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1 Introduction

Traffic equilibrium models are fundamental tools for the analysis of transportation net-
works performance as well as their design and planning. The traffic assignment problem
consists in predicting arc flows over a network, given the known travel demand for each
origin-destination (OD) pair. Flows are determined by the interaction of two mecha-
nisms, users’ travel decisions and congestion (Sheffi, 1985). Users’ route choice prefer-
ences are incorporated in a generalized travel cost function which individual travelers aim
to minimize, the primary component of which being travel time. Congestion is generally
modeled by letting travel impedance functions depend on the usage of the network. As
path costs increase with the amount of flow, travelers are induced to reroute on cheaper,
less congested paths. The equilibrium assignment of travelers to routes is thus the result
of a fixed point problem which is usually solved in an iterative manner. However, the
classical equilibrium principles do not hold any more when side constraints, such as arc
capacities, are entered into the model. A solution to that issue, proposed in Marcotte
et al. (2004) is to embed within the users’ objective function the probability that a link be
unavailable, thus introducing a stochastic element that induces the strategic behaviour
of users.

The main contribution of this paper is to generalize this model by including another
source of stochasticity, namely the randomness of travel time estimation. By adopting
the framework of Markovian equilibrium introduced by Baillon and Cominetti (2008),
our model then generalizes the latter by incorporating arc capacities. More specifi-
cally, we embed the concept of strategies governing travelers’ movements under capacity
constraints in a Markovian traffic equilibrium setting. The key paradigm is to view
strategies with recourse, according to which travelers readjust their path when reaching
a saturated arc, as route choice behavior under imperfect information, similarly to Poly-
chronopoulos and Tsitsiklis (1996). In order to deal with partial information, we expand
the state space of the Markov Chain in Baillon and Cominetti (2008), such that a state
encompasses two variables, an arc and an information set. User path choice behavior is
then characterized by sequences of local arc choices depending on the current state and
the destination. The network loading gives rise to availability probabilities, which are
akin to access probabilities in Marcotte et al. (2004) and at the same time characterize
action-state transition probabilities in the context of Markovian decision processes. The
strength of the approach is to encompass two sources of stochasticity in the model by
incorporating both unobserved elements and the risk of failure to access an arc in the
cost of travel.

The rest of the paper is structured as follows. Section 2 presents a review of traffic
assignments models and their underlying assumptions, helping to situate the two models
on which this work is based, which we describe in detail in Section 3. We then introduce
the proposed strategic Markovian traffic equilibrium model in Section 4. In Section 5, we
describe algorithms related to those found in Marcotte et al. (2004) to compute availabil-
ity probabilities from choice probabilities, to compute best response choice probability
functions, and to determine an equilibrium. The Markovian traffic equilibrium model
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is then illustrated on a small network in Section 6, where we observe that the resulting
flow patterns in the deterministic case are equivalent to those obtained with the model
proposed in Marcotte et al. (2004). We then show in Section 7 the amenability of our
approach to medium and large size networks, respectively corresponding to a simplified
version of the Sioux Falls network, and the time-expanded Springfield transit network.
Finally, in the concluding Section 8, we discuss extensions of the model that deserve
further study.

2 Review on traffic assignment models

Traffic assignment models aim at predicting flow patterns in a network, under the as-
sumption that travelers minimize some generalized cost, which itself may (or not) depend
on flow volumes along the links (or paths) of the network. The equilibrium is thus the
result of the interaction between demand and congestion. The first and simplest traffic
assignment model formulated under these hypotheses is credited to Wardrop (1952), who
posed the so-called user equilibrium principle. This states that, at equilibrium, all users
are assigned to paths with minimum current cost, which implies that the cost of any
unused path is greater or equal to the common cost of paths with positive flow. Beck-
mann et al. (1956) were the first to translate Wardrop’s first principle of optimality
into a convex mathematical program in order to obtain fast solution algorithms. The
condition for this reformulation is that the function describing arc costs as a function
of the total flow be separable. When this is not the case, the equilibrium problem is
usually formulated as a variational inequality or a nonlinear complementarity problem
(Dafermos, 1980), which are both a restatement of Wardrop’s user equilibrium principle.
This basic model has been extensively studied, with proofs of uniqueness and existence
of the solution being developed, as well as efficient algorithms to reach it (Patriksson,
2004).

Several traffic equilibrium models extending Beckmann et al. (1956) were developed
based on different assumptions regarding user behavior and congestion. In general, hy-
potheses can be formulated concerning (i) the knowledge that users have of the network
and (ii) the effect of congestion on network’s performance. We explain below how relax-
ing the basic assumptions in each direction led to different model developments.

The basic user equilibrium framework implies that users are able to minimize costs
based on perfect knowledge and thus behave perfectly identically. This assumption
is however counter-intuitive and assignment models based on it are known to exhibit
unrealistic sensitivity to small changes in the network, as asserted by Dial (1971). Dis-
tinguishing between perceived and actual travel cost allows to account for users’ lack of
awareness, preference heterogeneity in the population, or the modeler’s failure to identify
all attributes of the cost function, and offers a more realistic modeling of route choice be-
havior. This spurred the development of another class of models based on stochastic user
equilibrium conditions, which generalizes the previous (deterministic) user equilibrium
condition by introducing a source of uncertainty in the model through random perceived
costs. The equilibrium conditions for this class of models is that no user can unilaterally
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improve his/her perceived travel time by changing routes (Daganzo and Sheffi, 1977).
This implies that travelers are distributed among several paths, according to the proba-
bility that each path is perceived to be the shortest, and the travel cost on all used paths
is no longer equal. As with the deterministic case, a characterization of the equilibrium
as the solution of a minimization problem has been proposed (Sheffi, 1985), provided
that costs are a separable function of flows.

Link performance functions must be defined specifically by the modeler, but under
Beckmann et al. (1956)’s formulation, they are assumed to be positive, increasing, and
separable, meaning that a link cost depends on the amount of flow on that link only.
A lot of research has however dealt with extensions of the traffic equilibrium model’s
travel cost function (e.g., Larsson and Patriksson, 1999). Such modifications allow to
describe more realistic traffic conditions, such as interaction between flows or traffic flow
restrictions, the consequence being that the classical Wardrop characterization as an
optimization problem usually does not hold in part because the required cost functions
are then non-separable, asymmetric and typically non integrable. For instance, Nagurney
(2013) dedicated a large amount of work on more general model formulations, often
involving variational inequalities, more adapted to characterize real-world congestion
effects. A typical extension consists in relaxing the hypothesis that links may carry an
unlimited amount of flow and associating a finite capacity to links. The problem of finite
arc capacities has especially been studied in the context of transit assignment, where
networks generally include links representing public transport lines between consecutive
stops, which are assigned a capacity and travel cost. The effect of congestion is then
different than that in a vehicular road network, as in-vehicle travel times are not affected
by the number of users. Instead, crowded transit line vehicles may no longer be boarded
once they are full, creating inherent uncertainty due to the potential unavailability of
some network arcs. Incidentally, transit is not the only setting where studying restricted
capacity on arcs may be helpful, see, e.g., the context of freight flows (Guélat et al.,
1990).

In this context the classical Wardrop principle, which does not hold any more, must
be adapted. One approach is through the use of asymptotic travel cost functions, mean-
ing that as flow reaches capacity the cost goes to infinity. This solution allows to keep
the convex optimization model structure, but has been criticized for entailing numerical
difficulties as well as yielding unrealistic travel costs at equilibrium (Boyce et al., 1981,
Larsson and Patriksson, 1995). Another solution is to add a well-defined extra cost inter-
preted as a queuing delay to saturated arcs, leading to a so-called generalized Wardrop
equilibrium, as in, e.g., Larsson and Patriksson (1995). In both cases, the mechanism
that increases travel costs as a result of capacity limits is somewhat implicit and not
based on mathematical foundations. Flow constraints are respected but the equilibrium
does not make behavioral sense, since users do not account for the risk to fail to access
an arc in their path choice. Therefore, a third approach to capacities was proposed by
Marcotte et al. (2004), which we describe below.

The fundamental notion in Marcotte et al. (2004) is the concept of strategy. Orig-
inally, this concept was introduced in transit assignment modeling to describe user be-
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havior under uncertain outcomes. A strategy specifies for each node in the network a set
of desired outgoing links, but the exact physical itinerary on which the user following
the strategy travels depends on the realization of the random variables contained in the
problem. In Spiess and Florian (1989), strategies are used to characterize user itinerary
choice with respect to random arrivals of vehicles from several attractive lines. Marcotte
et al. (2004) adapted the concept of strategy to relate it to the uncertainty induced by
limits on available capacity, as we further explain in Section 3. This led to a theoretically
appealing equilibrium model where user behavior is characterized by strategies with re-
course. The model does not yield flows that may exceed arc capacities, in contrast to,
e.g., De Cea and Fernández (1993), and may be applied not only to transit but generally
to any acyclic network with capacities.

Strategies exist in an exponential number for each OD pair, as do paths in a net-
work. The optimization problem in Marcotte et al. (2004) is thus formulated in a high
dimensional space, which can lead to practical implementation issues. The drawbacks of
relying on path-based variables have been abundantly emphasized in other works (Dial,
2006, Fosgerau et al., 2013, Wie et al., 2002) of the user equilibrium and route choice
modeling literature, noting that the issue remains associated with most existing models.
A different approach was first provided by Akamatsu (1996) in the context of stochas-
tic user equilibrium, as an alternative to Dial (1971)’s well known logit assignment
model, which assigns travelers to paths under certain choice probability assumptions.
The primary insight of the work is to consider path choice probabilities as products of
sequential link choice probabilities, obviating explicit path variables. The link choice
probability matrix is equivalent to the state transition probabilities of a Markov chain
on the network’s arcs with an absorbing state corresponding to the destination, yield-
ing the denomination Markovian traffic equilibrium (MTE) by Baillon and Cominetti
(2008). Their work established the existence and uniqueness of an equilibrium in the
case of flow dependent arc costs, and showed that the approach conveniently circumvents
traditional path enumeration issues and facilitates the operationalization of the model
to large-scale networks. While this avenue is promising, it has nevertheless not been
formally extended to the case of networks with rigid arc capacities.

3 Two subsumed models

In this section, we introduce the models of Marcotte et al. (2004) and Baillon and
Cominetti (2008), on which we build in Section 4. Both models deal with traffic equilib-
rium under entirely different assumptions regarding user behavior and congestion. To
describe each work, we assume some standard notation, i.e., the network is represented
by a graph G = (V,A) with node set V and arc set A, and each arc possesses a cost
ca and possibly a capacity ua. For reasons explained later, it is convenient to denote
arcs either by the letter k or a depending on the context. We denote by A(k) the set of
outgoing arcs from the tail node of arc k.

A Strategic Markovian Traffic Equilibrium Model for Capacitated Network

4 CIRRELT-2018-44



3.1 A strategic flow model of traffic assignment

In the model of Marcotte et al. (2004), it is assumed that users have a perfect knowledge
of arc costs, which casts the model within the deterministic user equilibrium framework.
Regarding network performance, the model assumes that there exist strict capacity con-
straints on some of the network’s arcs. Thus each arc a ∈ A is associated to a cost ca
and possibly a capacity ua.

The model proposed by Marcotte et al. (2004) provides an entirely different approach
to capacities than previous related works. Their solution consists in adopting strategies
to describe user behavior, expanding a concept which was first denominated by Spiess
and Florian (1989) for transit networks. In this case, users do not aim at minimizing
path costs given by the sum of arc costs, but rather strategic costs.

The general idea of a strategy is to model complex decision making under uncertainty
in the network service, providing travelers with the opportunity to readjust or refine their
path choice as information on the network is gained. In this model, a strategy defines
for each node a set of outgoing links ranked by order of preference, thus providing a
recourse in case the preferred options have reached capacity. Users choose a strategy in
advance, but do not know on which path they will eventually travel.

The inherent uncertainty induced by limited arc availability is encompassed into
so-called access probabilities, which are conceptually similar to diversion probabilities
or failure to board probabilities in some transit assignment models (Kurauchi et al.,
2003). They allow the model to strictly enforce capacity constraints. Individuals’ travel
decisions take into account the stochasticity embedded into access probabilities, and
consequently users are assumed to minimize the expected cost of each strategy s denoted
Cs. This cost can be defined as the weighted sum of path costs by path access probabili-
ties. Extending Wardop’s principle to capacitated networks, Marcotte et al. (2004) state
that a strategic equilibrium occurs when all users are assigned to strategies of minimum
expected cost.

The complexity lies in the fact that the cost mapping C is not available in closed form
as a function of strategic flows x. Pricing out strategies requires to obtain first the access
probabilities π(x) corresponding to the current distribution of users into strategies. It
also depends on additional assumptions of the model, namely on the queuing mechanism
at each node. Marcotte et al. (2004) rely on two algorithms to compute the expected
price of strategies. The shape of access probabilities naturally induces nonlinearity
and asymmetry in the cost mapping C, and Marcotte et al. (2004) show that it is
not integrable, which prevents it from being reformulated as a standard optimization
problem. Thus the equilibrium problem is expressed by the variational inequality

〈C(x), x− y〉 ≤ 0, ∀x ∈ X,

where X is the set of feasible strategic flows.
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3.2 A Markovian traffic assignment model

The underlying assumption in the model of Baillon and Cominetti (2008) is that travelers
do not have perfect knowledge of arc costs, which are thus modeled as random variables
representing how individuals perceive cost. In addition to being random variables, costs
are also assumed to be flow-dependent to account for congestion.

Under these assumptions, the model of falls within the scope of stochastic user equi-
librium. Perceived cost is defined as c̃a = ca + εa, where ca is the real arc cost and
εa is an error term with zero mean. Congestion is accounted for by letting the mean
cost ca be a function of the flow fa on the arc through known volume-delay functions
sa : [0,∞)→ [0,∞), such that ca = sa(fa).

What distinguishes Baillon and Cominetti (2008) from other stochastic equilibrium
models is that the approach is formulated in terms of arc-based variables, as it is em-
bedded within a dynamic programming framework. Travelers’ choice of path obeys a
sequential process in which a discrete choice model at each arc k describes the choice
probabilities P dk,a of outgoing links a depending on the desired destination d. The arc-
based formulation requires to define the notion of perceived cost to destination d from
the source node of a given arc k, denoted w̃dk = wdk + εk. The cost to destination wdk is
the sum of the arc cost ck and a destination specific value function defined recursively
following Bellman equation of dynamic programming, i.e.

wdk = ck + ϕdk(w
d),

where

ϕdk(w
d) = E

(
min
a∈A(k)

wda + εa

)
.

Thus the value function ϕdk(w
d) represents the expected minimum cost to go to destina-

tion d from the tail node of a given arc k in the network.
The model assumes that at the tail node of a link k, individuals traveling towards

d observe w̃da for all outgoing arcs a ∈ A(k) and choose the link with the smallest
perceived cost to destination. When the variance of error terms is null, individuals
choose identically, while they are distributed according to link choice probabilities P dk,a
otherwise. Thus the Markovian traffic equilibrium model is also a generalization of a
deterministic case and both can be formulated under the same framework. Although
the traffic equilibrium model could be expressed as a variational inequality, it admits a
characterization as a convex minimization problem, assuming that congestion functions
sa are integrable.

It is worth mentioning that the model’s formulation in terms of link variables induces
interesting properties. In particular, the link choice probability matrix P d may be re-
garded as the transition probability matrix of an underlying Markov chain where states
are network links, meaning that expected arc flows can be easily computed by matrix
operations as the expected state visitation frequencies.

Finally, we note that Baillon and Cominetti (2008) mention the possibility of extend-
ing the model to networks with arc capacities ua by considering bounded volume-delay
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functions, i.e. sa : [0, ua) → [0,∞). However, doing so simply heuristically bounds
predicted flows without providing a realistic model of how the risk that an arc becomes
inaccessible affects behavior strategically. Moreover, the solution obtained does not sat-
isfy Wardrop’s equilibrium conditions.

4 Strategic Markovian traffic equilibrium model

In this section, we propose a strategic Markovian traffic equilibrium model for capaci-
tated networks that subsumes the advantages of both previously described models. It
incorporates two sources of stochasticity in user route choice behavior, induced by vari-
ations in cost perception and the risk associated with the failure to access an arc. We
propose a model formulation in which the deterministic user equilibrium (i.e., arc cost
is identical across users) is a specific case of the stochastic user equilibrium and for the
sake of clarity we first describe the former in Subsection 4.2 before deriving the more
general model in Subsection 4.3.

4.1 Notation and assumptions

We consider a directed connected graph G = (A,V), where A is the set of arcs, or
links, and V is the set of nodes. Links are denoted k, a and A(k) is the set of outgoing
links from the tail node of k. We assume that every link a has a strict capacity ua and
an associated generalized cost ca. We add absorbing links without successors to each
destination node and call D this set of destination links. We consider the demand to
originate from each network link, and let gd characterize the vector of demand from each
link given a destination d ∈ D. Throughout the paper, we assume that the network has
sufficient capacity to accommodate the whole demand. In particular, we assume that
for each node, there is at least one outgoing link with unlimited capacity. This can be
trivially achieved by supplementing artificial arcs with large cost.

Users traveling in this network aim at finding the shortest path to their destination
d ∈ D. However, because of limited network capacity, some arcs may be saturated
and thus inaccessible depending on route choices made by other travelers. Similarly to
Marcotte et al. (2004), we assume a realistic modeling of user behavior in this context,
dictating that travel decisions be strategic and include recourse actions, should a link
in the preferred itinerary turn out to be unavailable. In addition, we make the hy-
pothesis that travelers do not know in advance what arc will prove to be available, and
only observe the outcome when reaching the source node of an arc, which is a realistic
assumption for a transit network. Under these assumptions, the problem bears similar-
ities to the stochastic shortest path problem in a probabilistic network studied in, e.g.,
Andreatta and Romeo (1988). As observed in Polychronopoulos and Tsitsiklis (1996),
stochastic programming with recourse can be viewed as a stochastic control problem
with imperfect information, and may be solved with dynamic programming methodol-
ogy. Namely, instead of defining recourse actions, user behavior may equivalently be
characterized by an optimal policy given the current state, where the state indicates
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Figure 1: Illustration of state expansion

the realization of the random variables. Below, we explain how we formulate the model
following this paradigm.

We assume that the set of available outgoing arcs from link k is a random subset
of A(k), and define the random vector Ik, which indicates whether each outgoing arc
is accessible and may take values in Ωk = {0, 1}|A(k)|. Consequently, we define a state
s = (k, ik) as a set of two variables, i.e., a link k and a realization ik of random vector Ik.
The set of states at link k is denoted Sk, while the set of all possible states is denoted S.
A policy, or action, is then a choice of outgoing arc among the set A(s) of available links
depending on the current state s = (k, ik), as illustrated by Figure 1. For an unvisited
arc k, the random vector Ik follows availability probability distribution πk, with support
on {0, 1}|A(k)|. Upon arrival at the tail node of arc k, the user learns the realization of
Ik. Therefore, travelers choose their paths sequentially in a dynamic fashion, choosing
in each state an action that leads stochastically to a new state. Note that we choose to
include an arc instead of a node variable in the state space, as it allows to extend the
model to more complex queuing dynamics, where travelers from a certain incoming arc
may have priority over another, an issue we discuss in Section 5.1.

Travelers’ route choice behavior is characterized by the destination specific choice
probability matrix P d = {P ds,a}s∈S,a∈A, which describes in what proportion individuals
choose each action conditionally on the state and the destination. The role of availability
probabilities π is analog to that of state transition probabilities conditional on choices
in a Markov Decision Process. Given a state st = (k, ik) and an action a ∈ A(st),
the probability Pr(st+1|st, a) of reaching the new state st+1 = (a, ia) is given by the
distribution πa of random vector Ia. In other words, the new state consists of the chosen
available link and a realization of the availability random vector at that link. We can
here draw a parallel with the model of Baillon and Cominetti (2008), where the choice
of outgoing link may also be viewed as a choice of action leading to a new state. While
in Baillon and Cominetti (2008) the new state is given with certainty once the action
is selected, and is equal to the chosen link, we obtain a more complex model with non
degenerate action-state transition probabilities. Therefore, in a capacitated network,
passengers’ motions are directed by an underlying Markov chain dependent on both
choice and availability probabilities.

The probability of accessing an arc naturally depends on the choices of all other users
of the network. Hence, as in Marcotte et al. (2004), availability probabilities π actually
depend on both capacities and choice probabilities P through a loading process, which
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we further explain in Section 5.
We observe that the probability matrix P has a close tie to the strategic flow vector

x in the model of Marcotte et al. (2004), since both specify the distribution of travelers
between different travel strategies or policies. The major difference in this work is that
we model behavior using local choices at each node instead of a choice of strategy for the
entire itinerary. Also, in Marcotte et al. (2004), the model requires one strategic flow
vector x per OD pair, while the matrix P in our arc-based model works implicitly with
all the strategies but is only destination specific. In addition, the framework we propose
lends itself to model both deterministic and stochastic equilibrium. Indeed, although P
is dubbed a probability matrix, it may be degenerate as exemplified in Section 4.2.

We summarize below the notation used throughout the paper:
A set of arcs
V set of nodes
A(k) set of outgoing arcs from arc k
S set of states
Ik random vector indicating available outgoing arcs from k
A(s) set of available outgoing arcs in state s = (k, ik)
gd demand vector to destination d
ca cost on arc a
V d(a, ia) minimum expected cost to destination from state (a, ia) to desti-

nation d
wda expected cost of arc a with regard to destination d
ua capacity on arc a
fda expected arc flow on a to destination d
πk availability distribution of random vector Ik
P d matrix of link choice probabilities to destination d

4.2 Deterministic user equilibrium

In this section, we propose a deterministic user equilibrium model assuming that indi-
viduals have a perfect knowledge of arc costs ca. We emphasize that perfect knowledge
does not refer to availability of outgoing arcs, which we still assume to be unknown for
downstream parts of the network.

As in Baillon and Cominetti (2008), in each state s = (k, ik) individuals minimize
the expected cost to destination of actions a ∈ A(s) corresponding to available outgoing
links, where the stochasticity is induced by availability probabilities π. This quantity
wda is the sum of two terms, the link cost ca associated to the action, and the minimum
expected cost to destination V d(a, ia) from the future state (a, ia), weighted by the
probability distribution πa of reaching each possible state conditional on the action:

wda = ca + Eia∼πaV
d(a, ia). (1)

The minimum expected cost of traveling to destination d from state (k, ik) is denoted
the value function and defined recursively by the Bellman equation:
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V d(k, ik) = min
a∈Ai(k)

{
ca + Eia∼πaV

d(a, ia)
}
. (2)

An equilibrium is reached when, in each possible state, no user can reduce its expected
cost to destination by modifying its action choice. Hence, for each state s = (k, ik) ∈ S
and destination d ∈ D, all available actions a ∈ A(s) which have a non null choice
probability P ds,a must have the same expected cost wda. For this reason, P ds,a are not choice
probabilities obtained by a discrete choice model, and are degenerate if a single action
possesses the minimum cost. More simply, P ds,a express the proportion of individuals
choosing each action.

As for the strategic cost function in the model of Marcotte et al. (2004), the cost wd

explicitly depends on access probabilities π, which themselves depend on users’ choices
P d through a loading mechanism which mirrors the queuing taking place to access each
capacitated link. As a result, non integrability of the costs arises and the equilibrium
problem must be expressed as a variational inequality. Let us denote Cds,a as equal to wda
if a ∈ A(s), and∞ otherwise. Then Cds is the vector of expected costs to destination d of
all actions from state s. Omitting for simplicity the destination index d, the equilibrium
probabilities P ∗s,a for each destination must satisfy the variational inequality

〈Cs(P ∗), P ∗s − Ps〉 ≤ 0 ∀P ∈ P, ∀s ∈ S, (3)

where the set P includes all feasible |S| × |A| probability matrices.
Alternatively, the problem may be formulated as the nonlinear complementarity

problem:

P ∗s,a [Cs,a − Vs] = 0 ∀s ∈ S, a ∈ A(s), (4)

P ∗s,a ≥ 0 ∀s ∈ S, a ∈ A(s). (5)

Intuitively, V d
s thus represents the minimum expected cost to travel between a state s

in the network and the desired destination d.

4.3 Stochastic user equilibrium

In this section, we propose an extension where perception of travel costs ca varies across
the user population. We model perceived arc costs as random variables c̃a = ca + µεa,
letting the measured arc cost be disrupted by an error term with E(εa) = 0. This can be
interpreted as users not having perfect information, or the modeler failing to properly
identify and measure the cost function.

Under these assumptions, the expected cost of an action a to reach destination d also
becomes a random variable w̃da, which is the sum of both the error term εa and the term
wda:

w̃da = wda + µεa. (6)

In this case, individuals observe in each state s the realization of w̃da for all available
actions a ∈ A(s) and choose the one associated with the minimum cost. Probabilities
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P ds,a represent the probability that each action has the minimum cost, i.e.,

P ds,a = Pr
(
w̃da ≤ w̃da′ ,∀a′ ∈ A(s)

)
. (7)

On the other hand, the cost wda becomes

wda = ca + Eia∼πaV
d(a, ia), (8)

where V d(a, ia) is now the expected value function. Therefore, according to the Bellman
equation, we have

V d(k, ik) = Eεa

[
min

a∈Ai(k)

{
ca + Eia∼πaV

d(a, ia) + µεa

}]
. (9)

In particular, if εa is an extreme value type I error term, (9) can be rewritten as the
following log sum:

V d(k, ik) = µ ln

 ∑
a∈Ai(k)

e
1
µ(ca+Eia∼πaV

d(a,ia))

 . (10)

Following the notation introduced in the previous section, we can formulate the
equilibrium problem as a similar variational inequality. We define C̃ds,a as the sum

wds,a + µ ln(P ds,a), where wds,a is equal to wda if a ∈ A(s) and ∞ otherwise. Then for each
destination the equilibrium choice probabilities P ∗s,a are the solution of

〈C̃s(P ∗), P ∗s − Ps〉 ≤ 0 ∀P ∈ P, ∀s ∈ S, (11)

where the destination index is omitted. Equivalently, in the stochastic user equilibrium
framework, the nonlinear complementarity problem becomes

P ∗s,a

[
C̃s,a − Vs

]
= 0 ∀s ∈ S, a ∈ A(s), (12)

P ∗s,a ≥ 0 ∀s ∈ S, a ∈ A(s). (13)

In this case all available outgoing arcs have some positive flow since probabilities P ds,a
are non null for all available actions a ∈ A(s). Thus we note that at equilibrium V d

s is
equal to C̃ds,a for all arcs a ∈ A(s).

5 Algorithmic framework

This section presents algorithms for solving the proposed model. First, we give two
inner algorithms related to the ones found in Marcotte et al. (2004). The first one is a
loading mechanism to obtain availability probabilities from choice probabilities, and the
second computes the best response choice probabilities to a given assignment. Then, we
propose an iterative outer algorithm for determining an equilibrium solution.
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5.1 Capload

Similarly to Marcotte et al. (2004), the model requires a procedure for recovering avail-
ability probabilities π = {πa,s}(a,s)∈A×S from choice probabilities P d = {Ps,a}d(s,a)∈S×A.
In order to compute the availability probability distribution of outgoing arcs at the tail
node of a given arc k, it is necessary to obtain the total arc flow fk =

∑
d∈D f

d
k , itself

dependent on upstream availability probabilities. Thus the components of π must be
computed for each arc in topological order from origin to destination.

In a Markovian traffic equilibrium perspective, expected arc flows can be computed as
the expected state visitation frequencies of the implicit Markov Chain on the network’s
arcs, where the destination is the absorbing state. If state transition probabilities to
a destination d are characterized by the matrix P d and the demand by the vector gd,
Baillon and Cominetti (2008) proved that we obtain

fd = (I − (P d)
T

)−1gd. (14)

In the context of this work, travelers’ movements are characterized by both choice
and availability probabilities. If capacities were unlimited, the choice probability matrix
P d would fully capture transitions between links. However, probabilities π modify the
flow distribution given by P d. Thus the underlying Markov chain in a network with
rigid capacities is characterized by the transition probability matrix Qd, where we have

Qdk,a =
∑
s∈S

πdk,sPs,a. (15)

Therefore arc flows fd are given by applying (14) with the transition matrix Q in (15).
The algorithm to compute availability probabilities π = {πa,s}(a,s)∈A×S makes use

both of (15) and a loading mechanism at each node. Initially π in (15) is set such that
the probability that all outgoing arcs are accessible is 1 for all links. The network nodes
with capacitated outgoing links are then processed in topological order. At each arc
k terminating at the current node, a loading mechanism emulates the queuing process
taking place when users attempt to access outgoing arcs and updates the availability
distribution πk. In essence, the total flow arriving at the node must be loaded on outgoing
arcs with respect to user preferences, potential access priorities and limited capacities.
In this work, we make the following assumptions regarding the loading process:

• The individuals on each arc k which terminates at the current node have equal
access priority.

• The queuing discipline implemented is the single queue processing (SQP) described
in Marcotte et al. (2004), corresponding to letting users be randomly and uniformly
distributed in a single queue.

Both assumptions may be relaxed. We could consider, for instance, that users coming
from certain arcs have priority over others, resulting in a more complex loading process.
This extension is worthwhile when considering a time-expanded transit network, where
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Figure 2: Loading example

users coming from a transit line and are already on board have priority over those
seeking to board. For instance, Hamdouch and Lawphongpanich (2008) extend the
model to accommodate this specific case. It is also possible to implement more complex
queuing disciplines, such as parallel queue processing (PQP), as described in Marcotte
et al. (2004).

We exemplify the loading process for a given node j with capacitated outgoing links,
as illustrated by Figure 2. As the nodes are visited in topological order, the total flow
fk on all arcs k with j as tail node is known. It consists of the demand originating from
k plus the flow arriving to k from previous arcs. In Figure 2, the incoming flow arriving
at node j amounts to 30. At the first iteration, users are assigned to each link, which fill
up at a rate proportional to the ratio between capacity and the number of individuals
who want to access the link. In this case, since 10 and 20 users wish to access a1 and a2

respectively according to the choice probabilities given in Table 1, the ratios are 8/10
and 10/20. Therefore, having the smallest ratio, the arc leading to a2 is the one to
reach capacity first. At this point, half of the users have been assigned, therefore the
probability of a user reaching the state s1 = (1, 1, 1), corresponding to all links available,
is 1/2. The 15 users that have not been assigned and are in the remaining of the queue
follow the behavior in state s2 = (1, 0, 1) given by Table 1. Before performing the next
iteration, the capacity of remaining arcs is replaced by the residual capacity, which is
obtained by removing the fraction of users who have successfully accessed the arc. Now,
all 15 users want to access a1. Since the residual capacity is 3, the ratio is 1/5. Therefore,
the probability that a user reaching the tail node ends up in state s2 = (1, 0, 1) is equal
to 1/2 ·1/5 = 1/10. The remaining users behave as in state s3 = (0, 0, 1) and are all able
to access the arc leading to a3. We conclude that the probability of state s3 = (0, 0, 1)
is 4/10.

Finally, Algorithm 1 formally describes the procedure Capload. Note that the pro-
cedure is identical for both the deterministic and stochastic assignment.

5.2 Capshort

The algorithm Capshort computes a best response choice probability matrix P̄ d (not to
be mistaken for an equilibrium solution) after the loading of choice probability P d. To
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Algorithm 1 CAPLOAD

1: procedure Capload(u, P )
2: Initialization:
3: for k ∈ A do
4: πk,s = 1 if s = (k, {1}|A(k)|), 0 else
5: end for
6: k = first arc in topological order with capacitated outgoing link
7: while not all arcs visited do
8: for d ∈ D do
9: Qd = π · P d

10: fd = (I −Qd)−1gd

11: end for
12: f =

∑
d∈D f

d . Computing flow

13: I = {1}|A(k)|

14: s = (k, I) . Current state: all arcs available
15: while not stop do
16: β = min{1,mina∈A(k){ua/fa}}
17: if β ≤ 1 then
18: p = πk,s . Probability of current state
19: πk,s = βp . Updating probability of current state
20: τk,s = 0 . Updating residual probability of current state
21: i = arg mina∈A(k){ua/fa} . New saturated arc
22: Ii = 0
23: s′ = (k, I) . New state
24: πk,s′ = (1− β)p . Updating probability of new state
25: τk,s′ = πk,s′ . Updating residual probability of new state
26: s = s′ . Current state = new state
27: for a ∈ A(k) do
28: ua = ua − βfa . Updating residual capacities
29: end for
30: for d ∈ D do
31: Qd = τ · P d
32: fd = (I −Qd)−1gd

33: end for
34: f =

∑
d∈D f

d . Updating residual flow
35: else
36: stop
37: end if
38: end while
39: k = next arc in topological order with capacitated outgoing link
40: end while
41: end procedure
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State a1 a2 a3

(1, 1, 1) 1/3 2/3 0
(0, 1, 1) 0 1 0
(1, 0, 1) 1 0 0
(0, 0, 1) 0 0 1

Table 1: Probability of users choosing each outgoing link in each possible state for the
loading example

that end, the algorithm starts by computing recursively the minimum expected cost to
destination from each state, as defined in equations (2) and (9), for the deterministic
and stochastic case respectively.

In the deterministic case, the optimal action αd(s) for an individual in state s = (k, ik)
going to destination d consists in choosing arc a ∈ A(s) such that

αd(s) = arg min
a∈A(s)

{
wda

}
. (16)

and the best response choice probability matrix P̄ d is simply given by letting all users
choose the best action in each state:

P̄ ds,a =
I{αd(s) = a}∑

a′∈Ai(k) I{αd(s) = a′}
. (17)

In the stochastic case, the optimal action αd(s) for an individual in state s traveling
to d is

αd(s) = arg min
a∈A(s)

{
wda + µε(a)

}
. (18)

Thus each arc a is associated to a probability of being the best action in each state,
and the best response choice probability matrix P̄ d distributes the demand on available
outgoing arcs according to this probability function, such that

P̄ ds,a = Eεa

[
I{αd(s) = a}

]
, (19)

which, in the case of extreme value type I error terms, is equivalent to a multinomial
logit

P̄ ds,a =
e

1
µ(wda)∑

a′∈A(s) e
1
µ(wd

a′)
. (20)

Algorithms 2 and 3 implement the procedure Capshort for the deterministic and
stochastic equilibrium respectively.

5.3 Solution algorithm

We aim to find, for each destination, the equilibrium choice probabilities P ∗ correspond-
ing to the solution of the variational inequality described in the previous section, where
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Algorithm 2 Capshort deterministic

1: procedure Capshort(π, P )
2: for all destinations d ∈ D do
3: Initialization:
4: V d

s = 0 if s is a destination state
5: for all arcs k in inverse topological order do
6: for all realizations ik of Ik do
7: V d(k, ik) = mina∈Ai(k)

{
ca + EIa∼πaV

d(a, Ia)
}

8: αd(k, ik) = arg mina∈Ai(k)

{
ca + EI∼πaV

d(a, I)
}

9: for all outgoing arcs a ∈ Ai(k) do

10: P̄ ds,a = I{αd(s)=a}∑
a′ I{αd(s)=a′}

11: end for
12: end for
13: end for
14: end for
15: end procedure

Algorithm 3 Capshort stochastic

1: procedure Capshort(π, P, µ)
2: for all destinations d ∈ D do
3: Initialization:
4: V d

s = 0 if s is a destination state
5: for all arcs k in inverse topological order do
6: for all realizations ik of Ik do

7: V d(k, ik) = µ ln
(∑

a∈Ai(k) e
1
µ(ca+EIa∼πaV

d(a,Ia))
)

8: for all outgoing arcs a ∈ Ai(k) do

9: P̄ ds,a = e
1
µ(ca+EIa∼πaV

d(a,Ia))

∑
a′∈Ai(k) e

1
µ

(
ca′+EIa′∼πa′

V d(a′,Ia′ )
)

10: end for
11: end for
12: end for
13: end for
14: end procedure
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the destination index d is omitted. Algorithm 4 describes the method of successive
averages (MSA) using a relevant stopping criterion.

Algorithm 4 Method of successive averages

1: procedure MSA(P, u, µ, ε)
2: Initialization:
3: n = 1
4: while gR(P ) > ε do
5: π ← Capload(u, P )
6: P̄ , w ← Capshort(π, P, µ)
7: for all destinations d ∈ D do

8: gR(P d) =
∑
s∈S〈wds ,P ds −P̄ ds 〉∑
s∈S〈wds ,P ds 〉

9: P d ← P d + θn(P̄ d − P d)
10: end for
11: n← n+ 1
12: end while
13: end procedure

At each iteration n, the destination specific choice probability matrix P dn is updated
by taking a step in the direction of the best solution P̄ dn . The size of the step at each
iteration n depends on the value θn, which can be defined in the following manners. The
classic method is to use a common step size based on the sequence θn = 1/(n + 1) to
update all components of P d, which gives

P dn+1 = P dn + θn(P̄ dn − P dn).

An alternative approach is to update the choice probabilities P ds,a for each state s

with a different step size θds , defined as

θds = 1− V d
s

w̄ds
,

where w̄ds is the average of wds,a over all arcs a ∈ A(s) weighted according to the flow on
each arc.

Algorithm 4 resorts to a gap function to evaluate the proximity of the iterate with
the equilibrium solution. Defining an appropriate aggregate gap measure for the entire
network is not trivial. It is however straightforward to define the gap associated to a
specific state s and destination d as

g(P ds ) = max
R∈P
〈wds , P ds −Rds〉,

and its scaled version as

gR(P ds ) =
g(P ds )

〈wds , P ds 〉
.
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Figure 3: Small capacitated network

We define the aggregate relative gap gR(P d) for a destination d ∈ D as a weighted
average of the state specific relative gaps by the flow on each state, i.e.

gR(P d) =
∑
s∈S

pdsgR(P ds ),

where the weights pds are given by fds∑
s∈S f

d
s

. Note in addition that we exclude from the

sum all states where only one outgoing arc is available, since the gap in such states is
trivially null. Finally the aggregate relative gap g(P ) for all destinations is given by

gR(P ) =
∑
d∈D

qdgR(P d),

where the weights qd are given by the proportion of the total demand associated to
destination d.

While the gap measure gR(P ) is used as a stopping criterion for Algorithm 4, it
remains interesting to analyze the gap at a more disaggregate level, since there may be
considerable variance in the state specific gaps.

6 An illustrative example

In this example, we consider the small network in Figure 3, in which each link is associ-
ated with a length L and possibly a capacity u (bracketed number) as illustrated. Links
are numbered from 1 to 9, including an artificial origin and destination link. The link
length is the only component of the travel cost function for this network, such that the
deterministic cost of an arc a is given by ca = La. For origin and destination links, this
cost is 0. The demand between origin link 1 and destination link 9 is set to 10 units.
Since we only consider one destination, we omit the destination index d in the following.

Since there is at most one outgoing arc with limited capacity, each network link
corresponds to at most two possible states. In total, there are 12 possible states for a
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State ID Link Link ID Availability of
outgoing links

1 o-1 1 (1,1)
2 o-1 1 (1,0)
3 1-2 2 (1,1)
4 1-3 3 (1,1)
5 1-3 3 (1,0)
6 2-3 4 (1,1)
7 2-3 4 (1,0)
8 2-5 5 (1)
9 3-4 6 (1)
10 3-5 7 (1)
11 4-5 8 (1)
12 5-d 9 -

Table 2: Possible states in the example

user traveling in this network, listed in Table 2. In addition, since the maximum number
of outgoing arcs per link is two, in any state where an outgoing link has reached capacity,
the choice automatically reduces to the other only available link.

To apply the algorithms described in Section 5.3 it is necessary to initialize the choice
probability matrix P . For this experiment, we assume that initially choice probabilities
are given by

P =



0 0.50 0.50 0 0 0 0 0 0

0 1.00 0 0 0 0 0 0 0

0 0 0 0.75 0.25 0 0 0 0

0 0 0 0 0 0 1.00 0 0

0 0 0 0 0 1.00 0 0 0

0 0 0 0 0 0 1.00 0 0

0 0 0 0 0 1.00 0 0 0

0 0 0 0 0 0 0 0 1.00

0 0 0 0 0 0 0 1.00 0

0 0 0 0 0 0 0 0 1.00

0 0 0 0 0 0 0 0 1.00



.

Each row of the matrix corresponds to a state (destination excluded) and each column
to a link, as numbered in Table 2. Entries of the matrix P specify in which proportion
individuals choose outgoing links available in each state. For example, in this case, the
initial flow on arc 1 is split in half between outgoing arcs 2 and 3 when both are available,
and directed on arc 2 only otherwise.

In the following, we compare the deterministic and stochastic assignment algorithms
described in Section 5.3 to the deterministic assignment model in Marcotte et al. (2004)
and applied on the same network. In their work, Marcotte et al. (2004) consider strategies
represented as vectors of size equal to the number of network nodes, prescribing for each
an ordered list of successor nodes. Examples of such strategies are displayed in Table
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Nodes 1 2 3 4 5

s1 [3, 2] [3] [5, 4] [5] -
s2 [3, 2] [5] [5, 4] [5] -
s3 [2] [3] [5, 4] [5] -

Table 3: A set of strategies (Marcotte et al., 2004) for the small network

3. For instance, a user following strategy s1 would choose node 3 from node 1 if the
link is available, and node 2 otherwise. From node 2, the user would pick node 3, and
in this case no recourse action is needed. Finally, at node 3, the preferred choice would
be node 5, then node 4, and trivially from node 4 the user would go to node 5. There
exists many such strategies, and their number grows exponentially with the size of the
network.

There exists a correspondence between choice probabilities P in this work and strate-
gic flows x as defined in Marcotte et al. (2004). For instance, the link choice probabilities
characterized by the initial P are equivalent to a flow on strategies given by x = (1

4 ,
1
4 ,

1
2),

when restricting the number of possible strategies to the three ones displayed in Table
3. Marcotte et al. (2004) state that at equilibrium, demand is equally split between
strategies s1 and s2, of equal expected cost 185, and receiving each 5 units of flow. In
other words, the optimal flow on strategies is x∗ = (1

2 ,
1
2 , 0). The first strategy consists in

selecting node 3 from nodes 1 and 2, and node 5 from nodes 3 and 4. The second strategy
differs only by selecting node 5 from node 2. We can find an equivalent deterministic
equilibrium in the space of choice probabilities, given by

P ∗ =



0 0 1.00 0 0 0 0 0 0

0 1.00 0 0 0 0 0 0 0

0 0 0 0.50 0.50 0 0 0 0

0 0 0 0 0 0 1.00 0 0

0 0 0 0 0 1.00 0 0 0

0 0 0 0 0 0 1.00 0 0

0 0 0 0 0 1.00 0 0 0

0 0 0 0 0 0 0 0 1.00

0 0 0 0 0 0 0 1.00 0

0 0 0 0 0 0 0 0 1.00

0 0 0 0 0 0 0 0 1.00



,

as the demand splits in equal proportion between both outgoing arcs in state 3, corre-
sponding to node 2.

6.1 Deterministic assignment

We apply the deterministic assignment algorithm described in Section 5.3, with common
and disaggregate step sizes respectively. We display in Table 4 and 5 the relevant values
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Choice probabilities Costs Gap (%)

# Iter P1,2 P1,3 P3,4 P3,5 C1,2 C1,3 C3,4 C3,5 V1 gR(P1) gR(P3) gR(P )

0 0.5000 0.5000 0.7500 0.2500 200.00 156.25 181.25 150.00 182.50 12.28 13.51 9.25
1 0.2500 0.7500 0.3750 0.6250 175.00 100.00 125.00 150.00 155.00 15.79 11.11 8.36
2 0.1667 0.8333 0.5833 0.4167 200.00 137.50 162.50 150.00 185.00 7.04 4.64 3.51
3 0.1250 0.8750 0.4375 0.5625 188.64 113.64 138.64 150.00 171.49 7.62 4.41 3.45
4 0.1000 0.9000 0.5500 0.4500 200.00 132.81 157.81 150.00 185.07 4.82 2.78 2.17
5 0.0833 0.9167 0.4583 0.5417 192.65 117.65 142.65 150.00 176.28 5.04 2.72 2.16

10 0.0455 0.9545 0.5227 0.4773 200.00 128.68 153.68 150.00 185.06 2.46 1.26 1.01
20 0.0238 0.9762 0.5119 0.4881 200.00 126.95 151.95 150.00 185.03 1.35 0.66 0.54
50 0.0098 0.9902 0.5049 0.4951 200.00 125.81 150.81 150.00 185.02 0.57 0.27 0.22

100 0.0050 0.9950 0.5025 0.4975 200.00 125.41 150.41 150.00 185.01 0.29 0.14 0.11
200 0.0025 0.9975 0.5012 0.4988 200.00 125.21 150.21 150.00 185.00 0.15 0.07 0.06
500 0.0010 0.9990 0.5005 0.4995 200.00 125.08 150.08 150.00 185.00 0.06 0.03 0.02

1000 0.0005 0.9995 0.5002 0.4998 200.00 125.04 150.04 150.00 185.00 0.03 0.01 0.01

Table 4: Iterations of the deterministic assignment algorithm (common step size)

of P for successive iterations of the algorithm. In particular we look at the choice
probabilities from states 1 and 3, since we do not expect the other components of P to
be updated. We also show the corresponding cost C of choosing the respective actions
in each state, and the corresponding state-specific relative gap. Finally, the last column
displays the aggregate relative gap value.

We observe that both methods converge slowly towards the solution P ∗ given above,
which is equivalent to the equilibrium solution found in Marcotte et al. (2004). The gap
at state 3 is smaller using the disaggregate step size, however the opposite is true for
state 1. When comparing the aggregate gap values, we observe that it is smaller with the
common step size. Therefore the disaggregate step size does not improve convergence in
this example. In general, we also observe that the gap at specific states may be higher
than the aggregate gap, since the latter is lowered by taking into account some states
where the gap is zero.

While in Marcotte et al. (2004), all used strategies have the same expected cost of
185 at equilibrium, similarly we observe here that all chosen actions at a given state have
the same expected cost. When an equilibrium is reached, both outgoing links in state 3
have a cost of 150, while in state 1 the only chosen outgoing link has a cost of 185, which
is less than the cost of the other link. Note that the expected cost of the best strategy
for the OD pair is equivalent to the value function at the origin state in this work, as it
represents the minimum expected cost to reach destination. From Table 4 we observe
that V in (2) at the origin state given by s = 1 indeed converges to min {185, 200} = 185.

6.2 Stochastic assignment

In a second phase, we apply the stochastic version of the algorithm described in Section
5.3 to obtain equilibrium flows in this network. In this setting, arc costs are assumed
to be stochastic and given by ca + µεa, and we do not expect the choice probabilities to
converge to the same solution as in Section 6.1. Therefore, we examine the impact of
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Choice probabilities Costs Gap (%)

# Iter P1,2 P1,3 P3,4 P3,5 C1,2 C1,3 C3,4 C3,5 V1 gR(P1) gR(P3) gR(P )

0 0.5000 0.5000 0.7500 0.2500 200.00 156.25 181.25 150.00 182.50 12.28 13.51 9.25
1 0.4386 0.5614 0.6486 0.3514 200.00 145.68 170.68 150.00 180.65 14.06 8.21 6.99
2 0.3769 0.6231 0.5954 0.4046 200.00 139.11 164.11 150.00 180.45 14.16 5.30 5.42
3 0.3236 0.6764 0.5638 0.4362 200.00 134.81 159.81 150.00 180.72 13.53 3.55 4.29
4 0.2798 0.7202 0.5438 0.4562 200.00 131.90 156.90 150.00 181.09 12.62 2.44 3.46
5 0.2445 0.7555 0.5305 0.4695 200.00 129.89 154.89 150.00 181.44 11.16 1.70 2.84

10 0.1446 0.8554 0.5056 0.4944 200.00 125.93 150.93 150.00 182.68 7.84 0.31 1.36
20 0.0777 0.9233 0.5002 0.4998 200.00 125.03 150.04 150.00 183.74 4.45 0.02 0.64
50 0.0324 0.9676 0.5000 0.5000 200.00 125.00 150.00 150.00 184.50 1.91 0.00 0.26

100 0.0164 0.9836 0.5000 0.5000 200.00 125.00 150.00 150.00 184.75 0.98 0.00 0.13
200 0.0083 0.9917 0.5000 0.5000 200.00 125.00 150.00 150.00 184.87 0.49 0.00 0.06
500 0.0033 0.9967 0.5000 0.5000 200.00 125.00 150.00 150.00 184.95 0.20 0.00 0.03

1000 0.0017 0.9983 0.5000 0.5000 200.00 125.00 150.00 150.00 184.98 0.09 0.00 0.01

Table 5: Iterations of the deterministic assignment algorithm (disaggregate step size)

the scale µ of the random term on the results. Table 6 gives the choice probabilities P
and value function V at origin state after 1000 iterations for different values of µ.

As expected, when µ is small, the assignment is close to a deterministic one and the
equilibrium choice probabilities are close to the values in Table 4. On the other hand,
when µ becomes very large, we observe that the choice of arc is close to random. From
arc 2, the flow splits between arcs 4 and arcs 5 in proportion 2

3 and 1
3 respectively. This

is because there are two paths to the destination from arc 4, and only one from arc 5.
Similarly from arc 1, we notice that arc 2 contains three feasible paths to the destination,
while arc 3 only contains two. Thus the choice probabilities at the origin state converge
towards 3

5 and 2
5 respectively. The expected minimum cost given by V at the origin state

is close to 185 when the value of µ is small, and decreases as µ tends to infinity and
the magnitude of the error term becomes large. Intuitively, the large variance among
perceived costs decreases the expected value of the minimum cost.

In Table 7, we look in detail at the iterations of the algorithm for µ = 0.5. We
compare once more the algorithms with common and disaggregate step size and note
that with the former the aggregate gap converges faster to zero.
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µ P1,2 P1,3 P3,4 P3,5 V1

0.5 0.0005 0.9995 0.5000 0.5000 184.72
1 0.0005 0.9995 0.5000 0.5000 184.44
5 0.0005 0.9995 0.5000 0.5000 182.22

10 0.0016 0.9984 0.5000 0.5000 179.43
20 0.0454 0.9546 0.5003 0.4997 173.12
30 0.1406 0.8594 0.5035 0.4965 165.28
50 0.2996 0.7004 0.5224 0.4776 145.83

100 0.4495 0.5505 0.5789 0.4211 84.41
1000 0.5857 0.4143 0.6561 0.3439 −1125.60

10000 0.5985 0.4015 0.6656 0.3344 −13309.00

Table 6: Choice probabilities P and expected minimum cost at origin state V1 for dif-
ferent values of µ after 1000 iterations (common step size)

Choice probabilities Costs Gap (%)

# Iter P1,2 P1,3 P3,4 P3,5 C̃1,2 C̃1,3 C̃3,4 C̃3,5 V1 gR(P1) gR(P3) gR

0 0.5000 0.5000 0.7500 0.2500 199.65 155.90 181.11 149.31 182.50 12.30 13.77 9.38
1 0.2500 0.7500 0.3750 0.6250 174.31 99.86 124.51 149.77 155.00 15.71 11.25 8.42
2 0.1667 0.8333 0.5833 0.4167 199.10 137.41 162.23 149.56 185.00 6.96 4.71 3.53
3 0.1250 0.8750 0.4375 0.5625 187.60 113.57 138.22 149.71 171.49 7.53 4.47 3.46
4 0.1000 0.9000 0.5500 0.4500 198.85 132.76 157.51 149.60 185.07 4.74 2.83 2.18
5 0.0833 0.9167 0.4583 0.5417 191.40 117.60 142.26 149.69 176.28 4.97 2.75 2.17

10 0.0455 0.9545 0.5227 0.4773 198.45 128.65 153.35 149.63 185.06 2.41 1.28 1.01
20 0.0238 0.9762 0.5116 0.4884 198.12 126.89 151.57 149.64 185.02 1.32 0.63 0.51
50 0.0098 0.9902 0.5002 0.4998 197.36 125.03 149.69 149.65 184.60 0.56 0.00 0.08

100 0.0050 0.9950 0.5000 0.5000 197.00 125.00 149.65 149.65 184.65 0.28 0.00 0.04
200 0.0025 0.9975 0.5000 0.5000 196.66 125.00 149.65 149.65 184.69 0.14 0.00 0.02
500 0.0010 0.9990 0.5000 0.5000 196.20 125.00 149.65 149.65 184.71 0.00 0.00 0.01

1000 0.0005 0.9995 0.5000 0.5000 195.85 125.00 149.65 149.65 184.72 0.00 0.00 0.00

Table 7: Iterations of the stochastic assignment algorithm for µ = 0.5 (common step
size)
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Choice probabilities Costs Gap (%)

# Iter P1,2 P1,3 P3,4 P3,5 C̃1,2 C̃1,3 C̃3,4 C̃3,5 V1 gR(P1) gR(P3) gR

0 0.5000 0.5000 0.7500 0.2500 199.65 155.90 181.11 149.31 182.50 12.30 13.77 9.38
1 0.4395 0.5605 0.6497 0.3503 199.59 145.51 170.58 149.48 180.66 14.04 8.40 7.08
2 0.3785 0.6215 0.5972 0.4028 199.51 139.10 164.08 149.55 180.48 14.12 5.49 5.51
3 0.3256 0.6744 0.5661 0.4339 199.44 134.93 159.85 149.58 180.76 13.47 3.74 4.38
4 0.2822 0.7178 0.5465 0.4535 199.36 132.13 156.99 149.60 181.14 12.56 2.63 3.55
5 0.2471 0.7529 0.5335 0.4665 199.30 130.21 155.04 149.62 181.50 11.59 1.90 2.93

10 0.1472 0.8528 0.5095 0.4905 199.02 126.48 151.23 149.64 182.76 7.79 0.49 1.45
20 0.0798 0.9202 0.5037 0.4963 198.61 125.57 150.27 149.65 183.73 4.43 0.12 0.70
50 0.0335 0.9665 0.5018 0.4982 198.08 125.29 149.96 149.65 184.37 1.91 0.03 0.28

100 0.0170 0.9830 0.5012 0.4988 197.71 125.19 149.85 149.65 184.58 0.98 0.01 0.14
200 0.0086 0.9914 0.5008 0.4992 197.34 125.13 149.79 149.65 184.67 0.49 0.01 0.07
500 0.0035 0.9965 0.5005 0.4995 196.86 125.08 149.73 149.65 184.72 0.20 0.00 0.03

1000 0.0017 0.9983 0.5004 0.4996 195.51 125.06 149.71 149.65 184.73 0.09 0.00 0.01

Table 8: Iterations of the stochastic assignment algorithm for µ = 0.5 (disaggregate step
size)

OD pair Notation Demand Destination index

(1,24) OD1 35 d1

(1,22) OD2 25 d2

(7,24) OD3 20 d1

(7,22) OD4 20 d2

Table 9: OD pairs for Sioux Falls network

7 Applications

In the following we present two applications of the model. The first one is a simplified
and acyclic version of the Sioux Falls network, also used as a numerical example in
Marcotte et al. (2004). The network is more complex than the illustrative example, but
small enough to study in detail the solution of the assignment. The second one is a
larger scale experiment with a time-expanded transit network of over 2000 links, where
we assume that users are loaded in a random manner.

7.1 Sioux Falls network

The network is depicted in Figure 4 and contains 24 nodes and 41 links. It has up to 4
outgoing arcs per node, up to three of which may have a limited capacity. In total there
are 14 capacitated arcs. The state space is thus more complex than for the previous
illustrative example, and there are 75 states in total. We consider four OD pairs with
demand described in Table 9. Accordingly, dummy origin and destination links are
added to the network, to nodes 1 and 7, and from nodes 22 and 24 respectively.

We compute the deterministic equilibrium using both the common and the disaggre-
gate stepsize rule, and display the value function V d at origin for each OD pair in Table
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Expected minimum cost V do Gap (%)

Heuristic OD1 OD2 OD3 OD4 gR(P )

Common step size 120.00 139.94 112.97 99.97 2.97 · 10−2

Disaggregate step size 120.00 139.90 114.18 100.00 2.67 · 10−2

Table 10: Expected minimum cost of OD pairs after 1000 iterations of the deterministic
assignment algorithm

Destination Node Tail node of Strategic costs Choice probabilities Gap (%)
outgoing links Cds,a P ds,a gR(P

d
s )

24 3 4,12 110.0122 110.0000 0.3263 0.6737 3.61 · 10−3

19 20,22 54.6733 55.0000 0.9222 0.0778 9.92 · 10−2

22 1 2,3 139.9361 139.9748 0.9980 0.0020 5.52 · 10−5

7 8,18 99.9748 100.0000 0.7176 0.2824 7.12 · 10−3

3 4,12 129.9361 130.0000 0.8812 0.1188 5.84 · 10−3

4 5,11 119.9392 119.9322 0.4880 0.5120 2.87 · 10−3

10 11,17 119.9322 119.4173 0.2834 0.7166 1.20 · 10−1

Table 11: Outgoing links with equal strategic cost for each destination after 1000 itera-
tions with common step size

10. The value can be interpreted as the expected minimum cost to travel between each
OD pair, and the values are close to the minimum strategic costs found in Marcotte
et al. (2004). The aggregate relative gap is well below 1%, at around 0.03%.

In contrast with Marcotte et al. (2004), it is not possible to analyze the number of
different strategies used at deterministic equilibrium, since we cannot recover strategic
flows from arc flows. Instead, we may observe for how many couples (s, d) there exist
two different outgoing arcs in A(s) with non null choice probabilities P ds,a. Therefore in
Table 11, we display the nodes for which there exists outgoing links with equal expected
minimum cost, and display the value of corresponding choice probabilities in the state
where both links are available. We also analyze the specific relative gap at the corre-
sponding states. In all cases the value is small, illustrating that the aggregate gap value
does not conceal important variance.

We then apply the stochastic user equilibrium algorithm on the network for several
values of µ. We display the results in Table 12. We observe that for µ = 0.5, the expected
minimum costs obtained are close to the deterministic solution, while they decrease as
µ increases. The algorithm with common step size converges slightly faster for all values
of µ.
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Expected minimum cost V do Gap (%)

Heuristic µ OD1 OD2 OD3 OD4 gR(P )

Common step size 0.5 119.74 138.92 114.72 99.61 2.15 · 10−2

Disaggregate step size 119.69 138.84 114.15 99.60 3.21 · 10−2

Common step size 5 116.83 131.42 113.00 96.23 6.26 · 10−3

Disaggregate step size 117.05 131.34 112.61 96.16 4.13 · 10−2

Common step size 10 112.00 119.25 107.38 88.50 7.99 · 10−2

Disaggregate step size 112.59 119.80 107.21 88.57 1.10 · 10−1

Common step size 20 95.57 106.02 94.11 80.25 9.10 · 10−3

Disaggregate step size 95.18 105.59 93.38 79.88 7.62 · 10−2

Table 12: Expected minimum cost of OD pairs after 1000 iterations of the stochastic
assignment algorithm with different values of µ
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Figure 4: Sioux Falls network
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7.2 Springfield network

The Springfield network is a 5 zones network that was developed as a generic example for
the fast trips Dynamic Transit Passenger Assignment tool (Khani, 2013). The network
has three transit lines, as displayed in Figure 5, several walking links and a transfer link
between transit stops B2 and R2. The train line going through stops R1, R2 and R3 has
a capacity of 16 units, and the two bus lines have a capacity of 10.

In this example, we apply the strategic Markovian traffic equilibrium model to the
time-expanded version of the Springfield network. The transit schedule is given between
3PM and 6PM and there are 152 runs of the transit lines. Demand starts at 3:15 PM,
ends at 5:15 PM and is characterized by a trip every ten seconds between two of the five
possible zones. Each trip has a latest desired arrival time of 30 minutes after departure
time.

We create an acyclic time-space network based on the static bidirectional network
in Figure 5 and the given schedule. To do so, we build four types of arcs: transit
arcs, corresponding to each run of a transit line between two consecutive stops; transfer
arcs, connecting two transit stops (here B2 and R2); walking arcs, between zones and
accessible transit stops; waiting arcs, connecting the same zone or transit stop between
two consecutive discrete points in time. Transfer and walking arcs are created not at
regular time intervals but rather for each arrival or departure of a transit line at the
stop. Thus time in this approach is discretized according to the transit schedule. We
assume that the capacity of waiting, transfer and walking arcs is infinite.

Artificial origin and destination links are also created to match the dynamic OD
information. For each trip in the OD table, an origin link is created at the origin zone, so
as to be connected with the first walking arc to leave the zone from the stated departure
time. Similarly, a destination link without successor is added at the arrival zone and is
connected to the link arriving at the zone at a time closest to the latest desired arrival
time. We ensure that the time interval between earliest possible departure and latest
possible arrival is at least 30 minutes. Note that origin and destination links are also
connected to waiting arcs. Therefore, the demand may leave and arrive at any time
between the stated departure time and latest possible arrival time, and use waiting arcs
in between. The total number of arcs in the time-expanded network is 2961, while the
number of possible states is 4032.

Transit, transfer and walking arcs have a cost displayed in Figure 5, corresponding
to the travel time in minutes between nodes. The cost of waiting arcs is equal to the
waiting time, which can be inferred from the time index at the nodes of the time-
expanded network. However, the cost of waiting arcs at origin and destination zones is
upper bounded by a small value (20 seconds). Thus the cost provides individuals with
an incentive to arrive earlier at destination if possible and spend less time travelling.

We assume that passengers are loaded randomly at each node. It is usual in dynamic
transit assignment to make more complex assumptions, typically that passengers arriving
first at a node are loaded before those arriving at a later time step. However, since
boarding priorities and first-come first-serve loading is beyond the scope of this paper,
we illustrate the model on this example with the assumptions described in Section 5.1.
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Figure 5: Springfield network

Since the disaggregate step size does not demonstrate a significant improvement in
convergence, we use the common step size update to compute the deterministic and
stochastic user equilibrium. For the stochastic case, we use an intermediate value of 5
for µ. Table 13 shows the value of the aggregate gap for iterations of the deterministic
and stochastic algorithms. We observe that the algorithm follows the typical slow con-
vergence rate where the gap is roughly divided by two when the number of iterations
double.

While the aggregate gap shows that choice probabilities globally tend towards the
equilibrium solution, it is not the only way to look at the gap. Therefore, Table 14
displays disaggregate values of the gap for specific destinations and states. In particular,
for each destination d, we compare two different gap functions, i.e., the maximum relative
gap across all states maxs gR(P ds ), and the average of gR(P ds ) over all states. We then
show the lowest, highest and average values of these measures across all destinations
after 1000 iterations. For the worse destination and state, there is still an 7.60% and
11.34% relative gap for the deterministic and stochastic model respectively. Although
it is unnecessarily demanding to require the gap to reach a very low value in all states,
this shows that there may be significant variance in the gap across the network.

8 Conclusion

We presented a strategic Markovian traffic equilibrium model for capacitated networks,
which provides a framework to compute both deterministic and stochastic user equilib-
rium. The model extends the work of Baillon and Cominetti (2008) on Markovian traffic
equilibrium by considering travel cost functions which instead of bounding flows through
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Gap (%)

# Iter Deterministic Stochastic

0 1.70 2524.00
1 1.77 31.61
2 1.62 9.54
3 1.42 9.43 · 10−1

4 1.29 7.40 · 10−1

5 1.14 5.83 · 10−1

10 7.30 · 10−1 2.85 · 10−1

20 4.44 · 10−1 1.19 · 10−1

50 1.94 · 10−1 3.49 · 10−2

100 1.07 · 10−1 2.93 · 10−2

200 5.63 · 10−2 1.73 · 10−2

Table 13: Values of aggregate gap at iterations of the deterministic and stochastic as-
signment algorithm

Maximum state specific gap (%)

Assignment mind maxs gR(P d
s ) maxd maxs gR(P d

s ) meand maxs gR(P d
s )

Deterministic 2.92 · 10−2 7.60 0.33
Stochastic 6.98 · 10−4 11.34 0.44

Average state specific gap (%)

Assignment mind meansgR(P d
s ) maxd meansgR(P d

s ) meandmeansgR(P d
s )

Deterministic 6.93 · 10−4 1.69 · 10−2 8.38 · 10−3

Stochastic 7.45 · 10−6 7.83 · 10−2 3.28 · 10−3

Table 14: Different gap values after 1000 iterations for both the deterministic and
stochastic assignment algorithm
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exogenous volume-delay functions incorporate the risk of failing to board an arc, thereby
allowing users to behave strategically with respect to the stochasticity induced by limits
on capacity. The model possesses a travel cost function which explicitly derives delay
from an emulation of the queuing process to access capacitated arcs. In that respect,
the model is also an extension of the work of Marcotte et al. (2004), who first proposed
the concept of strategic equilibrium in the context of deterministic arc costs. Both
approaches are relatively disconnected in the literature, and our contribution consists
in merging both models. The resulting model has the advantage of incorporating two
sources of stochasticity in user route choice behavior, induced by variations in cost per-
ception and the risk associated with the failure to access an arc. The model formulation
is arc-based, which also avoids path enumeration issues.

Future work could be dedicated to extending the proposed framework by incorporat-
ing the complex queuing dynamics that would allow for a more realistic transit assign-
ment application, such as letting passengers be loaded on a first-come first-serve basis
when the network represents a time-expanded graph. Another appealing prospect is to
adapt this framework to cyclic networks, which would require to reshape the algorithms
proposed in this work.
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