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Abstract. The extended aircraft arrival management problem, as an extension of the classic 

Aircraft Landing Problem, seeks to pre-schedule aircraft on a destination airport a few hours 

before their planned landing times. A two-stage stochastic mixed-integer programming 

model enriched by probability constraints is proposed. The first-stage optimization problem 

determines an aircraft sequence and target times over the entry point to the terminal area, 

called initial approach fix (IAF), so as to minimize the landing sequence length. Actual times 

over the IAF are assumed to deviate randomly from target times following known probability 

distributions. In the second stage, actual times over the IAF are assumed to be revealed, 

and landing times are to be determined in view of minimizing a time-deviation impact cost 

function such as air traffic control workload in the terminal area. Three Benders 

reformulations are proposed: a simple-cut, a partially aggregated-cut, and a multi-cut 

versions. This study considers a single IAF and a single landing runway. Results on realistic 

instances involving 10 aircraft show an improvement of objective-function values by 10% 

when compared to a wait-and-see policy. The multi-cut version of Branch-and-Benders-Cut 

achieves shorter computing times, up to a factor of 6 compared to CPLEX, in several difficult 

test cases. 
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1. Introduction

Predicted growth in air traffic, capacity limitations of the overall air transportation system, envi-

ronmental and human-factor challenges have been the main motivations for air transportation

experts to formulate and tackle problems arising in Air Traffic Management (ATM). At the airport

level, landings are considered to be among the most critical, bottleneck operations, where safety

and efficiency are of great importance. Accordingly, the Aircraft Landing Problem (ALP) was

introduced more than four decades ago (see Dear 1976 and, later, Bennell, Mesgarpour, and Potts

2011). The ALP deals with sequencing and scheduling aircraft landings optimally on the available

runways at a given airport. Sequencing consists in finding an order among the considered aircraft,

while scheduling is related to the timing of aircraft landings. Optimality criteria usually include

maximizing airport throughput or minimizing aircraft delay, while satisfying operational and safety

constraints, mainly separation constraints between operating aircraft near the runway threshold,

called final-approach separations. Final-approach separations are based on aircraft wake-turbulence

categories, presented in Table 1, and are expressed as inter-aircraft distances in nautical miles (NM;

1 NM = 1.852 m) as in Table 2. The difficulty of the ALP is due to the non-symmetry of the final

approach separations, unlike in other flight phases. For example, in the near-to-airport airspace,

called the terminal area, before the final approach phase, aircraft are horizontally separated by 5

NM.

Table 1 Wake-turbulence categories according to the International Civil Aviation Organization (ICAO).

Wake-turbulence
category

Max certificated take-off
mass (kg)

Aircraft-type
examples

Heavy (H) above 136,000 A350, A340, B747, B777
Medium (M) between 7,000 and 136,000 A320, B737
Light (L) below 7,000 General aviation and executive jets

source: https://www.skybrary.aero/index.php/ICAO_Wake_Turbulence_Category

Table 2 Minimal final-approach separations (NM) according to
ICAO’s wake-turbulence categories.

Following aircraft
H M L

H 4 5 6
Leading aircraft M 2.5 2.5 4

L 2.5 2.5 2.5

source: de Neufville et al. 2013

On the operational side, since the early 90’s in the USA and Europe, air traffic controllers

(ATCs), responsible for air traffic flows’ safety and efficiency around major airports, have been

using decision-support tools that attempt at sequencing and scheduling landings optimally at
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available runways according to ATCs’ input criteria (Garcia 1990, Neuman and Erzberger 1990,

Völckers 1990, Hasevoets and Conroy 2010). Nowadays, the main such tool in the USA is known as

the Traffic Management Advisor, while in Europe it is called Arrival Manager (AMAN). Without

loss of generality, we will retain the European naming in the sequel. AMAN typically captures

inbound aircraft at distances under 200 NM from their destination airport i.e., around 40 minutes

before landing (Division-NAAS 2016, Tielrooij et al. 2015). Then, using predicted landing times

and aircraft characteristics such as wake-turbulence categories, AMAN determines an “optimal”

landing sequence and target landing times according to the ATCs’ input criteria. Afterwards, the

controllers have to communicate control actions to pilots in order to enforce this optimal sequence,

and to satisfy at best the target landing times. Apart from recoursing to holding stacks, where

aircraft keep flying in a circle at low altitudes close to the terminal area (formally called Terminal

Control Area (TCA) in the USA, and Terminal Maneuvering Area (TMA) in Europe), controllers

are allowed to change the aircraft speeds and trajectories in order to avoid terminal area congestion.

The latter two control actions are more likely to achieve the so-called linear holding, which is

preferred to holding stacks in terms of safety, ATC workload and eco-efficiency. However, recoursing

to linear holding is most effective when flights are still relatively far from the destination airport,

e.g. while still in their cruise phase.

These facts motivate the extension of AMAN’s horizon in order to diminish the need for holding

stacks and to rely more on linear holding techniques. Accordingly, important ATM research and

development programs, NextGen in the USA and SESAR in Europe, foresee their decision support

tools’ operational horizons to be extended up to 500 NM, i.e., about 2 hours before landing (Tiel-

rooij et al. 2015). The new European decision-support tool is called Extended-AMAN (E-AMAN).

However, with extended horizons come greater uncertainties on the predicted times, such as those

used by AMAN, when optimizing the landing sequence (Meyn and Erzberger 2005, Tielrooij et al.

2015). A recent attempt to quantify the uncertainty on predicted landing times at a horizon of

three hours, using actual flight data, is presented in Tielrooij et al. 2015. To deal with predicted-

time errors, current AMANs rely on regularly re-optimizing the schedule (for example every time

aircraft data are updated). Although it may appear satisfying in practice, re-optimizing addresses

uncertainty by brute force instead of embedding it within the optimization problem. One of the

obvious drawbacks of frequent re-optimization is the instability of the optimal sequence it produces.

With an extended operational horizon, addressing uncertainty through frequent re-optimizations

will, very likely, result in highly-instable sequences, increasing the workload of ATCs who cannot

easily build and maintain the continuously-changing sequence of aircraft.

To the best of our knowledge, the ALP has been most-commonly studied when considering

the deterministic case (Dear 1976, Beasley et al. 2000, Balakrishnan and Chandran 2010, Ben-

nell, Mesgarpour, and Potts 2011, Furini et al. 2015), while uncertainty has less often been taken
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into account. Pioneer studies of the ALP considering uncertainty were conducted by Meyn and

Erzberger (2005), Chandran and Balakrishnan (2007), and Lee (2008) who basically added prob-

abilistic considerations to the deterministic ALP. Stochastic optimization models, including two-

stage and multi-stage models, were applied by Sölveling et al. (2011), Sölveling (2012), Sölveling

and Clarke (2014), and Bosson and Sun (2016) to address a variant of the ALP under uncertainty

that considers departures and surface operations on the airport. Recently, Heidt et al. (2016),

Kapolke et al. (2016), and Heidt (2017) proposed various robust optimization models to address

the runway scheduling problem under uncertainty. The aforementioned studies focus on the ALP

under uncertainty with an operational horizon under one hour, whereas Kapolke et al. (2016)

investigates the pre-tactical ALP which starts several hours before the planned landing times. In

Kapolke et al. 2016, a simplified one-stage stochastic optimization model is compared with several

robust optimization models. Their study tends to show that robust optimization is more promising

than stochastic optimization for solving the pre-tactical ALP. Remark that the proposed one-stage

stochastic optimization model only addresses the “expected-scenario” problem, i.e., the variant

in which uncertain data are replaced by their expected values. However, as stated by Birge and

Louveaux (2011): “planning for the expected case is in fact “forgetting” uncertainty”. We believe

there is room for considering more practical aspects and algorithmic enhancements in order to get

the most from stochastic optimization applied to the ALP under uncertainty.

In this paper, we consider an extended Aircraft Landing Problem, the ALP variant in which the

operational horizon is extended, as for E-AMAN. Moreover, we aim at embedding the uncertainty

within the optimization model. In view of simplifying the presentation, the scope of this preliminary

study is limited to the case involving a unique entry point to the terminal area, called the initial

approach fix (IAF), and a unique landing runway. We propose a two-stage stochastic optimization

model with recourse, that is enhanced by probability constraints in the first stage, to mitigate

the risk of separation violations over the IAF. Our two-stage stochastic model seeks to find a

schedule that minimizes both the runway sequence length and the expected time-deviation impact

costs (one may think of the expected ATC workload in the terminal area, as a possible instance).

In a first stage, aircraft are sequenced and scheduled at the terminal area entry point so as to

minimize the runway sequence length. In this stage, while IAF target times at the entry point of the

terminal area are decision variables, IAF actual times are considered to be random variables. In a

hypothetical second stage, uncertainty is assumed to be revealed and aircraft are scheduled to the

runway threshold so as to minimize the delay impact costs. The first-stage problem will be shown

to boil down to the classical Asymmetric Traveling Salesman Problem with Time Windows (ATSP-

TW), an NP-hard problem which can be modeled as a mixed integer linear program (MILP).

Assuming a piecewise linear time-deviation impact cost function, the second-stage problem reduces
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to a simple linear program (LP). Three Benders reformulations are proposed: a simple-cut, a

partially-aggregated-cut, and a multi-cut versions.

The paper is organized as follows. The problem statement along with the operational context

are introduced in Section 2. In Section 3, we propose a two-stage stochastic model with recourse.

Solution methods are proposed in Section 4. Results of numerical experiments are discussed in

Section 5. Section 6 presents some conclusions and future research tracks.

2. Problem statement

We consider a set of aircraft planning to land at a given destination airport in two to three hour

look-ahead time. For the sake of simplification, in this preliminary study we make the following

two operational assumptions. Firstly, all considered aircraft pass over the same IAF to enter the

airport’s terminal area. Secondly, all aircraft land on the same runway of the considered airport.

Hence, this study concentrates on the case where a single IAF and a single runway are considered.

Paris Charles-de-Gaulle airport (CDG) is an illustration of this simplified setting when arrival

flows from North and South are disaggregated, the subset of aircraft coming from a same corner

(north-west, for example) passes over a same IAF and lands on a same runway.

Our problem involves two types of separations: final-approach separations and separation over

the IAF. For modeling and optimization purposes, separations expressed in terms of nautical miles

are converted to seconds. Remark that this practice corresponds to common practice; Table 3 shows

final-approach separations converted to seconds, as used in CDG. Detail of such a conversion may

be found in de Neufville et al. 2013. For the sake of exposition simplification, we assume that all

aircraft ground speeds over the IAF are equal to 250 knots (1 knots = 1 NM per hour), which is

typically the maximal allowed on-board indicated air speed over the IAF. Hence, the usual 5 NM

minimal separation over the IAF may be converted into 72 seconds.

Table 3 Final-approach separations (seconds) at CDG according to
ICAO’s wake-turbulence categories

Following aircraft
H M L

H 96 157 207
Leading aircraft M 60 69 123

L 60 69 82

Given a set of aircraft, we seek to find a target aircraft sequence over the IAF, and a target time

over the IAF for each aircraft. We assume that the target sequence over the IAF is the same as

the target landing sequence. In the sequel, the target sequence will equivalently designate any of

these two target sequences. We aim at finding a target sequence so as to maximize the runway
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throughput. Target times over the IAF have to satisfy the separation requirements over the IAF.

Actual times over the IAF correspond to the times at which aircraft effectively pass over the IAF.

The order in which aircraft effectively pass over the IAF is called the actual sequence over the

IAF. We assume that actual times over the IAF randomly deviate from the target times following

known distributions. These deviations are unknown when the target sequence and the target times

over the IAF are decided. Because of these deviations, actual times may violate the separation

constraints over the IAF, even though aircraft were safely separated in terms of target times.

Also, the actual sequence over the IAF may differ from the target sequence. In practice, ATCs

have to make control decisions to prevent such violations over the IAF, and to build the target

sequence for landing. To limit subsequent delay impact costs (such as ATC workload), we consider

probability constraints to express the acceptable rate of separation violations (in terms of actual

times) over the IAF (for instance, one may expect these probability constraints to prevent excessive

subsequent re-sequencing). Furthermore, target times over the IAF have to respect predefined

time-window constraints. These constraints, when correctly defined, will prevent aircraft from

being either excessively delayed or excessively expedited, with respect to their planned times. As

suggested in Bennell, Mesgarpour, and Potts (2011), this may also help fulfill fairness requirements

among aircraft, similarly to the more classical constraint position shifting (CPS) approach (see

Balakrishnan and Chandran 2010 for a comprehensive study in the deterministic case), where

each aircraft position cannot be shifted by more than a predefined number of positions in the

first-come first-serve sequence. Because of the uncertainty on actual times, decisions over the IAF

(target sequence and target times) may result in different air traffic situations over the IAF (actual

sequence and actual times) that are likely to deteriorate runway throughput and to incur further

delay costs.

We define the hypothetical second stage in view of anticipating (ideally all) the different outcomes

of the decisions over the IAF, subsequently called the first-stage decisions. In this second stage,

deviations from target times over the IAF are assumed to be revealed. The second-stage problem

consists in finding a target landing time for each aircraft in order to minimize delay costs, while

satisfying realistic flight times through the terminal area and, more importantly, without violating

final-approach separations. These re-scheduling decisions represent the ATCs recourse to handle

the air traffic situation from the IAF to the runway threshold once uncertainties are revealed.

Therefore, we seek to minimize the expected cost of this recourse through considering different

(eventually all) scenarios, i.e., realizations of the uncertainties.

3. A two-stage stochastic optimization model with recourse

Let A= {1,2, . . . , n} be the set of aircraft indices to be sequenced and scheduled over the IAF. The

minimal time separation required over the IAF is given and noted SI . The minimal time separation
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during the final approach between a leading aircraft i ∈ A and a following aircraft j ∈ A is also

given; it is noted Sij. In the first stage, the n aircraft need to be sequenced and scheduled over

the IAF. Let δij be the binary decision variable that takes the value 1 if and only if aircraft i∈A

directly precedes aircraft j ∈A in the sequence, and 0 otherwise. These variables are called the

sequencing variables. We seek to find the aircraft sequence that maximizes the runway throughput

taking into account final-approach separations. Such a sequence can be obtained by solving an

(open) Asymmetric Traveling Salesman Problem (ATSP) instance where the city set corresponds

to the aircraft set A. Equivalently, we can consider a classical ATSP instance involving the set

A+ = {1,2, . . . , n+ 1}, where index n + 1 corresponds to a fictitious extra aircraft to close the

Hamiltonian circuit. Then, 2n more sequencing binary decision variables, δi,n+1, δn+1,i, i ∈ A, are

introduced to take into account the (n+ 1)
st

aircraft. This spurious aircraft has null minimal time

separation with the n original aircraft.

To summarize, the (first-stage) sequencing variables are:

δij =

{
1 if aircraft i directly precedes aircraft j
0 otherwise

(i, j)∈A+×A+, i 6= j.

At a look-ahead time of two to three hours before landing, every aircraft i∈A has a fixed (given)

time window [EI
i ,L

I
i ] to pass over the IAF, where EI

i and LIi are respectively the given earliest and

latest times. Let xi be a first-stage decision variable representing the target time over the IAF of

aircraft i∈A ; it must satisfy the bound constraints:

xi ∈
[
EI
i ,L

I
i

]
, i∈A.

Let ωi be the random variable representing the deviation of the actual time over the IAF of

aircraft i ∈ A with respect to its target time xi. Let ωi be a realization of the random variable

ωi. Then, the actual time over the IAF of aircraft i ∈ A is simply xi + ωi. Let α ∈ [0, 1] be the

lowest acceptable probability that separation over the IAF is satisfied between the pair of aircraft

(i, j)∈A×A, i 6= j, once uncertainties are revealed.

In the hypothetical second stage, actual times over the IAF are assumed to be known with

certainty. Recall that the actual sequence over the IAF might not correspond to the target sequence.

As mentioned in Section 2, we choose to enforce the target landing sequence to be the same as the

target sequence over the IAF, since the latter was computed so as to minimize the runway sequence

length. Hence, no (re-)sequencing variables are needed in the second stage. However, the n aircraft

need to be scheduled at the runway threshold. Let yi be the decision variable representing the

target landing time of aircraft i ∈ A. These variables are called second-stage scheduling variables

and have to satisfy the time separation constraints during the final approach. In order to keep

Extended Aircraft Arrival Management under Uncertainty: A Chance-Constrained Two-Stage Stochastic Mixed-Integer 
Programming Model

6 CIRRELT-2018-55



these target times realistic, we introduce a landing time window [Ei, Li] for every aircraft i∈A so

that second-stage variables must satisfy the bound constraints:

yi ∈ [Ei,Li] , i∈A.

For an aircraft i, recalling that the actual IAF time is xi+ωi, the earliest and the latest landing

times can be expressed using (given) minimal and maximal flight times from the IAF to the

runway threshold, Vi and Vi respectively, where 0 < Vi ≤ Vi, as follows: Ei = (xi + ωi) + Vi and

Li = (xi +ωi) +Vi.

Following Bennell, Mesgarpour, and Potts (2017), we define the unconstrained (or uncongested)

landing time of aircraft i∈A, noted Ui, to be the landing time of aircraft i as if it were alone in the

terminal area, and the unconstrained flight time V̂i such that Vi ≤ V̂i ≤ Vi and Ui = (xi+ωi)+ V̂i. Let

f be a function that estimates time-deviation costs incurred (e.g., ATC workload in the terminal

area). In this study, we propose to model such costs with a convex piecewise linear function.

We introduce the following vector notation: x= (x1, x2, . . . , xn)
T

. Vectors ω, ω, and y are defined

likewise. We also introduce the matrix notation: δ = (δij)(i,j)∈A+×A+

i6=j
. Given the expectation oper-

ator Eω[.] over the random vector ω, we propose the following two-stage stochastic optimization

model with recourse, also called the true model :

min
δ, x

∑
(i,j)∈A+×A+

i6=j

δijSij + Eω[Q(δ,x,ω)] (1)

s.t.
∑
j∈A+

j 6=i

δji = 1 i∈A+ (2)

∑
j∈A+

j 6=i

δij = 1 i∈A+ (3)

xj ≥ xi +SI −M I
ij(1− δij) (i, j)∈A×A, i 6= j (4)

P(xj +ωj ≥ xi +ωi +SI −M Iα
ij (1− δij))≥ α (i, j)∈A×A, i 6= j (5)

EI
i ≤ xi ≤LIi i∈A (6)

δij ∈ {0,1} (i, j)∈A+×A+, i 6= j (7)

where:

Q(δ,x,ω) = min
y

f (x ,ω , y) (8)

s.t. yj ≥ yi +Sij −Mij(1− δij) (i, j)∈A×A, i 6= j (9)

Vi ≤ yi− (xi +ωi)≤ Vi i∈A (10)
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The objective function (1) is the sum of: the first-stage objective function,
∑

(i,j)∈A+×A+

i6=j

δijSij, and

the expected cost of the second stage, Eω[Q(δ,x,ω)]. The first-stage problem minimizes the length

of the sequence in terms of final-approach separations, subject to constraints (2) to (7). Given a

scenario ω, the cost of the second-stage (so-called recourse) problem, Q(δ,x,ω), is defined by (8) to

(10). Big-M constants appearing in constraints (4), (5) and (9) will be further commented below.

First-stage model: Constraints (2), (3) and (4) are directly inspired from the classical ATSP

formulation. Constraints (2) and (3) ensure that all aircraft in A+ are sequenced, which corresponds

to visiting all cities in an ATSP. Constraints (4) express the minimal time separation requirement

over the IAF between any two successive aircraft, where the big-M type constants M I
ij are large

enough so that the corresponding constraint is necessarily satisfied as soon as δij = 0. Constraints

(5) are probability constraints that ensure separation based on actual times over the IAF between

any two different aircraft with a probability higher than some given threshold value α. Under the

assumption of independent and identically distributed (i.i.d.) random variables ωi for all i ∈ A,

probability constraints (5) can be expressed in a manner analogous to the big-M separation con-

straints (4). This will be detailed in Subsection 3.2. Constraints (6) are time-window constraints

on target times over the IAF. Constraints (7) stipulate the binary nature of the δij variables.

Without the probability constraints (5), the first-stage problem defined by the first-stage objec-

tive function and constraints (2) to (4), (6) and (7), reduces to an instance of the ATSP with time

windows (ATSP-TW). The reduction goes as follows: cities correspond to aircraft, the traveling

salesperson corresponds to the IAF, costs of travel between cities is represented by final-approach

separations (Sij), and times of travel between cities correspond to the IAF separation (SI). Remark,

however, that the scheduling part of the problem is a special simple cas, since the IAF separation

is not aircraft-dependent, unlike typical ATSP-TW travel time between cities. Finally, subtour

elimination constraints are not required since the IAF separation constraints (4) play the role of

MTZ constraints (Miller, Tucker, and Zemlin 1960). As mentioned above, big-M constants must

be large enough for the formulation to be correct. However, very large big-M values are known to

lead to numerical instabilities during resolution. The best expression (smallest while sufficiently

large) for the big-M constants M I
ij in (4) can easily be shown to be: M I

ij =LIi −EI
j +SI .

Second-stage model: With regard to the second-stage model, the objective function (8) mini-

mizes a cost function f that represents the impact of time-deviation with respect to unconstrained

landing times. This time-deviation impact can be interpreted as the additional approach-controller’s

workload to handle the inbound traffic. A candidate expression of f is proposed in Subsection 3.1.

Constraints (9) ensure final approach minimal time separation. Minimal and maximal flight times
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are enforced by constraints (10). Hence, the second-stage problem consists in finding a landing

schedule for n aircraft that minimizes the cost function f , given a target sequence and landing time

windows. Big-M constants Mij in (9) can be computed as the lowest upper bound to (yi− yj +Sij).

Using constraints (9) and (10) and bound constraints (6) on xi, the best expression for Mij can be

shown to be: Mij =
(
LIi +ωi +Vi

)
−
(
EI
j +ωj +Vj

)
+Sij.

3.1. Second-stage objective function: minimizing total time-deviation impact cost

A problem-specific second-stage objective is to minimize the total impact cost of time-deviations

with respect to unconstrained landing times. To give an example, this impact cost can be interpreted

as a simplified estimation of the approach-controller’s additional workload to handle inbound traffic.

Briefly explained, a one-minute advance of an aircraft landing time can be costless for an approach-

controller, since he only has to give “a bit earlier” one instruction to the pilot, that is to follow the

standard approach procedure. However, for a delay of one to four minutes, the approach controller

has to communicate a sequence of instructions to modify the trajectory and/or the speed of the

given aircraft. For delays larger than four minutes, the approach controller has to keep the aircraft

in a holding stack, a predefined circular circuit in a confined space, often seen as an “airborne

waiting room”. Holding patterns are known to generate much more workload for controllers and

for pilots than trajectory and speed changes.

More generally, we assume that a deviation, within predefined bounds, of any aircraft target

time (yi) with respect to its unconstrained landing time (Ui) has an impact cost proportional

to the deviation amplitude within these bounds. A possible form of total time-deviation impact

cost function f is an additive form f (·) =
∑

i∈A fi (·), where each fi is a convex piecewise linear

function of yi that estimates the time-deviation impact cost of aircraft i ∈A. For instance, given

the slopes c1, c2, c3 ∈ R+ such that c2 ≤ c3 and some intermediate landing times Lmed
i , such that

Ui ≤Lmed
i ≤Li:

fi (xi, ωi, yi) =


c1. (Ui− yi) if Ei ≤ yi ≤Ui
0 if yi =Ui
c2. (yi−Ui) if Ui ≤ yi ≤Lmed

i

c2. (L
med
i −Ui) + c3. (yi−Lmed

i ) if Lmed
i ≤ yi ≤Li

is an example of time-deviation impact cost function fi for an aircraft i ∈ A (Figure 1). For an

aircraft i ∈ A, inline with the definitions of Ei, Ui and Li given above, the intermediate landing

time Lmed
i can be defined using an intermediate flight time V med

i such that 0<Vi ≤ V̂i ≤ V med
i ≤ V i

and Lmed
i = (xi +ωi) +V med

i .
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yi

fi(xi, ωi, yi)

0
Ei Ui Lmed

i Li

Figure 1 Time-deviation impact cost function fi of aircraft i∈A.

Given such a separable convex piecewise-linear form, the objective function (8) can easily be

linearized using, for the example above, three auxiliary variables z−i , z+i and z++
i per aircraft i∈A

as follows:

min
y, z−, z+

z++

∑
i∈A

(
c1z
−
i + c2z

+
i + c3z

++
i

)
(11)

yi−Ui = z+i + z++
i − z−i i∈A (12)

z+i ≤Lmed
i i∈A (13)

z−i , z
+
i , z

++
i ≥ 0 i∈A (14)

3.2. Re-writing probability constraints in the i.i.d. case

Assuming that for all aircraft i ∈A, the random variables ωi are i.i.d., the chance constraints (5)

can be re-written as linear constraints. Indeed, consider a couple (i, j) ∈ A×A such that i 6= j.

Then, (5) can be re-written as:

P
(
ωi−ωj ≤ xj −xi−SI +M Iα

ij (1− δij)
)
≥ α

Let us define γij
def
= ωi −ωj , and let Fγij be its distribution function. As the ωi’s are i.i.d., the

γij ’s are also i.i.d. and we can drop the subscript ij to use simply γ. Let us define F−1γ (α) the

quantile value at probability α of the random variable γ, and the buffered separation over the IAF

SI(α)
def
= SI +F−1γ (α). Therefore, the chance constraints (5) can be re-written under the form:

xj ≥ xi +SI(α)−M Iα
ij (1− δij) (i, j)∈A×A, i 6= j (15)

The best expression (smallest while sufficiently large) for the big-M constants M Iα
ij in (15) can

easily be shown to be: M Iα
ij =LIi −EI

j +SI(α).
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Definition 1. Let a, a′ ∈ Rn and b, b′ ∈ R be given. Let x ∈ X ⊂ Rn be a vector of decision

variables, where X is some given subset of Rn. Then we say that a′Tx≥ b′ dominates aTx≥ b if:

• a′Tx≥ b′⇒ aTx≥ b , ∀x∈X

• and ∃ x′ ∈X such that a′Tx′ ≥ b′ and aTx′ > b.

One can easily show:

Proposition 1. Consider a couple (i, j)∈A×A such that i 6= j and the constraints:

xj ≥ xi +SI −M I
ij(1− δij) (4ij)

xj ≥ xi +SI(α)−M Iα
ij (1− δij) (15ij)

where M I
ij = LIi −EI

j + SI and M Iα
ij = LIi −EI

j + SI(α). We have the following relations between

constraint (4ij) and constraint (15ij) when δij = 1 –otherwise, (4ij) and (15ij) are redundant con-

straints:

• constraint (15ij) dominates constraint (4ij) if and only if α> P(γ ≤ 0)

• constraint (4ij) dominates constraint (15ij) if and only if : α< P(γ ≤ 0)

• constraint (4ij) is equivalent to constraint (15ij) if and only if : α= P(γ ≤ 0)

Proposition 2. Assume that ω is a vector of n i.i.d. normal random variables. For any value

of α ≥ 0.5, constraints (15) can substitute for constraints (4) and (5) in the true model.

Proof of Proposition 2 Consider ω a vector of n i.i.d. random variables following the normal

distribution with mean µ and standard deviation σ, noted N (µ,σ2). Then, γ follows the normal

distribution N (0,2σ2) and P(γ ≤ 0) = 0.5. Then, the proof follows directly from Proposition 1 and

the fact that constraints (5) can be written as constraints (15) in the i.i.d. case. �

Remark 1. Proposition 2 may be extended to any probability distribution on an i.i.d. random

vector ω implying a symmetric distribution (with respect to zero) on the random variable γ.

In the remainder of this article, we make the following two assumptions:

Assumption 1. ω is a vector of i.i.d. normal random variables.

Assumption 2. The protection level α from IAF separation violations is always set to values

greater than (or equal to) 0.5.

4. Solution methods

The two-stage stochastic program introduced in Section 3 presents two main challenges. The first

challenge is to deal with the probability constraints in the first stage. In Subsection 3.2, we have

shown that under the assumptions of i.i.d. normal random variables (Assumption 1) and large pro-

tection levels α (Assumption 2), the probability constraints can be equivalently written as linear
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constraints. The second challenge comes from the expectation term in the objective function of

the first stage. Since we assume continuous random variables, the exact expression of the expecta-

tion term is a multivariate integral, often impracticable to compute. One widely-used method to

approximate the expectation term in stochastic programs is the Sample Average Approximation

(SAA) (Fu et al. 2015), that is obtained by replacing the expectation by a sample average over

a finite number of scenarios. A brief description of the SAA method as well as the SAA model

describing our problem are provided in Subsection 4.1. The subsequent SAA problem can be seen

as a one-stage mixed integer linear problem (MILP), called the deterministic equivalent problem.

A straightforward solution method is then to use a state-of-the-art MILP solver on the deter-

ministic equivalent problem. Nevertheless, it is well known in the literature (Birge and Louveaux

2011) that an efficient solution method to two-stage stochastic linear programs is the L-Shaped

method that derives from Benders decomposition. In Subsection 4.2, we propose a generic Benders

reformulations of the SAA model, based on a partial aggregation of the second-stage problems.

4.1. Model with Sample Average Approximation

Let S denote the set of nS equally-probable scenarios. We introduce the following scenario-specific

notations for an aircraft i ∈ A and a scenario s ∈ S: ωsi , y
s
i , z

s−
i , zs+i and zs++

i . For a given sce-

nario s ∈ S, the corresponding vector notations are naturally deduced: ωs = (ωs1, ω
s
2 . . . ω

s
n)
T

, ys =

(ys1, y
s
2 . . . y

s
n)
T

, zs− =
(
zs−1 , zs−2 . . . zs−n

)T
, zs+ =

(
zs+1 , zs+2 . . . zs+n

)T
and zs++ =

(
zs++
1 , zs++

2 . . . zs++
n

)T
.

According to the SAA method, for a sufficiently large number of scenarios, nS , the objective func-

tion (1) can be replaced by:

min
δ, x

∑
(i,j)∈A+×A+

i6=j

δijSij +
∑
s∈S

1

nS
Q (δ,x,ωs) (16)

Replacing (1) by (16) in the true model leads to the so-called SAA model. The SAA method relies

on the uniform law of large numbers to prove that, as nS→∞, the SAA-model optimal objective

value converges to the true-model optimal objective value (Shapiro and Homem-de Mello 2000).

Using the linearized second-stage objective function proposed in Subsection 3.1, we can express

the optimal value of the second-stage problem corresponding to a given scenario s∈ S, Q (δ,x,ωs),

(as appearing in (16)) as follows:

Q (δ,x,ωs) = min
ys, zs−

zs+,zs++

∑
i∈A

(
c1z

s−
i + c2z

s+
i + c3z

s++
i

)
(17)

−ysi + zs++
i + zs+i − zs−i = −xi−ωsi − V̂i i∈A (βsi ) (18)

−ysi ≥ −xi−ωsi −Vi i∈A (σsi ) (19)

ysi ≥ xi +ωsi +Vi i∈A (ρsi ) (20)
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ysj−ysi ≥ Sij −M s
ij(1− δij) (i, j)∈A×A, i 6= j (πsij) (21)

− zs+i ≥ −xi−ωsi −V med
i i∈A (µsi ) (22)

zs++
i , zs+i , zs−i ≥ 0 i∈A (23)

where dual variables corresponding to constraints (18) to (22) are shown between parenthesis.

Recall that the big-M constant M s
ij can be set to

(
LIi +ωsi +Vi

)
−
(
EI
j +ωsj +Vj

)
+Sij.

The SAA model basically describes a deterministic (possibly large-scale) MILP: the deterministic

equivalent problem. The extensive form of the deterministic equivalent problem is:

min
δ, x

ys, zs−

zs+, zs++

∑
(i,j)∈A+×A+

i6=j

δijSij +
∑
s∈S

1

nS

∑
i∈A

(
c1z

s−
i + c2z

s+
i + c3z

s++
i

)
s.t. (2), (3), (15), (6), (7)

(18), (19), (20), (21), (22), (23)

(Determ. Eq.)

The deterministic equivalent problem can be directly solved using a state-of-the-art MILP solver.

One weakness of the extensive form is that the problem size can become very large as the number

of scenarios increases. For example, for n = 10 aircraft and nS = 500 scenarios, there are 20,000

second-stage variables.

We remark that if the first-stage variables, x and δ, are fixed, then the second stage turns to be nS

separate linear programs that are straightforward to solve. This property allows us to reformulate

our SAA problem using Benders decomposition, as presented in Subsection 4.2.

4.2. Benders reformulations

Using Benders decomposition (Birge and Louveaux 2011, Rahmaniani et al. 2017), we can decom-

pose our two-stage stochastic integer problem described by the SAA model into a master problem,

called Benders master problem, and one or many separate subproblem(s), called Benders subprob-

lem(s), corresponding to the second-stage problems. According to the level of aggregation chosen

for the Benders subproblem(s), we can propose different Benders reformulations of our SAA model.

When the second-stage problems are completely aggregated, we are left with one Benders sub-

problem. Then, only one cut can be generated at each iteration. We call this reformulation: simple-

cut Benders reformulation. When the second-stage problems are completely disaggregated (not

aggregated at all), we have one Benders subproblem for each scenario. Accordingly, at most one

cut per scenario can be generated by iteration. Hence, one can add up to nS cuts at each iteration.

We call this reformulation: multi-cut Benders reformulation. When the second-stage problems are

aggregated into different subsets, where each subset corresponds to multiple scenarios, we say that

the second-stage problems are partially aggregated. This yields one Benders subproblem for each
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subset of scenarios, called a cluster of scenarios. In this case, at most one cut per cluster can be

generated at each iteration. We call this reformulation: partially-aggregated-cut Benders reformu-

lation. In the following, we only present the partially-aggregated-cut Benders reformulation, since

it encompasses the other two versions above, that represent the two extreme cases.

Let C = {c1, c2, . . . cK} be a partition of S, where each ci (i= 1,2, . . . ,K) is a (non-empty) subset

of S, referred to as a cluster of scenarios. Remark that the simple-cut version corresponds to K = 1,

while the multi-cut version corresponds to K = nS . The second-stage problems corresponding to

scenarios belonging to a same cluster are aggregated to form a single Benders subproblem. Hence,

there are K Benders subproblems and, consequently, K additional optimization variables νc (c∈ C),

are introduced to approximate the expected second-stage cost. Following the standard Benders’

decomposition methodology (e.g., Rahmaniani et al. (2017)), the initial Benders master problem,

in the partially-aggregated-cut version, is therefore:

min
δ, x, ν

∑
(i,j)∈A+×A+

i6=j

δijSij +
∑
c∈C

νc (24)

s.t. first-stage constraints: (2), (3), (15), (6), (7)

νc ≥ 0 c∈ C (25)

where ν = (ν1, ν2, . . . , νK)
T

. Constraints (25) are obvious bound constraints on variables νc that

strengthen the standard Benders reformulation and can be included directly in the initial Benders

master problem.

Consider a (non-empty) cluster of scenarios c ∈ C. The Benders subproblem corresponding to

cluster c consists of |c| separate scenario subproblems that can be solved separately. The results of

these |c| scenario subproblems are aggregated to compute the results of the Benders subproblem

associated to cluster c (objective-function value, dual-variables values, etc). Let Rc and T c be

respectively the set of extreme rays and the set of extreme points of the Benders-dual-subproblem

polyhedron corresponding to cluster c. Benders feasibility and optimality cuts for the partially-

aggregated-cut version of our SAA model are given by constraints (26) and (27) respectively:

0≥
∑
s∈c

[
1

nS

∑
i∈A

[(
−xi−ωsi − V̂i

)
βsri +

(
−xi−ωsi −Vi

)
σsri +

(
xi +ωsi +Vi

)
ρsri

+
(
−xi−ωsi −V med

i

)
µsri

]
+

1

nS

∑
(i,j)∈A×A

i6=j

(
Sij −M s

ij(1− δij)
)
πsrij

]
r ∈Rc, c∈ C

(26)
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νc ≥
∑
s∈c

[
1

nS

∑
i∈A

[(
−xi−ωsi − V̂i

)
βsti +

(
−xi−ωsi −Vi

)
σsti +

(
xi +ωsi +Vi

)
ρsti

+
(
−xi−ωsi −V med

i

)
µsti

]
+

1

nS

∑
(i,j)∈A×A

i6=j

(
Sij −M s

ij(1− δij)
)
πstij

]
t∈ T c, c∈ C

(27)

where we use βsi , σ
s
i , ρ

s
i , π

s
ij, and µsi the dual variables associated to constraints (18) to (22)

respectively, to which we add the index r or t depending upon whether we refer to an extreme ray

r ∈Rc, or to an extreme point t∈ T c.

Notes on the size of the models

The first-stage problem involves n continuous variables, n (n+ 1) binary variables, and n (n+ 1)+2

constraints (apart from the 2n bound constraints on x). Regarding the second stage, one scenario

subproblem involves 4n continuous variables, and n (n+ 3) constraints (apart from the 3n bound

constraints on z−,z+, and z++). For nS scenarios, the model of the deterministic equivalent problem,

called the extensive form, requires n (4nS + 1) continuous variables, n (n+ 1) binary variables, and

n (n+ 3)nS +n (n+ 1) + 2 constraints.

Regardless of the degree of aggregation, Benders reformulations comprise the same number of

binary variables (n (n+ 1)) as the extensive form, since these variables only appear in the first stage.

In terms of continuous variables, the three Benders reformulations differ. The general partially-

aggregated cut version has n+K continuous variables, where 1≤K ≤ nS . The simple-cut version

has n+ 1 continuous variables. The multi-cut version involves n+nS continuous variables.

5. Computational study

This section aims firstly at showing the viability of our proposed model. The benefit of taking

into account uncertainty is highlighted through the value of stochastic solution metric (Birge and

Louveaux 2011). Secondly, we compare the different solution methods presented in Section 4. The

remaining part of this section is organized as follows. Instances as well as parameter values are

presented in Subsection 5.1. The methodology used to determine a satisfying number of scenarios,

as well as our main computational results are presented in Subsection 5.2. Subsection 5.3 discusses

the viability of our approach through analysis of the values of stochastic solution under different

test settings. A comparison of the performance of four solution methods is presented in Subsection

5.4. Throughout this section, we shall refer to a preliminary computational study by Khassiba

et al. (2018). Results are obtained on a Linux platform with 8 x 2.66 GHz Xeon processors and 32

GB of RAM. CPLEX version used is 12.6.3.
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Table 4 Instance features

Total number of aircraft (n) 10

Wake-turbulence category mix
H : 70%
M: 30%

IAF time windows*
narrow: [−5 min ; +5 min]
wide : [−5 min ; +15 min]

Landing time window [−1 min ; +4 min ; +19 min]

* Narrow/wide yields two different types of instance

5.1. Instances and parameter values

We consider n=10 aircraft that were planned to enter the terminal area around Paris CDG airport

between 6:00 AM and 6:20 AM on May 15th, 2015 and that landed on a same CDG runway. A

more operational description of this instance is provided in Khassiba et al. 2018; some features are

summarized in Table 4.

IAF time windows: We consider two possibilities for the IAF time-window width: narrow and

wide, yielding two different types of instances. In the narrow instances, the aircraft IAF time

window is given by EI
i = P I

i − 5 minutes and LIi = P I
i + 5 minutes, where P I

i is the planned IAF

time for aircraft i∈A. In the wide instances, the IAF time window is given by EI
i = P I

i −5 minutes

and LIi = P I
i + 15 minutes.

Landing time windows: Each landing time window is piecewise defined over three time intervals

related to the unconstrained landing time of each aircraft according to the form of the second-stage

objective function introduced in Subsection 3.1. In our tests, deviation costs incurred within the

first time segment: [−1 minutes ; 0 minutes] are proportional to the weight −c1. Delays within [0

minutes ; +4 minutes] yield costs proportional to the weight c2. Finally, delays within [+4 minutes

; +19 minutes] are proportional to the weight c3.

Second-stage time-deviation weights: In this study, c1, c2 and c3 are set to values of 0.5, 1.0 and

4.0 respectively. The main motivation is to have 0' c1 < c2 < c3.

Uncertainty: The random variables ωi’s are i.i.d. following the normal distributionN (0, σ2), with

mean zero and standard deviation σ = 30 seconds. According to this value of standard deviation,

most of the time (with probability 0.99), an aircraft will not actually arrive at the IAF later (or

earlier) by more than 3 minutes with respect to its target IAF times.

Protection level against IAF separation violation: Three values for the protection level α are

considered: 50%, 90% and 95%. The lowest value of α corresponds to the situation where airborne

conflicts near the IAF are likely to happen at most 50% of the time (and consequently ATC

must intervene to solve such conflicts). The largest value of α corresponds to rare IAF separation

violations (at most 5% of the time).
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Table 5 Rounded buffered separation SI(α) (in
seconds) for uncertainty σ= 30 sec

α 50% 90% 95%
SI(α) 72 126 142

Separations: Final-approach time separations (Sij), and minimum separation over the IAF
(
SI
)

are as indicated in Section 2. The buffered IAF separation SI(α) depends on the value of the

protection level α, as shown in Table 5.

5.2. Determining a satisfying number of scenarios

In order to verify whether a given number of scenarios is sufficiently large, we use the out-of-sample

validation technique that consists in computing a validation score of an SAA problem’s solution

using a large sample of scenarios called a validation set. By definition, the validation set should not

contain any of the scenarios used during optimization. Then, a validation gap is computed as the

relative difference between the SAA-problem objective-function value and the validation score. In

order to find a satisfying number of scenarios, nS , we propose to solve the deterministic equivalent

problem using CPLEX for increasing values of nS ranging from 50 to 500. For each number of

scenarios, 10 replications of the SAA problem are constructed and solved. For each replication,

a validation score is computed using a validation set of 10,000 scenarios, and a validation gap

is deduced. For a given number of scenarios, an average validation gap is computed (over the

validation gaps of the 10 replications). As computation time increases rapidly with the number of

scenarios, we are content to a satisfying number of scenarios to be the smallest number of scenarios

that yields an average validation gap not smaller than -0.1%.

Results with narrow and wide IAF time windows are displayed in Tables 6 and 7 respectively.

In column “CPU”, the average CPLEX solving time over 10 replications is expressed in seconds.

Column “v̄± I95%” gives the average objective-function value, v̄, over the 10 replications as well as

the mid-length Student-based 95% confidence interval (I95%). The last two columns, “Validation

score” and “Validation gap”, report average validation scores, and average validation gaps over 10

replications. All solutions were proved optimal by CPLEX in all test cases reported in Tables 6

and 7 .

Based on the results reported in Tables 6 and 7, satisfying numbers of scenarios with narrow and

wide IAF time windows are nS = 200 and 100 respectively. As remarked in Khassiba et al. 2018,

the optimization problem with narrow IAF time windows is easier to solve. In fact, the smaller

the IAF time windows are, the more time windows are likely to be disjoint. This may, in turn,

reduce the solution space for the (NP-hard) first-stage problem. Optimal objective-function values

are slightly smaller with wide IAF time windows as the problem is then more combinatorial (and

therefore harder), and featuring more feasible candidate solutions.
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Table 6 Results with narrow IAF time windows.

nS α CPU (sec) v̄± I95% Validation
score

Validation
gap

50

50% 1.5 829.5 ± 0.7 831.8 -0.3%
90% 1.1 829.7 ± 0.8 831.7 -0.2%
95% 1.0 830.5 ± 0.9 832.5 -0.2%

10
0

50% 4.0 830.0 ± 0.5 831.7 -0.2%
90% 3.0 830.2 ± 0.6 831.7 -0.2%
95% 2.8 831.1 ± 0.6 832.4 -0.2%

20
0

50% 10.8 830.5 ± 0.4 831.6 -0.1%
90% 7.5 830.6 ± 0.4 831.5 -0.1%
95% 6.6 831.4 ± 0.5 832.3 -0.1%

50
0

50% 46.1 830.9 ± 0.1 831.3 -0.1%
90% 35.1 830.9 ± 0.1 831.4 -0.1%
95% 32.5 831.8 ± 0.2 832.2 -0.1%

Table 7 Results with wide IAF time windows.

nS α CPU (sec) v̄± I95% Validation
score

Validation
gap

50

50% 6.5 826.0 ± 0.0 827.3 -0.2%
90% 2.8 826.0 ± 0.0 827.3 -0.2%
95% 2.6 826.0 ± 0.0 827.5 -0.2%

10
0

50% 62.4 826.1 ± 0.1 827.0 -0.1%
90% 27.1 826.1 ± 0.1 827.0 -0.1%
95% 24.3 826.1 ± 0.1 827.0 -0.1%

20
0

50% 258.5 826.3 ± 0.1 826.9 -0.1%
90% 136.0 826.3 ± 0.1 826.9 -0.1%
95% 105.2 826.3 ± 0.1 826.9 -0.1%

50
0

50% 1466.0 826.4 ± 0.1 826.8 -0.0%
90% 670.9 826.4 ± 0.1 826.7 -0.0%
95% 493.2 826.4 ± 0.1 826.7 -0.0%

5.3. Value of the stochastic solution

The value of the stochastic solution (VSS) expresses the benefit of solving a two-stage stochastic

problem over simply implementing a policy where the decision maker waits until the uncertainty

is revealed to react (also known as wait-and-see policy). Let v?SP be the optimal objective-function

value of the two-stage stochastic problem (SP), represented by the true problem in our context.

Let v?W&S be the optimal objective-function value obtained under the wait-and-see policy. Then,

the VSS is defined as the absolute difference between v?SP and v?W&S. The relative VSS is defined

as follows:

VSS(%)
def
= 100× v

?
SP − v?W&S

v?W&S

In order to compute the objective-function value under the wait-and-see policy, v?W&S, we start by

solving the expected-value problem (EP) defined as the “stochastic” problem when a single scenario,
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Table 8 Relative VSS with both IAF time-window lengths.

Narrow Wide

α 50% 90% 95% 50% 90% 95%

nS

50 -7.50% -2.28% -1.28% -10.93% -2.34% -1.83%
100 -7.43% -2.22% -1.22% -10.92% -2.32% -1.81%
200 -7.38% -2.17% -1.18% -10.90% -2.30% -1.79%
500 -7.34% -2.13% -1.14% -10.89% -2.29% -1.78%

specifically the average scenario, is considered. Remark that, defined as such, the (EP) completely

overlooks uncertainty. Let (δ?EP , x
?
EP ) be an optimal solution of the (EP). When the first-stage

solution is (δ?EP , x
?
EP ), the objective-function value of (SP) represents the optimal objective-function

value obtained under the wait-and-see policy, v?W&S.

The relative VSS for both IAF time-window lengths, for different values of protection level, α,

and for increasing numbers of scenarios, nS , are reported in Table 8. With a low protection level

against IAF separation violations (α= 50%), relative VSS’s are less than −7% for narrow IAF time

windows, and less than −10% for wide IAF time windows. Therefore, solving a two-stage stochastic

problem is clearly more beneficial than waiting until the uncertainty is revealed to react. However,

relative VSS’s dramatically increase (up to almost −1%) when increasing the protection level, α,

expressing thereby a smaller benefit of solving a two-stage stochastic program. Recall that for high

values of α, the IAF separation is enlarged as shown in Table 5. Such buffered separations contribute

to hedge against uncertainty as follows. If target IAF times are spaced out more than the minimal

requirement SI , the actual IAF times are expected to be less disrupted when the uncertainty is

revealed. Therefore, the recourse cost to restore the target sequence while not deviating much

from the uncontrained landing times, is expected to be smaller. Consequently, hedging against

uncertainty using buffered separations may lead to a better performance of the wait-and-see policy.

Moreover, we remark that the higher the number of scenarios the higher the relative VSS. This

may be explained through the fact that objective-function values of SAA problems with limited

numbers of scenarios are negatively biased with respect to the true-problem objective-function

value. Therefore, computing VSS using a small number of scenarios for (SP) slightly overestimates

the benefit of solving a two-stage stochastic program.

As different IAF time-window lengths are studied, we remark that with wide IAF time-windows,

the benefit of solving a two-stage stochastic problem is greater. Recall that in our study, we limit

the delay with respect to the IAF planned time to 15 minutes (for wide IAF time windows), while

in the literature (Balakrishnan and Chandran 2010), potential delay can be extended up to one

hour.
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5.4. Solution-method performance comparison

Modern implementations of Benders decomposition often refer to integrating Benders cuts into a

Branch-and-Cut process, giving rise to Branch-and-Benders-Cut. To improve on solving times of the

deterministic equivalent directly by CPLEX, we propose three solution methods based on modern

implementations of Benders decomposition: one with multiple cuts, one with partially-aggregated

cuts, and one with simple cuts. In the partially-aggregated-cut version, the clustering policy simply

corresponds to aggregating every two scenarios in a same cluster (K =
nS
2

clusters). In Tables 9 and

10, we report average solving times (over 10 replications) of four solution methods: the determinis-

tic equivalent solved directly by CPLEX, noted “Determ. Eq.”, multi-cut Benders decomposition,

noted “MC-Benders”, partially-aggregated-cut Benders decomposition, noted “PAC-Benders”, and

simple-cut Benders decomposition, noted “SC-Benders”. A time limit of one hour, noted “TiLim”,

was enforced. Based on results in Tables 9 and 10, the simple-cut Benders decomposition is clearly

the least competitive solution method. Solving the deterministic equivalent directly with CPLEX

appears to be efficient in most cases. However, CPLEX efficiency to solve the deterministic equiva-

lent problem dramatically decreases as the number of scenarios increases, especially with wide IAF

time windows. For example, with wide IAF time windows and nS = 500 scenarios, CPLEX average

CPU times exceed 8 minutes for all test values of protection level, α. Therefore, the implementation

of such a solution method in a real-time context may be questioned. On the other hand, both the

multi-cut and the partially-aggregated-cut Benders decompositions outperform the deterministic

equivalent for the cases with wide time windows, α ≥ 90% and nS ≥ 100. In all these cases, the

multi-cut version performs slightly better than the partially-aggregated-cut version. For example,

with wide IAF time windows, nS = 500 scenarios and α = 90%, the multi-cut and the partially-

aggregated-cut Benders decompositions improve CPLEX average CPU time by more than 84%

and more than 80% respectively.

6. Conclusion and perspectives

In this paper, we propose a chance-constrained two-stage stochastic mixed-integer programming

model for the extended aircraft arrivals management problem under uncertainty. In the first stage,

aircraft are captured 2 to 3 hours away from the IAF. The first-stage problem is to find a target

sequence and target times of aircraft arrival over the IAF so as to minimize the landing sequence

length. First-stage constraints are IAF time windows and IAF separation constraints. The first-

stage problem is enriched by chance constraints to limit the risk of IAF separation violations to an

acceptable level, that we call the protection level. We show that under mild conditions first-stage

chance constraints can be transformed into linear separation constraints with buffered minimal IAF

separation that depends on the protection level. The second-stage problem considers aircraft shortly
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Table 9 Average CPU time (seconds) with narrow IAF time windows.

α
nS Method 50% 90% 95%

50

Determ. Eq. 1.54 1.06 0.99
MC-Benders 7.01 4.14 3.30
PAC-Benders 15.81 5.39 4.07
SC-Benders 997.95 149.04 53.18

10
0

Determ. Eq. 3.98 2.96 2.75
MC-Benders 17.63 7.96 6.23
PAC-Benders 24.02 11.85 9.29
SC-Benders 3005.49 445.23 167.91

20
0

Determ. Eq. 10.79 7.48 6.58
MC-Benders 40.73 15.59 11.28
PAC-Benders 71.29 25.61 18.96
SC-Benders TiLim 1521.98 629.64

50
0

Determ. Eq. 46.08 35.10 32.48
MC-Benders 75.40 49.10 31.52
PAC-Benders 221.15 63.95 58.77
SC-Benders TiLim TiLim TiLim

Table 10 Average CPU time (seconds) with wide IAF time windows.

α
nS Method 50% 90% 95%

50

Determ. Eq. 6.47 2.81 2.56
MC-Benders 23.24 4.75 3.83
PAC-Benders 46.95 8.30 6.12
SC-Benders 1772.69 556.69 371.76

10
0

Determ. Eq. 62.38 27.09 24.33
MC-Benders 133.78 15.75 12.09
PAC-Benders 448.56 23.04 13.70
SC-Benders 3489.72 3049.71 2499.45

2
00

Determ. Eq. 258.49 136.02 105.18
MC-Benders 890.25 35.10 31.93
PAC-Benders 507.48 44.49 38.52
SC-Benders TiLim TiLim TiLim

50
0

Determ. Eq. 1466.01 670.91 493.16
MC-Benders 2444.29 106.60 71.45
PAC-Benders 2789.83 133.07 71.93
SC-Benders TiLim TiLim TiLim

before arriving at the IAF up to landing. It aims at finding target landing times so as to minimize a

time-deviation impact cost function. Second-stage constraints are landing time windows and final-

approach separations. The two-stage stochastic program minimizes the sum of the landing sequence

length, and the expected second-stage time-deviation impact cost function. Chance constraints are

linearized, and the expectation term is approximated through Sample Average Approximation.

We are then left with a large-scale deterministic mixed-integer linear problem. Apart from solving
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directly the deterministic equivalent problem by CPLEX, we propose two Benders-decomposition

reformulations: multi-cut, partially-aggregated-cut, and simple-cut versions. Our computational

study shows that it is more beneficial to solve a two-stage stochastic program than to wait until

uncertainty is revealed to react (wait-and-see policy). Moreover, we observe a decrease of the values

of the stochastic solution (VSS) with the presence of chance constraints. This indicates that chance

constraints contributes significantly to the benefit of solving a stochastic program over the wait-

and-see policy. With regard to solution-method performance, results on instances of 10 aircraft

show that the deterministic equivalent is efficiently solved by CPLEX, while our multi-cut version

of Benders decomposition provides shorter computing times for instances with wide IAF time

windows and high protection levels.

Future work will focus on extending the proposed model to the case with multiple IAFs and mul-

tiple runways. Our perspectives also include solving the dynamic case where the arrival set evolves

in time. In terms of solution methods based on partially-aggregated-cut Benders decomposition,

more scenario clustering policies can also be explored.
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