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Abstract. As the largest contributor to greenhouse gas (GHG) emissions in the 
transportation sector, road freight transportation is the focus of numerous strategies to 
tackle increased pollution. One way to reduce emissions is to consider congestion and being 
able to route traffic around it. In this paper we study time-dependent minimum cost paths 
under several objectives (TDMCP-SO), in which the objective function 
comprises GHG emissions, driver and congestion costs. Travel costs are impacted by traffic 
due to changing congestion levels depending on the time of the day, vehicle types and 
carried load. We also develop time-dependent lower and upper bounds, which are both 
accurate and fast to compute. Computational experiments are performed on real-life 
instances that incorporate the variation of traffic throughout the day, by adapting Dijkstra's 
label-setting algorithm according to different cost computation methods. We show that 
explicitly considering first-in, first-out (FIFO) consistency using time-varying speeds allows 
the efficient computation of tight time-dependent bounds. Our computational results 
demonstrate that the TDMCP-SO is more difficult to solve to optimality but the proposed 
algorithm is shown to be robust and efficient in reducing the total cost even for large 
instances in an environment of varying speeds, outperforming those based on the link travel 
time model and on the smoothing method according to each optimization objective, flexible 
departure times, and different load patterns. 
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1 Introduction

Road freight transportation is a significant contributor to greenhouse gas (GHG) emissions [15].

This is mostly driven by increased traffic congestion due to the high number of vehicles on urban

areas. When traveling in cities, fuel consumption and GHG emissions are highly affected by speed

levels depending on the paths used by vehicles. To reduce the emissions intensity and environ-

mental pollution caused by road freight transportation activities, new alternative planning and

coordination strategies directly related to routing and scheduling operations are required for both

operational and environmental considerations [38, 23].

Most of the existing research assumes that trucks can travel at the emissions-minimizing speed,

which largely ignores the effect of congestion, notably in urban areas. However, few works have

demonstrated the importance of speed in minimizing emissions and travel costs [18, 30, 20]. In this

work we study a variant of the minimum-cost path across time-dependent networks which we call

the time-dependent minimum cost path under several objectives (TDMCP-SO). Here, the cost of an

arc depends not only on distance but also on fuel consumption (the rate of GHG emissions) and on

driver costs, which are all affected by speed variation. The aim is to determine the least cost path

based on a time-dependent network with time-varying speeds, which is more challenging than when

using a traditional objective due to the nonlinear relationship between speed and fuel consumption.

To the best of our knowledge, there is a lack of theoretical and computational experiments in terms

of lower and upper bounds to the TDMCP-SO and benchmarks regarding different cost calculation

methods in an environment of varying speeds and loads. Doing so, with data obtained for Québec

City, we test our algorithms on a large road network with real traffic data. We adapt Dijkstra’s

label-setting algorithm to account for time-dependent traffic and for our comprehensive objective

function composed of GHG emissions, fuel, and driver costs to efficiently compute lower and upper

bounds on the overall cost.

By conducting extensive experiments on the road network of Québec City using a dataset of millions

of speed observations, our results show that the the fast computation of point-to-point least cost

paths through our first-in, first-out (FIFO) consistent method outperforms those based on the

link travel time model (LTM) [36] and on the smoothing method [21] in terms of travel time, fuel

consumption, and cost savings as well as computational time.

This paper makes several important contributions to the literature:
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• we prove that, under the FIFO property, the least cost path obtained by ignoring traffic

congestion can be no worse than the optimal path cost according to the heaviest congestion

factor applied to all arcs at each time interval;

• we propose an efficient method to obtain tight time-dependent bounds, reducing the compu-

tational burden, and investigate when it is important to incorporate the load carried by the

vehicle and traffic congestion into the lower and upper bounding algorithms;

• we propose an effective approach for computing travel cost and GHG emissions in time-

dependent networks under the FIFO consistency overcoming the challenge of the non-linearities

of emissions. This ensures that our solution methods applied to solve the TDMCP-SO account

for the impact of speed variations on the optimization of a chosen path;

• finally, we provide an extensive set of benchmarks showing the effectiveness of our FIFO-

consistent method compared to LTM and smoothing method providing the best solutions for

each optimization criterion and coherent results under flexible departure times.

The remainder of the paper is organized as follows. Section 2 provides a literature review of the

TDQPP and closely related problems. In Section 3, we provide a formal description of the TDMCP-

SO, and present some of its properties. Section 4 describes the proposed lower and upper bounds

on the cost. Section 5 is devoted to extending the dynamic Dijkstra’s label-setting algorithm,

incorporating our lower and upper bounds on that algorithm. In Section 6, we give details on

the benchmarks created from the Québec metropolitan area and validate the performance of our

algorithms providing a detailed experimental evaluation of the proposed FIFO-consistent method

and the designed bounds. Our conclusions are presented in Section 7.

2 Literature review

The TDMCP-SO is a problem in the field of green road freight transportation [15], and more

specifically close to the pollution-routing problem (PRP) [3]. A number of recent contributions on

the PRP have addressed both operational and GHG emissions-related objectives [14, 23].

Most of these contributions consider the shortest path between each pair of customers as fixed.

Time-dependent shortest path problems (TDSPPs) have been studied in most cases in the context

of other objectives, such as determining Quickest Path (QP) [12, 6], time-dependent least emissions
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path (TDLEP) [18, 19] and minimum-cost path (MCP) [16]. The TDMCP-SO is an extension of

the TDQPP considering a time-dependent travel cost. It can be seen as a variant of the MCP

over time-dependent networks, which is NP-hard as stated in Dean [10] and demonstrated by

Di Bartolomeo et al. [16] and Wen et al. [46]. Since the TDMCP-SO is a variant of the MCP

which aims to find the least travel cost path over time-dependent networks considering a cost

function encompassing GHG emissions and driver costs, it is then also NP-hard. Polynomial-time

algorithms for the TDQPP can be adapted to find the MCP [10, 5, 11].

In what follows, we review contributions on the TDQPP in Section 2.1 and on the time-dependent

emissions-minimizing path problem in Section 2.2.

2.1 The time-dependent quickest path problem

A large part of the literature dealing with shortest path on time-dependent networks aims at finding

a path with the least travel time, also known as the TDQPP. This problem has been first introduced

by [7]. The classical Dijkstra’s label-setting algorithm can be used to determine quickest paths in

time-dependent networks, in which the FIFO property was implicitly considered as it is consistent

with the requirements imposed by real transportation networks. Under FIFO consistency the

TDQPP can be solved optimally and efficiently in polynomial time by adapting any label-setting

shortest path algorithm [9].

Moreover, many existing works have not explicitly considered whether the FIFO property holds

[34, 18], requiring additional steps to manage cycles in non-FIFO networks even when waiting is

not permitted. Sherali et al. [39] show that a network with a single non-FIFO arc yields a TDQPP

algorithm which can no longer be solved in polynomial time.

With the aim of ensuring that the time-dependent network is consistent with the FIFO consistency,

Sung et al. [41] proposed the flow speed model (FSM) in which the flow speed of each portion of

an arc depends on the time it is traversed. They developed a solution method based on Dijkstra’s

label-setting algorithm and showed that the computation of an optimal solution using the FSM

is easier than the one based on the link travel time model (LTM). In fact, the LTM does not

guarantee the FIFO property as the arc travel time is fixed by the time at which the arc is entered.

The determination of quickest paths with LTM requires some additional steps to ensure the FIFO

consistency by eliminating potential cycles if waiting at nodes is not allowed [34] or deriving a

smoothed travel time function (STTF) [21]. Recently, Yang and Zhou [47] proposed a branch-and-
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bound method to solve the TDQPP in a space-time network by defining time-dependent nodes

based on the departure and arrival times at each physical node.

Ichoua et al. [31] proposed a time-dependent speed model that respects the FIFO consistency.

The main point of their model is that the speed of each arc depends on the period. Hence, the

speed across each arc changes when the boundary between two consecutive time intervals is crossed.

Later, Van Woensel et al. [44] proposed a queuing approach to capture traffic congestion and model

travel times. A study by Kok et al. [33] proposed a speed model that satisfies the FIFO property

to reflect traffic congestion in real road networks.

A best-first search heuristic for the fast computation of quickest path in a time-dependent network

is the A* goal-directed search algorithm [27]. A* can be seen as an efficient adaptation of Dijkstra’s

algorithm that determines the quickest path on time-dependent networks using time-to-destination

lower bounds satisfying the FIFO property.

In their work Gao and Chabini [24] studied optimal routing policies to find the quickest path

in stochastic time-dependent networks, where arc travel times are modeled as random variables

with time-dependent distributions. Gao and Huang [25] consider real-time travel information in

the analysis of the optimal adaptive quickest path in stochastic time dependent flow-independent

networks. A decreasing order of time with partitions heuristic algorithm based on Gao and Chabini

[24] has been applied to find the optimal solution. Similarly, Huang and Gao [29] designed an

exact label-correcting complete dependency-path algorithm to find the least time shortest path. To

handle spatial travel time correlations related to an expected least time path in time-dependent and

stochastic network, Yang and Zhou [47] applied a Lagrangian relaxation-based solution approach.

Sun et al. [40] studied time-dependent traffic graphs, generated from historical traffic data to

predict the traveling time and to dynamically find the quickest path for drivers. Solution methods

for determining the expected quickest paths are crucial for the coordination and the planning of

routing and could be enhanced with the availability of real-time traffic information.

Ghiani and Guerriero [26] proposed an effective lower bound for the quickest path problem, which

was embedded into an A* algorithm. Calogiuri et al. [6] studied the properties and bounds of

TDQPP. Using the time-dependent speed model of Ichoua et al. [31], they prove that under the

FIFO consistency, if the congestion factors of all links are set to the lightest congestion factor,

the TDQPP can be solved as a QPP with suitable-defined fixed travel times. We extend this

development to the context of our paper.
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2.2 Time-dependent pollution-routing and emissions-minimized paths

Demir et al. [15] provided a review of several fuel consumption models including the Methodology

for Calculating Transportation Emissions and Energy Consumption (MEET) developed by Hick-

man et al. [28] and the Comprehensive Modal Emissions Model (CMEM) designed by Barth and

Boriboonsomsin [1, 2]. The CMEM considers the impact of vehicle load on fuel consumption, while

the MEET uses a load correction factor to take the vehicle load into account when computing fuel

consumption.

Bektaş and Laporte [3] introduced the pollution-routing problem. Based on the CMEM, they

minimize GHG emissions by determining the optimal speed with respect to the load carried by the

vehicle, fuel consumption and driver induced costs. Later, Demir et al. [13] extend it by applying

a speed optimization algorithm, identifying the optimal speed on each arc in order to minimize the

expected costs of fuel consumption and driver wages.

Jabali et al. [32] studied the Emission Vehicle Routing Problem (EVRP), which uses the MEET to

derive the GHG emissions. However, this study ignores the load when calculating the emissions.

Focusing on the analysis of time-dependent costs as a function of speed, load and fuel consumption,

Franceschetti et al. [22] extended the PRP to a time-dependent setting using the time-dependent

travel time model of Jabali et al. [32]. Recently, Franceschetti et al. [23] developed a metaheuristic

approach to solve the PRP under congestion, which integrates departure time and speed optimiza-

tion procedures.

In Wen and Eglese [45], the authors solve the vehicle routing problem (VRP) with time-dependent

speeds, where the total cost involves fuel cost, driver cost and congestion charge. Their model is

based on MEET and the impact of vehicle load is not considered. In their work, fixed congestion

charges are applied once per day for each vehicle.

The results of the previous works show that the traditional objectives consisting of minimizing

travel times do not necessarily imply the minimization of either fuel or driver costs, and that

least cost solutions do not imply an GHG emissions-optimal solution. Few papers have addressed

path flexibility and GHG emissions-minimized paths. The exceptions are the works of Wen et al.

[46], Qian and Eglese [37], Ehmke et al. [18, 19] and Huang et al. [30]. Recently, Ehmke et al. [20]

addressed the impact of minimizing combined fuel and driver costs on path choices introducing

non-linearity challenges not found in traditional routing objectives. Their results show the value of
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comprehensively modeling total cost. Following these works, we assume that vehicles must travel at

the speed of traffic and do not have the ability to control their speed, which requires controlling the

paths of vehicles in a way that minimizes costs. Additionally, we consider that in time-dependent

networks, congestion is variable across each segment depending on the corresponding period. In-

deed, there is a gap in the PRP and TDMCP research related to the integration of non-linear GHG

emissions models into lower and upper bound methods for the TDMCP-SO. Thus, to build on

existing literature and to avoid redundancy with their key findings, in this work we focus on both

computing tight and accurate time-dependent bounds for the TDMCP-SO on large road network.

We also study the computational efficiency and the solution quality of our FIFO-consistent method

in an environment of varying speeds and loads through an extensive comparative analysis with cost

computation methods based on LTM and LTM with STTF (LTM-STTF).

3 Formal description and problem statement

In this section, we introduce our notation, give a formal definition for the TDMCP-SO and describe

some of its properties. Let G = (V,A,Z, S) be a directed time-dependent network, where V is the

set of nodes, and A ⊆ {(i, j) ∈ V × V, i 6= j} is a set of arcs. The number of nodes and arcs

are |V| = n and |A| = m. We assume that G is strongly connected, thus, there is a path from

every node to all other nodes. The time-dependent network is considered at a set of discrete times

Z = {t0, t0 + δ ..., t0 +Hδ}, with δ > 0 being the smallest increment of time over which a change in

the congestion pattern occurs. The time horizon T is divided into H time slots Zh = [zh, zh+1[, such

that zh = t0 + hδ, where h = 0, 1, 2, ...,H − 1. Let S = {shij} represent the set of time-dependent

arc travel speeds, where for each arc (i, j) ∈ A shij represents the travel speed value during the time

slot Zh. Time-dependent travel times as well as costs vary for each departure time t ∈ T . With

each arc (i, j) are associated two time-dependent functions τ : A −→ R+ and c : A −→ R+ which

assign, respectively, travel time τij(t) and travel cost cij(t) related to the time at which a vehicle

leaves node i. Travel time functions τij(t) are piecewise linear and satisfy the FIFO property.

The speed at which a vehicle travels on arc (i, j) is constrained by a lower bound and an upper

bound, denoted Lij and Uij , respectively, usually imposed by traffic. A unit of GHG emitted

(usually in kilograms) has an estimated cost ce.

Given a starting time t the TDMCP-SO aims to determine a path p = (o = v0, ..., vi, ..., vj , ..., vk =
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d ) such that the time-dependent total cost ϕp(t) between source o ∈ V and destination d ∈ V is

minimum.

Following the FSM, when a vehicle traverses arc (i, j) of length Lij , speed may change when the

boundary between two consecutive time slots is crossed before reaching j. Since arc travel time is

then obtained by summing up the travel times used for each section traversed at different speeds,

FSM ensures FIFO consistency by explicitly considering the variability in speed on each arc at

different time intervals. Hence, with FSM we assume that speed shij on arc (i, j) depends on the

time interval:

shij = σijhuij , (1)

where σijh ∈ [0, 1] represents the congestion ratio of arc (i, j) in the time interval Zh, and uij is the

maximum speed of arc (i, j) ∈ A during the horizon T .

For a given arc (i, j) let lhij denote the portion of the length Lij traveled during time slot Zh. Let

ht and hγ be the indices of time slots where the start time γ
p
i (t) at node i and the arrival time

γ
p
j (t) at node j belong to, respectively, with ht ∈ {0, ...,H−1} and hγ ∈ {ht , ...,H−1}. The travel

time along an arc is, in the worst situation, the sum of three portions of time (see Figure 1):

(i) The time associated with the first interval ht when entering the arc: zht+1 − γ
p
i (t).

(ii) The duration of the (hγ − ht − 1) intermediate time intervals crossed when travelling along

arc (i, j):
∑hγ−1

h=ht +1 (zh+1 − zh), where h = ht + 1, ..., hγ − 1.

(iii) The time related to the last time slot when leaving the arc: γ
p
j (t)− zhγ .

Figure 1: Illustration of travel time computation
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Therefore, we can express the travel time of each arc as follows:

τij(γ
p
i (t)) =


Lij/(σijhtuij) if hγ = ht

γ
p
j (t)− γp

i (t) if hγ = ht + 1(
zht+1 − γ

p
i (t)

)
+ (hγ − ht − 1) δ +

(
γ

p
j (t)− zhγ

)
if hγ > ht + 1.

(2)

The arrival time γ
p
j at node j is expressed as follows:

γ
p
j (t) =

 Lij/s
h−1 + γ

p
i (t) if Lij/s

h < zh − γ
p
i (t), h = ht

(Lij − lh−1)/sh + zh if (Lij − lh−1)/sh < zh+1 − zh, h ∈ {ht + 1, ..., hγ},
(3)

where lht−1 = sht (zht − t) and lh = lh−1 + sh(zh+1− zh) if h ∈ {ht + 1, ..., hγ}, and Lij =
∑hγ

h=ht
lh.

Note that the traversal time Γp(t) of a path p can be induced from the arrival time at the destination

node d . Therefore, it is given by:

Γp(t) = γ
p
d (t)− t . (4)

3.1 Time-dependent GHG emission and fuel consumption functions

Our modeling for emissions and fuel consumption follows the same approach applied in some

relevant works, including Bektaş and Laporte [3], Demir et al. [13], Franceschetti et al. [22, 23],

Dabia et al. [8], Huang et al. [30] and Ehmke et al. [20]. According to these works GHG emissions

are directly proportional to fuel consumption. We also use the CMEM with the parameters of Table

1 to estimate fuel consumption and GHG emissions. The CMEM is a microscopic model that allows

the consideration of vehicle specific parameters, such as engine speed, traffic related parameters,

and environment related factors [1, 2]. According to the CMEM the fuel use rate (liter/s) for a

given time instant is a function encompassing travel speed, vehicle load and road gradient:

er =
ζ

$ψ

(
kNeV +

1

ε

(
((w + q)(a+ g sin θ + gCr cos θ) + 0.5CdAρs

2)s

1000ηtf
+ Pacc

))
. (5)

All required parameters with their typical values are described in Table 1. Pacc is the engine power

demand for vehicle accessories in hp. We consider the default value of Pacc, which is zero. Using

α = a+ g sin θ + gCr cos θ, β = 0.5CdAρ, ς = 1
(1000εηtf ) and λ = ζ

$ψ , and based on the assumption

associated with values of used parameters, expression (5) can be rewritten as:

er = λ(kNeV + ςα(w + q)s+ ςβs3). (6)
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Table 1: Parameters used in the CMEM

Notation Description Typical values

w Curb-weight (kg) 15000

q Carried load (kg) 0-10000

ζ Fuel-to-air mass ratio 1

k Engine friction factor (kJ/rev/liter) 0.25

Ne Engine speed (rev/s) 60

V Engine displacement (liter) 7

g Gravitational constant (m/s2) 9.81

ρ Air density (k/m3) 1.2041

Cd Coefficient of aerodynamic drag 0.7

A Frontal surface area (m2) 5

Cr Coefficient of rolling resistance 0.01

ηtf Vehicle drive train efficiency 0.4

η Efficiency parameter for diesel engines 0.9

cf Fuel and GHG emissions cost per liter ($CAD/liter) 1.05

cd Driver wage ($CAD/s) 0.0085

$ Heating value of a typical diesel fuel (kJ/g) 44

ψ Conversion factor (g/s to liter/s) 737

sl Lower speed limit (m/s) 8.333

su Upper speed limit (m/s) 19.444

s Average speed at a portion of segment (m/s)

a Acceleration (m/s2) 0

θ Roadway gradient (degree) 0

Using only average speeds of the whole day based on all observations across an arc or derived from

a digital roadmap may not capture the impact of traffic on GHG emissions on a particular arc. In

fact, CMEM computations taking into account only fixed speeds are often not accurate enough to

reflect GHG emissions at peak hour traffic congestion considering fluctuating speed [17, 18, 43].

For example, if the travel speed on a path often drops far below the average speed, then the actual

emissions may be much higher than if the trip occurs consistently at the average speed of the whole

day. Thus, to optimize GHG emissions and the total cost in an urban area, one must explicitly

consider the variability of the speed at different times of the day [18, 20].

To compute time-dependent arc costs we make use of individual speed observations. As in Fleis-

chmann et al. [21] and Ehmke et al. [17] to account for time dependence, we group speed obser-

vations for an arc for each interval (06:00–06:15, 06:15–06:30, 06:30–06:45, etc.). Then, to address

the challenge of the non-linearity of the emissions function we follow Dehne et al. [11] by using

piecewise linear functions as an approximation of non-linear functions in deterministic contexts.

More specifically, the costs change linearly according to speed variations when the boundary be-

tween consecutive intervals is crossed. Hence, we model time-dependent networks where emissions

change linearly when the speed changes over an arc. Doing so, we compute the fuel consumption

for traversing an arc starting at time t based on the FSM. For example, consider a vehicle which

Determining Time-Dependent Minimum Cost Paths under Several Objectives
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enters an arc (i, j) of distance Lij = 1000 meters at time t1 = 08:44. For this simple scenario we

assume that the speed on this arc is s1
ij = 45 km/h for the interval 08:30–08:45, then it decreases

to s2
ij = 35 km/h at interval 08:30–08:45. Hence, we would use the speed value s1

ij associated

with interval 08:30–08:45 for 60 seconds traversing 750 meters and the speed value s2
ij of interval

08:45–09:00 during 26 seconds traversing 250 meters to compute emissions and the total cost. In

that case, the vehicle exits the arc at time t2 = 08:45:26. So, the speed changes twice reflecting the

variability in the speed of traffic. Therefore, for a given arc (i, j) along a path p starting at time

t (time slot Zht ), the corresponding fuel consumption can be expressed based on a combination of

equations (6) and (2):

Fij(t) = fij(t) + gij(t), (7)

where

fij(t) =

hγ∑
h=ht

[(
lhij

shij

)
λςα(w + q)shij

]
= λςα(w + q)

hγ∑
h=ht

lhij = λςα(w + q)Lij , (8)

and

gij(t) =

hγ∑
h=ht

[(
lhij

shij

)
λ(kNeV + ςβ(shij)

3)

]
= λkNeV τij(t) + λςβ

hγ∑
h=ht

lhij(s
h
ij)

2. (9)

For a departure time t and a path p, the total amount of fuel consumed can be calculated as follows

based on equation (7):

Fp(t) =
∑

(i,j)∈p

Fij(γ
p
i (t)). (10)

3.2 Time-dependent travel cost function

Given a departure time t , the driver cost incurred from path p can be calculated as the cost of the

traversal time according to (4):

ϕ(Γp(t)) = cdΓp(t). (11)

On the basis of (8) the cost of GHG emissions on a given arc (i, j) across a path p can be calculated

as cfFij(t). Thus, fuel consumption cost (in $) of path p is given by:

ϕ(Fp(t)) = cfFp(t). (12)

As the path’s cost encompasses the traversal duration and fuel costs, the total cost of a path from
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o to d starting at time t can be expressed by combining equations (11) and (12) as follows:

ϕp(t) = ϕ(Γp(t)) + ϕ(Fp(t)) =
∑

(i,j)∈p

cij(γ
p
i (t)), (13)

where

cij(γ
p
i (t)) = cdτij(γ

p
i (t)) + cf fij(γ

p
i (t)). (14)

Note that the cost cij(γ
p
i (t)) of traveling across arc (i, j) is expressed by combining equations (2)

and (7).

An optimal path from source o to destination d given the starting time t is a path p∗c with the least

travel cost, denoted by ϕp∗c (t).

4 Time-dependent lower and upper bounds for the TDMCP-SO

When dealing with the TDMCP-SO, it is useful to compute the least cost lower and upper bounds

to validate the accuracy of designed TDMCP-SO algorithms. Additionally, they can be embedded

into time-dependent search heuristics as best-first search that associate to each node i a label equal

to the known travel cost at arrival time γ
p
i (t) at the current node i plus a lower bound on the cost

to the destination.

This section presents time-dependent lower and upper bounds for the TDMCP-SO that can be

computed by ignoring the network-wide traffic congestion. Let Pϕ be the set of all feasible paths

of the TDMCP-SO on G. Given a path p ∈ Pϕ, let Γ(p) be the traversal time of p assuming (1)

holds. We also denote by Γ(p) the traversal time of p if the congestion ratios of all arcs are set to

the lightest congestion factor σh = max
(i,j)∈A

(σijh) for each time slot Zh. Let ∆ = min
ijh

(
shij
σhuij

) be the

heaviest degradation of congestion ratio of any arc (i, j) over the time horizon T . Finally, let Γ(p)

denote the duration of p if all shij are set to the speed limit uij . This is equivalent to assuming that

all arc speeds become constant and the TDQPP (TDMCP-SO) reduces to the QPP (MCP-SO).

Let p∗, p∗ and p∗ be optimal solutions of the TDQPP under the assumptions previously defined,

i.e., p∗ = arg min
p∈Pϕ
{Γ(p)}, p∗ = arg min

p∈Pϕ
{Γ(p)}, and p∗ = arg min

p∈Pϕ
{Γ(p)}.

Given a path p ∈ Pϕ, let ϕ(p) be its traversal cost, starting at time t . We also denote ϕ(p) the

traversal cost of p if all shij are set to the speed limit uij . Let p∗c and pc
∗ be optimal solutions of the

TDMCP-SO and MCP-SO, respectively, thus, p∗c = arg min
p∈Pϕ
{ϕ(p)}, and pc

∗ = arg min
p∈Pϕ
{ϕ(p)}.
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Adopting p∗ as a heuristic solution of the TDMCP-SO under the speed variation relationship (1)

presents multiple advantages. Firstly, efficient algorithms designed for the QPP can be immedi-

ately applied to solve the TDMCP-SO. Secondly, if all arc speeds are set according to the maximum

speed uij , then p∗ is a near-optimal solution for the TDMCP-SO. Indeed, in the following subsec-

tions we prove that ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s
∗, σh)) ≤ ϕ(p∗c ) is a lower bound on ϕ(p∗c ) and that

min{ϕ(pc
∗), ϕ(p∗), ϕ(p∗), ϕ(p∗)} ≤ ϕ(p∗) is its upper bound:

ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s
∗)) ≤ ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s

∗, σh)) ≤ ϕ(p∗c ) ≤ min{ϕ(pc
∗), ϕ(p∗), ϕ(p∗), ϕ(p∗)} ≤ ϕ(p∗) ≤ 1

∆ϕ(Γ(p∗c )) + ϕ(F(p∗))

(15)

where q0 = 0 is used to indicate empty load and s∗ = (kNV2βς )1/3 is the optimal speed which minimizes

the fuel consumption cost for any arc, which results from
∂Fij
∂sij

(s∗) = 0.

4.1 A lower bound on the cost ϕ(p∗c )

We now demonstrate that ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s
∗)) ≤ ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s

∗, σh)) ≤ ϕ(p∗c ) is a

lower bound on ϕ(p∗c ) and that if the vehicle travels with the same load q at speed s∗ that minimizes

fuel consumption across all arcs, then p∗ is optimal for TDMCP-SO, that is, p∗ = pc
∗.

Theorem 1. Path p∗ is an optimal solution for the TDMCP-SO when the vehicle travels with

constant load, and the speed for all arcs (i, j) ∈ A is set to s∗ = (kNV2βς )1/3, minimizing fuel con-

sumption.

Proof. Given a solution path pc ∈ Pϕ it follows from (13) that:

ϕ(pc , q, s
∗) = ϕ(Γ(pc , s

∗)) + ϕ(F(pc , q, s
∗)). (16)

From (11) it results that the travel time can be expressed as (17) and fuel consumption and GHG

emissions cost can be defined as (18), based on (8), (9) and (12):

ϕ(Γ(pc , s
∗)) = cd

hγ∑
h=ht

lhij
s∗

= cdΓ(pc , s
∗), (17)

ϕ(F(pc , q, s
∗)) = cf (λςαws∗ + λ(kNeV + ςβ(s∗)3))

hγ∑
h=ht

lhij
s∗

= cf er(q, s∗)Γ(pc , s
∗), (18)
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where er(q, s∗) is constant across all arcs of path pc and represents the minimum fuel consumption

rate. Combining (17) and (18) results in:

ϕ(pc , q, s
∗) = [cd + cf er(q, s∗)] Γ(pc , s

∗). (19)

As the vehicle travels with load q at speed s∗ across all arcs, the first part of the equation (19)

cd + cf er(q, s∗) is constant. Hence, the overall cost is minimum if the total travel time Γ(pc , s
∗) of

the path pc is minimum. The minimum travel time is given by an optimal solution for the TDQPP,

i.e., p∗. Hence, an implication of (19) is that the optimal path p∗c = p∗, which completes the proof

of Theorem 1.

Theorem 2. Given two optimal paths p∗ and p∗c (with respect to ϕ(p∗) and ϕ(p∗c ), respectively) for

the TDQPP and the TDMCP-SO, respectively, the following relationship is satisfied:

ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s
∗)) ≤ ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s

∗, σh)) ≤ ϕ(p∗c ). (20)

Proof. By observing that when the congestion ratios of all arcs are set to their lightest values

σh = max
(i,j)∈A

(σijh) for each time interval Zh it follows that the traversal time of a given path

p = (o = v0, v2, ..., vk = d ) starting a time t = t0 is

Γ(p) =
k∑
l=1

Lvl−1vl

uvl−1vl

=
k∑
l=1

∫ t+τvl−1vl
(t)

t
σ(γ)dγ =

∫ Γ(p)

t0

σ(γ)dγ (21)

where σ(γ) = σh. Furthermore, if we consider another path p′ ∈ Pϕ, from (21) it follows that:

Γ(p′) ≤ Γ(p)⇔ Γ(p′) ≤ Γ(p), (22)

which implies that:

Γ(p∗) = Γ(p∗). (23)

As p∗ = arg min
p∈Pϕ
{Γ(p)}, Γ(p∗c ) ≤ Γ(p∗c ), and Γ(p∗) ≤ Γ(p∗c ), from (23) it results that:

Γ(p∗) ≤ Γ(p∗) ≤ Γ(p∗c ). (24)
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Hence,

ϕ(Γ(p∗)) ≤ ϕ(Γ(p∗)) ≤ ϕ(Γ(p∗c )). (25)

If we consider the case of fixed speed s∗ which minimizes the fuel consumption we may assert that:

F(p∗, q0, s
∗) ≤ F(p∗, q0, s

∗, σh) ≤ F(p∗c ). (26)

Then the following relationship also holds:

ϕ(F(p∗, q0, s
∗)) ≤ ϕ(F(p∗, q0, s

∗, σh)) ≤ ϕ(F(p∗c )). (27)

Combining (25) and (27) yields:

ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s
∗)) ≤ ϕ(Γ(p∗)) + ϕ(F(p∗, q0, s

∗, σh)) ≤ ϕ(p∗c ), (28)

which completes the proof of Theorem 2.

4.2 A worst case analysis

In this subsection, we provide a worst case analysis on the cost ϕ(p∗).

Theorem 3. The value ϕ(pc
∗) is an upper bound not greater than 1

∆ϕ(Γ(p∗)) + ϕ(F(p∗)).

Proof. As p∗, p∗, and p∗ are optimal solutions for the TDQPP, they are also feasible solutions for

the TDMCP-SO. Additionally, pc
∗ is a feasible solution for the TDMCP-SO, then:

ϕ(p∗c ) ≤ ϕ(p∗) (29)

ϕ(p∗c ) ≤ ϕ(p∗) (30)

ϕ(p∗c ) ≤ ϕ(p∗) (31)

ϕ(p∗c ) ≤ ϕ(pc
∗). (32)
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By combining (29), (30), (31) and (32) we obtain the proof of the first part of the upper bound

inequality:

ϕ(p∗c ) ≤ min{ϕ(pc
∗), ϕ(p∗), ϕ(p∗), ϕ(p∗)} ≤ ϕ(p∗) (33)

Furthermore, if the congestion ratio σijh takes a value in the interval [∆σh, σh], then it results that

for a given path p:

Γ(p) ≤ Γ(p) ≤ 1

∆
Γ(p). (34)

Combining (33) and (34) yields:

Γ(p∗) ≤ 1

∆
Γ(p∗) ≤ 1

∆
Γ(p∗c ), (35)

which implies that:

ϕ(Γ(p∗)) ≤ 1

∆
ϕ(Γ(p∗)) ≤ 1

∆
ϕ(Γ(p∗c )). (36)

Since ϕ(p∗) = ϕ(Γ(p∗)) + ϕ(F(p∗)), it follows that:

ϕ(Γ(p∗)) + ϕ(F(p∗)) ≤ 1

∆
ϕ(Γ(p∗c )) + ϕ(F(p∗)). (37)

An implication of (37) is that ϕ(p∗)) ≤ 1
∆ϕ(Γ(p∗c ))+ϕ(F(p∗)), which completes the proof of Theorem

3.

5 Design of efficient TDMCP-SO algorithms

In this section, we propose several heuristic algorithms that will be applied to efficiently solve the

TDMCP-SO in polynomial time based either on the FSM, LTM or LTM-STTF. First, we present

the time-dependent Dijkstra algorithm. Second, we present the algorithms used to compute arrival

times, travel times, emissions and travel costs. Lastly, we describe speed-up methods for the fast

computation of lower and upper bounds on path traversal costs.
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5.1 Time-dependent Dijkstra algorithms

To solve the TDMCP-SO we propose new solution methods based on three adaptations of Dijkstra’s

label-setting algorithm presented in Dean [10]. LTM, LTM-STTF and FSM models for the compu-

tation of time-dependent arc arrival time, fuel consumption and travel costs are integrated at every

iteration of the main label-setting algorithm when choosing the next connecting node. We call

these modified versions the time-dependent Dijkstra’s (TD-Dijkstra) FSM, LTM and LTM-STTF

algorithms.

We note that LTM does not ensure FIFO consistency, but does not allow for cycles to exist [18].

As arc travel times are specified upon entrance at the head node of the arc and are assumed to

be fixed for that particular vehicle until it leaves the terminal node [34]. LTM is also referred

to as the frozen link model [36]. That is, if a subsequent interval is crossed while traversing an

arc, additional steps are needed to ensure that the transition between the intervals is seamless to

guarantee the FIFO property [21]. Doing so, Ehmke et al. [17] and Ehmke et al. [20] linearized the

different speed levels between neighboring intervals in the transition area using a STTF as proposed

in Fleischmann et al. [21].

Clearly, both LTM and LTM-STTF map the approximation of the travel time to one of the time

intervals considering the entering time to the head of the arc. However, our approach considers the

set of time periods crossed when traversing the arc in the computation of emissions and travel cost.

In this case the emissions and travel cost across each arc are computed according to the set of speeds

obtained at the time of traversing the arc, which ensures FIFO consistency. In fact, FSM handles

every speed level changes when traveling across an arc considering a small or long distance. Hence,

with FSM no preprocessing steps are needed to guarantee FIFO property, which is more realistic

than LTM that requires additional steps to ensure FIFO consistency using smoothing methods.

Let o denote the origin node and predecessor(i) be the predecessor of node i. Therefore, the

TD-Dijkstra-* label-setting algorithms are designed as in Algorithm 1. The TD-Dijkstra-FSM

and TD-Dijkstra-LTM algorithms work by examining all temporarily labeled nodes in the network

starting with the source node o. At the beginning, the priority queue N contains all nodes and

their status are initialized to unlabeled except the source o. Hence, co is set to 0 and for each

unlabeled node i the cost ci is set to ∞. At each iteration of node expansion, the algorithm selects

a labeled but not examined node i with the least labeled time-dependent cost from the set of

temporarily labeled nodes E+(i), updates its cost label, and puts the node into a set of examined
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and permanently labeled nodes E , and each arc leaving from it is evaluated. If the labeled cost

of node i plus the cost of arc (i, j) is smaller than the labeled cost of node j, then the cost from

the source node to node j is updated with a value equal to the sum of the labeled cost of node i

plus the cost of arc (i, j). Then, the algorithm continues the node examination process and takes

the next node to be examined. The algorithm terminates when the destination node d is reached

or when the priority queue becomes empty. In the node-examination process, a tree connecting

all examined nodes is created, and the permanently labeled time-dependent travel cost associated

with each examined node represents the least cost path from the origin node to that one.

The proposed label-setting algorithm maintains one label for each node to include travel cost value

for the expected minimum-cost path starting from the source to the node associated with the label.

By employing one label for each node our solution method reduces the multiplication of labels and

computation time. The algorithm operates on all labels that are updated in step 15 of Algorithm

1 to define a pointer back to the node associated with it to allow the tracking of the minimum cost

path.

As shown in steps 14 and 15 of Algorithm 1 the label-setting algorithm and the travel cost compu-

tation function have been combined inside the same procedure to reduce computational complexity.

Thus, the cost calculation function is executed at the next nodes connecting the current one. Let

Travel Cost ∗ () be the method that computes the travel cost at node j when starting from node

i at time γ
p
i (t), where the symbol ∗ represents the appropriate model for time-dependent networks

(FSM, LTM or LTM-STTF).

The original Dijkstra’s algorithm has a computational complexity of O(m log(n)). However, the

TD-Dijkstra-LTM has a computational complexity of O(m log(n) + n), where n and m are the

number of nodes and arcs in the time-dependent network, respectively. For every arc and departure

time at node i the arc travel cost is computed in O(1). As each node label remembers the index

of the time period, we reduce the scanning time from O(m) to O(n). With the TD-Dijkstra-LTM-

STTF the travel times are derived from the original data using STTF to overcome the passing

that may occur when the travel time decreases at some time intervals. Hence, the computational

complexity becomes O(m log(n) + nC), where C is the number of steps used by STTF. Similarly,

the TD-Dijkstra-FSM algorithm solves the TDMCP-SO with O(m log(n) + nK ) time complexity,

where K denotes the maximum number of time periods scanned by the function Travel Cost FSM.
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Algorithm 1 Determination of a near-optimal least cost path by adapting Dijkstra label-setting

algorithm (TD-Dijkstra-*)

1: function TD Dijkstra(o, d ,G)

2: E ← ∅

3: N ← V

4: ci ←∞, ∀i ∈ V

5: co ← 0 and predecessor(o)← o

6: while |E | < n do

7: let i ∈ N be a node for which ci ← min{cj : j ∈ N }

8: E ← E ∪ {i}

9: N ← N \{i}

10: if i = d then

11: Stop

12: end if

13: for each (i, j) ∈ E+(i) do

14: if cj > Travel Cost ∗ (γ
p
i (t), (i, j),Z, S) then

15: cj ← ci + Travel Cost ∗ (γ
p
i (t), (i, j),Z, S))

16: predecessor(j)← i

17: end if

18: end for

19: end while

20: end function
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5.2 Time-dependent arrival time and travel time computation

In the case of the FSM, during each time period Zh the flow speed on each arc (i, j) is assumed to

be constant. Given the set of speeds and a starting time γ
p
i (t) at node i, both arrival and travel

times across arc (i, j) can be computed through Algorithm 2.

Algorithm 2 Computing the travel time τij(γ
p
i (t)) across a given arc (i, j) based on the FSM

1: function Travel Time FSM(γ
p
i (t), (i, j),Z, S)

2: h|γp
i (t) ∈ Zh = [zh, zh+1[

3: k ← h

4: d← Lij −
[
skij(zk+1 − γ

p
i (t))

]
5: while d > 0 do

6: k ← k + 1

7: d← d−
[
skij(zk+1 − zk)

]
8: end while

9: γ
p
j (t)← zk+1 + d/skij

10: τij(γ
p
i (t))← γ

p
j (t)− γp

i (t)

return τij(γ
p
i (t))

11: end function

In the case of the LTM the travel time of arc (i, j) is specified when departing from node i at a

given time period Zh and is assumed to be constant until exiting at the node j. The calculation of

arrival and travel times across arc (i, j) are summarized in Algorithm 3.

Algorithm 3 Computing the travel time τij(γ
p
i (t)) across a given arc (i, j) based on the LTM

1: function Travel Time LTM(γ
p
i (t), (i, j),Z, S)

2: h|γp
i (t) ∈ Zh = [zh, zh+1[

3: τij(γ
p
i (t))← Lij/s

h
ij

return τij(γ
p
i (t))

4: end function

5.3 Time-dependent fuel consumption and travel cost computation

Given a starting time γ
p
i (t) at node i, the fuel consumption, GHG emissions and travel costs

across arc (i, j) are computed using the FSM and the LTM models based on Algorithms 4 and 5,
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respectively.

In Algorithm 4, we identify all speed changes according to the time periods crossed when traversing

arc (i, j) and consider the associated portions of distance covered. Hence, at every iteration the

time-dependent travel cost and energy consumption are induced, including the amount of GHG

emissions and fuel consumption computed using CMEM. The algorithm stops when node j is

reached.

Algorithm 4 Computing the travel cost cij(γ
p
i (t)) across a given arc (i, j) based on the FSM

1: function Travel Cost FSM(γ
p
i (t), (i, j),Z, S)

2: h|γp
i (t) ∈ Zh = [zh, zh+1[

3: k ← h

4: l← skij(zk+1 − γ
p
i (t))

5: d← Lij − l

6: g ← λkNeV

(
l
skij

)
+ lλςβ(skij)

2

7: while d > 0 do

8: k ← k + 1

9: l← skij(zk+1 − zk)

10: g ← g + λkNeV

(
l
skij

)
+ lλςβ(skij)

2

11: d← d−
[
skij(zk+1 − zk)

]
12: end while

13: γ
p
j (t)← zk+1 + d/skij

14: if k > h then

15: l← skij(γ
p
j (t)− zk)

16: g ← g + λkNeV

(
l
skij

)
+ lλςβ(skij)

2

17: else

18: g ← λkNeV

(
Lij
shij

)
+ Lijλςβ(shij)

2

19: end if

20: τij(γ
p
i (t))← γ

p
j (t)− γp

i (t)

21: Fij(γ
p
i (t))← λςα(w + q)Lij + g

22: cij(γ
p
i (t))← cdτij(γ

p
i (t)) + cfFij(γ

p
i (t)

return cij(γ
p
i (t))

23: end function
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Algorithm 5 Computing the travel cost cij(γ
p
i (t)) across a given arc (i, j) based on the LTM

1: function Travel Cost LTM(γ
p
i (t), (i, j),Z, S)

2: h|γp
i (t) ∈ Zh = [zh, zh+1[

3: τij(γ
p
i (t))← Lij/s

h
ij

4: γ
p
j (t) = γ

p
i (t) + τij(γ

p
i (t))

5: Fij(γ
p
i (t))← λ(kNeV + ςα(w + q)shij + ςβ(shij)

3)
Lij
shij

6: cij(γ
p
i (t))← cdτij(γ

p
i (t)) + cfFij(γ

p
i (t))

return cij(γ
p
i (t))

7: end function

5.4 Dijkstra with speed limits and fast computation of time-dependent least

cost upper and lower bounds

We now propose an effective speed-up technique to ensure the fast computation of time-dependent

lower and upper bounds for the TDMCP-SO. First, we run the classical Dijkstra to solve the

TDMCP-SO to optimality where the network-wide traffic congestion is ignored and travel speeds

become constant. We call this version the Dijkstra algorithm with speed limits (Dijkstra-SL). In

this case, all arc travel speeds shij are set according to the speed limit uij . Second, we compute

the lower bound by applying Algorithms 6 and 7 in order to obtain travel costs across each arc

of the MCP-SO optimal solution considering the appropriate set of speeds. As shown in step 3

of Algorithm 6 driver costs are computed using the method described in Algorithm 2, considering

the heaviest congestion ratio σh for all arcs over time interval Zh. Algorithm 7 computes fuel

cost considering optimal speeds (see Section 4). Next, we compute upper bounds by evaluating

the travel cost across each arc using Algorithm 4 considering time-varying speeds. Compared to

Ehmke et al. [17] we considered the set of lightest congestion factors for different time periods and

optimal speed to compute the lower bounds.

Algorithm 6 Computing the driver cost across a given arc (i, j) according to the heaviest conges-

tion ratios

1: function Driver Cost Heaviest(γ
p
i (t), (i, j),Z, σh)

2: h|γp
i (t) ∈ Zh = [zh, zh+1[

3: τij(γ
p
i (t))← Travel T ime FSM(γ

p
i (t), (i, j),Z, σh)

return cdτij(γ
p
i (t))

4: end function

Determining Time-Dependent Minimum Cost Paths under Several Objectives

CIRRELT-2019-01 21



Algorithm 7 Computing the fuel cost across a given arc (i, j) based on optimal speeds

1: function Fuel Cost Optimal Speed(γ
p
i (t), (i, j),Z, s∗)

2: h|γp
i (t) ∈ Zh = [zh, zh+1[

3: τij(γ
p
i (t))← Lij/s

∗

4: Fij(γ
p
i (t))← λ(kNeV + ςα(w + q)s∗ + ςβ(s∗)3)τij(γ

p
i (t))

return cfFij(γ
p
i (t))

5: end function

6 Computational experiments

In this section, the experimental design and methodology for generating networks with their arc

information are provided. Then, detailed computational results of our TDMCP-SO algorithms are

presented and analyzed.

6.1 Benchmarks set

Our experiments are conducted on a real large road network generated from the geographical in-

formation of Québec City. The obtained network contains 50,367 arcs and 17,431 nodes, and is

composed by a set of physical nodes, and a set of arcs of different types, such as arterial streets,

ramps and highway segments. Figure 2 shows a portion of the geographical area. We have con-

sidered 60 time periods of 15 minutes from 6h00 to 21h00, which covers a typical workday. For

each arc and each time period, the time-dependent flow speeds are computed based on a large

set of real-world data including more than 24 million of GPS observations provided by the city

administration and logistic partners [4]. More specifically, to obtain historical congestion ratios for

each road segment in this network, the time-varying speed dataset was analyzed using geomatics

and geospacial manipulations by geomatic specialists to match each speed observation with the

GPS coordinates connecting each road links. Note that the arcs of the considered road network are

relatively short with an average of 158.08 meters, as our network is based on a dense urban city.

As shown in Table 2 we have designed 400 test instances divided into four sets:

1. large networks considering a fixed departure time,

2. medium networks considering a fixed departure time,

3. small networks considering a fixed departure time,
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4. and large networks with different departure times.

For each instance we generate a pair of source and destination which corresponds to real historical

shipment data provided by one of our logistic partners. Further, each instance is solved with

different carried loads: empty (15 tons), less-than-truck load (LTL – 17.5, 20, and 22.5 tons) and

full truck load (TL – 25 tons).

Figure 2: Portion of the geographical area

6.2 Experimental design

Table 3 summarizes our experimental design. All the instances were solved using three different

optimization objectives, namely travel time, fuel consumption, and travel cost. Observe that mini-

mizing fuel consumption is equivalent to minimizing GHG emissions as one liter of diesel generates

0.00279 t CO2 e [35]. For each set of instances and objective functions, we apply the developed

algorithms by adjusting their objective function accordingly, namely classical Dijkstra with speed

limits (Dijkstra-SL), TD-Dijkstra-LTM, TD-Dijkstra-LTM-STTF, TD-Dijkstra-FSM, LB and UB.

Then, the exact value of each solution is recalculated with Algorithms 2 and 4 according to FSM

and CMEM to reflect the key elements of real road network considering time-varying speeds.
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Table 2: Test instances

Instances Networks Number of nodes Number of arcs Speed observations Departure time Carried load (ton)

L1-L20 Large 17431 50367 613485

08h15

15.0

17.5

20.0

22.5

25.0

M1-M20 Medium 3859 5388 266280

S1-S20 Small 1612 2810 78709

D1

Large 17431 50367 613485

07h30

D2 08h00

D3 08h30

D4 09h00

D5 09h30

D6 10h00

D7 10h30

D8 11h00

D9 11h30

D10 12h00

D11 12h30

D12 13h00

D13 13h30

D14 14h00

D15 14h30

D16 15h00

D17 15h30

D18 16h00

D19 16h30

D20 17h00
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All algorithms are implemented in C++ 17 using Jetbrains CLion C++ 2018 release 2.5 with cmake

C++ compiler and were run on a ThinkCenter professional workstation with 32-gigabyte RAM and

Intel core i7 vPro, running Ubuntu Linux 16.05 LTS x86 operating system.

Table 3: Overview of experimental design

Optimization

criteria

Related routing

problems
Algorithms

Solution evaluation

criteria

Travel time

Fuel (GHG emission)

Cost

TDQPP

TDLEPP

TDMCP-SO

Dijkstra-SL

TD-Dijkstra-LTM

TD-Dijkstra-LTM-STTF

TD-Dijkstra-FSM

LB/UB

Distance (m)

Travel time (s)

Fuel consumption (liter)

Cost ($)

6.3 Computational results and analysis

In this section we assess the effectiveness and robustness of the proposed algorithms on an extensive

set of benchmarks showing the differences between LTM, LTM-STTF and FSM. Table 4 shows the

average results of the proposed algorithms for each of the three optimization criteria over the four

sets of instances. For each combination we present the average distance in meters (Dist), the travel

time in seconds (TT), the fuel consumption in liters (Fuel), the total cost in dollars (Cost), and

the required computing time in seconds (Sec). For these results we assume the case of full truck

load (25 t).

As shown in Table 4, the results indicate that the proposed algorithms run quickly even for very

large size instances. Such fast solution is critical for providing real-time routing to drivers. For

the cost optimization objective, the average computation time of TD-Dijkstra-LTM, TD-Dijkstra-

LTM-STTF and TD-Dijkstra-FSM is 0.43, 054 and 0.33 seconds, respectively. Hence, regarding

computational efficiency the TD-Dijkstra-FSM outperforms TD-Dijkstra-LTM and TD-Dijkstra-

LTM-STTF by 30.30% and 63.64%, respectively. Clearly, using a FIFO-consistent method reduces

run times as it requires fewer steps to evaluate travel times and travel costs. Further, we see

from Table 5 that our TD-Dijkstra-FSM yields a global saving on the number of node scanning of

0.017% (12110 versus 12112) and 0.21% (12110 versus 12135), respectively, between TD-Dijkstra-

FSM, TD-Dijkstra-LTM and TD-Dijkstra-LTM-STTF. Note that the computation time of the
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proposed algorithms is less than one second for all instances. To further assess the performance

and the scalability of the algorithms various experiments have been performed with road networks

provided by the 9th DIMACS challenge for the classical SPP. The average computation time for

each core instance and over 1000 random node pairs were collected. As an example, the full USA

road network instance includes 23.947 million nodes and 58.333 million arcs. The average runtime

of TD-Dijkstra-FSM algorithm is 4.8 seconds for 20 DIMACS instances with the full USA road

network.

Regarding the quality of the obtained solutions, we first observe that the TD-Dijkstra-FSM gen-

erates the best solutions for each optimization criterion. More specifically, when we minimize the

travel time, TD-Dijkstra-FSM yields an optimal solution for each instance under FIFO networks

using time-varying speeds. For the Travel Time optimization criterion, Table 4 shows that over

our 80 instances TD-Dijkstra-FSM produces an average travel time of 1,338.59 seconds, which is

6.67% lower than Dijkstra-SL (1,434.25 seconds), 0.91% lower than TD-Dijkstra-LTM (1,350.79

seconds), and 0.73% lower than TD-Dijkstra-LTM-STTF (1,348.40 seconds). This exposes the er-

ror associated with using the speed limit, LTM or LTM-STTF instead of using calculations with

the FSM. On the one hand, LTM-STTF integrates a smoothing method into LTM to ensure FIFO

consistency. On the other hand, with the FSM the speed on each arc depends on the time interval,

and the arrival times are consistent with the FIFO property. The fuel consumption reported by

the TD-Dijkstra-FSM (under the travel time objective) is 9.90 liters of fuel for a distance of 20.82

km which corresponds to 47.54 liters per 100 km. This value is remarkably close to the annual

average consumption of 46.9 reported by Transports Canada [42] for heavy duty vehicles with more

than 4500 kg.

When looking at each optimization criterion, the TD-Dijkstra-FSM algorithm minimizes the travel

time and the fuel consumption, as expected yielding the best results. For example, when Fuel

Consumption is minimized the TD-Dijkstra-FSM reduces the travel time (1440.63 seconds), on

average, by 16.21% (1674.16 seconds), 1.25% (1458.58 seconds) and 0.56% (1448.79 seconds) com-

pared to Dijkstra-SL, TD-Dijkstra-LTM, and TD-Dijkstra-LTM-STTF, respectively, decreasing

the fuel consumption from 9.82, 9.37, and 9.36 to 9.34 liters. These results clearly show that our

TD-Dijkstra-FSM algorithm successfully manages avoiding traffic congestion to find better fuel

consumption minimizing paths. Let us look at Figure 3 showing an example of the paths obtained

by the time-dependent algorithms for the instance L20 under the cost optimization objective. It
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is easy to see that path obtained by each algorithm may be different based on the way that each

method compute cost.

Figure 3: Paths obtained with TD-Dijkstra-LTM, TD-Dijkstra-LTM-STTF, and TD-Dijkstra-FSM for the

L20 instance under the cost optimization objective

The third part of Table 4 considers the cost-minimizing objective. Again, the TD-Dijkstra-FSM

produces the best results with an average path cost of 22.45$ compared to 24.08$, 22.50$ and 22.51$

with Dijkstra-SL, TD-Dijkstra-LTM and TD-Dijkstra-LTM-STTF. Minimizing the cost implies a

compromise between the travel time (cost) of the drivers and the fuel cost. Compared to Dijkstra-

SL, TD-Dijkstra-LTM and TD-Dijkstra-LTM-STTF solutions, the one obtained with TD-Dijkstra-

FSM under the cost minimization criterion has better travel time than when minimizing the fuel

(1356.01 instead of 1518.28, 1358.04 and 1361.28 seconds) and less fuel (9.50 instead of 9.72, 9.53

and 9.51 liters). For example, regarding TD-Dijkstra-LTM-STTF, our savings in travel time are

up to 0.38% combined with a small decrease in fuel consumption of up to 0.11%, leading to a

reduction in the overall cost, on average, by 0.27% from 22.51 to 22.45 dollars.

We note that TD-Dijkstra-FSM produces coherent results with respect to the optimization criterion

used. Thus, when the travel time criterion is used, the TT is effectively the lowest with respect to

its value under the other optimization criteria. This pattern is not respected by the Dijkstra-SL,
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TD-Dijkstra-LTM and TD-Dijkstra-LTM-STTF algorithms. For example, with the Dijkstra-SL

the minimum cost (23.93) is obtained under the travel time optimization criterion. In addition,

with both the TD-Dijkstra-LTM and TD-Dijkstra-LTM-STTF the best solutions for the travel

time criterion are produced under the cost criterion for medium network instances. Finally, it is

noticeable that our TD-Dijkstra-FSM algorithm provides the best solutions for all optimization

criteria: 1,338.59 seconds for travel time, 9.34 liters for fuel consumption, and 22.45 dollars for

costs. Table 4 clearly shows that in the presence of traffic congestion, using the TD-Dijkstra-FSM

algorithm enhances the quality of solutions with respect to the TD-Dijkstra-LTM and TD-Dijkstra-

LTM-STTF ones. Therefore, FSM improves solutions with high-frequency data. We can conclude

that TD-Dijkstra-FSM is more efficient and realistic than the other ones.

Table 5: Comparative algorithm results considering the number of nodes scanning and labels

Optimization

criteria Instances
TD-Dijkstra-LTM TD-Dijkstra-LTM-STTF TD-Dijkstra-FSM

Nb. of nodes scanning Nb. of labels Nb. of nodes scanning Nb. of labels Nb. of nodes scanning Nb. of labels

Travel Time

L1-L20 15517 33884 15567 33947 15283 33608

M1-M20 8763 18877 8812 18916 8834 19185

S1-S20 4873 10382 4846 10286 4788 10255

D1-D20 19805 43878 19781 43762 19600 43812

Average 12240 26755 12251 26728 12126 26715

Fuel

Consumption

L1-L20 15234 33526 15267 33579 15207 33521

M1-M20 8387 18234 8359 18182 8326 18116

S1-S20 4309 9260 4324 9318 4337 9338

D1-D20 20218 44993 20155 44880 20144 44939

Average 12037 26503 12027 26490 12004 26479

Cost

L1-L20 15346 33573 15340 33515 15269 33403

M1-M20 8554 18483 8618 18601 8624 18627

S1-S20 4630 9898 4638 9905 4645 9930

D1-D20 19919 44254 19945 44267 19901 44238

Average 12112 26552 12135 26572 12110 26550

Additional experiments were conducted to assess the variations of cost and GHG emissions incurred

as a consequence of traffic congestion during rush hours, such as at 16h00. Table 6 presents

the experiments conducted to evaluate the impact of traffic congestion on the travel time, fuel

consumption, and total cost. To this end, we now used the average results over the 60 instances

(L*, M* and S*) with departure times ranging from 07h30 to 08h30, before the morning congestion,

and ranging from 15h30 to 16h30 during the afternoon traffic. In the following, results of the time-

independent Dijkstra-SL are not reported as it uses a fixed speed which is incoherent with this

analysis.
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Looking at the TD-Dijkstra-FSM with fuel consumption as the optimization criterion, we see that

it increases from 6.37 to 6.81 liters (6.91%) when the path departure times are changed from 7h30

to 16h30. Similarly, the travel time increased, on average, by 14.66% induced by changes from

983.13 to 1,127.30 seconds. We observe the same pattern for the overall costs, which is increased,

on average, by 11.10% induced by changes from 15.68 to 17.42 dollars. Overall, the TD-Dijkstra-

FSM produced expected results with respect to traffic conditions. Further, when compared to the

TD-Dijkstra-LTM and TD-Dijkstra-LTM-STTF algorithms, it produces coherent and consistent

results with respect to the selected departure time and optimization criterion. Thus, when each

optimization criterion is used, the corresponding metric (TT, Fuel or Costs) is effectively lower

with respects to its value under the other optimization criteria. This pattern is not respected by

the TD-Dijkstra-LTM as the minimum cost is obtained under the travel time optimization criterion

for some departure times such as 07h30 (15.45 versus 15.49 dollars) and 08h00 (16.13 versus 16.38

dollars). Similarly, the TD-Dijkstra-LTM-STTF produces the minimum travel time under the cost

optimization criterion for some departure times such as 07h30 (948.18 versus 947.27 seconds) and

15h30 (1028.02 versus 1027.95 seconds).

Figure 4 analyses in more details the impact of departure time on average path travel time and

total cost for instances D1 to D20 (see Table 6). In Figure 4, the results of the TD-Dijkstra-FSM

replicate the traffic pattern of Québec City with a moderate morning congestion between 7h30 and

9h00; low traffic between 10h00 and 14h30 which results in lower travel times and costs. Then, as

expected, congestion rapidly increases between 15h00 and 15h30 to reach a peak between 16h00 and

17h30. Interestingly, allowing delayed or flexible departures can lead to better alternative paths

yielding significant reduction of both GHG emissions and overall costs.

Table 7 shows further results when the cost minimization objective is used for the TD Lower Bound,

TD Upper Bound, Dijkstra-SL, TD-Dijkstra-LTM, TD-Dijkstra-LTM-STTF and TD-Dijkstra-FSM

algorithms. It shows that the TD-Dijkstra-LTM, TD-Dijkstra-LTM-STTF and TD-Dijkstra-FSM

algorithms consistently provide average solution costs bounded by our lower and upper bounds.

Indeed, for the TD-Dijkstra-FSM the gap between the lower bound value and the cost minimizing

paths ranges from 3.77 to 7.07%, which are lower than those of the Dijkstra-SL, TD-Dijkstra-

LTM and TD-Dijkstra-LTM-STTF ranging from 9.65 to 24.25%, 4.18 to 7.78%, and 4.37 to 8.34%,

respectively. For example, when the departure time is 08h15 the results of the time-independent

Dijkstra-SL for L* (29.68), M* (15.15) and S* (10.06) always exceed the corresponding upper
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Table 6: Impacts of departure time

Departure Time
Optimization

criteria

TD-Dijkstra-LTM TD-Dijkstra-LTM-STTF TD-Dijkstra-FSM

Avg Dist Avg TT Avg Fuel Avg Cost Avg Dist Avg TT Avg Fuel Avg Cost Avg Dist Avg TT Avg Fuel Avg Cost

07h30

Travel Time 13695.50 938.67 6.57 15.45 13701.96 948.18 6.60 15.64 13663.22 935.43 6.55 15.48

Fuel consumption 12754.75 989.78 6.38 15.75 12775.87 999.32 6.41 15.86 12762.90 983.13 6.37 15.68

Cost 13449.36 943.28 6.50 15.49 13416.59 947.27 6.49 15.52 13410.70 939.78 6.47 15.43

07h45

Travel Time 14343.47 1005.68 6.96 16.51 13960.10 1008.02 6.84 16.43 14314.26 996.77 6.93 16.44

Fuel consumption 12931.19 1028.83 6.54 16.26 12981.18 1034.67 6.57 16.35 12955.70 1022.32 6.53 16.20

Cost 13316.18 1003.78 6.60 16.13 13284.40 1009.78 6.61 16.18 13307.89 997.72 6.59 16.05

08h00

Travel Time 13816.95 991.14 6.74 16.13 14299.76 1011.58 6.97 16.61 13776.51 986.06 6.72 16.15

Fuel consumption 13074.91 1058.21 6.68 16.68 13054.92 1063.68 6.68 16.73 13083.87 1044.64 6.65 16.52

Cost 13667.57 1012.77 6.76 16.38 13674.68 1015.40 6.77 16.42 13769.62 1004.20 6.77 16.32

08h15

Travel Time 14213.93 1044.37 7.04 16.95 14347.28 1042.70 7.08 17.00 14231.70 1030.20 7.00 16.81

Fuel consumption 13029.15 1096.05 6.77 17.10 13050.57 1089.30 6.76 17.03 13041.42 1083.88 6.74 16.96

Cost 13762.31 1042.22 6.89 16.78 13698.62 1044.68 6.87 16.78 13757.83 1037.08 6.87 16.72

08h30

Travel Time 14139.83 983.61 6.83 16.17 14259.28 996.28 6.90 16.41 14155.14 977.76 6.82 16.15

Fuel consumption 13071.85 1035.03 6.60 16.39 13069.89 1042.13 6.63 16.48 13079.92 1031.15 6.59 16.34

Cost 13653.33 994.92 6.69 16.15 113638.89 1000.27 6.71 16.21 13713.31 988.58 6.70 16.10

15h30

Travel Time 14296.88 1024.13 6.99 16.56 14301.36 1028.02 7.00 16.79 14205.08 1005.31 6.91 16.49

Fuel consumption 13116.88 1058.94 6.70 16.70 13272.17 1057.00 6.73 16.73 13233.37 1038.92 6.67 16.51

Cost 13595.96 1029.03 6.78 16.54 13584.94 1027.95 6.76 16.51 13541.31 1022 6.73 16.42

15h45

Travel Time 14355.48 1042.26 7.04 16.94 14436.86 1055.17 7.10 17.13 14302.52 1032.83 7.00 16.83

Fuel consumption 13107.03 1093.23 6.78 17.09 13170.25 1095.45 6.80 17.13 13126.18 1088.15 6.77 17.03

Cost 13706.53 1052.32 6.86 16.83 13750.48 1059.60 6.89 16.93 13824.59 1044.07 6.88 16.78

16h00

Travel Time 14387.18 1063.75 7.10 17.11 14643.84 1070.95 7.19 17.38 14501.99 1054.90 7.11 17.14

Fuel consumption 13135.97 1122.06 6.84 17.40 13200.19 1113.12 6.84 17.33 13133.05 1107.13 6.81 17.24

Cost 13666.95 1075.03 6.89 17.06 13669.11 1076.72 6.89 17.08 13720.86 1068.59 6.88 16.99

16h15

Travel Time 14425.41 1073.80 7.14 17.37 14466.19 1087.28 7.18 17.50 14320.00 1061.42 7.07 17.16

Fuel consumption 13168.82 1128.38 6.87 17.50 13258.83 1131.40 6.90 17.55 13208.30 1117.80 6.85 17.38

Cost 13878.132 1073.02 6.97 17.14 13885.51 1082.95 7.00 17.26 13926.41 1067.25 6.97 17.09

16h30

Travel Time 14529.90 1072.42 7.18 17.34 14589.84 1084.67 7.23 17.54 14374.23 1067.22 7.11 17.25

Fuel consumption 12987.398 1141.72 6.85 17.58 13124.00 1138.68 6.87 17.58 13055.88 1127.30 6.81 17.42

Cost 13879.06 1070.81 6.96 17.11 13568.04 1094.47 6.93 17.27 13924.58 1065.17 6.97 17.07

Figure 4: Impact of departure time
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bounds of 29.22, 14.72 and 9.61 dollars showing that even our upper bound heuristic provides better

results than this method. These results clearly show that the effectiveness of paths strongly increase

if we consider time-varying speeds using TD-Dijkstra algorithms compared to those generated with

Dijkstra-SL algorithm that uses fixed speeds. Further, we see that the proposed bounds capture

the variation of traffic for each period according to the fluctuation of the travel cost ranging from

14.87 to 15.94$ for the lower bound and from 16.24 to 19.70$ for the upper bound.

Table 7: Average results under the total cost optimization criterion

Departure time Instances
TD Lower Bounds TD Upper Bounds Dijkstra-SL TD-Dijkstra-LTM TD-Dijkstra-LTM-STTF TD-Dijkstra-FSM

Cost Sec Cost Sec Cost Gap (%) Sec Cost Gap (%) Sec Cost Gap (%) Sec Cost Gap (%) Sec

07h30

L1-L20 25.90 0.30 28.21 0.20 28.40 9.64 0.20 27.17 4.88 0.56 27.11 4.67 0.77 27.03 4.33 0.43

M1-M20 11.65 0.17 13.21 0.11 13.22 13.43 0.11 12.27 5.27 0.33 12.33 5.84 0.42 12.22 4.92 0.25

S1-S20 6.77 0.09 7.29 0.06 7.30 7.80 0.06 7.04 3.98 0.15 7.12 5.17 0.20 7.04 3.98 0.12

Average 14.87 0.19 16.24 0.13 16.30 9.65 0.12 15.49 4.18 0.35 15.52 4.37 0.47 15.43 3.77 0.27

07h45

L1-L20 26.03 0.29 28.58 0.19 28.87 10.92 0.19 27.35 5.10 0.55 27.42 5.34 0.79 27.24 4.67 0.42

M1-M20 12.31 0.16 15.09 0.11 15.21 23.54 0.12 13.22 7.39 0.34 13.23 7.47 0.43 13.12 6.57 0.26

S1-S20 7.38 0.09 9.46 0.06 9.12 23.59 0.07 7.80 5.64 0.17 7.90 7.05 0.22 7.80 5.64 0.13

Average 15.35 0.18 17.71 0.12 17.73 15.57 0.13 16.13 5.08 0.35 16.18 5.41 0.48 16.05 4.61 0.27

08h00

L1-L20 26.15 0.29 29.22 0.19 29.68 13.52 0.19 27.68 5.85 0.54 27.65 5.74 0.77 27.53 5.29 0.41

M1-M20 12.28 0.16 14.72 0.11 15.15 23.44 0.11 13.33 8.61 0.30 13.40 9.12 0.43 13.29 8.23 0.24

S1-S20 7.46 0.09 9.61 0.06 10.06 34.81 0.06 8.14 9.11 0.16 8.20 9.92 0.22 8.14 9.10 0.12

Average 15.43 0.18 17.85 0.12 18.30 18.56 0.12 16.38 6.15 0.33 16.42 6.42 0.47 16.32 5.73 0.26

08h15

L1-L20 26.25 0.29 28.95 0.19 29.26 11.48 0.19 27.70 5.55 0.55 27.69 5.49 0.78 27.59 5.14 0.42

M1-M20 12.57 0.17 15.61 0.12 15.60 24.10 0.11 13.74 9.27 0.31 13.76 9.47 0.52 13.70 8.98 0.24

S1-S20 7.90 0.09 9.87 0.07 10.15 28.45 0.06 8.89 12.45 0.17 8.90 12.66 0.29 8.85 11.95 0.13

Average 15.69 0.18 17.92 0.12 18.34 16.86 0.12 16.78 6.91 0.34 16.78 6.95 0.53 16.72 6.51 0.27

08h30

L1-L20 25.94 0.31 28.37 0.21 28.60 10.24 0.19 27.32 5.31 0.55 27.33 5.36 0.79 27.20 4.85 0.42

M1-M20 11.99 0.18 14.41 0.12 15.06 25.65 0.11 12.94 7.92 0.30 13.01 8.51 0.42 12.90 7.64 0.23

S1-S20 7.53 0.10 9.80 0.07 10.10 34.16 0.06 8.21 9.02 0.16 8.30 10.23 0.22 8.21 9.00 0.26

Average 15.26 0.19 17.53 0.13 17.92 17.40 0.12 16.15 5.83 0.33 16.21 6.23 0.48 16.10 5.49 0.26

15h30

L1-L20 26.08 0.30 29.56 0.20 29.38 12.66 0.19 27.49 5.42 0.55 27.41 5.10 0.78 27.33 4.80 0.43

M1-M20 12.41 0.17 14.71 0.11 15.57 25.46 0.11 13.61 9.63 0.32 13.58 9.43 0.44 16.66 34.21 0.24

S1-S20 7.71 0.09 9.74 0.06 10.47 35.81 0.06 8.52 10.45 0.17 8.54 10.77 0.22 8.51 10.43 0.13

Average 15.51 0.19 18.00 0.12 18.47 19.12 0.12 16.54 6.64 0.34 16.51 6.45 0.48 16.42 5.89 0.27

15h45

L1-L20 26.60 0.30 30.19 0.20 30.09 13.10 0.20 28.28 6.29 0.57 28.20 6.02 0.78 28.15 5.80 0.44

M1-M20 12.45 0.18 14.63 0.12 14.86 19.31 0.11 13.49 8.37 0.31 13.66 9.72 0.42 13.49 8.33 0.24

S1-S20 7.83 0.09 9.61 0.06 9.98 27.41 0.06 8.71 11.21 0.18 8.92 13.92 0.24 8.71 11.17 0.14

Average 15.70 0.19 18.14 0.13 18.31 16.64 0.12 16.83 7.21 0.35 16.93 7.83 0.48 16.78 6.91 0.27

16h00

L1-L20 26.81 0.30 30.78 0.20 30.84 15.05 0.20 28.53 6.40 0.58 28.46 6.15 0.86 28.46 6.17 0.45

M1-M20 12.70 0.16 16.47 0.11 17.48 37.63 0.12 14.45 13.81 0.33 13.83 8.90 0.43 14.34 12.92 0.25

S1-S20 7.98 0.09 11.35 0.06 11.16 39.89 0.06 8.90 11.60 0.18 8.95 12.16 0.24 8.90 11.58 0.14

Average 15.89 0.18 19.53 0.12 19.60 23.39 0.13 17.06 7.38 0.36 17.08 7.49 0.51 17.00 7.00 0.28

16h15

L1-L20 26.88 0.30 31.90 0.20 31.86 18.52 0.20 28.59 6.35 0.59 28.78 7.07 0.79 28.52 6.11 0.45

M1-M20 12.81 0.17 16.08 0.11 16.25 26.81 0.11 14.05 9.69 0.32 14.14 10.38 0.43 13.98 9.13 0.25

S1-S20 7.90 0.09 11.12 0.06 11.16 41.35 0.06 8.77 11.02 0.17 8.85 12.03 0.23 8.76 11.00 0.13

Average 15.90 0.18 19.70 0.12 19.76 24.25 0.13 17.14 7.78 0.36 17.26 8.55 0.48 17.09 7.49 0.28

16h30

L1-L20 27.19 0.29 31.80 0.19 31.86 17.19 0.20 28.59 5.15 0.59 29.05 6.84 0.80 28.52 4.92 0.45

M1-M20 12.71 0.19 16.39 0.13 16.89 32.81 0.12 14.67 15.41 0.33 13.96 9.83 0.43 14.60 14.87 0.26

S1-S20 7.84 0.09 10.26 0.06 11.16 42.27 0.06 8.77 11.75 0.17 8.80 12.24 0.23 8.76 11.72 0.13

Average 15.94 0.19 19.23 0.13 19.72 23.72 0.13 17.11 7.35 0.36 17.27 8.34 0.49 17.07 7.07 0.28
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The final set of experiments presented in Table 8 aims at providing some insight on the impact

of carried loads over our four performance measures. Results are obtained under the total cost

minimization criteria and are averages over all instances. As expected, as the load increases, fuel

consumption, and thus the cost, increase for the TD-Dijkstra algorithms. We can see that the paths

are updated (as Distance and Travel Time change) when the load increases from 15 to 20 tons.

However, the paths remain the same with increased fuel consumption when the load increases from

20 to 25 tons in the case of the TD-Dijkstra-LTM. We note that the same pattern holds for the

TD-Dijkstra-LTM-STTF from 22.5 to 25 tons. For the TD-Dijkstra-FSM, the fuel consumption

increases from 7.87 to 8.27 liters (5.08%) from 15 to 17.50 tons, from 8.27 to 8.68 liters (4.96%)

from 17.5 to 20 tons, from 8.68 to 9.08 liters (4.61%) from 20 to 22.5 tons, and from 9.09 to 9.50

liters (4.51%) from 22.5 to 25 tons. Therefore, the fuel consumption increases slowly and the total

distance is slightly decreased from empty load (15 tons) to TL (25 tons), thus having a slightly

broader impact on the obtained path according each load pattern. In addition, we have noticed

that again the TD-Dijkstra-FSM outperforms the other ones for the different load patterns.

Table 8: Impact of carried load on performance measures

Algorithms Performance measures
Carried Load

Empty Load (15 t) LTL (17.5 t) LTL (20 t) LTL (22.5 t) TL (25 t)

TD-Dijkstra-LTM

Avg Dist 19657.96 19573.35 19610.46 19610.46 19610.46

Avg TT 1356.21 1353.25 1358.04 1358.04 1358.04

Avg Fuel 7.89 8.27 8.71 9.12 9.53

Avg Cost 20.60 21.02 21.56 22.03 22.50

TD-Dijkstra-LTM-STTF

Avg Dist 19633.30 19575.45 19560.31 19528.51 19528.51

Avg TT 1357.11 1358.30 1359.11 1361.28 1361.28

Avg Fuel 7.88 8.28 8.69 9.10 9.51

Avg Cost 20.60 21.07 21.55 22.03 22.51

TD-Dijkstra-FSM

Avg Dist 19642.42 19595.47 19613.83 19578.88 19574.87

Avg TT 1353.80 1349.91 1351.34 1351.81 1351.91

Avg Fuel 7.87 8.27 8.68 9.08 9.50

Avg Cost 20.56 20.98 21.47 21.94 22.41

7 Conclusions

The TDMCP-SO extends the TDQPP by considering fuel consumption/GHG emissions minimiza-

tion. This extension is of high practical relevance since traffic congestion is an important issue for
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logistics providers in urban contexts. Accurate and tight time-dependent least cost lower and upper

bounds were derived based on MCP-SO properties. A fast and effective time-dependent Dijkstra

label-setting algorithm and a lower bounding method have been implemented for 80 benchmark

instances based on a large road network in Québec City including more than 17000 nodes and 24

million speed observations. The designed algorithms combine pre-existing CMEM and FSM models

to compute GHG emissions and costs using time-varying speeds. Our algorithm is highly effec-

tive in finding good-quality solutions for benchmark instances of all sizes using a FIFO-consistent

method overcoming the challenge of the non-linearities of emissions.

The extensive computational experiments demonstrated the benefit of choosing alternative paths

in congested urban areas under FIFO consistency that leads to substantial fuel consumption/GHG

emissions reduction and cost savings. We clearly demonstrate that using our time-dependent FIFO-

consistent method reduces the computational time and leads to better results with respect to the

ones which use constant speeds, LTM and smoothing methods. Moreover, it produces coherent

and consistent results with respect to the departure time, optimization criterion used, and load

patterns. An interesting insight derived from this research is that avoiding traffic congestion during

peak hours yields substantial GHG emissions reductions and costs savings. Our time-dependent

models reproduce expected and coherent behavior with respect to optimization criteria, time of

the day (level of congestion), carried loads and selected paths which is not the case for the existing

methods. We have also shown that carried loads slightly affect the chosen path, particularly as

the vehicle load becomes larger, the potential savings in fuel consumption and GHG emissions also

increase.

Further research should consider how to embed TDMCP-SO algorithms and our lower bounding

method into local search heuristics to efficiently solve real-world time-dependent distribution prob-

lems considering emissions minimization based on time-varying speeds. Adding time-dependent

quickest path optimization may enhance the resulting route plans that are selected based on dy-

namic paths to avoid traffic congestion across real road networks. Indeed, the studied TDMCP-SO

could be integrated into TDVRPs and the proposed time-dependent bounds could be used to de-

sign accurate bounds and develop efficient heuristics such as goal-directed search and neighborhood

search heuristics to solve large-scale instance of TDVRP involving the determination of cost-optimal

routes. Regarding the TDVRP over stochastic and time-dependent network, methods such as poly-

nomial approximation would seem appropriate to adapt our bounds to handle speed stochasticity
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and find optimal routing policy.
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