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Abstract. In this paper, we study an important logistics and transportation problem involving 

facility location and time-dependent vehicle routing. We introduce, model, and solve the 

time-dependent location-routing problem in which the objective is to select a facility among 

a set of potential locations in order to minimize the total distribution time, as motivated and 

necessary in urban contexts. We propose a mathematical formulation and a set of valid 

inequalities for the problem. We use heuristics to provide good quality initial solutions for 

the exact method. Moreover, we propose a matheuristic in which different solutions obtained 

by the heuristics are combined and improved by solving a set covering problem. Finally, we 

propose a large set of benchmark instances based on real data obtained from logistics 

operators allowing us to mimic traffic, location, and service time parameters. We conduct 

extensive computational experiments on these realistic instances assessing the quality of 

our heuristic, the effectiveness of the valid inequalities in the mathematical model, and the 

overall matheuristic framework. Important insights and analysis pertaining to city logistics 

and traffic conditions are provided based on the numerical tests which contain realistic 

information of up to 5 depot locations, 100 delivery customers, and 15 vehicles, considering 

traffic patterns that change hourly. 
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1. Introduction

The urban freight transport industry is rapidly growing due to the role it plays in the economic

vitality of the cities. With rapid population increase in the urban areas, growth of road freight

transportation has been inevitable. The way to route large trucks around and within urban centers

is highly important due to its immense social, environmental, and economic impacts. From the

research point of view, this has led to the emergence of the green vehicle routing problem (Erdoğan

and Miller-Hooks, 2012; Leggieri and Haouari, 2017) and from the practical one, we observe that

recently, many cities have invested on improving their transportation systems (Yuan and Yu, 2018).

However, at the same time that the urban freight transport is known to be responsible for congestion

and pollution in the cities, it is itself a victim of logistic decisions. With cost minimization as the

main focus in freight transportation planning (Demir et al., 2014), designing an efficient distribution

network in which the least time is spent on the road network, by avoiding the traffic jam, has been

of less concern.

In network design problems, one decides on the location of the facilities such as distribution routes

(Bektaş et al., 2017). When designing a sustainable urban freight transport network, these decisions

become the important factors affecting and being affected by the traffic congestion. However,

location and distribution decisions have long been studied separately from one another in the

literature and later on models that integrate them are oversimplified and do not reflect the real

world. One of these oversimplifications is with respect to the time dependency of the travel time

and its effect on the facility location decisions. In most of the models presented in the literature,

the objective lies in minimizing the cost of opening a facility and the distribution costs from this

facility towards the customers. However, when it comes to the urban freight transport, the travel

time changes dynamically throughout the day, consequently affecting operational costs. Given that

the trend is to locate facilities far from the city centers and mainly in the periphery of urban areas

(Koç et al., 2016), one could argue that in the long run the difference between the cost of potential

locations is expected to be similar, whereas the traffic pattern around them can get significantly

complicated. The traffic condition does not improve overtime, and while some non-congested areas

would become congested, the congested ones remain mostly unchanged. This suggests that in real

world the travel time for distribution is not constant and invariant to time. However, in most

studies on the integration of location and routing, the traveling time is considered to be constant.
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A notable exception is the work of Hu et al. (2018) in which traffic and the number of trucks on the

route are considered dependent on one another. We, on the other hand, have real-life information

regarding traffic and make tactical and operational decisions geared towards avoiding the existing

traffic congestion. Hence, aiming to bridge the gap between two popular research topics, we extend

the class of problems that integrate vehicle routing and location decisions to include problems in

which the travel time is not constant.

The problem at hand consists of the integration of location decisions with the time-dependent vehi-

cle routing problem (TD-VRP). It is long known that decisions on the location of the facilities and

the routing of the vehicles are highly interdependent (Nagy and Salhi, 2007; Drexl and Schneider,

2014). The idea of integrating the facility location problem with the VRP has emerged in the

literature when the influence of the transportation cost on the location decisions was first pointed

out (Von Boventer, 1961; Maranzana, 1964). Integrating these two decisions has given rise to the

emergence of the location-routing problem (LRP). Drexl and Schneider (2017) define a standard

LRP as a single objective function problem characterized by deterministic data, only one planning

period, discrete locations, no intermediate locations or inventory considerations, single visit from

the potential facility and the vehicle to each customer. The problem we study in this paper meets

all these characteristics of a standard LRP except that we do not consider location cost factors, as

already motivated, focusing on operational costs due to dynamically evolving travel times. Ham-

mad et al. (2017) explore a similar problem but focus on finding system-wide objectives, while

our focus is on improving an individual performance (such as a big company) when facing such

challenges.

In the context of the VRP, the interest in the TD-VRP is increasing since the work of Malandraki

and Daskin (1992) who identify two sources of fluctuations on travel times: temporal variation

of traffic and random variation (due to weather condition, accidents, etc.). They argue that the

temporal variation can be represented by a deterministic model in which the travel time is defined

based on the distance between the nodes and the time of the day. It is just recent that the scientific

literature has recognized that these models are of little importance without real data to support

the decisions (Ichoua et al., 2003). Ichoua et al. (2003) use the time-dependent speed model with

time windows that satisfies the no passing (FIFO) property. They apply a parallel tabu search

heuristic to solve static and dynamic problems (see Gendreau et al. (2015) for a comprehensive

survey on travel time modeling and solution methods). Recently, Mancini (2017) proposes a two-
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phase heuristic approach to solve a TD-VRP. In the first phase, a multi-start random constructive

heuristic is applied and the solution obtained is used as columns for a set partitioning based for-

mulation. Veenstra and Coelho (2017) formulate an integrated time-dependent shortest path and

VRP. They test the formulation on instances generated from real data obtained from Québec City,

Canada. Their results show the importance of considering traffic congestion when optimizing de-

livery routes. Alvarez et al. (2018) incorporate real-time congestion costs into VRP. They compare

the results obtained by four different objective functions of minimizing the Euclidean distance, real

distance, real time with static congestion, and real time with dynamic congestion. Their results

also highlight congestion costs as an important factor in optimizing distribution. The use of traffic

information to drive new ways of performing deliveries affect not only operational routing decisions,

but also how to offer possible delivery times to the customers and to access parts of the city (Akyol

and De Koster, 2018). Finally, Behnke and Kirschstein (2017) show that using alternative paths

to avoid traffic can lead to significant greenhouse gas emission reductions. A similar approach was

used by Marufuzzaman and Ekşioğlu (2017) who measure their gains in financial terms, also with

positive findings.

To the best of our knowledge, the problem we introduce, formulate, and solve in this paper has

not yet been studied in the literature. The contributions of this paper are multi-fold. First, we

present a mathematical formulation with several valid inequalities (VIs) for this rich and difficult

problem; second we develop a matheuristic to efficiently solve the problem. Finally, we analyze

the performance of the proposed methods through extensive computational experiments on a set of

instances inspired by the real condition of the traffic congestion based on data from Québec City.

The paper is organized as follows. Section 2 presents the formal problem description followed by

its mathematical formulation. Section 3 provides an in-depth explanation of the heuristic approach

used to solve the problem. Section 4 presents our extensive computational results and discussion.

Finally, conclusions and remarks are provided in Section 5.

2. Problem description and formulation

In this section, we formally describe the TD-LRP and present its mathematical formulation. The

TD-LRP is defined on a directed and time-dependent graph G(N,A,H), where N represents the

node set, A is the set of arcs, and H is the set of time intervals. We define an interval as a period
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of time over which traffic pattern is constant. Let Nd be the set of all the potential depots and Nc

the set of customers. We also consider a set of dummy nodes, called terminals, to be used by each

vehicle as they return to the depot, denoted by Nt. Therefore, N = Nd ∪Nc ∪Nt.

We define K as the set of |K| homogeneous vehicles each having a limited capacity Q and δ(i) as

a set with |K| identical vehicles for each potential depot i ∈ Nd. Let Adc, Acc, Acd be arc sets such

that each arc (i, j) is given from the cartesian products as Adc = Nd × Nc;Acc = Nc × Nc, i 6= j,

Act = Nc × δ(i)i∈Nd
and Atd = δ(i)× {i}, i ∈ Nd, such that A = Adc ∪Acc ∪Adc ∪Atd.

Our planning horizon is a day which we divide into equal time intervals of T units; each time

interval h ∈ H = {0, 1, .., h, ..,m} where m+ 1 is the number of time intervals per day. Therefore,

[hT , (h + 1)T − ε] represents the time interval associated to h and ε is a positive number that

indicates the smallest time unit, say, a second. Respectively, the travel time for arc (i, j) ∈ A in

interval h is given by thij .

The demand of each customer i ∈ Nc is denoted by qi and its service time by si. Knowing that

all customers must be served, the objective is to minimize the total travel time. To this end, the

best location for a single depot is to be identified along with time-dependent routes to serve the

customers. We define the following variables:

• continuous variables ai represent the departure time from node i ∈ N ;

• binary variables yhi indicate whether a route leaves from i ∈ N in time interval h ∈ H;

• binary variables wi represent whether depot i is selected;

• continuous variable ui indicate the load on the truck upon departing from customer i;

• binary variables xhij represent whether arc (i, j) is traversed by a vehicle in time interval h;

• binary variables zij equal to 1 if arc (i, j) is traversed by a vehicle and 0 otherwise.

Table 1 summarizes the notation used in our model.
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Table 1: Notation used in the model
Parameters

m+ 1 Number of time interval in a day

T The length of each time interval
qi Demand of each customer i ∈ Nc

Q Vehicle capacity
si Service time of each customer i ∈ Nc

thij Travel time of arc (i, j) ∈ A in time interval h

Sets

Nc Set of customers
Nd Set of potential depots
Nt Set of terminals
K Set of vehicles
H Set of time intervals
A Set of arcs
δ(i) Set with |K| identical vehicles for each potential depot i ∈ Nd

Variables

ai Departure time from node i ∈ N
ui Load of the truck when departing from customer i
wj If depot j is selected
xhij If arc (i, j) is traversed by a vehicle in time period h

yhi If node i ∈ N is left at time interval h ∈ H
zij If arc (i, j) is traversed by a vehicle

Indices

h Time interval
i, j Nodes

The mathematical formulation is as follows:

min
∑

(i,j)∈A

∑
h∈H

thijx
h
ij (1)

subject to:∑
i∈(Nc\{j})∪Nd

zij = 1, ∀j ∈ Nc (2)

∑
j∈(Nc\{i})∪Nt

zij = 1, ∀i ∈ Nc (3)

∑
j∈Nc

zij ≤ |K|wi, ∀i ∈ Nd (4)

∑
i∈Nc

ziv ≤ wj , ∀v ∈ δ(j),∀j ∈ Nd (5)

∑
j∈Nc

zij =
∑
v∈δ(i)

zvi, ∀i ∈ Nd (6)
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∑
i∈Nd

wi = 1 (7)

ui − uj +Qzij ≤ Q− qj , ∀i, j ∈ Nc, i 6= j (8)

qi ≤ ui ≤ Q, ∀i ∈ Nc (9)∑
j∈Nc

x0
ij =

∑
j∈Nc

∑
v∈δ(i)

zjv, ∀i ∈ Nd (10)

∑
h∈H

xhij = zij , ∀(i, j) ∈ A (11)

xhij ≤ yhi , ∀(i, j) ∈ A,∀h ∈ H (12)∑
h∈H

yhi = wi, ∀i ∈ Nd (13)

∑
h∈H

yhi = 1, ∀i ∈ Nc (14)

∑
h∈H

yhv ≤ wi, ∀v ∈ δ(i),∀i ∈ Nd (15)

∑
v∈δ(i)

∑
h∈H

yhv =
∑
j∈Nc

∑
v∈δ(i)

zjv, ∀i ∈ Nd (16)

aj = 0, ∀j ∈ Nd (17)

aj ≥ ai + sj + thij − 2T |H|(1− xhij), ∀(i, j) ∈ A \Atd, ∀h ∈ H (18)

aj ≤ ai + sj + thij + T |H|(1− xhij), ∀(i, j) ∈ A \Atd,∀h ∈ H (19)∑
h∈H

hTyhi ≤ ai ≤
∑
h∈H

hTyhi + T − ε, i ∈ Nc (20)

∑
h∈H

hTyhv ≤ av ≤
∑
h∈H

hTyhv +
∑
h∈H

yhv (T − ε), ∀v ∈ δ(i),∀i ∈ Nd (21)

wi ∈ {0, 1}, ∀i ∈ Nd (22)

zij ∈ {0, 1}, ∀(i, j) ∈ A (23)

yhi ∈ {0, 1}, ∀i ∈ N, ∀h ∈ H (24)

xhij ∈ {0, 1}, ∀(i, j) ∈ A,∀h ∈ H (25)
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ai ∈ R+, ∀j ∈ N (26)

ui ∈ R+, ∀i ∈ Nc. (27)

The objective function (1) minimizes the total driving time. Constraints (2) assure that each

customer is visited exactly once, either from another customer or a depot. Similarly, constraints

(3) guarantee that after vising each customer, the vehicle will either visit another customer or goes

back to a depot. Constraints (4) impose that the number of arcs leaving a selected depot is at most

equal to the fleet size. Each terminal node associated with a depot is visited at most once, if and

only if the depot is selected, as ensured by constraints (5). Constraints (6) ensure that the number

of vehicles leaving a depot is equal to the number of vehicles entering the terminal nodes associated

with that depot. Note that one terminal node is associated with each vehicle, and all vehicles return

to the depot node. Obviously, the distances and travel times from the terminal nodes to the depot

is zero. Constraints (7) ensure that only one depot is selected. Originally proposed by Kulkarni

and Bhave (1985), constraints (8) and (9) are the extension of the Miller-Tucker-Zemlin subtour

elimination. Constraints (10) guarantee that the vehicles start their routes in the first period,

and that the same number of vehicles return to the terminal nodes. Each arc (i, j) is visited in a

single time interval as imposed by constraints (11). Constraints (12) enforce that if an arc (i, j) is

traversed by a vehicle in time interval h, then h is the time interval considered in the departure

from the origin i. Constraints (13) guarantee a departure from a depot only if the depot is selected.

Similarly, constraints (14) guarantee that only one time interval h is associated with the departure

from customer i, and constraints (15) indicate that the vehicle can only access the terminal of the

selected depot. Constraints (16) guarantee that a terminal is visited only if there exists an arc

from a customer linking to it. Constraints (17) set the departure time from all depots to zero.

Using constraints (18) and (19), we control the departure time from the nodes. The departure

time to node j from node i includes the departure time to node i, the time it takes to traverse arc

(i, j), and the service time at node j. The departure time from each node i is linked to subsequent

time intervals as shown by (20) and (21). Finally constraints (22)–(27) enforce integrality and

non-negativity conditions on the variables.

Note that constraints (11), (12), (23) and (24) force the x variables to belong to the interval [0, 1].

Moreover, considering constraints (13)–(15) and (22), it is possible to show that, even relaxing

the integrality requirement on the x variables, a solution with the same cost/time exists in which

The Time-Dependent Location-Routing Problem

CIRRELT-2018-54 7



all x variables remain binary. Thus, constraints (25) shall be relaxed, and the x variables can be

considered as continuous ones.

We also define the following VIs to strengthen the model.

Constraints (8) can be lifted as in Kara et al. (2004), yielding (28):

ui − uj +Qzij + (Q− qi − qj)zji ≤ Q− qj , ∀i, j ∈ Nc, i 6= j. (28)

As imposed by constraints (17), all departures from the depot happen at h = 0, therefore, we can

easily reduce the size of the problem by removing some of the variables:

yhi = 0, ∀i ∈ Nd,∀h ∈ H \ {0} (29)

xhij = 0, ∀i ∈ Nd,∀j ∈ Nc, ∀h ∈ H \ {0}. (30)

In the first time interval, some variables associated with the departure from customers can also be

removed from the problem. This is the case when the service time of a customer plus the shortest

time to traverse the arc between a depot and this customer is greater than the length of the time

interval:

x0
ij = 0 ∀i ∈ Nc |

(
min

a∈(Nc\{i})∪Nd

{t0ai}+ si

)
≥ T , ∀j ∈ Nc ∪Nt, j 6= i (31)

x0
ij = 0 ∀i ∈ Nc |

min
a∈Nd
b∈Nc

{t0ab}+ si

 ≥ T , ∀j ∈ Nc ∪Nt, j 6= i. (32)

Similarly, for the last time interval, it is also possible to remove some variables associated with the

terminal nodes from the problem. This is the case when the time to traverse an arc and to arrive

at a terminal is greater than the length of the time interval, or if the shortest time to leave from a

customer toward a terminal, plus the service time is greater than the length of the time interval, or

yet if the sum of the shortest time to arrive at a customer, its service time, and the shortest time

to leave from the customer to a terminal is greater than the length of the time interval.

xmij = 0 ∀i ∈ Nc | min
a∈Nt

{tmia} ≥ T , ∀j ∈ Nt (33)
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xmij = 0, ∀j ∈ Nc |
(

min
a∈Nc\{j}

{tmaj}+ sj + min
b∈Nt

{tmjb}
)
≥ T , ∀i ∈ Nc, i 6= j (34)

xmij = 0, ∀i ∈ Nc,∀j ∈ Nt | tmij ≥ T . (35)

We can establish a lower bound as the sum of several shortest times. Let k′ be the minimum number

of vehicles required to meet the customer demand considering a vehicle capacity Q, where k′ is

obtained as a solution of a bin packing problem. Let fv = {mina∈Nc{t0va} + min b∈Nc
c∈δ(v)
h∈H

{thbc}},∀v ∈

Nd and fvn | fv1 ≤ fv2 ≤ . . . ≤ fv|Nd|
. Similarly, let gv = {mina∈Nc\{v}

h∈H
{thva}}, ∀v ∈ Nc and

gvn | gv1 ≤ gv2 ≤ . . . ≤ gv|Nd|
.

∑
(i,j)∈A\Atd

∑
h∈H

thijx
h
ij ≥

k′∑
n=1

fvn +

|Nc|−k′∑
n=1

gvn . (36)

We can also improve the routing part of the model by forbidding subtours of sizes two and three:

zij + zji ≤ 1, ∀i, j ∈ Nc, i 6= j (37)

zij + zji + ziv + zvi + zjv + zvj ≤ 2, ∀i, j, v ∈ Nc, i 6= j, 6= v. (38)

Constraints (39) set the number of vehicles leaving from a depot equal to number of vehicles arriving

at the terminals associated with this depot. Note that in the TD-LRP a single depot is selected.

∑
j∈Nc

zij =
∑
v∈δ(i)

∑
j∈Nc

zjv, ∀i ∈ Nd. (39)

The outbound flows from the depot is guaranteed by inequalities (40) and (41). The result of a bin

packing problem determines the minimum number of vehicles which is set as the lower bound for

all departures from the selected depot and also the total number of departures from all depots.∑
j∈Nc

x0
ij ≥ wik′, ∀i ∈ Nd (40)

∑
i∈Nd

∑
j∈Nc

zij ≥ k′. (41)
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The same time interval has to be used in the solution for both variables yhi and xhij :∑
j∈Nc\{i}∪Nt

xhij = yhi , ∀i ∈ Nc,∀h ∈ H. (42)

Finally, we can avoid some symmetric solutions by imposing an order on the use of the terminal

nodes:∑
j∈Nc

zjv ≥ wi, ∀v ∈ δ(i) | 1 ≤ v ≤ k′, ∀i ∈ Nd (43)

av ≥ av+1, ∀v ∈ δ(i) | 1 ≤ v ≤ k′ ∧ v < |K|, ∀i ∈ Nd. (44)

3. Matheuristic algorithm

In this section, the general framework of our heuristic approach is explained in detail. We first

create a set of different initial solutions and build a diverse set of individual vehicle routes that do

not constitute a full solution. This is conducted by applying fast constructive heuristics presented

in Section 3.1. Non-dominated routes are processed and used as potential variables for a route-

based set covering model described in Section 3.2. We also use a set containing the best solutions

obtained from the procedures described in Section 3.1 as initial solutions to warm start the model

presented in Section 2. These experiments are described in Section 4.

3.1. Constructive heuristics

We now describe seven constructive procedures used to create vehicle routes. If a solution is built

such that all customers are visited, it is added to a set Λ of feasible solutions. If the constructive

heuristic fails to provide a feasible solution, its partial feasible routes are added to the set λ of

partial solutions, containing only feasible routes.

Given the random aspect of these constructive procedures, they are repeated several times until a

stopping criterion is met. As show in Algorithm 1, the execution of each heuristic is repeated until

the total number of solutions added to either set Λ or λ reaches a threshold, L1 for full solutions

and L2 for partial ones.

Our proposed constructive heuristics for the TD-LRP are described next.

1. Random route construction: in this heuristic we start with an empty list for each vehicle

from each depot, and another list for all unvisited customers. We randomly select a customer
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Algorithm 1 Stopping criteria for the constructive heuristic

1: Input: a constructive heuristic procedure, limits of full solutions (L1) and partial solutions (L2) obtained
2: Output: up to L1 solutions or L2 partial solutions using the input heuristic
3: for each depot do
4: Number of iterations l1 = l2 = 0,
5: while l1 < L1 and l2 < L2 do
6: Initialize |K| empty routes, and set [j] as the list of all (non-visited) customers
7: Apply the constructive heuristic
8: if full solution obtained then
9: l1 ← l1 + 1

10: else
11: l2 ← l2 + 1
12: end if
13: end while
14: end for

from the latter and add it to the end of the route of the first vehicle, if feasible. If this

route is no longer feasible, the customer is assigned to a new route. Once all customers are

successfully assigned to a route, this full solution is added to the set Λ. Otherwise, in case

some customers are left unvisited, partially generated routes are added to the set λ. The

procedure stops when the number of elements added to either set Λ or λ reaches a threshold.

The pseudocode for this procedure is described in Algorithm 2. Each feasible solution for a

depot is also replicated for all other depots and if a feasible solution is obtained, it is added to

set Λ, otherwise the last customers on the infeasible routes are removed until the individual

route becomes feasible. Then the partial solution is added to the set λ. Each generated

solution is also replicated for every depot as described in Algorithm 3.

Algorithm 2 Random route construction
1: loop
2: Select a (non-visited) customer from [j] and insert the customer at the end of the current route
3: if the route is feasible then
4: Remove customer from [j]
5: if [j] is empty then
6: Apply Algorithm 3 to replicate the solution to all other depots
7: Return a full solution for set Λ
8: end if
9: else

10: Remove the last customer from the route
11: if there is a vehicle available then
12: Start a new current route with the removed customer.
13: else
14: Return a partial solution for set λ
15: end if
16: end if
17: end loop

The Time-Dependent Location-Routing Problem
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Algorithm 3 Depot replication
1: Input: a feasible solution from depot d
2: Output: new solutions (potentially infeasible) for all other depots with the same sequence of customers
3: for all v ∈ Nd, v 6= d do
4: for every route of the solution do
5: Change depot d for v
6: while the new route is infeasible do
7: Randomly remove one customer
8: end while
9: end for

10: if the new solution is feasible then
11: Return a full solution for set Λ
12: else
13: Return a partial solution for set λ
14: end if
15: end for

2. Random parallel route construction: a drawback of the previous route creation process

is that we start by assigning as many customers as we can to the first vehicles, which causes

only a few customers remain to be assigned to the last vehicles. This issue is overcome in

this heuristic by starting all routes simultaneously. Customers are sequentially assigned to

the vehicles in an alternate manner. This construction heuristic is described in Algorithm 4.

We repeat this heuristic until the same stopping criteria explained in Algorithm 1 is met. As

before, each feasible solution is replicated for all other depots, as in Algorithm 3.

Algorithm 4 Random parallel route construction
1: loop
2: while [j] is not empty do
3: for each vehicle do
4: Select a (non-visited) customer from [j]
5: Insert the customer at the end of the current route
6: Remove customer from [j]
7: end for
8: end while
9: if the solution is feasible then

10: Return a full solution for set Λ
11: else
12: while a route is infeasible do
13: Remove one customer from the route
14: end while
15: Return a partial solution for set λ
16: end if
17: end loop

3. ν-closest neighbors: in this heuristics, the search starts from a depot for which we identify

its ν closest customers; a random neighbor customer is selected and added to the first route,
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leaving the depot in h = 0. The travel and service times are then computed and the ready

time is identified – the time at which the vehicle is ready to leave the newly added customer.

We continue applying this same procedure on each customer added to the route and now

its closest unvisited neighbors. Note that the notion of “a close neighbor” is based on the

ready time of the latest added customer. Here, we need to ensure that addition of the

customer to the route is feasible with respect to the vehicle capacity and available time. If

the route is feasible, the procedure continues; otherwise, the selected customer returns to the

list of unvisited customers, a new vehicle is selected, and the procedure restarts with another

unvisited neighbor of the depot. Again, if the final solution is feasible, i.e., all customers

are successfully added to a route, this solution is added to set Λ. Otherwise, it is deemed

infeasible and its partial routes are saved by adding the solution to the set λ.

4. ν-closest neighbors – backward: this method is similar to the previous one, except that

we start assigning the customers from the last time interval to the first. The motivation is to

choose the best customers towards the end of the route with respect to the driving time. Once

the route is created, its sequence is then evaluated by departing from the depot at time zero.

Algorithm 5 presents the pseudocode for the ν-closest neighbors and its backward version.

5. Parallel ν-closest neighbors: this heuristic is similar to the ν-closest neighbors, except

that several vehicles are simultaneously selected at each iteration. Obviously, all vehicles

start their routes at time h = 0 from the depot heading to an unvisited neighbor.

6. Parallel ν-closest neighbors – backward: as in Parallel ν-closest neighbors, here we

create routes from the end of time horizon towards the beginning, but start all routes in

parallel, adding one customer to each route at each iteration. Once all the customers are

added to the routes, we evaluate the value of the objective function, in a forward manner.

The pseudocode for these last two heuristics is presented in Algorithm 6.

7. Route enumeration: in this heuristic, we create optimal routes consisting of up to γ

customers. The motivation is to have short routes computed optimally and added to the set

Λ. The pseudocode of this procedure is described in Algorithm 7.

All routes added to sets Λ and λ are checked against the already added ones, such that different

sequences of the same set of customers appears only once; the value of the objective function is
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Algorithm 5 ν-closest neighbors
1: if Forward then
2: For the customer on the list, right before the depot node at the end:
3: order the travel times from the node to all not visited customers j
4: end if
5: if Backward then
6: For the customer on the list, right after the depot node in the beginning:
7: order the travel times from the node to all not visited customers j
8: end if
9: Randomly draw a customer among the k not visited closet neighbors j considering the time interval

10: if Forward then
11: Insert the customer j after the last node just before the end depot i in the current routing list
12: end if
13: if Backward then
14: Insert the customer j before the last node just after the beginning depot i in the current routing list
15: end if
16: if The route is feasible then
17: Remove the customer from [j]
18: if [j] is empty then
19: Return a full solution for set Λ
20: end if
21: else
22: Remove one customer j from the current routing list
23: if There is vehicle available then
24: Start a new route. Add i in the beginning and in the end of the route
25: else
26: Return a partial solution for set λ
27: end if
28: end if
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Algorithm 6 Parallel ν-closest neighbors - Forward/Backward

1: if Forward then
2: For the customer on the list, right before the depot node at the end:
3: order the travel times from the node to all not visited customers j
4: end if
5: if Backward then
6: For the customer on the list, right after the depot node in the beginning:
7: order the travel times from the node to all not visited customers j
8: end if
9: Randomly draw a customer among the k not visited closet neighbors j considering the time interval

10: if Forward then
11: Insert the customer j after the last node just before the end depot i in the current routing list
12: end if
13: if Backward then
14: Insert the customer j before the last node just after the beginning depot i in the current routing list
15: end if
16: if [j] is empty then
17: Exit loop
18: end if
19: if the solution is feasible then
20: Return a full solution for set Λ
21: else
22: while a route is infeasible do
23: Remove one customer from the route
24: end while
25: Return a partial solution for set λ
26: end if

Algorithm 7 Route enumeration of up to γ customers
1: for each i ∈ Nd do
2: for i = j to Nc do
3: DepotArrivalT ime← BigNumber
4: for each possible arrangement of γ customers j ∈ Nc do
5: Insert the depot i in the beginning and at the end of each combination with γ customers
6: if This route is feasible then
7: Calculate the accumulated travel time on this route
8: if The accumulated travel time is less than DepotArrivalT ime then
9: DepotArrivalT ime← Accumulated travel time of the current route

10: Best route← Current route
11: end if
12: end if
13: Add the best route to set Λ
14: end for
15: end for
16: end for
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updated if a better sequence is found.

Moreover, in order to further diversify the search, we execute heuristics 1–6 with fewer time inter-

vals. The goal is to to obtain relatively shorter routes, therefore, they are executed by reducing the

number of periods by one and two, and all solutions (feasible or not) are added to sets Λ and λ.

3.2. Set covering model

The last phase of our matheuristic is to try to combine different routes from sets Λ and λ to obtain

better solutions. This is done using a set covering model as follows. The mathematical formulation

and details on the problem are as follows.

Given a set of n elements (customers) Nc, and a set of vehicle routes R whose union equals Nc.

Each route r in R has an associated cost cr which represents the accumulated time to execute the

route and an associated parameter Ωr indicating the depot linked to route r. We use αrj as the

assignment of customer j in the set r, that is, αjr = 1 if customer j is visited by route r, and 0

otherwise. K is the set of vehicles for each depot.

Two sets of variables are defined. For each route r ∈ R, binary variable χr takes value 1 if the set

of customers r is visited, and 0 otherwise. For each depot d ∈ Nd, binary variable Υd takes value

1 if depot d is used, 0 otherwise.

The formulation is the following:

min
∑
i∈R

crχr (45)

subject to

∑
r∈R

αrjχr = 1, ∀j ∈ Nc (46)

∑
r∈R

χr ≤ |K| (47)

∑
d∈Nd

Υd = 1 (48)

χr ≤ Υ(Ωr), ∀Ωr ∈ Nd,∀r ∈ R (49)

χr ∈ {0, 1}, ∀r ∈ R (50)
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Υd ∈ {0, 1}, ∀d ∈ Nd. (51)

The objective function (45) is to find the subset of routes with the minimum total execution time.

Each customer has to be visited exactly once by constraints (46). Constraint (47) guarantees that

the number of routes used does not exceed the number of vehicles available. By constraint (48)

we assure that all the used routes are associated with a single depot. Constraints (49) enforce

the connection between each route and its respective depot. Constraints (50) and (51) define the

nature and domain of the variables.

4. Computational experiments

In this section, we provide details on our instances, the setting and parameters of our algorithms

and extensive results along with an elaborated analysis. The algorithms are coded in C++ and we

use Gurobi Optimizer 8.0.1 as the MIP solver in its default settings. All computational experiments

are conducted on an Intel Core i7 processor running at 3.4 GHz with 64 GB of RAM installed,

with the Ubuntu Linux operating system. Four threads are used and a total time limit of 10800

seconds is imposed for each execution. Section 4.1 describes how the instances are generated and

the results of detailed computational experiments are provided in Section 4.2.

4.1. Instance generation

To conduct our computational experiments, we have randomly generated several classes of instances.

Exploiting the same database presented in Belhassine et al. (2018), geographical information avail-

able from the real road network and traffic of the Québec City is used to generate our instances.

The following parameters are generated based on the data from an industrial partner working in

the retailing of furniture and appliances.

Over a planning horizon of 15 hours, from 6:00 to 21:00, we consider three equal-length intervals of

3600, 5400, and 10800 seconds which consequently differentiate between our large, medium, or small

instances. We consider 1, 3, or 5 available depots for each instance in which 10, 20, 50, 80, or 100

customers are located. The demand of each customer is randomly generated from [50, 750] units

and the service time varies between [1000, 10800] seconds. Therefore, each instance is identified by

the number of time intervals (|H|), depots (|Nd|), customers (|Nc|), vehicles (|K|), and the capacity

of each vehicle (Q) set from preliminary tests.

The Time-Dependent Location-Routing Problem

CIRRELT-2018-54 17



For each combination of parameters, we generate 5 random instances. Table 2 summarizes the

parameters used in our instances.

Table 2: Instance sets and the parameters

Type |H| T |Nd| |Nc| |K| Q

small 5 10800

{1, 3, 5} 10 3 4000
{1, 3, 5} 20 4 4000
{1, 3, 5} 50 8 4500
{1, 3, 5} 80 12 4500
{1, 3, 5} 100 15 4500

medium 10 5400

{1, 3, 5} 10 3 4000
{1, 3, 5} 20 4 4000
{1, 3, 5} 50 8 4500
{1, 3, 5} 80 12 4500
{1, 3, 5} 100 15 4500

large 15 3600

{1, 3, 5} 10 3 4000
{1, 3, 5} 20 4 4000
{1, 3, 5} 50 8 4500
{1, 3, 5} 80 12 4500
{1, 3, 5} 100 15 4500

4.2. Computational results

We now present the results of our extensive computational experiments. We have tested several

parameters to tune our methods and the following are proven to provide the best average results.

For all our heuristics, we use ν = 2, L1 = 5000, and L2 = 10000.

We start our analysis by showing in Section 4.2.1 the results obtained by applying the constructive

heuristic presented in the previous section. Then in Section 4.2.2 the results of the mathematical

model of Section 2 are presented; once it is fed with a pool of initial solutions from our heuristics

and with all valid inequalities added. We then compare these results when no initial solution is

provided, and when valid inequalities are removed. Then, in Section 4.2.3 we provide detailed

results using our matheuristic of Section 3.

4.2.1. Results of the constructive heuristic

Table 3 shows the results obtained by applying the proposed constructive heuristic. On the first

two columns of this table we provide general information on the instance, and then we report the

results obtained for potential depots on the instance. For each potential depot, we report the
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number of vehicle’s routes generated by constructive heuristic (# routes generated), followed by

the best solution obtained by constructive heuristic (Best solution), and finally the execution time

in seconds (Time). We first observe that the number of time intervals in the instance, determining

its size (small, medium, large) has no effect on the complexity of the problem, as indicated by the

relatively constant number of routes and time to generate them. Also, by exploring more than 20

million routes for some configurations, it is noticeable that our heuristics are capable of providing

very diverse routes. Moreover, the provided averages are coherent with the fact that the value

of the objective function decreases when the number of potential depots increases, as the base

instance is the same but new locations are added for the new potential depot, meaning that the

objective function should go down, at the expense of a more difficult optimization problem. Finally,

the average execution time is below an hour, which is very acceptable to solve such a challenging

tactical optimization problem.

Table 3: Average results from the constructive heuristic

Instance |Nc|
1 depot 3 depots 5 depots

# routes Best Time # routes Best Time # routes Best Time
generated solution (s) generated solution (s) generated solution (s)

Small

10 369078.40 7846.40 15 1226114.40 7439.00 48 2037187.20 7904.20 68
20 738245.00 14337.40 38 2245948.20 13824.00 115 3806241.80 12773.60 196
50 2479664.80 29915.40 220 5918252.20 26654.20 591 9894822.60 26377.00 970
80 4182447.20 44227.80 1160 10059494.80 37466.00 3263 15631462.40 35763.80 5170
100 5308720.60 42219.60 1638 13027628.40 46539.40 4389 20383988.40 39356.60 7734

Average 2615631.20 27709.32 614 6495487.60 26384.52 1681 10350740.48 24435.04 2828

Medium

10 330806.20 8123.20 14 1009597.40 7512.60 39 1671495.00 7848.40 60
20 608242.60 14811.60 37 1401006.20 13785.00 92 2625247.00 13113.40 160
50 2165547.00 31184.20 204 4990314.40 26914.80 531 8029309.20 26475.00 862
80 3793161.00 45658.20 707 9273097.20 39801.40 2978 14230304.80 35950.20 5115
100 4452738.00 40396.00 1132 11595049.80 39929.80 4596 17992807.60 34278.80 5828

Average 2270098.96 28034.64 419 5653813.00 25588.72 1647 8909832.72 23533.16 2405

Large

10 332077.20 7920.20 14 995294.60 7467.40 40 1647919.20 7479.80 58
20 447788.40 14347.00 32 1361307.80 13887.80 89 2379870.00 12972.00 152
50 1803903.60 29372.20 190 4763696.80 27027.20 522 8121700.00 27053.00 857
80 3318467.40 44811.40 530 8042322.80 39308.60 1397 12877642.00 37208.20 2281
100 4379811.00 42183.20 1115 10303364.00 46000.00 4079 16530344.80 38183.20 5124

Average 2056409.52 27726.80 376 5093197.20 26738.20 1225 8311495.20 24579.24 1694
Global average 2314046.56 27823.59 470 5747499.27 26237.15 1518 9190689.47 24182.48 2309

The best solution obtained from the constructive heuristic is used as one initial solution (IS) for

both solving the mathematical model and the second phase of our proposed matheuristic.

4.2.2. Results of the mathematical model

In what follows we present the results from our model when it is fed with an initial solution and

under the presence of all valid inequalities. Table 4 presents the results for 1 depot, Table 5 for

cases with 3 depots, and finally Table 6 for the largest instances containing 5 potential depots. As
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before, the first two columns of the tables provide information on the instance. In order to compare

the performance of these different methods, on each table we provide information on the obtained

upper bound (UB) and lower bound (LB), the gap (in %) calculated as 100(UB − LB)/UB, the

execution time (in seconds) and finally, the solution (UB) improvement over the best solution

obtained with the constructive heuristic (in %).

Table 4: Average results for instances with 1 depot from the TDLRP with VIs and with initial solutions

Instance |Nc| IS UB LB Gap (%) Time (s)
UB improvement

over IS (%)

Small

10 7846.40 7595.40 7595.40 0.00 12 3.29
20 14337.40 13450.20 11207.63 16.99 10800 6.10
50 29915.40 28876.60 16260.00 42.88 10800 3.65
80 44227.80 43623.20 22251.10 56.46 10801 1.41
100 42219.60 41391.20 20527.90 50.09 10801 1.79

Average 27709.32 26987.32 15568.41 33.28 8643 3.25

Medium

10 8123.20 7923.20 7923.20 0.00 145 2.32
20 14811.60 13749.20 11172.42 18.76 10800 6.79
50 31184.20 30594.20 16196.92 46.43 10800 1.88
80 45658.20 45238.60 22809.76 58.71 10801 0.91
100 40396.00 40267.80 20116.90 51.31 10803 0.29

Average 28034.64 27554.60 15643.84 35.04 8670 2.44

Large

10 7920.20 7803.00 7803.00 0.00 110 1.44
20 14347.00 13708.20 11127.29 18.65 10800 4.22
50 29372.20 28762.00 16118.04 43.26 10801 1.98
80 44811.40 44463.00 22685.32 58.45 10801 0.82
100 42183.20 41988.20 20608.22 50.39 10804 0.45

Average 27726.80 27344.88 15668.37 34.15 8663 1.78
Global average 27823.59 27295.60 15626.87 34.16 8659 2.49

Table 5: Average results for instances with 3 depots from the TDLRP with VIs and with initial solutions

Instance |Nc| IS UB LB Gap (%) Time (s)
UB improvement

over IS (%)

Small

10 7439.00 7030.40 7030.40 0.00 56 5.43
20 13824.00 13065.00 10868.40 16.42 10800 5.56
50 26654.20 25988.40 16017.90 38.16 10800 2.57
80 37466.00 37043.60 19855.88 54.91 10801 1.08
100 46539.40 46133.40 24032.74 47.81 10802 0.85

Average 26384.52 25852.16 15561.06 31.46 8652 3.10

Medium

10 7512.60 7252.60 7252.60 0.00 166 3.45
20 13785.00 13403.60 10675.50 20.24 10800 2.76
50 26914.80 26194.60 16063.12 38.55 10801 2.72
80 39801.40 39529.40 20200.26 57.63 10802 0.67
100 39929.80 39853.00 20319.55 51.76 10804 0.37

Average 25588.72 25246.64 14902.21 33.63 8675 1.99

Large

10 7467.40 7153.00 7153.00 0.00 153 4.17
20 13887.80 13630.60 10607.78 22.14 10800 1.79
50 27027.20 26646.00 15941.90 40.15 10801 1.42
80 39308.60 39045.80 20120.80 57.33 10802 0.73
100 46000.00 45941.40 23813.92 47.97 10807 0.12

Average 26738.20 26483.36 15527.48 33.52 8672 1.64
Global average 26237.15 25860.72 15330.25 32.87 8666 2.24

These tables show that even with all valid inequalities and inputting a set of initial solutions to the

model, the gap is still very high after three hours of computing time, suggesting that the problem

remains a very difficult optimization problem. It also shows that, typically, Gurobi is not able to
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Table 6: Average results for instances with 5 depots from the TDLRP with VIs and with initial solutions

Instance |Nc| IS UB LB Gap (%) Time (s)
UB improvement

over IS (%)

Small

10 7904.20 7604.00 7604.00 0.00 401 3.65
20 12773.60 12316.20 9947.64 19.19 10800 3.58
50 26377.00 25473.00 15735.92 38.23 10800 3.40
80 35763.80 35108.40 19457.50 51.99 10801 1.83
100 39356.60 39203.00 19767.86 49.72 10802 0.38

Average 24435.04 23940.92 14502.58 31.83 8721 2.57

Medium

10 7848.40 7788.40 7788.19 0.00 1990 1.00
20 13113.40 12800.20 10174.50 20.28 10800 2.38
50 26475.00 25902.80 15727.84 39.23 10800 2.19
80 35950.20 35722.20 19650.34 53.00 10802 0.63
100 34278.80 34214.60 16434.26 56.20 10806 0.16

Average 23533.16 23285.64 13955.03 33.74 9040 1.27

Large

10 7479.80 7355.40 7355.37 0.00 714 1.61
20 12972.00 12793.00 9894.29 22.76 10800 1.38
50 27053.00 26746.00 15707.58 41.23 10801 1.12
80 37208.20 37092.60 19396.30 54.04 10803 0.33
100 38183.20 38031.00 18958.20 51.47 10851 0.47

Average 24579.24 24403.60 14262.35 33.90 8794 0.98
Global average 24182.48 23876.72 14239.99 33.16 8851 1.61

significantly improve the initial solutions provided, with an average improvement of only 2.49%

for instances with 1 depot, 2.24% for instances with 3 depots, and 1.61% for instances with 5

depots. Also, for larger instances, the improvements are only marginal, indicating that the use of

our initial solution was indeed efficient. In what follows, we evaluate whether the quality of the

initial solutions makes a difference and if the valid inequalities are important in this context.

In Table 7 we first analyze the case where initial solutions are not provided, but we keep all valid

inequalities present in the model. Here, the solver (Gurobi) relies on applying the branch-and-bound

algorithm and its internal heuristics, which are not described in details but known to include at

least Minimum Relaxation Heuristic, Feasibility Pump Heuristic, Relaxation induced neighborhood

search (RINS) Heuristic, and Zero Objective Heuristic. An asterisk indicates that no solution was

obtained for any of the five instances represented by each row.

The results on Table 7 show that for large instances, no feasible solution could be found within

the three hours allotted. Columns UB gap (%) and LB gap (%) refer to the deterioration of the

solutions (in %) compared to the ones shown in Tables 4–6, and indicate that for the few instances

for which a feasible solution was obtained, their quality were significantly worse than those provided

by the constructive heuristics (about 4% worse for all number of depots). As for the lower bounds,

these were mostly equivalent, with a small (around 0.5%) improvement over the previous case. It

is clear that on average the UB worsens and that providing an initial solution has a strong positive

impact on the ability of the solver to find feasible solutions. For most instances, the solver was not
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Table 7: Average results from the TDLRP with valid inequalities and without initial solutions

Instance |Nc|
1 depot 3 depots 5 depots

UB LB UB gap LB gap UB LB UB gap LB gap UB LB UB gap LB gap
(%) (%) (%) (%) (%) (%)

Small

10 7595.40 7595.40 0.00 0.00 7030.40 7030.40 0.00 0.00 7604.00 7604.00 0.00 0.00
20 13203.40 11157.46 -1.87 -0.40 13450.20 10790.90 2.69 -0.71 12219.20 9998.21 -0.68 0.47
50 29487.00† 16184.46 8.93† -0.45 25329.00‡ 15885.58 3.00‡ -0.82 * 15507.67 * -1.47
80 * 22176.82 * -0.34 * 19864.55 * 0.03 * 19422.93 * -0.18
100 * 20493.61 * -0.15 * 24038.71 * 0.02 * 19779.76 * 0.07

Average * 15521.55 2.36 -0.27 * 15522.03 1.90 -0.30 * 14462.52 -0.34 -0.22

Medium

10 7923.20 7923.20 0.00 0.00 7252.60 7252.44 0.00 0.00 7788.40 7678.90 0.00 -1.10
20 14943.00 10912.97 7.15 -2.29 14291.40 10488.24 6.02 -1.81 14442.00 9911.01 11.43 -2.64
50 * 16123.34 * -0.47 * 16034.77 * -0.17 * 15655.10 * -0.47
80 * 22799.34 * -0.03 * 20253.26 * 0.25 * 19643.48 * -0.06
100 * 20125.01 * -0.13 * 20354.02 * 0.18 * 16410.72 * 0.18

Average * 15576.77 3.57 -0.58 * 14876.55 3.01 -0.31 * 13859.84 5.71 -0.82

Large

10 7803.00 7802.95 0.00 0.00 7153.00 7152.94 0.00 0.00 7355.40 7355.35 0.00 0.00
20 15693.80 10829.14 12.48 -2.81 15774.20 10441.70 13.16 -1.63 15229.00 9719.32 15.01 -1.73
50 * 16029.47 * -0.57 * 15867.01 * -0.48 * 15577.98 * -0.83
80 * 22653.03 * -0.15 * 20115.24 * -0.04 * 19374.90 * -0.11
100 * 20619.60 * 0.04 * 23838.89 * 0.11 * 19024.66 * 0.43

Average * 15586.84 6.24 -0.70 * 15483.16 6.58 -0.41 * 14210.44 7.50 -0.45
Global average * 15561.72 4.06 -0.52 * 15293.91 3.83 -0.34 * 14177.60 4.29 -0.50

†One instance (out of five) did not have a feasible solution. The gap is calculated based on the solutions of the four remaining instances.

‡Three instances (out of five) did not have a feasible solution. The gap is calculated based on the solutions of the two remaining instances.

able to obtain any feasible solutions without inputting ours. Moreover, the quality of the solutions

obtained are significantly worse than the ones obtained by our constructive heuristics. Moreover,

the detailed results (available upon request) reveal that the time it takes to prove optimality for the

small instances is decreased by 4.88% when initial solutions are provided. Therefore, it is evident

that the results presented in Tables 4–6 rely strongly on the quality of the provided initial solutions.

Table 8: Average results from the TDLRP without valid inequalities and with initial solutions

Instance |Nc|
1 depot 3 depots 5 depots

UB LB UB gap LB gap UB LB UB gap LB gap UB LB UB gap LB gap
(%) (%) (%) (%) (%) (%)

Small

10 7595.40 7595.40 0.00 0.00 7030.40 7030.40 0.00 0.00 7604.00 7604.00 0.00 0.00
20 13220.20 10133.32 -1.82 -10.19 13079.00 10152.71 0.12 -7.07 12344.40 9415.65 0.12 -6.00
50 28486.60 14687.34 -1.41 -10.76 25671.80 14460.66 -1.31 -10.78 25430.20 14498.82 -0.16 -8.53
80 43333.20 18614.36 -0.68 -20.95 37216.40 16575.84 0.41 -19.74 35280.60 16914.06 0.51 -15.04
100 41128.80 17325.96 -0.79 -18.69 45392.80 19935.10 -1.60 -20.61 38959.20 17704.76 -0.60 -11.24

Average 26752.84 13671.28 -0.91 -12.12 25678.08 13630.94 0.06 -11.64 23923.68 13227.46 0.06 -8.16

Medium

10 7923.20 7923.20 0.00 0.00 7252.60 7252.60 0.00 0.00 7788.40 7480.43 0.00 -3.43
20 13740.60 9898.95 -0.42 -12.59 13308.20 10108.08 -0.72 -5.70 12867.60 9337.96 0.51 -8.94
50 30696.00 14389.70 0.36 -12.69 26440.80 14308.14 0.99 -12.30 25998.40 14284.88 0.38 -10.15
80 45270.60 18403.18 0.08 -25.55 39469.60 16538.08 -0.15 -22.19 35673.40 16717.82 -0.15 -17.57
100 40137.80 16331.96 -0.24 -25.86 39893.40 15819.10 0.28 -24.01† 34196.20 13671.20 -0.04 -16.27†

Average 27553.64 13389.40 -0.21 -15.34 25272.92 12805.20 -0.36 -12.84 23304.80 12298.46 0.25 -11.27

Large

10 7803.00 7803.00 0.00 0.00 7153.00 7153.00 0.00 0.00 7355.40 7355.28 0.00 0.00
20 13795.20 9691.86 0.54 -14.79 13639.20 10022.46 0.12 -6.00 12881.00 9152.20 0.67 -8.34
50 28859.00 14296.64 0.19 -12.87 26691.20 14223.02 -0.16 -8.53 26719.40 14201.98 -0.11 -10.64
80 44374.80 18205.78 -0.21 -25.92 39197.00 16502.68 0.51 -15.04 36715.60 16832.36 -1.08 -15.17
100 41836.60 17236.96 -0.38 -19.82 45939.60 19593.54 -0.60 -11.24 37997.80 16470.36 -0.07 -14.26

Average 27333.72 13446.85 0.27 -14.68 26524.00 13498.94 0.06 -8.16 24333.84 12802.43 0.33 -9.68
Global average 27213.40 13502.51 -0.28 -14.04 25825.00 13311.69 -0.08 -10.88 23854.11 12776.12 0.22 -9.70

†One instance (out of five) did not obtain a lower bound.

Compared to the results shown in Table 7 proving an initial solution guarantees obtaining an upper

bound for all instances, even the large ones. Since this time no valid inequalities are present, the

model contains fewer constraints and is, thus, to some extent lighter to optimize, leading to mostly

equivalent solution quality (marginally better solutions for 1 depot instances with an improvement

of 0.30%, improvement of 0.08% for 3-depot instances, and worse solution of about 0.22% for
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5-depot instances).

Furthermore, as expected, providing valid inequalities improves the lower bounds considerably as

indicated on the LB gap (%) of Table 8. In our case, compared to the average lower bounds

presented in Tables 4–6, once the valid inequalities are removed from the model, the obtained LBs

worsens dramatically (much lower values as presented in Table 8). Though ubiquitous, this effect

are more evident for the larger instances.

These results help highlight the importance of both aspect developed in this paper: the valid in-

equalities to improve lower bounds, and the constructive heuristics to help provide feasible solutions

even for very large instances of the problem.

4.2.3. Results of the proposed matheurisitc

The following three tables show the average results obtained by the proposed matheuristic, con-

sisting of the constructive heuristic procedure followed by the set covering problem in which all

non-dominated routes are used as potential route variables. We present a table per the number

of potential depots on the instance and on the first two columns of each table, we provide general

information on the instance. The information on the constructive heuristic is already presented in

Section 3, however for the sake of simplicity of the analysis, they are presented again here on the

third to fifth columns. From the fifth column on, we show the the improved results by applying the

set covering. Therefore, we continue by reporting the number of non-dominated routes of the set

covering phase, the solution (UB) obtained and its execution time in seconds (Time). Finally, the

last two columns report the improvement over the heuristic and with respect to results obtained

on Tables 4–6, respectively.

Several interesting observations can be drawn from the analysis of the results from Tables 9–

11. First, we observe that the constructive heuristics exploit the sequencing of customers very

well: from a huge number of routes generated, many are permutations of the same customers,

leading to significantly fewer routes that are not dominated. This treatment has the advantage of

reducing the computational burden when solving the set covering model. Moreover, these tables

show that applying the set covering further improves the routes generated by the constructive

heuristic. The improvement over the constructive heuristic solution is of 4.11% for instances with

1 depot, 4.48% for instances with 3 depots and 5.58% for instances with 5 depots. Moreover, the
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average execution time for the matheuristic is less that the time reported in Tables 4–6, which is

insiginificant compared to the impact these solutions would have in practice.

Table 9: Average results on instances with 1 depot from the propsoed matheuristic
Constructive heuristic Set covering problem

Instance |Nc|
# routes Best Time # non-dominated Solution Time Improv. over Improv. over
generated solution (s) routes (s) heuristic (%) Section 4.2.2 (%)

Small

10 369078.40 7846.40 15 978.60 7770.40 <1 0.89 -2.53
20 738245.00 14337.40 38 54055.60 13533.80 1 5.65 -0.52
50 2479664.80 29915.40 220 591869.20 26917.40 23 10.06 6.60
80 4182447.20 44227.80 1160 1164648.80 38568.40 326 12.77 11.49
100 5308720.60 42219.60 1638 1606591.00 40974.20 244 2.72 0.95

Average 2615631.20 27709.32 614 683628.64 25552.84 119 6.42 3.20

Medium

10 330806.20 8123.20 14 963.80 8071.80 <1 0.68 -1.69
20 608242.60 14811.60 37 53929.40 13797.40 2 6.76 -0.18
50 2165547.00 31184.20 204 696983.40 27134.00 38 12.84 11.17
80 3793161.00 45658.20 707 1297387.40 39166.60 421 14.29 13.50
100 4452738.00 40396.00 1132 1695888.40 39548.60 474 2.18 1.89

Average 2270098.96 28034.64 419 749030.48 25543.68 187 7.35 4.94

Large

10 332077.20 7920.20 14 793.00 7859.60 <1 0.64 -0.81
20 447788.40 14347.00 32 60496.60 13942.00 2 2.82 -1.54
50 1803903.60 29372.20 190 650223.60 26158.80 35 10.76 8.98
80 3318467.40 44811.40 530 1255734.80 39031.80 140 13.05 12.35
100 4379811.00 42183.20 1115 1675409.00 41128.60 313 2.45 2.01

Average 2056409.52 27726.80 376 728531.40 25624.16 98 5.94 4.19

Global average 2314046.56 27823.59 470 720396.84 25573.56 135 6.57 4.11

Table 10: Average results on instances with 3 depots from the propsoed matheuristic
Constructive heuristic Set covering problem

Instance |Nc|
# routes Best Time # non-dominated Solution Time Improv. over Improv. over
generated solution (s) routes (s) heuristic (%) Section 4.2.2 (%)

Small

10 1226114.40 7439.00 48 2820.40 7366.80 <1 0.94 -4.75
20 2245948.20 13824.00 115 155854.60 13145.40 15 4.92 -0.70
50 5918252.20 26654.20 591 1338632.80 23571.80 473 11.69 9.37
80 10059494.80 37466.00 3263 2497688.40 33400.60 4959 10.97 9.98
100 13027628.40 46539.40 4389 3246115.20 45278.00 4908 2.69 1.86

Average 6495487.60 26384.52 1681 1448222.28 24552.52 2071 6.24 3.15

Medium

10 1009597.40 7512.60 39 2573.80 7443.80 <1 0.91 -2.66
20 1401006.20 13785.00 92 187499.00 13317.60 18 3.37 0.63
50 4990314.40 26914.80 531 1531736.20 23279.20 783 13.58 11.16
80 9273097.20 39801.40 2978 2658364.00 34800.80 5996 12.62 12.04
100 11595049.80 39929.80 4596 3890206.40 39407.80 5804 1.40 1.03

Average 5653813.00 25588.72 1647 1654075.88 23649.84 2520 6.38 4.44

Large

10 995294.60 7467.40 40 2385.60 7419.20 <1 0.63 -3.72
20 1361307.80 13887.80 89 183235.00 13376.60 14 3.67 1.90
50 4763696.80 27027.20 522 1592500.20 23163.40 482 14.28 13.06
80 8042322.80 39308.60 1397 2811714.00 33201.60 2991 15.65 15.04
100 10303364.00 46000.00 4079 3876719.20 44527.20 6040 3.09 2.98

Average 5093197.20 26738.20 1225 1693310.80 24337.60 1905 7.46 5.85

Global average 5747499.27 26237.15 1518 1598536.32 24179.99 2165 6.69 4.48

Table 9 summarizes the results for instances with 1 depot. As shown in this table, applying the set

covering phase improves the average solution for all set of instances. The improvement is higher for

the sets with more than 50 customers, for which combining different routes from different solutions

can lead to superior solutions, improving the results obtained with the mathematical model by more

than 13% in some cases. Sometimes, this phase is even capable of obtaining the optimal solution
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Table 11: Average results on instances with 5 depots from the propsoed matheuristic
Constructive heuristic Set covering problem

Instance |Nc|
# routes Best Time # non-dominated Solution Time Improv. over Improv. over
generated solution (s) routes (s) heuristic (%) Section 4.2.2 (%)

Small

10 2037187.20 7904.20 68 4610.40 7842.80 1 0.91 -2.87
20 3806241.80 12773.60 196 260662.00 12062.60 62 5.49 1.95
50 9894822.60 26377.00 970 1970811.60 23196.40 993 12.05 8.97
80 15631462.40 35763.80 5170 3667000.80 30949.00 4940 13.50 11.87
100 20383988.40 39356.60 7734 5086044.80 38481.80 3114 2.04 1.67

Average 10350740.48 24435.04 2828 2197825.92 22506.52 1822 6.80 4.32

Medium

10 1671495.00 7848.40 60 4418.00 7848.40 1 0.00 -1.05
20 2625247.00 13113.40 160 287875.60 12594.20 72 3.96 1.59
50 8029309.20 26475.00 862 2367104 23090.20 1287 12.77 10.76
80 14230304.80 35950.20 5115 4395731 30520.20 5862 15.12 14.58
100 17992807.60 34278.80 5828 6107402.40 33116.20 5011 2.94 2.78

Average 8909832.72 23533.16 2405 2632506.24 21433.84 2447 6.96 5.73

Large

10 1647919.20 7479.80 58 4420.00 7479.80 1 0.00 -1.66
20 2379870.00 12972.00 152 290219.60 12363.80 76 4.65 3.32
50 8121700.00 27053.00 857 2291151.00 23300.40 1214 13.91 12.91
80 12877642.00 37208.20 2281 4215957.40 31200.00 3969 16.14 15.87
100 16530344.80 38183.20 5124 5856689.20 36843.00 5785 3.39 2.92

Average 8311495.20 24579.24 1694 2531687.44 22237.40 2209 7.62 6.67

Global average 9190689.47 24182.48 2309 2454066.53 22059.25 2159 7.12 5.58

proved in Section 4.2.2. Similarly, Table 10 also shows how applying the set covering phase can

improve the solution found by the constructive heuristic for all instances, and that the best average

results, however, are obtained for instances with more than 50 customers. For the instances with

five depots, as presented in Table 11, the optimization phase obtains the largest global average

improvement (7.12%), and individual instances see an average improvement of over 15%, stressing

the importance of combining different solutions in a smart way.

5. Conclusions

This paper investigates a very challenging and practical problem and it contributes to the integrated

logistics literature as it presents the first mathematical formulation for the time-dependent location

routing problem. To achieve quality solution in an acceptable computational time and to provide

a pool of initial solutions, we have also proposed a matheuristic algorithm. We have compared the

performance of our proposed algorithm against the exact method on instances generated with real

data. We have also shown that to solve complex problems like this, it is important to integrate

heuristic methods and exact formulations. Our constructive heuristic is able to generate diversified

routes and initial solutions that can be combined and optimized through a set covering problem

resolution. Moreover, our exact mathematical formulation is able to solve instances with up to

100 customers and 15 time intervals, where traffic condition changes hourly. The inclusion of a set
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of valid inequalities provides better lower bounds while a pool of initial solutions enables further

improvements.
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T. Bektaş, T.G. Crainic, and T. Van Woensel. From managing urban freight to smart city logistics networks.

In K. Gakis and P. Pardalos, editors, Network Design and Optimization for Smart Cities, chapter 7, pages

143–188. World Scientific, 2017.

K. Belhassine, L.C. Coelho, J. Renaud, and J.-P. Gagliardi. Improved home deliveries in congested areas

using geospatial technology. Technical report, Working Paper CIRRELT-2018-02, January 2018.
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M. Marufuzzaman and S.D. Ekşioğlu. Managing congestion in supply chains via dynamic freight routing: An

application in the biomass supply chain. Transportation Research Part E: Logistics and Transportation

Review, 99:54–76, 2017.

The Time-Dependent Location-Routing Problem

CIRRELT-2018-54 27



G. Nagy and S. Salhi. Location-routing: issues, models and methods. European Journal of Operational

Research, 177(2):649–672, 2007.

M. Veenstra and L.C. Coelho. The time-dependent shortest path and vehicle routing problem. Technical

report, Working Paper CIRRELT-2017-57, August 2017.

E. Von Boventer. The relationship between transportation costs and location rent in transportation problems.

Journal of Regional Science, 3(2):27–40, 1961.

Y. Yuan and J. Yu. Locating transit hubs in a multi-modal transportation network: A cluster-based op-

timization approach. Transportation Research Part E: Logistics and Transportation Review, 114:85–103,

2018.

The Time-Dependent Location-Routing Problem

28 CIRRELT-2018-54


	CIRRELT-2018-54-pp
	CIRRELT-2018-54-abstract-FSA
	Bibliothèque et Archives Canada, 2018

	CIRRELT-2018-54



