] without precedence relations and incompatibilities, i.e.,

E = I = ∅, and with a common due date dj = D, ∀j ∈ J , can be solved in O(n log n) time.

Proof. Since all jobs have the same common due date, minimizing the maximum lateness is identical
to minimizing the makespan. This corresponds to the problem [1|batch(b)|Cmax], which is shown
by Brucker et al. (1998) to be solvable in O(n log n) time by proceeding as follows. Sort the jobs
according to the SPT (shortest processing time) rule. Put the first b jobs together in the first batch B1

and remove these jobs from consideration. Take the next b jobs in SPT order and put them in the next
batch, and so on, until all jobs are added to a batch. Note that this procedure assumes that the number
of jobs is a multiple of the batch size, i.e., n = b · r. This can always be imposed by adding dummy
jobs with zero processing time. The batches can be processed in any arbitrary order as long as there
are no waiting times between the batches.

Since sorting the jobs in SPT order takes O(n log n) time, the proposition holds.

4.2 Logic-based Benders decomposition

To solve the general case, we propose an exact branch & cut procedure based on Benders decom-
position (Benders, 1962). We decompose the problem into two components: in the master problem,
we decide on the assignment of jobs to batches but not the sequence of these batches. As such, the
master problem is essentially a relaxed version of the original problem. We formulate it as an inte-
ger programming model and solve it using a commercial black-box default solver, namely CPLEX
12.8. Whenever the solver finds an integer solution, i.e., an assignment of jobs to batches, the slave
problem is solved for this given master solution. The slave problem consists of sequencing the given
batches such that all precedence constraints are observed and the maximum lateness is minimal. Sub-
sequently, feasibility and optimality cuts are generated and added to the constraint set of the master
model as so-called lazy constraints. The solver then continues solving the master model with the

7

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

newly added cuts, iteratively solving the slave problem, until no more feasible, unfathomed solutions
remain. The best incumbent solution at this point is optimal.

Unlike classic Benders decomposition, we do not re-solve the master model from scratch whenever
a new cut is added, but instead inject cuts into the branch & cut tree as it evolves as lazy constraints.
This approach is often called branch & Benders cut (Rahmaniani et al., 2017, Emde, 2017). Moreover,
we do not employ classic Benders cuts but instead use combinatorial logic-based cuts in the spirit of
Codato and Fischetti (2006) and Hooker (2011).

4.3 Master problem

The master problem is concerned with finding an assignment of jobs to batches. We care at this stage
about the order of the batches only implicitly. To formulate this problem concisely as an integer
programming model, without loss of generality, we assume that jobs are ordered according to non-
increasing due date. We introduce binary variables yj,j′ , which take the value 1 if and only if job
j ∈ J is assigned to the same batch as job j′ ∈ J and the earliest due date of the batch is dj′ . Note
that this implies that if yj,j′ = 1, then dj ≥ dj′ . We refer to the earliest due date of the jobs in some
batch i as the batch due date of batch i. Moreover, we introduce auxiliary continuous variables ρj ,
which represent the batch processing time of the batch that contains job j as the most critical (earliest
due date) job, i.e., the maximum processing time of any job in the batch whose batch due date is dj .
Finally, auxiliary continuous variable α is a lower bound on the lateness objective.

Since we do not consider the exact batch sequence in the master model, we cannot calculate the
exact objective value, that is, the maximum lateness Lmax. It is possible to solve the master model as
a pure feasibility problem, i.e., without any (meaningful) objective at all. However, without objective,
the solver has no way of evaluating solutions; the solution process would hence resemble the search
for the proverbial needle in a haystack. Therefore, we introduce minimizing auxiliary variable α as
a surrogate objective. Variable α equals the maximum difference between the completion time of a
batch, assuming that batches are processed in the order of non-decreasing batch due date, and the
earliest due date of the batch. Note that in the absence of precedence constraints, an earliest due date
ordering (EDD) of batches is optimal (Lawler, 1973). However, an EDD ordering of batches may be
infeasible if the precedence relations do not allow it, hence α is merely a lower bound on the actual
optimal lateness, which can only be determined by solving the slave problem described in Section
4.5. Formally, our master model is as follows.

[Master] Minimize α (13)

subject to ∑
j′∈J

yj,j′ = 1 ∀j ∈ J (14)

8

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

∑
j∈J :
j<j′

yj,j′ ≤ (b− 1)yj′,j′ ∀j′ ∈ J (15)

yj,j′ ≤ yj′,j′ ∀j, j′ ∈ J (16)

yj,j′ = 0 ∀j, j′ ∈ J : j > j′ ∨ (j, j′) ∈ E ∨ (j, j′) ∈ I

∨ (j′, j) ∈ E ∨ (j′, j) ∈ I (17)

yj,j′′ + yj′,j′′ ≤ 1 ∀j, j′, j′′ ∈ J : (j, j′) ∈ E ∨ (j, j′) ∈ I (18)

ρj′ ≥ pj · yj,j′ ∀j, j′ ∈ J (19)∑
j∈J :
j<j′

pjyj,j′ ≤ (b− 1)ρj′ ∀j′ ∈ J (20)

α ≥
∑
j∈J :
j≥j′

ρj − dj′ ∀j′ ∈ J (21)

yj,j′ ∈ {0, 1} ∀j, j′ ∈ J (22)

α ≥ 0 (23)

Objective function (13) minimizes the maximum difference between batch completion time in EDD
order and batch due date over all batches as a substitute objective, as expressed by auxiliary variable
α. Constraints (14) ensure that each job j is assigned to exactly one batch (whose batch due date is
dj′). Inequalities (15) make batches of more than b jobs impossible. Valid inequalities (16) enforce
that if a job j is assigned to the same batch as a job j′, then j′ must also be assigned to that batch.
Note that if yj,j = 1, job j is the job with the earliest due date of a batch. For each batch, there
is only one such job. This is already implicitly enforced by Constraints (15); however inequalities
(16) tighten the LP relaxation. Eqs. (17) imply that the job with the earliest due date of a batch is
the one for which yj,j = 1, and that incompatible jobs or jobs that precede each other are not in the
same batch. Constraints (18) make it impossible for two incompatible jobs to be assigned to the same
batch. If some job j′ is the job with the earliest due date in its batch, then Inequalities (19) set auxiliary
variable ρj′ to the batch processing time of that batch. Valid inequalities (20) also set variables ρj′ and
are redundant but tighten the LP relaxation and consequently accelerate convergence. By Inequalities
(21), auxiliary variable α assumes the value of the greatest difference between the completion time
of a batch (under the assumption that batches are processed in EDD order) and the most critical due
date of that batch. Finally, (22) and (23) define the domain of the variables.

Note that model [Master] is more compact than the original MIP model from Section 3.2 in terms
of variable count. Moreover, several complicated constraints are removed, especially the difficult “big
M” Constraints (8), which pose notoriously great problems for solvers (Codato and Fischetti, 2006).
The model, however, relaxes the precedence constraints; master solutions may therefore be infeasible
and / or suboptimal. We describe how to derive a batch sequence from a master solution in Section
4.5.

9

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

4.4 Warm starting for the master model

Preliminary tests show that the master model presented above sometimes struggles to find a first fea-
sible solution, especially in the face of complicated precedence relations, which are only modelled in
a rudimentary fashion in the master model. Since feasibility cuts regarding precedence violations are
only added in the slave problem (see next Section 4.5), this may lead to some inefficiency. There-
fore, to accelerate the solution process, we warm start CPLEX using several feasible initial solutions,
which we obtain via the following constructive heuristic.

Let S = 〈s1, . . . , sn〉 be a permutation of the job set J , i.e., a sequence of jobs. We assign the first
job in S (“first” according to the given sequence) whose predecessors have already been assigned in
previous iterations to the current batch (initially batch B1 := ∅). Then we remove this job from S

and start again from the beginning. If the current batch is full (i.e., contains b jobs) or there are no
assignable jobs whose predecessors have already been processed, the current batch is closed and a
new batch is started. The entire procedure is outlined in Algorithm 1.

Algorithm 1: Assigning jobs to batches for given sequence S.
Input: job sequence S

1 J̃ := J ;
2 i := 1;
3 B1 := ∅;
4 while J̃ 6= ∅ do
5 if |Bi| = b or there are no assignable jobs in J̃ then
6 i := i+ 1;
7 Bi := ∅;
8 for j := 1 to |J̃ | do
9 if all predecessors of job sj are already assigned to an earlier batch then

10 Bi := Bi ∪ {sj};
11 J̃ := J̃ \ {sj};
12 remove job sj from sequence S;
13 break;

14 return feasible solution 〈B1, . . . , Bi〉;

We generate 11 different sequences and consequently 11 different warm start solutions by consid-
ering the following sequences, where ties are broken randomly.

• Sort jobs according to non-decreasing processing time.

• Sort jobs according to non-decreasing due date.

• For γ = 2, . . . , 10, sort jobs according to non-decreasing due date, then sort each subsequence
〈sn·k/γ+1, . . . , sn·(k+1)/γ〉, k = 0, . . . , γ − 1, according to non-decreasing processing time.

10

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

4.5 Slave problem

The master problem determines the individual batches. The slave problem consists of finding finding
the optimal Lmax value for the given master solution by sequencing the given batches. When solving
the slave problem, the assignment of jobs to batches is already known. Let ȳ be the current master
solution. The total number of batches is r = |{j ∈ J | ȳj,j = 1}|. For each job j′ ∈ J where
ȳj′,j′ = 1, the corresponding batch is Bi = {j ∈ J | ȳj,j′ = 1}, i = 1, . . . , r.

4.5.1 Feasibility cuts

The master model does not consider precedence relations beyond avoiding assigning dependent jobs
to the same batch. Hence it is possible that the job-batch assignment is inherently infeasible due to
cycles. For example, if job j is a predecessor of job j′, and j′ is a predecessor of job j′′, and jobs j
and j′′ are assigned to the same batch, then regardless of how the batches are sequenced the solution
can never be feasible. To detect such cycles, we employ Tarjan’s strongly connected components
algorithm (Tarjan, 1972).

Let J̃(i, i′) = {j ∈ Bi | ȳj,j = 0 ∧ ∃j′ ∈ Bi′ : (j, j′) ∈ E ∨ (j′, j) ∈ E} be the set of jobs from
batch Bi which are the predecessors or successors of at least one job in batch Bi′ . Note that we need
not consider jobs j where ȳj,j = 1 because cycles can only exist due to bad combinations of jobs. If a
single job j in a batch (i.e., ȳj,j = 1) already causes a cycle, then the instance as whole is infeasible.
Let G(V,W) be a directed graph, where V = {1, . . . , r} is the set of vertices and W the set of arcs.
For each of the r batches, there is one vertex in V . There is an arc (i, i′) ∈ W , i, i′ ∈ V , i 6= i′, if and
only if there exist a job j ∈ Bi and a job j′ ∈ Bi′ such that (j, j′) ∈ E.

Running Tarjan’s algorithm onG, we get the set of strongly connected components Γ = {γ1, . . . , γm},
where each element γk ⊆ V is a linearly ordered set denoting one strongly connected component ofG
in reverse topological order. Since we are only interested in cycles, we can remove all elements from
Γ which only contain one vertex, i.e., we are only interested in Γ̃ = {γ ∈ Γ | |γ| > 1}. If Γ̃ = ∅, the
graph does not contain any cycles, and it is therefore possible to feasibly sequence the r batches from
the master solution. If Γ 6= ∅, we add the following combinatorial feasibility cuts to the constraint set
of model [Master]. Let γ(l) be the l-th element of cycle γ as found by Tarjan’s algorithm in reverse
order (i.e., in correct topological order). Then,

|γ|−1∑
l=1

∑
j∈J̃(γ(l),γ(l+1))

∑
j′∈J :
ȳj,j′=1

(1− yj,j′) +
∑

j∈J̃(γ(|γ|),γ(1))

∑
j′∈J :
ȳj,j′=1

(1− yj,j′) ≥ 1, ∀γ ∈ Γ̃. (24)

The idea behind Cuts (24) is that at least one of the jobs that is in one of the critical batches in γ
and is either the predecessor or the successor of another batch in the cycle must be reassigned.

Regarding the time complexity, Tarjan’s algorithm has a worst-case performance of O(|V |+ |W |).
In our problem, the number of vertices is bounded byO(n), and the number of edges byO(n2), hence
the feasibility cuts can be generated in O(n2) time.

Example (cont.): Consider the example from Section 3.1. Assume that the current master solution

11

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

is ȳ1,4 = ȳ4,4 = ȳ2,5 = ȳ5,5 = ȳ3,6 = ȳ6,6 = 1 (all other master variables equal 0), corresponding
to three batches B1 = {1, 4}, B2 = {2, 5}, and B3 = {3, 6}. Since job 1 is a predecessor of job
5, and job 5 is a predecessor of job 4, there is no feasible sequence for these three batches. The
graph G corresponding to this master solution is depicted in Figure 2. Tarjan’s algorithm gives us
Γ = {〈3〉, 〈2, 1〉}, i.e., there is one cycle γ = 〈1, 2〉. Consequently, the following to cut is generated:
(1 − y1,4) ≥ 1, enforcing that jobs 1 and 4 must not be assigned to the same batch anymore, which
eliminates this particular cycle.

Figure 2: Graph G in the example.

4.5.2 Optimality cuts

If Γ̃ = ∅, there is at least one sequence of batches that does not violate the precedence constraints
and hence is feasible. Since the assignment of jobs to batches is already given by the master solution,
finding such a sequence which minimizes the maximum lateness is equivalent to scheduling the set
of batches {1, . . . , r} with given processing times p̃i = P (Bi) and due dates d̃i = minj∈Bi{dj},
∀i = 1, . . . , r, on a single machine to minimize the maximum lateness. Essentially, the batches
become jobs with given p̃i and d̃i, to be scheduled on a single machine. In machine scheduling
notation, this corresponds to [1|prec|Lmax]. Note that at this stage we do not schedule individual jobs
but entire batches of jobs.

Problem [1|prec|Lmax] is a classic machine scheduling problem, which can be solved in O(n2)

time using Lawler’s algorithm (Lawler, 1973). Let Σ∗ = 〈σ(1), . . . , σ(r)〉 be the optimal sequence of
batches as output by Lawler’s algorithm, and let L∗max be the corresponding optimal objective value.
Moreover, let UB be the objective value of the best currently known feasible solution, i.e., the current
upper bound, which can initially be set to UB := ∞. If L∗max < UB, a new best solution has been
found, which is stored, and the upper bound is updated to UB := L∗max. Moreover, we add the
following cut to model [Master].

α ≤ UB − ε, (25)

where ε is a sufficiently small number greater than 0. The left-hand term of Inequality (25) serves
as a lower bound on the optimal objective value. By adding this cut, we exclude all solutions from
consideration whose lower bound is not less than the current best upper bound.

12

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

Regardless of whether a new upper bound has been found, we determine

k∗ = arg min
k∈{1,...,r}

{
k∑

k′=1

p̃σ(k′) − d̃σ(k) ≥ UB

}

as the first batch whose lateness matches of exceeds the upper bound. To lower the upper bound (i.e.,
find a better solution), at least one of the following conditions must be met.

• The batch processing time p̃σ(k) or the batch due date d̃σ(k) of at least one batch k ∈ {1, . . . , k∗}
must change. Formally, let j

k
= arg minj∈Bσ(k){dj} be the job that determines the batch due

date of batch σ(k), and let jk = arg maxj∈Bσ(k){pj} be the job that determines the batch pro-
cessing time of batch σ(k). Then yjk,jk must be forced to zero for at least one k ∈ {1, . . . , k∗}
for this condition to hold. Note that jk may be equal to j

k
.

• A job which is a predecessor of a job in the critical batch k∗ is reassigned to a different batch.
Formally, let Ēk = {j ∈ Bσ(k) | ∃j′ ∈ Bσ(k∗) : (j, j′) ∈ E} be the set of jobs in batch
σ(k) which have a successor in the critical batch. Then, for at least one k ∈ {1, . . . , k∗ − 1},
yj,j

k
= 0, for some j ∈ Ēk, must hold.

• Analogously, a job which is a successor of a job in the critical batch k∗ is reassigned to a
different batch. Formally, let Ek = {j′ ∈ Bσ(k) | ∃j ∈ Bσ(k∗) : (j, j′) ∈ E} be the set
of jobs in batch σ(k) which have a predecessor in the critical batch. Then, for at least one
k ∈ {k∗ + 1, . . . , r}, yj,j

k
= 0, for some j ∈ Ek, must hold.

We enforce this by adding the following cut to program [Master]:

k∗∑
k=1

(1− yjk,jk) +
k∗−1∑
k=1

∑
j∈Ēk

(1− yj,j
k
) +

r∑
k=k∗+1

∑
j∈Ek

(1− yj,j
k
) ≥ 1. (26)

Example (cont.): Consider a current master solution ȳ3,4 = ȳ4,4 = ȳ2,5 = ȳ5,5 = ȳ1,6 = ȳ6,6 = 1

(all other master variables equal 0), corresponding to three batches B1 = {3, 4}, B2 = {2, 5}, and
B3 = {1, 6}. Lawler’s algorithm yields the optimal sequence Σ∗ = 〈3, 2, 1〉 with objective value
Lmax = UB = 10. This corresponds to the solution depicted in Figure 1b. The “critical batch”
sequence position is k∗ = 3, because the third batch Bσ(3) in Σ∗ contains the job j = 4 whose due
date is missed by Lmax = 10 time units. Hence, the generated cut is

(1− y1,6) + (1− y5,5) + (1− y3,4) + (1− y2,5) + (1− y5,5) ≥ 1.

5 Computational study

5.1 Benchmark instances and computational environment

Since our problem is a generalization of the batching machine scheduling problem solved by Cabo
et al. (2015), we reuse the same instances. This data set consists of 90 small instances (n = 20 jobs),

13

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

120 medium-size instances (n = 50), and 150 large instances (n = 100). Each of these three problem
classes is made up of blocks of 10 instances for each combination of b and λ, where b is the maximum
batch size, and λ determines the tightness of the due dates. For each job, the due date is a randomly
drawn (uniform distribution) integer from the interval [1; (λ/b) ·

∑
j∈J pj]; hence, the lower λ, the

tighter the time windows. The parameter ranges used by Cabo et al. (2015) are summarized in Table
2.

symbol description values

n number of jobs 20 50 100
b maximum batch size 2, 3, 4 2, 5, 10, 25 5, 10, 15, 25, 50
λ tightness of due dates 0.5, 1, 1.5 0.5, 1, 1.5 0.5, 1, 1.5

Table 2: Parameter ranges of the instances from Cabo et al. (2015).

From the AS/RS context, to the best of our knowledge, there are no established test data considering
precedence constraints and incompatibilities. Therefore, to generate data for the AS/RS case, which
distinguish between storage and retrieval requests, we adapt the instance generation scheme of Cabo
et al. (2015) as follows. For each job j ∈ J , we draw the processing time as a uniformly distributed
random integer from the interval [0; 100], and the due date from [1; (λ/b) ·

∑
j∈J pj]. Moreover, for

each job j, we randomly decide (0.5 probability) if it is a storage or a retrieval job. All storage jobs
are pairwise incompatible with each other, as are all retrieval jobs, because we assume the shuttle can
only carry one item at a time, which is the most common system configuration in practice (Boysen
and Stephan, 2016).

We create precedence constraints by generating a random permutation S = 〈s1, . . . , sn〉 of jobs.
We consider every pair of distinct sequence positions k, k′ ∈ {1, . . . , n}, k 6= k′. If dsk < dsk′ and
k−k′ > δ ·n, sk and sk′ switch positions. This way, by adjusting parameter δ, we can determine how
much the precedence relations and the due dates disagree: a low value of δ implies that jobs with an
early due date tend to have few predecessors, which makes it easier to not violate due dates, and vice
versa.

For each pair of distinct jobs in the sequence, the job that comes later in the sequence is a successor
of the job that comes earlier in the sequence with a certain probability, which is adjusted such that
each job is expected to have either ρ = 0.5, 2, or 4 successors, depending on ρ. The parameters
for the newly generated instances are summarized in Table 3. For each parameter constellation, we
generate one instance, yielding 3 (different n) · 3 (different λ) · 2 (different δ) · 3 (different ρ) = 54

instances. They are labeled according to the scheme n_λ_δ_ρ. The instances can be downloaded
using the following DOI: 10.5281/zenodo.1446439

For the instances from the literature, we compare our B&BC scheme to the best available algorithm,
which is the iterated descent heuristic using a split-merge neighborhood proposed by Cabo et al.
(2015) (hereafter referred to as CABO). To establish a fair comparison, we use the same metrics as
the original paper to evaluate our solutions, namely the relative gap to a lower bound, calculated as
(f − LB)/LB · 100%, where f is the objective value under consideration. Analogous to the original
paper, the lower bound LB is derived by the SPT-EDD-dynamic batch schedule, which is based on

14

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

symbol description values

n number of jobs 20, 100, 200
λ tightness of due dates 0.5, 1, 1.5
δ degree of disagreement between due dates and

precedence relations
0.125, 0.5

ρ expected number of successors per job 0.5, 2, 4

Table 3: Parameters for instance generation

disassociating due dates and processing times (Possani, 2001). Moreover, we calculate the relative
improvement over a simple EDD schedule: (fEDD − f)/f · 100%, where fEDD is the objective value
of the EDD schedule.

Cabo et al. (2015) implement their algorithm in C and run the tests on a system with an Intel Core
i7 CPU clocked at 2.8 GHz, whereas we use an x64 PC equipped with a 4 GHz Intel i7-6700K CPU
and 64 GB of RAM. We implement B&BC in C# 7.0 and use CPLEX 12.8 as a default solver to
solve the mixed-integer programming models. We set a time limit of 30 CPU minutes for B&BC and
CPLEX.

5.2 Computational results

5.2.1 Instances from the literature

In the first part of our computational study, we compare B&BC against the best solution method from
the literature by Cabo et al. (2015), for the special case where there are no precedence constraints
or incompatibilities, i.e., the classic single batching machine scheduling problem to minimize the
maximum lateness. We compare B&BC to the best results from the original paper, using the same
instances. Results are averaged as in the original paper.

CABO B&BC

opt. gap (%) # optimal opt. gap (%) # optimal CPU sec.

λ = 1.5 1.03 28 0 30 0.1
λ = 1 2.45 18 0 30 0.1
λ = 0.5 1.89 14 0 30 0.3

avg. 1.79 60 0 90 0.2

Table 4: Algorithmic performance on small instances from the literature (n = 20).

Table 4 shows the results for the small literature instances (n = 20 jobs). Our B&BC scheme
solves all 90 small instances to optimality in negligible time (0.2 seconds on average). Cabo et al.
(2015)’s heuristic is even faster (the authors report 0.016 seconds per instance), but produces an
average relative optimality gap of 1.79%. Note that Cabo et al. (2015) report that they can find all
optimal solutions for the 90 small instances by increasing the time limit for their heuristic to 0.48
seconds.

Table 5 lists the same data for the medium-size instances. For many of these problems, Cabo et al.
(2015) were not able to obtain optimal results and consequently do not print optimality gaps in their

15

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

CABO B&BC

λ b gap UB (%) gap LB (%) # opt gap UB (%) gap LB (%) # opt CPU sec.

1.5 2 23.4 63.8 4 33.4 63.8 10 0.1
1.5 5 44.4 22.1 3 44.5 22.1 10 7.5
1.5 10 32.7 134.8 1 33.4 13.5 10 1.8
1.5 25 9.6 12.6 3 10.5 11.4 10 0.6

1 2 53.7 502.7 0 55.5 468.6 10 1.1
1 5 52.2 120.3 0 56.1 102.2 6 869.4
1 10 41.4 60 0 43.5 54.6 10 37.9
1 25 9.6 30.3 0 29.8 10.0 10 0.7

0.5 2 26.8 854.5 0 27.6 850.2 10 1.1
0.5 5 39.6 304 0 41.1 294.6 0 1829.2
0.5 10 35.6 143.2 0 37.5 136.2 6 1067.3
0.5 25 12.9 49.9 0 13.2 49.6 10 0.3

avg. 31.8 191.5 0.9 35.5 173.1 8.5 318.1

Table 5: Algorithmic performance on medium-size instances from the literature (n = 50).

paper. Therefore, we compare our results using the same metrics as in the original paper, namely
the relative gap to the lower bound (column “gap LB”) and the relative improvement over the EDD
schedule (column “gap UB”). Note that for the former, a lower gap is better, whereas for the latter,
a greater gap is better. We also list the number of times the proven optimal solution is found. For
CABO, we reproduce the data as reported in the original paper, for B&BC a solution is proven optimal
if the algorithm terminates gracefully within its 1,800 second time limit.

Regarding the results, B&BC solves most medium-size instances to optimality within a few seconds
of CPU time. The only problems it somewhat struggles with are those where the batch sizes are
intermediate, especially a batch size of b = 5 seems to be tricky. This makes sense since there are
more options, combinatorially speaking, of grouping jobs in batches if the batches are neither very
small nor very large. Still, even in these cases where B&BC exceeds the time limit, the solutions are
better than those reported by Cabo et al. (2015) in terms of average LB / EDD gaps. Concerning the
running times, the average CPU time of CABO per instance is reported as about 24 seconds, whereas
the average CPU time of B&BC is about 318 seconds. Note, however, that most individual instances
are actually solved by B&BC in less than 2 seconds.

CABO B&BC

λ b gap UB (%) gap LB (%) # opt gap UB (%) gap LB (%) # opt CPU sec.

1.5 5 60.9 43.2 2 60.5 48.6 7 592.7
1.5 10 55.7 9.4 5 55.7 9.4 10 48.6
1.5 15 47.9 14.5 2 50.0 9.8 10 134.1
1.5 25 25 19 0 27.5 15.2 10 168.3
1.5 50 7.5 15.5 0 9.7 12.8 10 9.1

1 5 62.1 203.3 0 61.2 209.2 0 1809.8
1 10 53.1 126.8 0 49.5 144.9 0 1809.9
1 15 46.8 96.9 0 46.9 96.8 0 1802.3
1 25 31.5 60.6 0 32.5 58.3 3 1541.7
1 50 8.5 39.2 0 11.6 34.5 10 18.4

0.5 5 42.9 604.8 0 44.0 592.0 0 1813.4
0.5 10 43.9 299.5 0 43.8 300.4 0 1817.9
0.5 15 41.9 197.3 0 42.5 194.5 0 1813.8
0.5 25 31.3 117.9 0 32.0 115.9 0 1804.7
0.5 50 14.9 48.9 0 16.4 46.4 10 4.8

avg. 38.3 126.5 0.6 38.9 125.9 4.7 1012.6

Table 6: Algorithmic performance on large instances from the literature (n = 100).

16

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

Regarding the large instances with n = 100 jobs (Table 6), B&BC manages to solve 70 out of the
150 instances to optimality within the time limit. While there are some instances that can be solved
quite quickly (especially those with very large batch sizes), the average solution time is slightly less
than 17 minutes. The quality of the solutions is on average slightly better than what Cabo et al. (2015)
report. The average runtime of CABO is given as 8.4 minutes. This indicates that B&BC, while being
quite successful at finding optimal solutions, may also serve as a passable heuristic, at least if CPU
times are not supremely important.

5.2.2 New instances from AS/RS context

Since the literature has so far only looked at the problem as a single batching machine scheduling
problem, we also test the more complicated generalization tailored to the AS/RS use case, where jobs
can be either storage or retrieval requests such that precedence relations and incompatibilities must be
observed. Note that, to create more of a challenge for B&BC, we also increase the maximum number
n of jobs to 200 for these instances, double the size of the largest instances from the literature.

The results for all 54 generated instances are in Table 7, comparing CPLEX, solving the undecom-
posed original MIP model from Section 3.2, a constructive heuristic, and our B&BC. The constructive
heuristic is the same we use to generate warm start solutions as described in Section 4.4. We use the
best result from the 11 generated sequences. The time limit for CPLEX and B&BC is set to 1,800
CPU seconds, while the constructive heuristic takes negligible time for all instances. Optimal results
are bold in the table. For B&BC, the table also shows the total number of generated cuts per instance.

In the AS/RS case, B&BC performs quite well overall. It finds the optimal solution in all but 14
out of the 54 instances. Even when B&BC does not prove optimality, the best upper bound is better
than CPLEX’s, sometimes by several orders of magnitude. In all cases, B&BC matches or improves
the best CPLEX objective value. On average over all instances, B&BC yields an improvement of
about 43.5% over CPLEX, calculated as (fCPLEX − fB&BC)/fCPLEX, while being a lot faster: CPLEX
reaches the time limit in all but five instances, B&BC only needs less than 9 minutes per instance on
average. Considering only the largest instances with n = 200 jobs, B&BC can solve almost half of
them in less than 2 minutes per instance. This clearly indicates that the B&BC scheme is quite useful
for the AS/RS case, too.

6 Conclusion

We investigate the problem of scheduling a set of jobs on a single crane in an AS/RS subject to
incompatibilities and precedence constraints such that the maximum lateness is minimal. This is a
generalization of single batching machine scheduling. We propose a novel branch & Benders cut
scheme to solve this problem.

Our computational tests show that B&BC compares favorably to the best solution method from the
literature on the simpler special case without precedence relations and incompatibilities. It improves
many best known upper bounds and finds optima that were heretofore unknown. On newly generated
larger instances from the AS/RS context, the algorithm also performs well, solving most instances to

17

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

CPLEX heuristic B&BC

ID f CPU sec. f f CPU sec. # cuts

20_0.5_0.125_0.5 316 1801.7 402 316 0.2 19
20_0.5_0.125_2 456 1802.6 483 456 0.2 17
20_0.5_0.125_4 370 1801.9 488 370 0.3 145
20_0.5_0.5_0.5 240 1801.6 247 240 0.1 20
20_0.5_0.5_2 322 1800.8 376 322 0.2 18
20_0.5_0.5_4 345 1800.9 460 345 0.3 128
20_1_0.125_0.5 173 1800.8 264 173 0.2 21
20_1_0.125_2 210 1802.0 301 210 0.1 15
20_1_0.125_4 227 1800.6 299 227 0.2 122
20_1_0.5_0.5 206 374.2 264 206 0.2 18
20_1_0.5_2 174 1801.9 216 174 50.6 10163
20_1_0.5_4 228 1802.3 335 228 1.4 1426
20_1.5_0.125_0.5 99 255.0 221 99 0.1 15
20_1.5_0.125_2 0 0.7 72 0 0.1 19
20_1.5_0.125_4 43 7.1 127 43 0.2 130
20_1.5_0.5_0.5 94 53.5 125 94 0.2 133
20_1.5_0.5_2 72 1800.9 231 72 1.1 954
20_1.5_0.5_4 132 1801.8 132 132 11.2 5272

avg. 205.9 1339.5 280.2 205.9 3.7 1035.3

100_0.5_0.125_2 2533 1801.7 2464 1910 6.7 24
100_0.5_0.125_4 2196 1801.7 2250 1754 18.3 770
100_0.5_0.5_0.5 2223 1801.6 2278 1869 7.6 263
100_0.5_0.5_2 2072 1801.7 1764 1338 7.1 24
100_0.5_0.5_4 1922 1801.7 2109 1536 7.0 30
100_1_0.125_0.5 2117 1801.7 1981 1399 9.8 595
100_1_0.125_2 1232 1801.6 725 368 8.8 23
100_1_0.125_4 920 1801.3 901 280 37.7 1824
100_1_0.5_0.5 1026 1801.6 1446 504 1803.2 32683
100_1_0.5_2 1214 1801.6 954 432 1801.6 34414
100_1_0.5_4 1033 1801.4 830 246 1849.9 6804
100_1.5_0.125_0.5 1266 1801.5 1096 642 1802.8 43314
100_1.5_0.125_2 1235 1801.6 631 139 5.9 16
100_1.5_0.125_4 788 1801.6 621 449 6.6 105
100_1.5_0.5_0.5 213 1801.7 496 0 6.4 57
100_1.5_0.5_2 670 1801.6 478 77 6.0 17
100_1.5_0.5_4 373 1801.7 366 17 6.3 45
100_0.5_0.125_0.5 936 1801.8 1033 718 1802.3 38022

avg. 1331.6 1801.6 1245.7 759.9 510.8 8835.0

200_0.5_0.125_4 5643 1808.7 3708 3200 61.2 71
200_0.5_0.5_0.5 7635 1827.4 4057 2817 75.2 433
200_0.5_0.5_2 4778 1810.8 4321 3114 1810.1 20737
200_0.5_0.5_4 5558 1809.6 3514 2724 65.8 37
200_1_0.125_0.5 5824 1810.4 4651 3474 1811.3 14713
200_1_0.125_2 4741 1808.6 4476 2797 1814.6 19922
200_1_0.125_4 5336 1809.1 1359 468 79.4 87
200_1_0.5_0.5 4547 1808.9 1705 400 1843.0 2849
200_1_0.5_2 5508 1808.8 2185 1122 1817.4 27170
200_1_0.5_4 3507 1808.7 1519 376 1812.6 10454
200_1.5_0.125_0.5 5217 1808.8 1681 572 1831.2 8993
200_1.5_0.125_2 5883 1808.7 2037 702 1838.1 9044
200_1.5_0.125_4 4568 1809.0 375 141 44.7 16
200_1.5_0.5_0.5 4595 1811.5 376 196 99.0 1486
200_1.5_0.5_2 6707 1810.8 865 16 915.4 18445
200_1.5_0.5_4 4115 1808.7 115 103 52.8 325
200_3_500_4 4655 1808.9 301 132 419.5 9050
200_3_500_8 4455 1809.0 964 456 1810.9 30210

avg. 5181.8 1810.4 2122.7 1267.2 1011.2 9669.0

Table 7: Algorithmic performance on new instances; naming scheme: n_λ_δ_ρ. Optimal objective
values are bold.

18

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

optimality and producing substantially tighter upper bounds than a default solver (CPLEX).
Given its good performance on batching problems, future research should focus on adapting B&BC

to even more general problem settings. For instance, if a retrieval and a storage request refer to the
same physical box, there may not only be a precedence relation between the requests, but also a
minimum time lag that must pass between retrieving and then re-storing the item, to give logistics
workers sufficient time to pick items from the box. More sophisticated distance metrics, like the
Euclidean or Manhattan metrics, may also be considered to compute travel times of the S/R machine.
Moreover, we only consider the dedicated storage case in this paper, where every item has a fixed
known storage location. Our B&BC may be integrated into a holistic planning approach, which
considers the problems of crane scheduling and storage assignment conjointly.

References

Abedinnia, H., Glock, C. H., Grosse, E. H., and Schneider, M. (2017). Machine scheduling problems
in production: A tertiary study. Computers & Industrial Engineering, 111:403–416.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4(1):238–252.

Boysen, N. and Stephan, K. (2016). A survey on single crane scheduling in automated stor-
age/retrieval systems. European Journal of Operational Research, 254(3):691–704.

Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M. Y., Potts, C. N., Tautenhahn, T., and Van
De Velde, S. L. (1998). Scheduling a batching machine. Journal of Scheduling, 1(1):31–54.

Cabo, M., González-Velarde, J. L., Possani, E., and Solís, Y. Á. R. (2018). Bi-objective scheduling
on a restricted batching machine. Computers & Operations Research, 100:201–210.

Cabo, M., Possani, E., Potts, C. N., and Song, X. (2015). Split–merge: Using exponential neighbor-
hood search for scheduling a batching machine. Computers & Operations Research, 63:125–135.

Chang, D.-T., Wen, U.-P., and Lin, J. T. (1995). The impact of acceleration/deceleration on travel-time
models for automated storage/retrieval systems. IIE transactions, 27(1):108–111.

Chen, M.-C. and Wu, H.-P. (2005). An association-based clustering approach to order batching con-
sidering customer demand patterns. Omega, 33(4):333–343.

Codato, G. and Fischetti, M. (2006). Combinatorial benders’ cuts for mixed-integer linear program-
ming. Operations Research, 54(4):756–766.

De Koster, M., Van der Poort, E. S., and Wolters, M. (1999). Efficient orderbatching methods in
warehouses. International Journal of Production Research, 37(7):1479–1504.

Emde, S. (2017). Optimally scheduling interfering and non-interfering cranes. Naval Research Lo-

gistics (NRL), 64(6):476–489.

19

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

Gagliardi, J.-P., Renaud, J., and Ruiz, A. (2012). Models for automated storage and retrieval systems:
a literature review. International Journal of Production Research, 50(24):7110–7125.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. R. (1979). Optimization and approximation
in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326.

Hooker, J. (2011). Logic-based methods for optimization: combining optimization and constraint

satisfaction, volume 2. John Wiley & Sons, Hoboken, NJ.

Jia, W., Jiang, Z., and Li, Y. (2015). Combined scheduling algorithm for re-entrant batch-processing
machines in semiconductor wafer manufacturing. International Journal of Production Research,
53(6):1866–1879.

Lawler, E. (1973). Optimal sequencing of a single machine subject to precedence constraints. Man-

agement Science, 19:544–546.

Lee, C.-Y., Uzsoy, R., and Martin-Vega, L. A. (1992). Efficient algorithms for scheduling semicon-
ductor burn-in operations. Operations Research, 40(4):764–775.

Lee, M.-K. and Kim, S.-Y. (1995). Scheduling of storage/retrieval orders under a just-in-time envi-
ronment. International Journal of Production Research, 33(12):3331–3348.

Linn, R. and Xie, X. (1993). A simulation analysis of sequencing rules for asrs in a pull-based
assembly facility. International Journal of Production Research, 31(10):2355–2367.

Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I., and Fahl, M. (2006). State-of-the-
art review of optimization methods for short-term scheduling of batch processes. Computers &

Chemical Engineering, 30(6-7):913–946.

Pinedo, M. (2016). Scheduling: Theory, Algorithms, and Systems. Springer International Publishing,
Berlin, Germany.

Possani, E. (2001). Lot streaming and batch scheduling: splitting and grouping jobs to improve

production efficiency. PhD thesis, University of Southampton.

Potts, C. N. and Kovalyov, M. Y. (2000). Scheduling with batching: A review. European Journal of

Operational Research, 120(2):228–249.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The benders decomposition
algorithm: A literature review. European Journal of Operational Research, 259(3):801–817.

Roodbergen, K. J. and Vis, I. F. (2009). A survey of literature on automated storage and retrieval
systems. European Journal of Operational Research, 194(2):343–362.

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160.

20

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

Van Den Berg, J. P. (1999). A literature survey on planning and control of warehousing systems. IIE

Transactions, 31(8):751–762.

Zhou, H., Pang, J., Chen, P.-K., and Chou, F.-D. (2018). A modified particle swarm optimization
algorithm for a batch-processing machine scheduling problem with arbitrary release times and
non-identical job sizes. Computers & Industrial Engineering, 123:67–81.

Zhu, X. and Wilhelm, W. E. (2006). Scheduling and lot sizing with sequence-dependent setup: A
literature review. IIE Transactions, 38(11):987–1007.

21

Logic-Based Benders Decomposition for Scheduling a Batching Machine

CIRRELT-2018-40

	CIRRELT-2018-40-pp
	CIRRELT-2018-40-abstract
	Bibliothèque et Archives Canada, 2018

	CIRRELT-2018-40
	 Introduction
	 Literature review
	 Problem description
	 Example of a schedule
	 MIP model

	 Solution methods
	 Polynomially solvable special case
	Logic-based Benders decomposition
	Master problem
	 Warm starting for the master model
	Slave problem
	Feasibility cuts
	Optimality cuts

	 Computational study
	 Benchmark instances and computational environment
	 Computational results
	Instances from the literature
	New instances from AS/RS context

	 Conclusion

	ADP9EE4.tmp
	Bibliothèque et Archives Canada, 2018

