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Abstract. This paper extends classic fixed charge multicommodity network design by 

explicitly considering demand elasticity with respect to routing cost in a profit maximization 

context with service commitments. Demand quantity is determined by a spatial interaction 

model that accounts for routing costs thus capturing the trade-off between infrastructure 

investment, efficient routing, and increased revenue. A numerical example is presented to 

demonstrate the added value of incorporating demand elasticity in profit-oriented network 

design problems. An arc-based and a path-based formulation, both with the flexibility of 

incorporating O/D pair selection by means of network and data transformations, are 

presented. The arc-based formulation is solved using state-of-the-art global optimization 

software while the path-based formulation serves as the basis for a hybrid matheuristic that 

combines a slope scaling metaheuristic and column generation. Computational experience 

shows the hybrid matheuristic to be superior in terms of solution quality and computation 

time. 
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1. Introduction

Fixed charge multicommodity network design (FMND) is a fundamental optimization
problem arising in industries such as transportation and communications to capture the
trade-off between strategic investment and operational efficiency. The problem consists of
selecting a subset of potential arcs to be installed and to route the demand of commodities
from several origin/destination (O/D) pairs using only the installed arcs. A fixed cost
is incurred upon installing an arc and a unit transportation cost is paid for each unit of
commodity transported through each arc. It generalizes a large class of well-known com-
binatorial problems such as the shortest path problem, the traveling salesman problem, the
uncapacitated lot-sizing problem, and the Steiner network design problem (Holmberg and
Hellstrand 1998, Zetina et al. 2018), and models a variety of problems in communications
and transportation (Magnanti and Wong 1984, Minoux 1989).

In this paper, we extend the FMND by incorporating demand elasticity with respect
to routing cost in a profit maximization context where a predetermined amount of revenue
is received for each unit of demand routed. The problem considers the same decisions as
the classic model: selecting a subset of arcs to install and routing the demand of O/D
pairs using them. In addition, the decision maker selects which O/D pairs to serve subject
to a service commitment constraint. Since demand quantity is a function that depends
on route distance which in turn is determined by the solution of the model, the proposed
framework endogenously captures the feedback loop between the network design decisions
and demand quantities, leading to equilibrium-like conditions at its optimal solutions.

In the network optimization literature, demand quantities are exogenously estimated
via historical information and given as fixed parameters to the problem. This makes the
resulting optimization model highly dependent on the quality of the initial demand esti-
mate. To circumvent this, researchers have developed models for FMND that account for
demand uncertainty via robust optimization as in Lee et al. (2013) and Keyvanshokooh
et al. (2016) or stochastic programming as in Rahmaniani et al. (2018). The former
assumes demand realizations are within a predefined set and finds the best solution con-
sidering the worst possible demand realization occurs (risk-averse). The latter assumes
that demand follows a given probability distribution and seeks the solution with the best
expected value (risk-neutral).

Both approaches assume demand behaves statically in the sense that it does not de-
pend on the network’s configuration, i.e. demand is inelastic. This does not hold in many
of the applications of FMND. An example is the construction of the U.S.A’s interstate
highway system which led to a significant increase in transportation of commodities among
cities in particular within the “Sunbelt states” (https://www.fhwa.dot.gov). Another ex-
ample is the shift in travel patterns when shorter flight routes are offered between cities
(Boonekamp et al. 2018). The myopic perspective of ignoring demand elasticity compro-
mises the applicability of FMND at the strategic level where decisions have long-lasting
repercussions, a context in which its use is ubiquitous.

In the literature, there are three areas of network design in which elastic demand has
been considered: transit network design, service network design, and network pricing.
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Each models demand elasticity according to the level of detail needed for the problem.
In transit network design, elastic demand is incorporated by means of traffic assignment
problems (TAP), where demand information is obtained at the link level. Service network
design and network pricing problems on the other hand use a distance decay function to
estimate demand between O/D pairs.

Traffic assignment problems on congested networks were the earliest to incorporate
elastic demand into network problems. The purpose of these models is to calculate the
use of each link (road) on a network considering: 1) users are selfish and will use paths
that minimize their travel time; 2) travel time over a link is inversely proportional to the
number of users on it; and 3) the number of users going between two points in the network
is a function of the travel time. Beckmann et al. (1956) presented a non-linear formulation
whose optimal solution also solves the TAP, satisfying what later became termed as a
“user-equilibrium”. Solution algorithms that converge to this user-equilibrium for the
fixed demand case were first proposed by Dafermos (1968) and LeBlanc et al. (1975), while
Florian and Nguyen (1974) and Evans (1976) devised the first efficient algorithms for the
elastic demand case. Numerous extensions have been proposed for both the static TAP
(Matsoukis and Michalopoulos 1986) and the dynamic TAP (Peeta and Ziliaskopoulos
2001).

As mentioned before, the TAP is a subproblem of transit network design problems
in which higher level decisions such as added road capacity, vehicle outgoing frequency,
or vehicle sizes must be determined (Newell 1979). These problems are posed as bilevel
programs in which the upper level seeks to maximize social benefit and the lower level
corresponds to a TAP. Due to the difficulty of solving the TAP, in particular when con-
sidering elastic demand, and the added challenge of bilevel programming, most solution
methods for these problems have been heuristic in nature (Cipriani et al. 2012).

Demand elasticity has also been incorporated into location models by means of distance
decay functions, spatial interaction models, or user-equilibrum constraints to characterize
demand loss due to travel time/cost, congestion and decline in utility. Two families of
location problems have considered demand elasticity. The first is Competitive Facility
Location in which the decision maker seeks to maximize the market share captured or
minimize lost demand by strategically locating facilities for customers whose willingness to
patronize it is sensitive to travel and waiting time. Solution algorithms and extensions of
these can be found in Marianov et al. (2005), Berman et al. (2006), Aboolian et al. (2007)
and Marianov et al. (2008). Other works with a specific application to healthcare service
network design are Zhang et al. (2009) and Zhang et al. (2010) in which the former uses
queueing theory to determine expected demand and the latter models demand elasticity
via user-equilibrium conditions to account for willingness to participate in preventive
healthcare.

The second family of location problems to consider demand elasticity is the profit
maximizing service network design problem presented in Aboolian et al. (2012). The
model seeks to determine the optimal facility locations and their corresponding service
levels so as to maximize the profit obtained as the difference between the revenue received
from the captured demand and the investment in infrastructure. The model accounts for
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sensitivity to both travel and waiting time where the latter is incorporated as constraints
derived from well-known queueing theory results. It is solved to optimality by a successive
improvement algorithm that removes non-optimal feasible solutions at each iteration.
However, the solution time shows to be sensitive to the allowed minimum number of
workers per facility.

The most recent area of network design to incorporate elastic demand is that of net-
work pricing introduced by Labbé et al. (1998). This problem seeks to maximize the
revenue raised from tolls placed on a network that must transport multiple commodities.
Kuiteing et al. (2017) extended the original version to include elastic demand by means
of a linearly decreasing function. The resulting problem is posed as a bilevel program and
reformulated into a mixed integer quadratic program which is solved by a general-purpose
solver. Kuiteing et al. (2018) later extended the model to include non-linear demand de-
cay functions and proposed an exact method based on piecewise linear approximations of
the demand function that asymptotically converges to the optimal solution.

These studies demonstrate the importance and impact of accounting for elastic demand
in strategic network design problems both in “directed choice” models where a central
decision maker establishes the O/D routes and in “user-choice” models where routing
is determined by user-equilibria. Recently, Daganzo (2012) presented conditions under
which demand estimation and system design can be done separately in public infrastruc-
ture network design through user-choice models. These problems seek to maximize social
benefit by deciding on the system design, including its layout and control, and the prices
to be charged for the service. We note that this result does not apply to the problem
presented in this paper as it is a directed choice model placed in a more abstract context
to allow its use in applications beyond public infrastructure.

Among the classes of problems reviewed, the most closely related to the proposed
framework is that of Aboolian et al. (2012). It also captures the trade-off between addi-
tional investment and increased revenue. However, the presented model differs in that it
assumes a maximum threshold of possible demand, and that elasticity is modeled by both
a distance and congestion decay function. In addition, the inherent difference between
location and network design problems makes the corresponding approaches significantly
different. In location problems, locating a facility directly impacts the travel costs of
nearby patrons. On the other hand, the effect on routing costs of installing an arc in a
network is dependent on the other arcs that determine the shortest paths of commodities.

With respect to modeling demand elasticity, the methods used in the reviewed liter-
ature do not fit well with the assumptions and level of detail of FMND. Compared to
the TAP, we do not require traffic levels per link nor does the model assume having the
parameters necessary to formulate the equilibrium model. On the other hand, distance
decay functions are useful when modeling lost demand whereas the goal of the proposed
framework is to also capture the possibility of increasing demand quantity based on net-
work decisions.

In this paper we propose the use of a gravity model to incorporate demand elasticity
to routing cost into a profit-oriented variant of FMND. One of the key advantages of
the use of the gravity model is that its simplest version allows for the incorporation of
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demand elasticity by using an O/D demand matrix as in the classic FMND. On the
other hand, more sophisticated gravity models that consider other determining features
for demand prediction can be easily incorporated by doing the necessary calibration.
This allows for a wide spectrum of possible gravity models to predict demand being
incorporated into FMND. The gravity model also generalizes distance decay functions
as it does not assume an estimated maximum possible demand. Instead, the maximum
possible demand is implicitly determined by the underlying network’s shortest distances.
In addition, we allow the decision maker to choose which O/D pairs will be served subject
to a service commitment constraint that enforces a minimum number of them to be
routed. We present two non-linear mixed integer programming formulations obtained by
incorporating a general form of the gravity model and demonstrate the added value of
incorporating demand elasticity by comparing solutions obtained from the proposed model
and from its inelastic version. Both formulations are able to model O/D pair selection
by means of simple network transformations. Finally, we present solution algorithms and
a computational comparison of their performance with respect to solution quality and
computation time.

The rest of the paper is organized as follows. In Section 2, we provide some preliminar-
ies on the use of gravity models, present the notation, formally describe the problem, and
give a numerical example that demonstrates the value of incorporating demand elasticity.
Section 3 presents an arc-based and a path-based formulation and the transformations
necessary to incorporate O/D pair selection and service commitment constraints. Sec-
tion 4 details the components of the hybrid matheuristic used to solve the path-based
formulation while Section 5 compares its performance with that of solving the arc-based
formulation with a state-of-the-art global optimization solver. Finally, Section 6 provides
conclusions and future lines of research.

2. Problem definition

As the proposed framework is based on the FMND, we adopt the same notation. The
problem is defined on a directed graph G = (N,A) with node set N and arc set A. We
assume the existence of a set of O/D pairs, which we denote by K, between which demand
must be routed on a single path. Each O/D pair will also be referred to as a commodity.
Each arc has a corresponding fixed installation cost fij ≥ 0 and a unit transportation
cost ckij > 0 for each commodity k ∈ K. A revenue of αk ≥ 0 is received for every unit of
commodity k ∈ K that is routed.

There is an added value in allowing the decision maker to select which commodities
to route in a profit-oriented problem. A commodity may be left unserved if the resulting
installation and operational costs do not compensate the obtained revenue in the overall
network design. This additional decision level is incorporated in the problem along with a
service commitment constraint that enforces that at least Γ O/D pairs are routed, where
Γ ∈ Z+. Considering all previously mentioned characteristics, the proposed problem
consists of finding the network configuration that maximizes the total profit obtained
from routing at least Γ of a set of given O/D pairs. The flexibility of the resulting
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problem allows it to be used in both regulated industries where service commitments are
imposed and unregulated industries where the service provider has complete freedom to
selfishly pursue profit.

Given that the total revenue depends on the demand quantities of the commodities
routed, the role of demand elasticity to routing cost directly impacts our objective. The
proposed problem implicitly seeks an equilibrium between spending on network infrastruc-
ture to increase demand quantities of commodities while ensuring maximum profitability
in the overall endeavor. We next introduce the preliminaries of gravity models, the tool
used to model demand elasticity to routing cost.

2.1. Gravity models

Based on Newton’s law of universal gravitation (Newton 1687), gravity models have
spread to other fields in the social sciences (Haynes and Fotheringham 1984). Since the
late 19th century, ideas based on gravity models have been used to explain principles of
social science (Carey 1858), to define laws of migration (Ravenstein 1885), to explain retail
gravitation (Reilly 1929), to model consumer behavior (Huff 1964), and to analyze traffic
patterns (Wilson 1967). In the optimization community, Huff-like models have been used
in competitive facility locations (Eiselt et al. 1993, Aboolian et al. 2007, Fernández and
Hendrix 2013) with both market share capture and profit maximization objectives.

The original idea behind gravity models was to measure the interaction between two
locations as being directly proportional to their size and inversely proportional to the
distance between them. The model’s simplified form led to skepticism about its predic-
tion capabilities (Jensen-Butler 1972). As a response, theoretical refinements were made
to improve its reliability as a prediction tool. Wilson (1971) presented gravity mod-
els that considered information restrictions and provided a corresponding taxonomy for
the resulting families of gravity models: unconstrained, production constrained, attrac-
tion constrained, and production-attraction constrained. Later, Senior (1979) provided
a means of extracting information at a disaggregated level based on entropy maximiza-
tion. Throughout the years, other refinements have been proposed that allow for the
inclusion of industry-specific features into the gravity model (Fotheringham and O’Kelly
1989). Today, refined and meticulously calibrated gravity models such as those presented
in Hodgson (1990), Grosche et al. (2007), Lesage and Polasek (2008), Zhong et al. (2018)
and Boonekamp et al. (2018) provide reliable estimates of interactions between locations.

In general, gravity models assume the interactions Wij from city i to j can be estimated
as Wij = f(Ūi, V̄j, D̄ij) where Ūi is a vector of origin features, V̄j is a vector of destination
features, D̄ij represents a set of separation attributes, one of which is the travel cost, and
f(.) is a real-valued function (Fotheringham and O’Kelly 1989). To ease notation, we
assume the following simplified version of the gravity model:

Wij =
PiPj
(dij)r

, (1)

where Pi is a weight attributed to the population size at location i, dij represents the
distance between them, and r ≥ 0 is an exponent that models the sensitivity to distance.
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As seen in Black (1973), depending on the context in which the gravity model is used,
different values of r have been shown to better approximate demand patterns. In practice,
its value often varies between 0.5 and 2.0 (Fotheringham and O’Kelly 1989).

The formulations and solution algorithms presented in this paper are also compatible
with more sophisticated gravity models. Note that the components of Ūi and V̄j are not
affected by the decisions taken in network design problems. In fact, the only feature
affected by network design decisions is the distance between the locations. Therefore, the
addition of features would appear in the proposed optimization model as constants. On
the other hand the variability of the exponent r is accounted for and, as will be seen in
Section 4, the presented solution algorithm easily adapts to any value of r.

2.2. Profit-oriented network design with elastic demand

We next present the objective function of the problem resulting from incorporating
(1) into FMND where distances considered are based on routing costs. Let the variable
xkij ∈ {0, 1} represent whether arc (i, j) ∈ A is used in the route of commodity k ∈ K
while yij represents the activation of arc (i, j) ∈ A. To model revenue, we convert the
demand quantity into a monetary value by multiplying it by the per unit revenue αk ≥ 0
received for each unit of commodity k ∈ K routed. We assume that the routing costs
used in the gravity model are directly proportional to the transportation costs incurred
ckij, i.e. dij = τckij, where τ > 0 is a transportation cost scaling factor. Substituting the
gravity model form (1) for the fixed demand parameter Wk of the FMND, we obtain the
following objective function for the profit-oriented network design problem with elastic
demand (POFMND-E):

(OF )
∑
k∈K

αkPo(k)Pd(k)

(τ
∑

(i,j)∈A
ckijx

k
ij)

r
−

∑
k∈K

Po(k)Pd(k)

(τ
∑

(i,j)∈A
ckijx

k
ij)

r

∑
(i,j)∈A

ckijx
k
ij −

∑
(i,j)∈A

fijyij (2)

=
∑
k∈K

Po(k)Pd(k)

[αk −
∑

(i,j)∈A
ckijx

k
ij]

(τ
∑

(i,j)∈A
ckijx

k
ij)

r
−

∑
(i,j)∈A

fijyij (3)

=
∑
k∈K

PPk(x)−
∑

(i,j)∈A

fijyij. (4)

The first, second and third terms of (2) correspond to the total revenue, transportation
cost and investment cost, respectively. Note that unlike classic multicommodity network
design problems, in OF the demand quantities between O/D pairs will depend on the
cost of the routes used. This models the effect the decision maker’s choice of routes has
on demand quantities, i.e. demand elasticity to routing cost.

Simplifying, we obtain (3) from which we can more clearly see the profit maximization
and demand elasticity characteristics of the non-linear objective function. Note that each
addend of the first term, rewritten as PPk(x) in (4), lends itself to the interpretation of
“partial profit” obtained from serving commodity k ∈ K. For each O/D pair, it calculates
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the difference between the per unit revenue and transportation cost, multiplied by the
demand quantity obtained according to the gravity model.

Since no assumptions, except non-negativity, are imposed on the value of the per unit
revenue αk of a commodity, the model is capable of handling cases in which for a given
commodity k, PPk(x) < 0. In other words a loss is incurred. One such case is when the
per unit revenue of a commodity is strictly less than the cheapest route over the complete
underlying network, pks .

An important characteristic of PPk(x) is that it is the composition of two functions
dk(x) : Rn → R and PPk(dk) : R → R, where dk(x) =

∑
(i,j)∈A c

k
ijx

k
ij and PPk(dk) =

Po(k)Pd(k)
[αk−dk]
(τdk)r

. The following proposition uses this to provide insights on the shape of

the function PPk(x).

Proposition 1. For r > 1,

a) dk(x) = rαk
r−1

is a minimum of PPk(dk(x)),

b) PPk(x) is convex for 0 < dk(x) ≤ (r+1)αk
(r−1)

,

c) PPk(x) is concave for dk(x) ≥ (r+1)αk
(r−1)

.

Proof Given that PPk(dk) : R→ R, i.e. the partial profit of commodity k as a function
of distance dk > 0, is a twice differentiable univariate function, we can calculate its
first and second order derivatives. We denote f ′(x) and f ′′(x) as the first and second
order derivatives of f(x), respectively. Using univariate calculus we obtain the following
differential information for PPk(dk):

PP ′k(dk) = Po(k)Pd(k)
(dk(r − 1)− rαk)

τ rdr+1
, (5)

PP ′′k (dk) = Po(k)Pd(k)r
((r + 1)αk − (r − 1)dk)

τ rdr+2
. (6)

From (5) and (6) we observe that for any r > 1:

• PP ′′k (dk) ≥ 0 when dk ≤ (r+1)αk
(r−1)

=⇒ PPk(dk) is convex for dk ∈ (0, (r+1)αk
(r−1)

] .

• PP ′′k (dk) < 0 when dk >
(r+1)αk

(r−1)
=⇒ PPk(dk) is concave for dk ∈ ( (r+1)αk

(r−1)
,∞) .

• PPk(dk) obtains a minimum of
−Po(k)Pd(k)αk(r−1)(r−1)

(rταk)r
at dk = rαk

r−1
since PP ′k(

rαk
r−1

) = 0

and PP ′′k ( rαk
r−1

) > 0.

Given that dk(x) is an affine transformation and PPk(x) is the composition of PPk(dk)

and dk(x), we conclude that PPk(dk) is convex when 0 < dk(x) ≤ (r+1)αk
(r−1)

and concave

when dk(x) ≥ (r+1)αk
(r−1)

(Boyd and Vandenberghe 2004, section 3.2.2) and is therefore a
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non-convex function throughout the domain x ∈ R|A|. �

The case of 0 ≤ r ≤ 1 merits special attention because the function PPk(x) possesses
properties that can be exploited from a mathematical programming perspective. Although
the scope of this study is to present a general solution methodology adaptable to any r ≥ 0,
we present these special characteristics for completeness.

Substituting 0 ≤ r ≤ 1 into (6) we note that PP ′′k (dk) ≥ 0 for all dk ∈ R. This implies
that PPk(dk) is a convex function throughout the entire domain of x ∈ R. In fact, as
r 7→ 0, PPk(dk) tends to become more linear, achieving linearity at r = 0. In addition,
not only is PPk(dk) convex throughout its domain, it also does not attain its minimum.
This can be seen by substituting 0 ≤ r ≤ 1 into the expression (5) = 0 whose solutions
give the stationary points of PPk(dk). We note that a key assumption of these results is
that ckij > 0 for all k ∈ K and (i, j) ∈ A, since routes with a cost of zero are undefined in
the presented definition of partial profit. The advantage of convexity lies in the fact that
there exist efficient ways of dealing with OF by using subgradients to under-approximate
each PPk(x).

Figure 1 shows the shape of PPk(dk) with respect to per unit routing cost dk for three
parameter values of r. For a given k ∈ K, note that the partial profit PPk(dk) may take
negative values, i.e. incur a loss, when the per unit routing cost dk is greater than αk.
After attaining its minimum, which as seen from our previous analysis will always be a
maximum loss, if the demand sensitivity parameter r > 1 then an increase in per unit
routing cost decreases the loss. Therefore in this particular case, after a certain point,
there is an incentive for the decision maker to route commodities on a longer path so as
to dissuade demand of a particular commodity whose efficient routing does not globally
compensate the revenue obtained.

On the other hand, if r ∈ [0, 1] then the partial profit PPk(dk) is a convex function
that keeps decreasing as the routing cost increases therefore there would be no incentive to
route commodities through a longer route. This flexibility in modeling demand behavior
and its effect on the partial profit is one of the most important reasons for using the
gravity model. It generalizes schemes such as demand decay functions and is able to
capture phenomena such as the effect of hyper-sensitivity to routing costs (r > 1) on
partial profit that may be missed from more conventional demand functions. Finally, we
point out that in the context of our problem, the values dk(x) are bounded above and
below by the most expensive (pkl ) and the cheapest (pks) possible routes, respectively, in
the complete underlying graph. Therefore, depending on their values, the corresponding
problem may consider only the convex part of PPk when r > 1. However, in general, the
problem to be solve is a non-linear optimization problem for all r ≥ 0.
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Figure 1: Shape of PPk(dk)

These nuances capture other levels of trade-off inherent to profit maximization where
taking losses or offering worse service levels for some commodities compensates the overall
profitability of an enterprise’s operation. The proposed framework can also be used as
a means of finding how to create commodity groups with better operation synergy, i.e.
considering them together leads to decisions that do not dissuade demand by offering
poorer service.

Comparing the shape of the partial profit for varying values of r, we note that the
minimum value of partial profit is larger for greater values of r. This comes from the
fact that larger values of r represent greater demand sensitivity to routing cost leading
to fewer units of the commodity being routed at the minimum value of partial profit and
therefore a smaller loss.

3. Formulations

We next propose two non-linear mixed integer programming formulations for the profit-
oriented network design problem with elastic demand (POFMND-E) in which all com-
modities must be served. These formulations can be easily adapted to incorporate O/D
pair selection decisions and service commitments. Both formulations fall in the domain of
global optimization problems. Given the limited resources to efficiently solve these types
of problems, we use one of the formulations as a base to develop a hybrid matheuristic
that is applicable to any r ≥ 0. It exploits known results of similar network design prob-
lems and converges in a reasonable amount of computation time. The other formulation
serves as a benchmark for solving the POFMND-E with O/D pair selection and service
commitments using a state-of-the-art general purpose global optimization software.

3.1. Arc-based formulation

Our arc-based formulation is based on the well-known strong formulation for the un-
capacitated FMND with the difference that the routing variables xkij are binary instead of
continuous. In the case of POFMND-E, when the per unit revenue αk of a commodity k
is less than the cheapest possible route pks , the model then seeks to make the loss resulting
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from PPk(x) as small as possible by increasing the length of the route as much as possi-
ble. Since flow conservation constraints alone do not prohibit circuits, formulations based
only on the constraints of the classic uncapacitated FMND formulation lead to solutions
having routes with sub-circuits within the path and isolated from it.

Given the inability of most global optimization software to allow for cut callbacks, we
implement the subtour elimination constraints (SEC) via a modified version of the well-
known, but weak, Miller-Tucker-Zemlin (MTZ) subtour elimination constraints (Miller
et al. 1960). These require an additional set of variables uki for each i ∈ N, k ∈ K
and that xkij be binary leading to the following arc-based formulation. The variables u
represent the order in which all nodes except the depot are visited.

(P1) maximize
∑
k∈K

Po(k)Pd(k)

[αk −
∑

(i,j)∈A
ckijx

k
ij]

(τ
∑

(i,j)∈A
ckijx

k
ij)

r
−

∑
(i,j)∈A

fijyij (7)

subject to
∑

j∈N :(j,i)∈A

xkji −
∑

j∈N :(i,j)∈A

xkij =


−1 if i = ok
1 if i = dk
0 otherwise

∀i ∈ N, ∀k ∈ K (8)

xkij ≤ yij ∀(i, j) ∈ A, k ∈ K (9)

ukok = 1 ∀k ∈ K (10)

uki − ukj + 1 ≤ (N − 1)(1− xkij) ∀(i, j) ∈ A, k ∈ K (11)

2 ≤ uki ≤ N ∀i ∈ N\{ok}, k ∈ K (12)

xkij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (13)

yij ∈ {0, 1} ∀(i, j) ∈ A. (14)

The objective function (7) seeks to maximize profit, while constraints (8) and (9) are
the flow conservation constraints and binding constraints from the classic uncapacitated
FMND, respectively. Finally, constraints (10) and (11) are the MTZ subtour elimination
constraints, while (12)-(14) are the variable definitions.

As a required input of the algorithms used in global optimization software, we provide
the lower and upper bounds for the values of each PPk(x) as detailed in Section 2.2.
This model is solved with the general-purpose global optimization solver Baron 18.8.23
(Tawarmalani and Sahinidis 2005, Sahinidis 2017, Kılınç and Sahinidis 2018) accessed
through the AMPL modeling language.

3.2. Path-based formulation and pricing problem

We next present a path-based formulation of the problem. Let Θµ
k denote a binary

variable whose value is equal to 1 if path µ is used for commodity k, and define the
parameter vµk (i, j)=1 if arc (i, j) belongs to path µ for commodity k, 0 otherwise. Finally,
let Ωk denote the set of simple paths from o(k) to d(k) and Ω represent the union of these
over k ∈ K. With this notation we have the following path-based formulation for the
POFMND-E.
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(P2) maximize
∑
k∈K

∑
µ∈Ωk

[Po(k)Pd(k)

[αk −
∑

(i,j)∈A
ckijv

µ
k (i, j)]

(τ
∑

(i,j)∈A
ckijv

µ
k (i, j))r

]Θµ
k −

∑
(i,j)∈A

fijyij (15)

subject to [λ]
∑
µ∈Ωk

vµk (i, j)Θµ
k ≤ yij ∀(i, j) ∈ A,∀k ∈ K (16)

[µ]
∑
µ∈Ωk

Θµ
k = 1 ∀k ∈ K (17)

Θµ
k ∈ {0, 1} ∀(i, j) ∈ A. (18)

yij ∈ {0, 1} ∀(i, j) ∈ A. (19)

The objective function (15) calculates the total profit obtained from the selected net-
work configuration. Constraint set (16) ensures that all design variables of the arcs used
in the routing take value one while constraints (17) ensure that each commodity is routed
through one path. Finally, λkij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K and µk ∈ R, ∀k ∈ K are the dual
variables corresponding to (16) and (17), respectively. We point out that, unlike P1, the
presented path-based formulation is a binary linear formulation.

Given the exponential number of potential paths that can be used to route each
commodity, traditionally these are added on the fly to P2 by means of a column generation
algorithm which adds columns based on the solution of a pricing problem that determines
whether new columns are needed to calculate the linear relaxation of P2. In this case, the
pricing problems of POFMND-E decompose to one for each commodity k ∈ K. These
have the following form for each k ∈ K:

(Prk2) maximize [Po(k)Pd(k)

[αk −
∑

(i,j)∈A
ckijv

µ
k (i, j)]

(τ
∑

(i,j)∈A
ckijv

µ
k (i, j))r

]−
∑

(i,j)∈A

λijv
µ
k (i, j) (20)

subject to
∑

j∈N :(j,i)∈A

vµk (j, i)−
∑

j∈N :(i,j)∈A

vµk (i, j) =


−1 if i = ok
1 if i = dk
0 otherwise

∀i ∈ N (21)

ukok = 1 ∀k ∈ K (22)

uki − ukj + 1 ≤ (N − 1)(1− vµk (i, j)) ∀(i, j) ∈ A (23)

2 ≤ uki ≤ N ∀i ∈ N\{ok} (24)

vµk (i, j) ∈ {0, 1} ∀(i, j) ∈ A. (25)

The objective function (20) seeks to maximize the reduced cost of the column to be
added while constraints (21) are the classic flow conservation constraints. Constraints
(22) and (23) are the MTZ subtour elimination constraints. Note that Prk2 is similar to P1

in that it is a non-linear formulation, with binary variables and MTZ subtour elimination
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constraints. However, Prk2 is significantly smaller since it is defined for each k ∈ K and
the fixed costs are replaced by the dual variables of (16). It is a modified shortest path
problem with a non-linear objective function. The difficult non-convexity present in P1

is transferred to the pricing problem Prk2. Our efforts will therefore be placed in finding
alternative ways of adding new columns to P2 by heuristically solving an easier problem
based on Prk2.

3.3. Incorporating O/D pair selection and service commitments

Formulations P1 and P2 do not account for O/D pair selection and service commitment.
Both formulations allow for the convenient incorporation of both considerations by either
performing simple transformations on the network or defining artificial variables, and
adding a knapsack-type constraint, respectively. For P1 to allow O/D pair selection, the
only modification required is done to the underlying graph used in the formulation. The
following network transformation incorporates O/D pair selection into P1.

Let ∆ = {i ∈ N |∃(o, d) ∈ K such that i = d} denote the set of nodes that are
destinations of some commodity k ∈ K. For each node δ ∈ ∆ create an artificial node δo

and an arc (δ, δo) ∈ A with fδδo = 0 and ckδδo = 0 for all k ∈ K. In addition, redefine all
commodities (o, δ) as (o, δo) ∈ K and add another artificial arc (o, δo) ∈ A with fδδo = 0
and ckδδo = αk for all k ∈ K. Figure 2 illustrates the proposed transformation.

(𝑓𝑜1,𝑐𝑜1
𝑘 )

1

𝑜𝑘

𝛿𝑘

(a) Original network

(𝑓𝑜1,𝑐𝑜1
𝑘 )

1

𝑜𝑘

𝛿𝑘

𝛿𝑘
𝑜

(b) Transformed network

Figure 2: Network transformation to allow O/D pair selection

Note that by carrying out this transformation and using the resulting network in P1,
its solution accounts for the decision maker selecting which commodities to route. If a
commodity k̄ ∈ K used the arc (o, δo) ∈ A, it obtains no revenue and incurs no fixed cost.
In other words, the model has selected not to route commodity k̄ ∈ K. On the other
hand, if a commodity uses the arc (δ, δo) ∈ A, its routing, fixed cost, and corresponding
revenue remain the same as if it was routed from (o, δ) in the original network.
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Finally, to impose a service commitment constraint in P1 stating that at least Γ
commodities are to be routed, the following knapsack type constraint on the arc variables
of the transformed network should be added:

∑
(o,δo)∈K

xoδ
o

oδo ≤ |K| − Γ. (26)

Incorporating O/D pair selection in P2 requires significantly less work. The addition
of an empty route γk̄, with PPk̄(x) = 0 for each commodity k̄ ∈ K into the pool of routes
Ωk is enough to account for O/D pair selection. The associated binary variables for these

empty routes will be denoted as Θµ0

k̄
. If in a solution, the associated Θµ0

k̄
is equal to 1,

then commodity k̄ is not routed.
Imposing a service commitment in P2 where at least Γ commodities are to be routed

is also done by incorporating a knapsack-type constraint. In this case, the inequality is

defined over the artificial variables Θµ0

k̄
of the empty routes and has the following form:

∑
k∈K

Θµ0

k ≤ |K| − Γ. (27)

The network transformations or empty routes can be added as a preprocessing step
leaving the incorporation of either inequality (26) or (27) as the only modification of P1

and P2, respectively, to incorporate O/D pair selection and service commitment. These
transformations allow us to formulate the POFMND-E with commodity selection and a
service commitment of Γ, denoted as POFMND-E(Γ). P1(Γ) is defined as P1 with the
addition of constraint (26) while P2(Γ) is defined as P2 with the addition of constraint
(27).

In the interest of brevity, particular attention will be placed on the two extreme cases
Γ = |K| and Γ = 0 referred to as variants I and II, respectively. Note that for both cases,
one can omit the service commitment constraints (26) or (27). In variant I, it suffices
to not carry out the network transformation or not define the empty routes in P1 or P2,
respectively. In variant II, the service commitment constraints become redundant as the
right hand side value |K| is the maximum possible value that can be taken.

We next present a numerical example to show the value of incorporating demand
elasticity in profit-oriented network design. Although the example presents a comparison
for variant I, a similar conclusion can be derived for the general POFMND-E(Γ).

3.4. The value of considering demand elasticity

To demonstrate the value of considering demand elasticity within POFMND, we solve
variant I for a small example of a network with 10 nodes numbered from one to ten,
35 arcs and ten commodities. Table 1 details the parameters of the ten commodities:
origin, destination, population at origin, population at destination, per unit revenue and
cheapest route over the complete network, respectively.
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Table 1: Commodity parameters of example

ok dk Po Pd αk pks

2 8 524 1,076 93 93
3 1 228 744 141 76
4 2 792 524 210 122
4 7 792 160 189 106
6 1 640 744 245 141
6 10 640 448 53 41
8 1 1,076 744 220 117
8 6 1,076 640 157 93
9 8 292 1,076 215 123

10 4 448 792 304 164

As mentioned in Section 2, POFMND-E obtains solutions with equilibrium-like char-
acteristics between demand quantity and routing cost. Therefore, to formulate an equiva-
lent profit-oriented FMND with inelastic demand (POFMND-I), we must assume a fixed
demand quantity for each commodity. A demand quantity value that exploits all infor-
mation in the instance data is to assign the demand quantity between nodes i and j as
Wij =

PiPj
(pks )r

. This is an optimistic value of demand quantity as it assumes all commodities
are routed along the path with least travel cost over the complete underlying network.
Note that by fixing demand quantity, the model becomes a binary linear program which
can then be solved by any of a plethora of available integer linear programming tools.

Figure 3a is the optimal solution POFMND-I while Figure 3b is the optimal solution
of POFMND-E.

2

4

9

8

3

6

1 7

10

(a) POFMND-I

2

4

9

3

6

1 7

8 10

(b) POFMND-E

Figure 3: Optimal solutions POFMND where all commodities are served

We note that at a design level, the optimal solution POFMND-I has one additional
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arc from node 2 → 8 as a result of routing commodity (2,8) directly from origin to
destination. POFMND-E instead routes this commodity along nodes 2→ 9→ 6→ 8 with
a routing cost of 136. POFMND-I routes all commodities except (6,1) along their cheapest
possible path, pks , therefore their corresponding demand quantity values coincided with
that obtained from the presented gravity model. To ensure the solutions of both models
are comparable, we substitute the solution obtained from POFMND-I into the objective
function of POFMND-E. The objective function value obtained from POFMND-I is 9.55%
worse than that of POFMND-E. This comes as a result of POFMND-I not having the
flexibility to identify the overall benefit of routing commodity (2,8) along a more costly,
unprofitable route with less demand. We next present a hybrid matheuristic algorithm
for solving P2.

4. Solving the path-based formulation

To exploit existing algorithms for classic network design problems, we replace the use
of Prk2 with the classic uncapacitated FMND formulation to generate new paths. By
doing this, we are no longer able to obtain dual bounds to assess the solution quality.
However, given that our purpose is to develop a fast heuristic adaptable to any value of
r ≥ 0, the loss of dual bounds does not hinder our purpose. On the other hand, the
classic uncapacitated FMND is itself solved by a metaheuristic since its main purpose is
to generate a varied set of paths. As we will see later on, the solutions obtained from
our proposed heuristic are optimal for most cases for which the general purpose global
optimization solver was able to prove optimality.

4.1. A hybrid matheuristic for the path-based formulation

We begin by presenting the logic behind the tools used for the matheuristic part of

the proposed solution algorithm. For each k ∈ K let Wk =
Po(k)Pd(k)

(τ
∑

(i,j)∈A
ckijv

µ
k (i,j))r

then:

maximize
∑
k∈K

Po(k)Pd(k)

[αk −
∑

(i,j)∈A
ckijx

k
ij]

(τ
∑

(i,j)∈A
ckijx

k
ij)

r
−

∑
(i,j)∈A

fijyij (28)

⇐⇒ maximize
∑
k∈K

Wk[αk −
∑

(i,j)∈A

ckijx
k
ij]−

∑
(i,j)∈A

fijyij (29)

⇐⇒ minimize
∑

(i,j)∈A

fijyij +
∑
k∈K

∑
(i,j)∈A

Wkc
k
ijx

k
ij (30)

where the equivalence between (29) and (30) comes from the fact that Wkαk is now a
constant. Expression (30) is in fact the objective function of the uncapacitated FMND
and methods for this problem can thus be applied to obtain new routes, update Wk based
on the best routes found, and then repeat.

Given that the uncapacitated FMND instance obtained assumes a particular value
for Wk, it is not in our interest to solve it exactly. A more suitable strategy is to use a
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metaheuristic that generates diverse routes for each commodity. In this spirit, we use a
slope-scaling metaheuristic (SS) based on that presented in Crainic et al. (2004) for the
capacitated FMND. This heuristic will be detailed later on in this section.

We next outline the algorithm which embeds the slope-scaling metaheuristic within
two loops, the first updates the assumed Wk while the second solves a relaxation of the
path-based formulation and updates the transportation costs of the network used for the
slope-scaling.

We begin by initializing Wk based on the maximum possible demand, ∇k, calculated
by substituting the cheapest route pks into (1). If the per unit revenue αk of commodity
k is less than the cheapest route pks , we initialize Wk as 0.2∇k. Otherwise we initialize it
as Wk = ∇k.

The slope-scaling metaheuristic is then called and all routes generated during the
process are stored in Ω with the proper evaluation of PPk(x). Wk is then updated based
on the routes of the best solution found, with respect to the uncapacitated FMND, and
the process is then repeated. This loop is terminated when the values of Wk no longer
change. We then add all generated paths to the formulation P2(Γ) and solve its linear
relaxation. The values of λ in P2(Γ) are then used to update the transportation costs of
each commodity k ∈ K on each arc (i, j) ∈ A as ckij = ckij + λkij and the entire process is
repeated.

The purpose of this algorithm is to keep generating new routes based on modified
demand quantities and transportation costs. Greater diversification leads to a richer pool
Ω of routes in the master problem P2(Γ). We denote this problem as P2(Γ,Ω(t)). The
final loop is terminated when no new paths have been generated. After this step, we
then proceed to solve the restricted master problem P2(Γ,Ω(t)) as an integer program to
obtain a heuristic solution. Algorithm 1 summarizes the proposed hybrid matheuristic.

Algorithm 1 Hybrid matheuristic for POFMND-E

Initialization: t = 0; Ω(t) = ∅; Wk(0) = ∇k if αk > pks , Wk(0) = 0.2∇k otherwise;
do

do
Execute SS; add all generated routes µk to Ωk(t); best solution=(ȳ, x̄).
Update Wk(t+ 1) = (Po(k)Pd(k))/(τ

∑
(i,j)∈A c

k
ijx̄

k
ij)

r

t=t+1
while (∃k such that |Wk(t+ 1)−Wk(t)| > 0)
Solve LP of restricted master problem P2(Γ,Ω(t)); obtain dual variables λ.
Update ckij = ckij + λkij

while (|Ω(t)| > |Ω(t− 1)|)
Solve restricted master problem P2(Γ,Ω(t)) with integrality constraints.

We point out that in general the metaheuristic SS can be substituted by any meta-
heuristic that generates a rich variety of paths. Other metaheuristics such as local and
neighborhood searches can also prove effective if embedded within this hybrid matheuris-
tic. The key to the complete procedure is to keep information at the path level therefore
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allowing P2 the freedom to choose paths that were previously not considered together
during the metaheuristic phase. A similar logic is used in Zetina et al. (2018).

4.2. A Slope Scaling Metaheuristic

Slope scaling was first presented in Yaged (1971) and later in Kim and Pardalos (1999,
2000) as a heuristic to solve network optimization problems. Crainic et al. (2004) improved
it by adding Lagrangean perturbation and long term memory to help in diversifying and
intensifying the search. The method is based on the idea that there exists a linear program
of the form

(SS) min
∑
k∈K

∑
(i,j)∈A

ĉkijx
k
ij (31)

s.t.
∑
j∈N

xkji −
∑
j∈N

xkij =


−W k if i = ok
W k if i = dk
0 otherwise

∀i ∈ N, ∀k ∈ K (32)

0 ≤ xkij ≤ W k ∀(i, j) ∈ A, k ∈ K, (33)

that obtains the same optimal solution as the uncapacitated FMND. The algorithm at-
tempts to estimate the ĉkij for which this equivalence holds by defining it as ĉkij = ckij +ρkij,
where ρkij is a slope scaling factor that estimates the contribution of the fixed costs. An
initial ρ0 is chosen to begin the algorithm. At each iteration t, SS(ρ(t)) is solved and its
solution is used to obtain ρt+1.

For our implementation, SS is split into |K| shortest path problems with arc lengths
of ĉkij. We use a multi-start method with different initial values of ρ based on the fixed
cost and demand quantity. Let W̄ k =

∑
k∈K

W k/|K|, i.e. the average demand quantity of

the commodities. The initial values for ρ are

• fij/
∑
k∈K

W k: the fixed cost divided by the total demand quantity;

• fij/max
k∈K

W k: the fixed cost divided by the largest demand quantity;

• fij/W̄ k: the fixed cost divided by the average demand quantity;

• fij/[(max
k∈K

W k−W̄ k)/2]: the fixed cost divided by the mid-point between the average

and maximum demand quantities;

• fij/[(
∑
k∈K

W k−W̄ k)/2]: the fixed cost divided by the mid-point between the average

and total demand quantities;

• fij/[(
∑
k∈K

W k − max
k∈K

W k)/2]: the fixed cost divided by the mid-point between the

total and maximum demand quantities.
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Upon obtaining the optimal solution x̃ of SS(ρ(i)), the slope scaling factor is updated as

ρkij(i+ 1) =

{
fij∑
k∈K x̃kij

if
∑

k∈K x̃
k
ij > 0

ρkij(i) otherwise.
(34)

This process is continued until a given number of iterations (TSS) have been performed.
Note that upon solving SS, a feasible solution can be constructed for FMND by fixing to
1 the arcs through which some flow has been sent and solving |K| shortest path problems
over this subgraph. To improve the quality of the solution, we then remove any arcs of the
subgraph that have not been used in the shortest path of at least one of the commodities.

When two successive iterations obtain the same solution x̃, then the procedure will
not produce any new distinct solutions. This may occur before having performed the TSS
iterations. To aid in diversifying the metaheuristic’s search, we implement a perturbation
tool similar to that of Crainic et al. (2004). When two successive iterations of solving
SS obtain the same optimal value or a determined number of iterations Tpert without an
improved solution have passed, we then solve a shortest path problem for each k ∈ K
and use the corresponding dual variables (λk, µk) of the classic shortest path formulation
to update the slope scaling factor as ρkij = −λkj + λki + µkij and continue iterating until a
maximum number TSS of SS models have been solved.

Finally, as in Crainic et al. (2004), we implement a long term memory mechanism in
which we keep statistics throughout the history of the search. These statistics are used to
update ρ and restart the process. Based on whether the current round of the algorithm
produced an improved best solution, we choose to update ρ in such a way to intensify or
diversify the search. The statistics kept for each (i, j) ∈ A and k ∈ K up to iteration T
are the number of iterations for which x̃kij > 0 (nkij(T )), average number of commodities
routed through each arc (x̄ij(T )) and maximum number of commodities routed through
each arc (x̂kij(T )).

After performing TSS iterations with the corresponding dual perturbations along the
way, we calculate for each (i, j) ∈ A, vij = x̄ij(TSS)/x̂ij(TSS) or vij = 0 if x̄ij(TSS) = 0.
Here, vij measures the variability of the number of commodities sent through arc (i, j)
throughout the last TSS iterations. Hence, vij ≈ 1 means the number of commodities
sent through this arc has been stable throughout the process, while vij ≈ 0 shows high
variability or no commodities sent at all. During intensification, variables with stable
behavior are favored while the opposite is done when a diversification step is taken.

An intensification update to ρ is done if in the last cycle an improved best solution
was obtained. Otherwise, a diversification step is taken. A limit of divmax and intmax
diversification and intensification updates, respectively, are applied throughout the algo-
rithm. The updates for each scheme are presented below where n̄ and Sn are the average
and standard deviation of nkij, respectively.

• Normalize ρkij := ρkij − min
(i,j)∈A,k∈K

ρkij so ρkij ≥ 0 ∀(i, j) ∈ A, k ∈ K.

• To apply the intensification scheme, ∀(i, j) ∈ A, k ∈ K
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– If nkij ≥ n̄+ Sn then ρkij := ρkij(1− vij)
– If nkij ≤ n̄ then ρkij := ρkij(2− vij)
– Else ρkij := ρkij.

• To apply the diversification scheme, ∀(i, j) ∈ A, k ∈ K

– If nkij ≥ n̄+ Sn then ρkij := ρkij(1 + vkij)

– If nkij ≤ n̄ then ρkij := ρkij(v
k
ij)

– Else ρkij := ρkij.

This metaheuristic is called several times within our hybrid matheuristic to generate
new paths for which we evaluate the true value of PPk(x). For this reason, it is stopped
prematurely if two consecutive dual perturbations do not lead to any new paths. Our
heuristic is run with the parameter values TSS = 30, TDP = 5, divmax = 10, intmax = 2.
Figure 4 graphically summarizes the slope scaling with dual perturbation and long term
memory algorithm sequentially applied to each of the six initial ρ values.

• Let 𝝆 denote the scaling 
factors.

• Solve a shortest path problem 
for each commodity with arc 
costs 𝒄+𝝆.

• Compare with best solution 
found and update 𝑻𝒑𝒆𝒓𝒕.
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Figure 4: Slope scaling heuristic for MUFND

5. Computational Experiments

We test the computational efficiency of the proposed formulations and solution al-
gorithms using the well-known “Canad” multicommodity capacitated network design
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testbed (Crainic et al. 2001). The population weights of each node Pi are calculated
as the sum of all inbound and outbound demand in each node multiplied by four. To
adjust for nodes i ∈ N with no inflow or outflow, we assign them population values of
Pmin which denotes the minimum non-zero population calculated. Per unit revenue of
each commodity is αk = pks + σpks where σ is a random number between 0 and 1 and pks is
the cheapest possible route, i.e. the shortest path over the complete network. Finally, to
adjust for the population factors Pi for i ∈ N , the value of the fixed costs of an arc (i, j)

is adjusted based on the original value of the Canad instance f̄ij as follows: fij =
f̄ijPiPj
νij

where νij = Pmin + .75[max{Pi, Pj} − Pmin]. In total our testbed is comprised of 85 in-
stances ranging from small to medium scale. The computational experiments will first
focus on the two extreme variants of POFMND-E(Γ), where variant I refers to Γ = |K|
and variant II refers to Γ = 0. As previously mentioned, in these extreme cases one can
omit the service commitment constraint.

The arc-based formulation P1 is solved using the branch-and-reduce algorithm imple-
mented in the general purpose global optimization software Baron 18.8.23 (Tawarmalani
and Sahinidis 2005, Sahinidis 2017, Kılınç and Sahinidis 2018) through its AMPL inter-
face. The hybrid matheuristic is coded in C using CPLEX 12.7.0 to solve the restricted
master problem and the shortest path subproblems within the slope-scaling metaheuristic.
For a fair comparison, all use of CPLEX was limited to one thread and the traditional
MIP search strategy. All experiments were executed on an Intel Xeon E5 2687W V3
processor at 3.10 GHz under Linux environment with a time limit of two hours. Finally,
we fix the parameters of POFMND-E to τ = 1 and r = 1.7. Tables 2 and 3 compare the
performance of P1 solved using Baron and the proposed hybrid matheuristic for variant I
and II, respectively.

The first three columns of Table 2 contain the instance class (Class), dimensions
(N,A,K) representing the number of nodes, arcs and commodities respectively, and the
number of instances in each group (Nb.). The next two columns contain the number
of instances for which a feasible solution was found by the hybrid matheuristic and its
average time to completion in seconds. The following three columns correspond to the
number of instances for which solving P1 with Baron found a feasible and optimal solution,
respectively, while the last column details the average time taken.
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Table 2: Performance comparison- Variant I

Hybrid Matheuristic Baron
Class (N,A,K) Nb. Feasible Sols Seconds Feasible Sols Optimal Sols Seconds

I

20,230,40 3 3 0.47 3 0 7,200.00
20,230,200 4 4 1.17 0 0 7,200.00
20,300,40 4 4 0.50 4 0 7,200.00
20,300,200 4 4 1.62 0 0 7,200.00
30,520,100 4 4 2.70 0 0 7,200.00
30,520,400 4 4 7.64 0 0 7,200.00
30,700,100 4 4 3.09 0 0 7,200.00
30,700,400 4 4 9.73 0 0 7,200.00
Subtotal 31 31 3.45 7 0 7,200.00

III-A

10,35,10 3 3 0.04 3 3 99.67
10,35,25 3 3 0.08 3 1 4,807.00
10,35,50 3 3 0.12 3 0 7,200.00
10,60,10 3 3 0.03 3 3 13.00
10,60,25 3 3 0.14 3 1 4,862.00
10,60,50 3 3 0.23 3 0 7,200.00
10,85,10 3 3 0.04 3 1 4,808.00
10,85,25 3 3 0.14 3 0 7,200.00
10,85,50 3 3 0.29 3 0 7,200.00
Subtotal 27 27 0.12 27 9 4,821.81

III-B

20,120,40 3 3 0.78 3 0 7,200.00
20,120,100 3 3 2.36 3 0 7,200.00
20,120,200 3 3 4.04 2 0 7,200.00
20,220,40 3 3 1.94 3 0 7,200.00
20,220,100 3 3 2.42 3 0 7,200.00
20,220,200 3 3 5.22 0 0 7,200.00
20,320,40 3 3 1.66 3 0 7,200.00
20,320,100 3 3 3.25 3 0 7,200.00
20,320,200 3 3 5.24 0 0 7,200.00
Subtotal 27 27 2.99 20 0 7,200.00

Total 85 85 2.25 54 9 6,551.46

As seen from Table 2 not only is the hybrid matheuristic able to find a feasible solu-
tion for all instances compared to only 54/85 for solving P1 with Baron, it also requires
significantly less time. In addition, for nine of the small instances of Class III-A, Baron’s
branch-and-reduce method applied to P1 is able to find and prove an optimal solution.
These solutions coincide with that obtained by our hybrid matheuristic for eight of the nine
instances while for the remaining instance, the solution found by the hybrid matheuristic
is 0.29% away from the optimal. Similar behavior can be observed when solving variant II
of POFMND-E that allows for the decision maker to freely select a subset of commodities
to route. Table 3 presents a summary of the performance of both algorithms applied to
variant II with the same column definitions as Table 2.
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Table 3: Performance comparison- Variant II

Hybrid Matheuristic Baron
Class Nb. Feasible Sols Seconds Feasible Sols Optimal Sols Seconds

Class I 31 31 3.29 11 0 6,769.90
Class III-A 27 27 0.13 27 14 3,511.56
Class III-B 27 27 2.81 22 0 6,654.04

Total 85 85 2.14 60 14 5,698.09

We next analyze the quality of the solutions found. Based on the results seen in Tables
2 and 3, we note that solving P1 with Baron requires a significant amount of computation
time. To assess whether this effort is compensated by better solution quality, we analyze
the instances for which both algorithms obtained a feasible solution within the time limit.
The study is limited to instances for which optimality of the solution was not proven for
the classes I and III-B, i.e. the execution of Baron reached the time limit before proving
optimality. Table 4 details the objective function value, in millions, of the feasible solutions
found in Table 2 by the hybrid matheuristic and Baron, respectively. The last column
contains the relative difference between them calculated as 100∗|HM−Bar|

|HM | where HM refers
to the value of the solution from the hybrid matheuristic and Bar refers to the value of
the solution from Baron.

Table 4: Comparison of solution quality-Variant I

Hybrid Matheuristic Baron
Class instance Obj (Millions) Obj Baron (Millions) Rel. Difference

I

c33.dat 229.95 9.60 95.83
c35.dat 106.99 26.14 75.57
c36.dat 132.14 12.24 90.74
c41.dat 225.16 (3.92) 101.74
c42.dat 245.59 (23.44) 109.54
c43.dat 213.82 (42.58) 119.92
c44.dat 173.11 (62.10) 135.88

III-B

r10.1.dow 1.20 0.60 50.26
r10.2.dow 0.86 0.12 86.07
r10.3.dow 0.52 (0.24) 145.67
r11.1.dow 10.65 (1.43) 113.41
r11.2.dow 9.18 (1.87) 120.38
r11.3.dow 7.61 (2.38) 131.21
r12.2.dow 89.94 (15.64) 117.39
r12.3.dow 84.47 (17.19) 120.35
r13.1.dow 1.56 (0.21) 113.50
r13.2.dow 1.18 (0.41) 134.88
r13.3.dow 0.76 (0.60) 177.92
r14.1.dow 15.66 (5.06) 132.33
r14.2.dow 14.01 (5.34) 138.13
r14.3.dow 12.04 (5.32) 144.17
r16.1.dow 1.50 (0.48) 132.16
r16.2.dow 1.09 (0.53) 148.39
r16.3.dow 0.67 (0.61) 191.48
r17.1.dow 19.32 (6.22) 132.19
r17.2.dow 17.38 (5.41) 131.14
r17.3.dow 15.18 (5.97) 139.32

Total 60.43 (5.86) 109.70
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Table 4 shows that the solutions found by the proposed hybrid matheuristic are of
significantly better quality. It finds profitable solutions for all instances in an average of
2.25 seconds as shown in Table 2. The results show that not only is it difficult for Baron
to find feasible solutions with formulation P1 but also that the solutions found are of poor
quality. This comes as a result of the solver not exploiting the network structure of the
problem whereas the use of our slope scaling heuristic bypasses the difficulty presented
by the non-convexities of Prk2 to generate good paths.

The proposed hybrid matheuristic also obtains superior solutions than solving P1 with
Baron when solving variant II. Table 5 contains the instance class (Class), dimensions
(N,A,K) representing the number of nodes, arcs and commodities respectively, and the
number of instances considered in each group (Nb.). The following two columns represent
the average objective function value of the best found solution for each instance group
while the last column represents the average relative difference between them calculated
as in Table 4.

Table 5: Comparison of solution quality-Variant II

Hybrid Matheuristic Baron
Class (N,A,K) Nb. Obj (Millions) Obj (Millions) Rel. Difference

I

20,230,40 2 119.57 51.15 58.96
20,230,200 1 576.78 576.83 0.01
20,300,40 2 229.72 58.79 74.25
30,520,100 2 26.25 13.91 46.18
Subtotal 7 189.69 117.79 51.25

III-B

20,120,40 2 0.82 0.77 6.00
20,120,100 2 8.49 8.27 2.46
20,120,200 1 84.69 5.57 93.42
20,220,40 3 1.22 0.46 61.78
20,220,100 2 14.88 7.90 49.47
20,320,40 2 0.93 0.00 99.50
20,320,200 3 159.54 52.71 67.04
Subtotal 15 41.15 13.27 52.98

Total 35 88.41 46.52 52.43

As opposed to the previous analysis, the solutions found by Baron are all profitable.
This comes from the added flexibility of being able to freely select which commodities to
route. In addition, the difference between the best solutions found by both algorithms is
less significant than for variant I. Unlike the behavior seen when solving variant I, Baron
was able to find a better solution than the proposed hybrid matheuristic for an instance
in the 20,230,200 group of class I. This shows the increased difficulty of solving variant I
with general purpose global optimization solvers. Being obliged to route all commodities
forces the decision maker to consider influencing demand quantity of commodities with
lower margins.

We next compare the results and solution process of the hybrid matheuristic for both
variants. Table 6 details for each instance group, the number of instances, average objec-
tive function value of the best solution found in millions (Obj Millions), the average CPU
time (Seconds), and average number of master problem iterations (CG Iters) of variant I
and II. In addition, the last columns present the average % of commodities not routed in
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the solution obtained from variant II (% Unserved) and the average relative increase in
profit between the solutions obtained from variants I and II.

Table 6: Variant I vs II

Variant I Variant II
Class (N,A,K) Nb. Obj (Millions) Seconds CG Iters Obj (Millions) Seconds CG Iters % Unserved % Profit Inc.

I

20,230,40 3 156.36 0.47 3.00 156.37 0.35 3.00 4.19 0.00
20,230,200 4 548.92 1.17 3.00 548.96 1.24 3.00 24.00 0.01
20,300,40 4 214.42 0.50 3.25 214.43 0.47 3.00 7.50 0.01
20,300,200 4 667.60 1.62 3.00 667.63 1.55 3.00 31.00 0.00
30,520,100 4 23.21 2.70 3.00 23.22 2.72 3.25 16.25 0.04
30,520,400 4 2,132.69 7.64 3.00 2,132.71 6.17 3.00 24.44 0.00
30,700,100 4 29.70 3.09 3.00 29.70 2.63 3.00 16.75 0.02
30,700,400 4 2,427.40 9.73 3.00 2,427.43 10.51 3.00 30.19 0.00
Subtotal 31 795.00 3.45 3.03 795.01 3.29 3.03 19.78 0.01

III-A

10,35,10 3 0.05 0.04 3.33 0.06 0.02 3.00 26.67 45.65
10,35,25 3 0.68 0.08 3.00 0.70 0.09 3.33 16.00 2.65
10,35,50 3 4.53 0.12 3.00 4.55 0.14 3.33 3.33 0.40
10,60,10 3 0.10 0.03 3.67 0.11 0.03 3.00 20.00 9.35
10,60,25 3 0.75 0.14 4.00 0.77 0.17 3.00 10.67 3.07
10,60,50 3 6.90 0.23 3.33 6.90 0.31 3.33 0.00 0.00
10,85,10 3 0.06 0.04 3.67 0.07 0.03 3.33 26.67 31.71
10,85,25 3 1.05 0.14 4.00 1.05 0.12 3.00 5.33 0.51
10,85,50 3 6.19 0.29 3.00 6.23 0.25 3.00 8.67 0.71
Subtotal 27 2.26 0.12 3.44 2.27 0.13 3.15 13.04 10.45

III-B

20,120,40 3 0.86 0.78 5.00 0.95 0.69 3.33 28.33 15.02
20,120,100 3 9.15 2.36 3.33 9.22 2.39 3.00 9.33 0.83
20,120,200 3 89.67 4.04 4.00 89.76 3.72 3.33 3.33 0.11
20,220,40 3 1.17 1.94 5.00 1.22 1.98 4.33 25.00 6.68
20,220,100 3 13.90 2.42 3.33 14.04 2.39 3.00 9.67 1.10
20,220,200 3 131.42 5.22 3.33 131.53 4.71 3.67 4.50 0.09
20,320,40 3 1.08 1.66 4.67 1.12 1.11 3.33 18.33 5.05
20,320,100 3 17.29 3.25 3.33 17.45 3.78 3.00 9.00 0.99
20,320,200 3 159.19 5.24 3.00 159.54 4.51 3.00 4.33 0.23
Subtotal 27 47.08 2.99 3.89 47.20 2.81 3.33 12.43 3.34

Total 85 305.61 2.25 3.44 305.66 2.14 3.16 15.30 4.39

One of the important characteristics of the proposed hybrid matheuristic is its abil-
ity to adapt to varying values of r and variants of the problem without it significantly
modifying its performance. Table 6 confirms the latter to be true. Both require similar
computation time and number of master problem iterations. Allowing the decision maker
to freely choose which commodities to route (variant II), leads to an average of 4.39%
increase in profit obtained by choosing not to route an average of approximately 15% of
the commodities.

We point out that this marginal increase in profitability is highly dependent on the
instance data. Since in the generated instances there are no commodities whose revenue
is smaller than the shortest possible path, it is not surprising that on average there is not
a significant difference between the profit of the best solutions for variants I and II. The
same would not be said if the per unit revenue of some commodities was less than their
corresponding cheapest route.

We next analyze one of the instances in the testbed with highest percentage of com-
modities being left unserved (50%) for variant II. The instance consists of ten nodes, 35
arcs and ten commodities. We solve the corresponding POFMND-E(Γ) for each service
commitment level Γ ∈ {1, 2, .., 10}. Figure 5 plots the total profit (in thousands) of the
optimal solution against the service commitment value Γ.
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Figure 5: The effect of imposing service commitment constraints

Note that imposing a service commitment value of up to 5 commodities has no effect
on the profit obtained. This coincides with what was seen from the result of variant II
where 50% of the commodities were served despite no service commitment being imposed.
As the service commitment value increases, the maximum profit obtained decreases. This
decrease becomes more pronounced as the values of Γ are closer to |K| with a decrease
of 39.3% in profit when increasing Γ from |K| − 1 to |K|. This result suggests that the
decision maker should seek to arrange service commitment levels close to that obtained
from variant II since these have a marginal effect on profit.

6. Conclusion

We have extended the classic fixed charge multicommodity network design problem
by incorporating demand elasticity to travel cost in a profit-oriented problem by means
of the gravity model. The proposed problem allows the decision maker to choose which
O/D pairs will be served subject to a service commitment constraint. The resulting
model captures additional levels of trade-off missing in classic fixed charge network de-
sign such as the effect of efficient routes on expected demand. We proposed two non-linear
mixed integer programming formulations that model the profit-oriented fixed-charge mul-
ticommodity network design problem with elastic demand. We showed how both can
incorporate O/D pair selection without modifying the formulations by carrying out sim-
ple network transformations or adding artificial variables. We also note that the inclusion
of a service commitment constraint that requires a minimum number of O/D pairs be
served can be done via an additional knapsack-type constraint. We proposed a flexible
hybrid matheuristic capable of solving the problem for varying gravity model parameters
and service commitment values. Computational results show this algorithm to be supe-
rior in terms of both solution time and quality when compared to the use of a general
purpose global optimization software. The results also give managerial insights on the
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establishment of service commitments. The proposed framework allows decision makers
to benefit from the added value of incorporating demand elasticity in the optimization of
their strategic network design.
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Marianov V, Ŕıos, Miguel, Barros, Francisco Javier (2005) Allocating servers to facilities, when
demand is elastic to travel and waiting times. RAIRO-Oper. Res. 39(3):143–162.

Matsoukis EC, Michalopoulos PC (1986) Road traffic assignment—a review. Transportation
Planning and Technology 11(2):117–135.

Profit-Oriented Fixed-Charge Network Design  with Elastic Demand

CIRRELT-2018-48 27



Miller CE, Tucker AW, Zemlin RA (1960) Integer programming formulation of traveling salesman
problems. J. ACM 7(4):326–329.

Minoux M (1989) Networks synthesis and optimum network design problems: Models, solution
methods and applications. Networks 19(3):313–360.

Newell GF (1979) Some issues relating to the optimal design of bus routes. Transportation
Science 13(1):20–35.

Newton I (1687) Philosophiae Naturalis Principia Mathematica (Londini :Jussu Societatis Regiae
ac Typis Josephi Streater).

Peeta S, Ziliaskopoulos AK (2001) Foundations of dynamic traffic assignment: The past, the
present and the future. Networks and Spatial Economics 1(3):233–265.

Rahmaniani R, Crainic TG, Gendreau M, Rei W (2018) Accelerating the Benders decomposition
method: Application to stochastic network design problems. SIAM Journal on Optimiza-
tion 28(1):875–903.

Ravenstein EG (1885) The laws of migration. Journal of the Statistical Society of London
48(2):167–235.

Reilly WJ (1929) Methods for the Study of Retail Relationships ([Austin, Tex.] The University).

Sahinidis NV (2017) BARON 17.8.9: Global Optimization of Mixed-Integer Nonlinear Programs,
User’s Manual.

Senior ML (1979) From gravity modelling to entropy maximizing: a pedagogic guide. Progress
in Geography 3(2):175–210.

Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global optimiza-
tion. Mathematical Programming 103:225–249.

Wilson AG (1967) A statistical theory of spatial distribution models. Transportation Research
1(3):253–269.

Wilson AG (1971) A family of spatial interaction models, and associated developments. Envi-
ronment and Planning A: Economy and Space 3(1):1–32.

Yaged B (1971) Minimum cost routing for static network models. Networks 1(2):139–172.

Zetina CA, Contreras I, Cordeau JF (2018) Exact algorithms for the multicommodity unca-
pacitated fixed-charge network design problem. Submitted to Computers & Operations
Research.

Zhang Y, Berman O, Marcotte P, Verter V (2010) A bilevel model for preventive healthcare
facility network design with congestion. IIE Transactions 42(12):865–880.

Zhang Y, Berman O, Verter V (2009) Incorporating congestion in preventive healthcare facility
network design. European Journal of Operational Research 198(3):922–935.

Zhong H, Wang J, Yip TL, Gu Y (2018) An innovative gravity-based approach to assess vul-
nerability of a hazmat road transportation network: A case study of Guangzhou, China.
Transportation Research Part D: Transport and Environment 62:659–671.

Profit-Oriented Fixed-Charge Network Design  with Elastic Demand

28 CIRRELT-2018-48


	CIRRELT-2018-48-pp
	CIRRELT-2018-48-abstract
	Bibliothèque et Archives Canada, 2018

	CIRRELT-2018-48



