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Abstract. We present a generic branch-and-cut framework for solving routing problems with 
multiple depots and asymmetric cost-structures, which consist in finding a set of cost 
minimizing (capacitated) vehicle tours in order to fulfill a set of customer demands. The 
backbone of the branch-and-cut framework is a series of valid inequalities, and 
accompanying separation algorithms, exploiting the asymmetric cost-structure in directed 
graphs. We derive three new classes of so-called D_k inequalities that can eliminate 
subtours, enforce tours to be linked to a single depot, and impose bounds on the number of 
allowed customers in a tour. In addition, other well-known valid inequalities for solving 
vehicle routing problems are generalized and adapted to be valid for routing problems with 
multiple depots and asymmetric cost-structures. The resulting branch-and-cut framework is 
tested on four specific problem variants, for which we develop a new set of large-scale 
benchmark instances. The new D_k inequalities are able to reduce root node optimality 
gaps by up to 67.2% compared to existing approaches in the literature. The overall branch-
and-cut framework is effective as, e.g., Asymmetric Multi-Depot Traveling Salesman 
Problem instances containing up to 400 customers and 50 depots can be solved to 
optimality, for which only solutions of instances up to 300 customer nodes and 60 depots 
were reported in the literature before. 
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1 Introduction

We study routing problems with asymmetric costs and multiple depots. These problems are

defined on a directed graph G = (V ′, A), where the node set V ′ is partitioned into a depot

set D = {1, . . . , r} and a customer set V = {r + 1, . . . , r + n}. The arc set is defined as

A = {(i, j) | i 6= j ∈ V ∨ i ∈ D, j ∈ V ∨ i ∈ V, j ∈ D}. An asymmetric cost cij ≥ 0 is incurred

when traveling along arc (i, j) ∈ A, i.e., cij need not equal cji. Each available vehicle makes a

single tour, starting and ending at the same depot. The objective is to find a set of cost minimizing

tours which fulfill all customer demands.

Specifically, we focus on the following four problem variants:

(i) The Asymmetric Multi-Depot Traveling Salesman Problem (A-MDTSP): A single vehicle with

unlimited capacity is available at each depot.

(ii) The Asymmetric Multi-Depot multiple Traveling Salesman Problem (A-MDmTSP): There

are m vehicles available at each depot. Vehicle capacity is unlimited, but the number of

customers per tour is bounded by [`min, `max].

(iii) The Asymmetric Multi-Depot Capacitated Vehicle Routing Problem (A-MDCVRP): There

are m vehicles available at each depot. Each vehicle has a limited capacity Q, and each

customer has a demand qi > 0 (i ∈ V ).

(iv) The Asymmetric Capacitated Location Routing Problem (A-CLRP): This problem extends

the A-MDCVRP by incorporating depot location decisions, i.e., using a depot comes at a

fixed cost c̃ ≥ 0.

We present a branch-and-cut framework that can address each of the four problem variants above.

Furthermore, the design of our branch-and-cut framework is generic in the sense that – with some

problem-specific, non-structural adaptations – it may be applied to other routing problems with

multiple depots and asymmetric cost structures. This is relevant since such routing problems

are nowadays often encountered in practice [8, 19, 20]. To indicate that results apply generically

to routing problems with multiple depots and asymmetric costs, we make use of the descriptor

Asymmetric Multi-depot Vehicle Routing Problem (A-MDVRP). Some results are specific for one

of the four problem variants, in which case this is indicated explicitly. Numerical experiments are

limited to the four problem variants.
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The first contribution of the paper is a series of novel valid inequalities tailored to asymmetric cost

structures and multiple depots, with accompanying separation algorithms, which are generalized

from the asymmetric traveling salesman problem [9, 10]. The new valid inequalities make explicit

use of the directness of the underlying graph, resulting in strengthened valid inequalities, whereas

applying exact methods for symmetric routing problems on undirected graphs to the A-MDVRP

leave this unexploited. We propose three new classes of so-called Dk inequalities that 1) eliminate

subtours, 2) impose bounds on the tour size, and 3) eliminate paths that begin and arrive at different

depots, i.e., the newly proposed Dk inequalities are not only valid but also model describing.

Furthermore, CAT-inequalities are adapted to a multi-depot setting. To the best of our knowledge,

there has been no study on the integer polytope of asymmetric routing problems since a series of

works on the Asymmetric Traveling Salesman Problem (ATSP) and its variations [1, 2, 3, 9, 11, 10].

Our second contribution is the development of a generic branch-and-cut algorithm for the A-

MDVRP that integrates the results from capacitated vehicle routing problems [15, 16, 18], loca-

tion routing problems [6, 14], and symmetric multi-depot traveling salesman problems [7]. Along

with the newly proposed valid inequalities, our branch-and-cut algorithm includes the following

adapted asymmetric valid inequalities: subtour elimination constraints, classical path elimination

constraints, CAT inequalities, D+
k and D−k constraints, strengthened comb inequalities, T - and T1-

comb inequalities, framed capacity inequalities, and homogenous- and large- multistar inequalities.

Third, complementary to the branch-and-cut algorithm, we use a compact formulation with so-

called neighborhood-arc constraints (i.e., considering a subset of promising arcs only) in order to

provide upper bounds in a computationally simple yet effective manner. Due to this upper bound

procedure, the overall efficiency of the branch-and-cut algorithm improves considerably. We refer to

the joint use of the branch-and-cut algorithm and the upper bound procedure as the branch-and-cut

framework.

Fourth, we show the effectiveness of the branch-and-cut framework on the four problem variants

as detailed above. For each problem variant, we provide insights into the effectiveness of the valid

inequalities. Furthermore, to obtain a general understanding of how asymmetry in the cost structure

relates to computational difficulty, we perform extensive experiments on three classes of asymmetric

cost structures. These classes have arc costs ranging from completely random (cij ∼ U(0, 1000)) to

Euclidean with a small noise. The instances used are publicly available and can serve as benchmark

instances for future research. Moreover, in order to foster research on asymmetric vehicle routing
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problems, we provide public access to our C++ implementation of the branch-and-cut framework1.

We show that our newly developed valid inequalities help to reduce root node optimality gaps

by up to 67.2%. Regarding the A-MDTSP, we are able to solve all instances of Bektaş et al. [4]

to optimality, of which two were not solved before, and find an improved solution for one of the

instances. Furthermore, our branch-and-cut framework can solve to optimality our newly developed

benchmark instances for the A-MDTSP containing up to 400 customers and 50 depots, which is

significantly larger than the 300 customer and 60 depot instances of Bektaş et al. [4].

Regarding the other three problem variants, no benchmark instances exist for routing problems with

asymmetric costs on directed graphs. Hence, we tested our branch-and-cut framework on newly

proposed benchmark instances and it appears to be effective for all remaining problem variants.

For example, A-MDmTSP instances with up to 100 customers and 20 depots can be solved to

optimality. This size is comparable to state-of-the-art methods for the single-depot symmetric

multiple traveling salesman problem, which has a significantly smaller solution space [5].

Furthermore, we compare the branch-and-cut framework to a basic branch-and-cut algorithm,

where the latter is our implementation of what can be considered state-of-the art. The branch-and-

cut framework that exploits our new valid inequalities shows considerable computational improve-

ments over the basic algorithm. Specifically, the branch-and-cut framework can solve considerably

more instances to optimality than the basic algorithm, is on average faster for the instances that

are solved to optimality by both algorithms, has smaller optimality gaps for instances that cannot

be solved to optimality, and provides higher lower bounds for the instances for which no upper

bound is found.

The remainder of the paper is organized as follows. In Section 2, we provide a compact problem

formulation which is used in our upper bound procedure. In addition, we present the basic formu-

lation which is used in the branch-and-cut algorithm. In Section 3, we provide our series of valid

inequalities which are included in our branch-and-cut algorithm, and in Section 4, we discuss their

corresponding separation algorithms. We continue in Section 5 with the outline of the branch-

and-cut framework, consisting of the branch-and-cut algorithm and the upper bound procedure.

In Section 6, we present the computational experiments with the branch-and-cut framework. We

conclude and provide directions for further research in Section 7.

1When published: URL of public Github repository here
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2 Problem formulation

We present two Mixed Integer Programming (MIP) formulations for the A-MDVRP. The first for-

mulation is a compact formulation used in our upper bound procedure and consists of a polynomial

number of variables and constraints. The second formulation, which we call the basic formula-

tion, consists of exponentially many constraints. This formulation serves as starting point for our

branch-and-cut algorithm and the derivation of our new valid inequalities.

2.1 Compact formulation

Let xij ∈ {0, 1} be the binary variable indicating whether or not arc (i, j) ∈ A is traversed, and

let zd ∈ {0, 1} be the binary variable denoting whether or not depot d ∈ D is opened. In addition,

continuous variables yij (where i, j ∈ V ) and ui (where i ∈ V ) are used to ensure that the capacity

of a vehicle is not exceeded and to eliminate subtours, and the tours start and end at the same

depot, respectively. We present the following compact MIP formulation (Pc) for the A-MDVRP.

min
∑

(i,j)∈A

cijxij + c̃
∑
d∈D

zd (1a)

s.t.
∑
j∈V ′

xij =
∑
j∈V ′

xji = 1 ∀ i ∈ V, (1b)

∑
j∈V

xdj =
∑
j∈V

xjd ≤ m ∀ d ∈ D, (1c)

xdi ≤ zd ∀ i ∈ V, d ∈ D, (1d)∑
i∈V ′

(yij − yji) = qj ∀j ∈ V, (1e)

∑
d∈D

∑
j∈V

ydj −
∑
j∈V

qj = 0, (1f)

yij − (Q− qi)xij ≤ 0 ∀ i ∈ V ′, j ∈ V, (1g)∑
d∈D

d(xdi + xid)− ui ≤ 0 ∀ i ∈ V, (1h)

ui − |D| −
∑
d∈D

(d− |D|)(xdi + xid) ≤ 0 ∀ i ∈ V, (1i)

ui − uj −M(1− xij − xji) ≤ 0 ∀ i, j ∈ V, i 6= j, (1j)

ydj +M(1− xdj) ≥ `min ∀ d ∈ D, j ∈ V, (1k)

xij ∈ {0, 1} ∀ (i, j) ∈ A, (1l)
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zd ∈ {0, 1} ∀ d ∈ D, (1m)

ui ≥ 0 ∀ i ∈ V, (1n)

0 ≤ yij ≤ Q ∀ i, j ∈ V. (1o)

Objective (1a) minimizes the sum of travel costs and depot opening costs. Constraints (1b) ensure

that every customer is visited exactly once. Constraints (1c) limit the number of vehicles (or tours)

at the depot, if necessary. Constraints (1d) link the zd and xij variables. Constraints (1e)–(1g)

ensure that loads do not exceed the vehicle capacity and exclude subtours [13]. Constraints (1h)–

(1j) enforce that paths cannot start and end at different depots. Constraints (1k) ensure that the

lower bound on the tour size is respected. Constraints (1l)–(1o) define the domain of the variables.

The above compact MIP formulation (Pc) covers all four problem variants introduced in Section 1.

Table 1 provides for each of the four problem variants the appropriate parameter values to be

used in this MIP formulation. An ‘∗’ indicates that the particular parameter has no model-specific

restrictions.

Table 1: Parameter restrictions of the various problem variants.

Problem variant Q qi `min `max c̃ m

A-MDTSP n 1 1 n 0 1

A-MDmTSP `max 1 ∗ ∗ 0 ∗

A-MDCVRP ∗ ∗ 1 n 0 ∗

A-CLRP ∗ ∗ 1 n ∗ ∗

The compact MIP formulation could be used to solve any A-MDVRP with off-the-shelf MIP solvers

such as Gurobi and CPLEX. However, we will employ it for our upper bound procedure, for which

purpose we consider a restricted version, using a subset of the arcs. The subset consists of 1) all

arcs between depot nodes and customer nodes, and 2) for every customer node i, the δ cheapest

outgoing arcs connected to other customer nodes. The resulting formulation is called the δ-compact

formulation, which we refer to as Pδ. The upper bound procedure is predominantly based on

iteratively solving δ-compact formulations and runs parallel to the branch-and-cut algorithm to

provide upper bounds in a fast manner. The details of the upper bound procedure are provided in

Section 5.1.
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2.2 Basic formulation

In the following, we present a basic formulation that we use as the starting point of our branch-

and-cut algorithm. Consider the following formulation (P ):

min
∑

(i,j)∈A

cijxij + c̃
∑
d∈D

zd (2a)

s.t.
∑
j∈V ′

xij =
∑
j∈V ′

xji = 1 ∀ i ∈ V, (2b)

xdi ≤ zd ∀ i ∈ V, d ∈ D, (2c)

Depot Fixing Constraints, (2d)

Capacity / Tour Size Constraints, (2e)

xij ∈ {0, 1}, zd ∈ {0, 1} ∀i, j ∈ V, d ∈ D. (2f)

Except for (2d) and (2e), the objective and the constraints are equal to the compact formula-

tion (Pc). Note that the above formulation consists of xij and zd variables only, whereas the

compact formulation also uses the continuous variables yij and ui.

In the remainder of this study, we use the following shorthand notation. We define x(T ) :=∑
(i,j)∈T xij for T ⊆ A, and x(S1, S2) =

∑
i∈S1, j∈S2, (i,j)∈A xij for S1, S2 ⊆ V ′. In addition, we

denote x(γ(S)) := x(S, S), x(δ+(S)) := x(S, V ′ \S), and x(δ−(S)) := x(V ′ \S, S) for S ⊂ V ′. Thus

δ+(S) and δ−(S) denote all outgoing and incoming arcs of the node set S, respectively, and x(δ+(S))

and x(δ−(S)) denote their corresponding xij variables. For brevity, we write δ+(i) := δ+({i}) and

δ−(i) := δ−({i}) for i ∈ V ′.

Depot Fixing constraints (2d), which ensure that each tour starts and ends at the same depot, are

present in all problem variants. The following Depot Fixing Constraints are commonly used (see,

e.g., Belenguer et al. [6], Laporte et al. [14]), and are referred to as path elimination constraints:

∑
o∈I

xoi +
∑
o∈D\I

xjo + x(γ(S ∪ {i, j})) ≤ |S| + 2 for all S ⊂ V , I ⊂ D, i, j ∈ V \S. (3)

However, these constraints do not exclude single customer tours starting and ending at different

depots. In Section 3, we present our new class of Depot Fixing Constraints based on Dk inequalities

that can replace the above set of constraints. As will be explained later, our proposed constraints

do exclude single customer tours starting and ending at different depots.

Capacity Constraints (2e) are present in the A-MDVRP variants to eliminate subtours and are

Valid Inequalities and a Branch-and-Cut Algorithm for Asymmetric Multi-Depot Routing Problems

6 CIRRELT-2019-02



particularly useful when vehicle capacity restrictions are considered (i.e., for the A-MDCVRP and

the A-CLRP). In general, they have the following form:

x(γ(S)) ≤ |S| − k(S) for all S ⊂ V, (4)

where k(S) is the number of vehicles required to serve all customers in S. The number of vehicles

k(S) is the solution of a bin-packing problem and is commonly replaced by d
∑

i∈S qi/Qe [18].

Refinements to these capacity constraints are proposed by Letchford and Salazar-González [15, 16].

We remark that the capacity constraints from the literature are mostly evaluated in the light of

symmetric single depot vehicle routing problem instances. We, on the other hand, adapt these

capacity constraints to asymmetric multi-depot settings in Section 3.2.3.

Finally, Tour Size Constraints are only required for the A-MDmTSP variant where they impose

that each tour must include at least `min and at most `max customers. In general, the upper bound

constraints can be imposed by using the above capacity constraints by setting Q = `max and qi = 1

for all i ∈ V . Tour Size Constraints have been studied for single depot symmetric vehicle routing

problems (see, e.g., Bektaş et al. [5], Gouveia et al. [12]), but not yet for the asymmetric multi-

depot settings such as ours. In Section 3.3, we present a class of Dk inequalities that can be used

to enforce Tour Size Constraints in the asymmetric multi-depot setting.

3 Model constraints and valid inequalities

This section introduces the model constraints (Section 3.1) and the valid inequalities (Section 3.2)

that are used in the branch-and-cut algorithm. Further refinements for the A-MDmTSP are dis-

cussed in Section 3.3. The corresponding separation algorithms are then discussed in Section 4.

In the remainder of this paper we refer to inequalities that exhibit model defining characteristics

as constraints and to inequalities that strengthen the linear hull but do not exhibit problem defin-

ing characteristics as valid inequalities. For readability purposes, we only specify actual problem

variants if the results presented below are not generally applicable to all variants, and we write

“A-MDVRPs” if the results hold generally.
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3.1 Model constraints

We continue with describing two families of constraints that are valid for A-MDVRPs. We first

discuss a generalization of the D+
k and D−k constraints to the multi-depot case, which can eliminate

subtours. Next, we extend those constraints to eliminate paths starting and ending at different

depots, referred to as the D+
k depot and D−k depot constraints.

3.1.1 D+
k and D−k constraints

We first adapt Dk inequalities to the multi-depot setting and show that the resulting constraints

eliminate subtours.

Theorem 1. Let {i1, i2, . . . , ik} ⊂ V be a sequence of distinct customer nodes. Then the following

inequalities

D+
k : xi1ik +

k∑
h=2

xihih−1
+ 2

k−1∑
h=2

xi1ih +
k−1∑
h=3

x({i2, . . . , ih−1}, ih) ≤ k − 1, (5)

D−k : xiki1 +
k∑

h=2

xih−1ih + 2
k−1∑
h=2

xihi1 +
k−1∑
h=3

x(ih, {i2, . . . , ih−1}) ≤ k − 1, (6)

are valid cuts for the integer polytope of A-MDVRPs. Moreover, subtour elimination constraints

are correctly formulated by (5) or (6).

Proof. First consider the D+
k inequality as given in (5). There are only three scenarios for which

the left hand side summation may become strictly larger than k − 1. For each scenario we show

that the corresponding solution is not a feasible solution for the A-MDVRP. Thereby it directly

follows that (5) is a valid cut for the integer polytope of the A-MDVRP. The same reasoning holds

for the validity of (6).

Firstly, suppose
∑k−1

h=2 xi1ih = 0. Then k nodes {i1, . . . , ik} can have at most k traversed arcs in (5)

only if a feasible solution contains a traversed cycle {ik, ik−1, . . . , i1} by construction. However, a

cycle of only customer nodes is infeasible.

Secondly, suppose that xi1ih = 1 for some h ∈ {2, . . . , (k− 1)} and note that arc (i1, ih) has weight

2. There is exactly one incoming arc (i1, ik) and one outgoing arc (ik, ik−1) considered in (5) for

ik. Since xi1ih = 1, we have xi1ik = 0. If xikik−1
= 0, then node ik is excluded in the traversed

arcs of (5). Thus, a cycle of remaining (k − 1) nodes must be involved so that the left-hand side

summation equals k. However, a cycle of customer nodes is infeasible.
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Lastly, let us consider the case xi1ih = 1 for some h ∈ {2, . . . , (k − 1)} and xikik−1
= 1. Since

traversed cycles must be excluded as before, the only option is to have a traversed chain consisting

of all nodes {i1, . . . , ik}. As the only possible incoming arc for ik is not traversed (xi1ik = 0), node

ik must be the start of the chain. Note that there is only one outgoing arc from nodes {ik−1, . . . , i2}.

Following the possible arcs in (5) to traverse, we obtain a contradiction to xi1ih = 1. Therefore,

the left-hand side of (5) is less than or equal to (k− 1), i.e., (5) is a valid inequality for the integer

polytope of A-MDVRPs.

It is left to show that the constraints correctly eliminate subtours. If there is a subtour {j1, . . . , jk},

then consider sequence {jk, . . . , j1} in (5) and we obtain a contradiction. Thus, subtours are

eliminated by (5).

3.1.2 D+
k and D−k Depot Fixing Constraints

We further exploit the structure of (5) and (6) to derive the D+
k and D−k Depot Fixing Constraints

that eliminate paths starting and ending at different depots, and can thus model the Depot Fixing

constraints (2d) instead of (3).

Theorem 2. Let I = {i1, i2, . . . , ik} ⊆ V be a sequence of distinct customer nodes and let O ⊂ D

be a subset of depots. The following inequalities

D+
k depot :

∑
s∈O

xi1s +
∑

s∈D\O

xsik +
k∑

h=2

xihih−1
+ 2

k∑
h=2

xi1ih +
k∑

h=3

x({i2, . . . , ih−1}, ih) ≤ k (7)

D−k depot :
∑
s∈O

xsi1 +
∑

s∈D\O

xiks +
k∑

h=2

xih−1ih + 2

k∑
h=2

xihi1 +
k∑

h=3

x(ih, {i2, . . . , ih−1}) ≤ k, (8)

are valid cuts for the integer polytope of A-MDVRPs. Moreover, depot-fixing constraints of A-

MDVRPs are correctly formulated by (7) or (8).

Proof. In the following, we only prove the validity of (7), since the validity of (8) can be shown

along the same line of reasoning.

Suppose xi1ih = 0 for all h ∈ {2, . . . , k}. There is at most one incoming arc to O and at most one

outgoing arc from D \ O traversed in the left-hand side of (7) as there is a single depot assigned

to nodes i1 and ik. In total, k customer nodes {i1, . . . , ik} can have at most k + 1 traversed arcs

in the left-hand side of (7) only if i1 and ik are connected to O and D \ O respectively, and the
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chain {ik, . . . , i1} is traversed due to the construction of the left-hand side of (7). However, this is

infeasible as a tour must start and end at the same depot.

Next let xi1ih = 1 for some h ∈ {2, . . . , k}. Consider the following sequence {i1, i2, . . . , ik, ik+1}

where xi1ik+1
:=
∑

s∈O xi1s and xik+1ik :=
∑

s∈D\O xsik to arrive at an inequality as denoted in

Theorem 1. By following the same argument as in the proof of Theorem 1 for the case xi1ih = 1

we obtain that (7) is a valid inequality for the integer polytope of A-MDVRPs.

Now let us show that path elimination constraints are correctly formulated by (7). By contradiction,

assume that there is a tour {s1, i1, . . . , ik, s2} with s1, s2 ∈ D, s1 6= s2 and i1, . . . , ik ∈ V . Consider

sequence {ik, . . . , i1} and O := s2 in (7) and we obtain a contradiction. Thus, there is no tour that

starts and ends at different depots.

Note that when k = 1 in Theorem 2, i.e., I = {i1}, we have

∑
s∈O

xsi1 +
∑

s∈D\O

xi1s ≤ 1

which is a depot fixing constraint involving a single node i1 ∈ V . Note that this is different from

the classical path-eliminating constraints (3) as these are typically used when tours of a single size

are forbidden. As it can be seen from Theorems 1 and 2, the modeling capabilities of those Dk

type of constraints are rather extensive. As a direct consequence, we obtain the following corollary.

Corollary 2.1. A-MDTSPs are correctly formulated as min (2a) subject to (1c), (2b), (2c), and

completed with:

(i) at least one of (5) and (6) to eliminate subtours,

(ii) at least one of (7) and (8) for depot fixing constraints.

3.2 Valid inequalities

In the following, we present several strengthening valid inequalities. We first discuss CAT-type

inequalities, introduced by Balas [2] for the ATSP, and generalize these to the multi-depot case.

Thereafter, we provide several comb-type inequalities and capacity inequalities, both generalized

and adapted from the CVRP case.
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3.2.1 CAT-type inequalities

We modify the Closed Alternating Trail (CAT) inequalities derived by Balas [2], such that they are

valid for the A-MDVRP. Before discussing the CAT inequalities, we need to introduce the notion

of incompatible arcs. Notice that this is different from Balas [2]. An arc (i, j) ∈ A is incompatible

in the following circumstances:

1. If i, j ∈ V , then (i, j) is incompatible with (i, u), (u, j), and (j, i), for any u ∈ V ′.

2. If i ∈ D and j ∈ V , then (i, j) is incompatible with: (i) (u, j) for any u ∈ V ′, and (ii) (j, o)

for any o ∈ D \ {i}.

3. If i ∈ V and j ∈ D, then (i, j) is incompatible with: (i) (i, u) for any u ∈ V ′, and (ii) (o, i)

for any o ∈ D \ {j}.

A CAT inequality is described by a sequence of arcs T = {a1, . . . , at} such that a1, . . . , at ∈ A,

t ≥ 5 and odd, and any arc in T is incompatible with its neighbor arcs in T and compatible with

all other arcs in T . The neighbor arcs of a1 are considered to be a2 and at. In other words, we

consider that arcs {a1, . . . , at} are placed on a circle maintaining their order.

Furthermore, node i is called a source if δ+(i)∩ T = 2, and a sink if δ−(i)∩ T = 2. In addition, an

arc (i, j) ∈ A \ T is called a chord of type 1 if i ∈ V is a source and j ∈ V is a sink. We let R be

the collection of all chords of type 1 as induced by the set T and the graph G.

Theorem 3. Let T = {a1, . . . , at} ⊂ A with an odd t ≥ 5 such that any arc in T is incompatible

with its neighbor arcs and compatible with the other arcs in T . Let R be the set of chords of type

1. Then, the CAT inequality

x(T ∪R) ≤ t− 1

2
(9)

is valid for the integer polytope of A-MDVRPs.

Proof. As T ∩ R = ∅, we have x(T ∪ R) = x(T ) + x(R). By the definition of “incompatibility”,

any two neighboring arcs are mutually exclusive. In other words, the corresponding values of x of

any two consecutive arcs cannot be 1 at the same time. Since t is odd, we obtain

x(T ) ≤ t− 1

2
. (10)
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Next let us examine set R. Consider (i, j) ∈ R then we have δ+(i) ∩ T = 2 and δ−(j) ∩ T = 2 by

definition. Thus, there are incompatible neighbor arcs (i, u) and (i, v) in T for some u, v ∈ V ′. Arcs

(i, u) and (i, v) have to be a neighbor, as all non-neighbor arcs are compatible by the construction

of CAT. The same argument holds for arcs (u′, j) ∈ T and (v′, j) ∈ T for some u′, v′ ∈ V ′.

By contradiction, suppose that xij = 1 and the equality holds for (10). If xij = 1, then we must

have xiu = xiv = xu′j = xv′j = 0. Since (i, j) ∈ R ⊂ A \ T , these two neighbors do not overlap. So

the corresponding x value of set T must be of form {0, 0, . . . , 0, 0, . . . }. On the other hand, using

x(T ) = (t − 1)/2, there cannot be three consecutive zeros. Thus, the arcs in T must have value

{0, 0, 1, 0, 1, 0, 1, . . . , 0, 1}, which is a contradiction to the pattern {0, 0, . . . , 0, 0, . . .}. Therefore,

when x(T ) = (t− 1)/2, we have x(R) = 0 and thus (9) holds.

Suppose now x(R) = q with q > 0. As before, whenever xij = 1 for (i, j) ∈ R, we have xiu = xiv =

xu′j = xv′j = 0. Excluding all these zero valued arcs, there are t − 4q remaining arcs of T which

are separated into at most 2q parts. As t − 4q is odd, there are at most (2q − 1) parts with an

odd number of arcs and at least one part with an even number of arcs. The value of a part with

odd t̃ arcs is at most (t̃+ 1)/2 and a part with even t̂ arcs is at most (t̂/2). By summing all these

separated parts, we obtain

x(T ) + x(R) ≤ (t− 4q) + (2q − 1)

2
+ q =

t− 1

2
,

and we have shown that (9) holds for A-MDVRP.

3.2.2 Comb type inequalities

Asymmetric comb inequalities for the ATSP are defined in [9] on a complete digraph (V,A), where

V is a node set and A is the arc set with n(n − 1) arcs. Define a set handle H ∈ V and an odd

number of subsets called teeth Hi ⊂ V with i = 1, . . . , t, and t ≥ 3 such that

H ∩ Ti 6= ∅, Ti \H 6= ∅ and Ti ∩ Tj = ∅ for all i, j = 1, . . . , t. (11)

Then it is shown by Fischetti [9] that the comb inequality

x(δ+(H)) +
t∑

j=1

x(δ+(Tj)) ≥
3t+ 1

2
(12)

describes a facet of the ATSP polytope on a directed graph for t ≥ 7.
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The comb inequalities have been generalized to the multi-depot multiple traveling salesman problem

with symmetric costs in [7] and are shown to be facets for t ≥ 3. Similarly, we can reformulate the

ATSP combs (12) such that they are valid for the A-MDVRP by imposing the additional constraint

that all the depot nodes should be in the same element of the comb.

Proposition 1. Let Gd ⊆ G be a graph with only a single depot node d ∈ D. In graph Gd we can

derive the comb inequalities (12). Consider such an inequality and add all remaining depot nodes

d′ ∈ D \ {d} to all the sets (i.e., handle and teeth) that contain d. This modified inequality (12)

with t ≥ 3 is valid for the A-MDVRP and is referred to as an ATSP -comb.

Proof. Every edge in the formulation of [7] is defined by xij and xji with xij = xji. In other words,

incoming and outgoing arcs are both included in their formulation if the corresponding asymmetric

case is considered. Reformulating the H-comb inequality of [7] for the asymmetric case, we derive

x(δ+(H)) + x(δ−(H)) +
t∑

j=1

x(δ+(Tj)) +
t∑

j=1

x(δ−(Tj)) ≥ 3t+ 1.

As the number of incoming arcs and the outgoing arcs are the same, we directly obtain (12).

In general, the symmetric case is translated to the asymmetric case by simply replacing every edge

(symmetric case) by their two corresponding arcs (asymmetric case). However, the above argument

does not work for their result as the edge is defined by both variables xij and xji with xij = xji

for any i, j ∈ V . For completeness, using the same argument as above, we reformulate the T -,

and H-comb inequalities proposed in Benavent and Mart́ınez [7] such that they are valid for the

A-MDVRP.

Proposition 2. Let the handle H ∈ V ∪D and an odd number of teeth Ti ⊂ V with i = 1, . . . , t

and t ≥ 3 be defined such that (11) is satisfied, and that H ∩D 6= ∅ and D\H 6= ∅. The following

H-comb inequalities are valid for the A-MDVRP.

x(δ+(H)) +

t∑
j=1

x(δ+(Tj)) ≥
3t+ 1

2
. (13)

Proposition 3. Let the handle H ∈ V ∪D and the teeth Ti ⊂ V ∪ I with i = 1, . . . , t and t ≥ 1

be defined such that (11) is satisfied. In addition, assume that (i) Ti ∩ I 6= ∅ for i = 1, . . . , t, (ii)

H\ ∪ti=1 Ti 6= ∅, and (iii) I\ ∪ti=1 Ti 6= ∅. Then the following T -comb inequalities are valid for the

A-MDVRP

x(δ+(H)) +
t∑

j=1

x(δ+(Tj)) ≥ 2t+ 2. (14)
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3.2.3 Capacity inequalities

Capacity inequalities such as the generalized large multistar inequalities and the knapsack large

multistar inequalities are defined for symmetric single depot capacitated vehicle routing problem.

However, the inequalities only involve customer nodes, which allows us to apply the transformation

from edge variables (for the symmetric case) to arc variables (for the asymmetric case) in the

following way: we substitute every edge variable xe with the arc variables xij + xji, where i and

j are the endpoints of e. Thus, the valid inequalities for single depot capacitated vehicle routing

problems from Letchford and Salazar-González [16] are directly applicable for multi-depot settings.

In our branch-and-cut algorithm, we use framed capacity inequalities, homogeneous multistar in-

equalities, and large multistar inequalities. To keep our exposition concise, we restate the inequal-

ities and we refer to Letchford et al. [17] and Lysgaard et al. [18] for detailed information.

Homogeneous multi-star inequalities are represented by nucleus S ⊂ V , satellites T ⊂ V \S, con-

nectors C ⊂ S, and three integers A, B, L, and are given by

Bx(δ(S))−Ax(C, T ) ≥ L. (15)

Generalized large multi-star inequalities are represented by a nucleus S ⊂ V and the remaining

node set S̄ := V \N , and are given by

Qx(N,N) +
∑
j∈S̄

qjx(N, {j}) ≤ Q|S| −
∑
i∈S

qi. (16)

Framed capacity inequalities are defined by a frame S ⊆ V and a partition Ω = {S1, . . . , Sp} of S,

and are given by

x(δ(S)) +

p∑
i=1

x(δ(Si)) ≥ 2k(S,Ω) + 2

p∑
i=1

⌈∑
i∈Si

qi/Q
⌉
. (17)

3.3 Specialized model constraints for the A-MDmTSP

In this section, we study tour size constraints and strengthened path elimination constraints for

the A-MDmTSP.

3.3.1 Tour size constraints

As previously mentioned, we can model the upper limit `max on the tour size (i.e., the number of

customers in a tour) by setting the customer demands equal to 1 and the vehicle capacity equal
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to `max. Furthermore, we propose the following simple constraints to impose the lower bound

restriction for multi-depot routing problems.

x(δ+(S))−
∑
d∈D

∑
s∈S

(xds + xsd) ≥ 0 for all S ⊂ V, |S| ≤ `min. (18)

On the other hand, Dk-type inequalities can also model the tour size lower and upper limits.

Consider a sequence {i1, i2, . . . , ik, ik+1} in Theorem 1. By construction of the left-hand side of (5),

observe that the last node ik+1 can be either a depot or a customer node in a multi-depot setting,

since there is exactly one incoming and one outgoing arc considered in (5) for ik+1. Thus, we may

replace ik+1 as the set of depots in the multi-depot setting.

Theorem 4. Let {i1, i2, . . . , ik} ⊆ V be a sequence of distinct customer nodes. Then the following

inequalities

D+
k -lim :

∑
s∈D

xi1s +
∑
s∈D

xsik +

k∑
h=2

xihih−1
+ 2

k∑
h=2

xi1ih +

k∑
h=3

x({i2, . . . , ih−1}, ih) ≤ k (19)

D−k -lim :
∑
s∈D

xsi1 +
∑
s∈D

xiks +
k∑

h=2

xih−1ih + 2
k∑

h=2

xihi1 +
k∑

h=3

x(ih, {i2, . . . , ih−1}) ≤ k (20)

are valid cuts for the integer polytope of the A-MDmTSP for k < `min or k > `max. Moreover, the

constraints enforcing the lower and upper bounds on the tour size of the A-MDmTSP are correctly

formulated by (19) or (20).

Proof. We prove that the proposed cuts are valid for the integer polytope of the A-MDmTSP by

showing that the left-hand side of (19) and (20) cannot exceed k for feasible solutions.

First suppose xi1ih = 0 for all h ∈ {2, . . . , k}. As mentioned before, at most one incoming arc from

depots and at most one outgoing arc to depots are possible to be traversed in (19). In total, k

customer nodes {i1, . . . , ik} can have at most k+ 1 traversed arcs in the left-hand side of (19) only

if i1 and ik are connected to depots due to the construction of the left-hand side of (7). If i1 and ik

are connected to different depots, then the tour is infeasible since tours must start and end at the

same depot. Furthermore, if i1 and ik are connected to the same depot, the tour is still infeasible

because this implies that the tour has size k with k < `min or k > `max.

The remaining case where xi1ih = 1 for some h ∈ {2, . . . , k} is shown as in the proof of Theorem 1

by considering ik+1 as the depot set D. We conclude that (19) is a valid inequality for the integer

polytope of the A-MDmTSP.
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Now let us show that the tour size constraints are correctly formulated by (19). By contradiction,

assume that there is a tour {s, i1, . . . , ik, s} with s ∈ D and i1, . . . , ik ∈ V such that k < `min or

k > `max. Consider sequence {ik, . . . , i1} in (19) and we obtain a contradiction. Thus, there is no

tour with size k < `min or k > `max.

Based on (19) and (20), we derive a novel formulation for A-MDmTSP:

Corollary 4.1. The A-MDmTSP is correctly formulated as min (2a) subject to (2b), (2c), and

completed with:

(i) at least one of (5) and (6) to eliminate subtours

(ii) at least one of (7) and (8) for depot fixing constraints,

(iii) at least one of (19) and (20) for tour size constraints.

Observe that the path elimination constraints (7) and (8) are redundant for the cases k < `min and

k > `max if (19) and (20) are present, respectively. Thus, for example, when (19) and (7) are used

together, it is sufficient to consider (7) only for the case `min ≤ k ≤ `max.

3.3.2 Path elimination constraints

Without loss of generality, we assume that `min ≥ 2 for the A-MDmTSP. Under this assumption, we

can further refine path elimination constraints (3). This is summarized in the following proposition.

Proposition 4. Consider the A-MDmTSP with `min ≥ 2. Then path elimination constraints (3)

can be strengthened as follows

∑
o∈I

xio +
∑
s∈D\I

xsj +
∑
o∈I

xoi +
∑
s∈D\I

xjs + x(γ(S ∪ {i, j})) ≤ |S|+ 2

for all I ⊂ D, i, j ∈ V, S ⊂ V \ {i, j}. (21)

In other words, a feasible solution of the A-MDmTSP satisfies the above inequality.

Proof. Note that
∑

o∈I xio +
∑

o∈I xoi ≤ 1 and
∑

s∈D\I xsj +
∑

s∈D\I xjs ≤ 1 hold since `min ≥ 2.

Moreover, x(γ(S ∪ {i, j})) ≤ |S| + 1 is a valid subtour elimination constraint. The equalities are

attained for the above three inequalities only if the feasible solution contains a tour consisting of all
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nodes of S∪{i, j} and i, j are connected to different depots, which is infeasible. Thus, by combining

the above three inequalities, we obtain (21).

Note that the above path elimination constraints do not remove tours with a single customer

connected to different depots. Thus, we need to add the following inequality

∑
o∈I

xoh +
∑
o∈D\I

xho ≤ 1 for all h ∈ V , I ⊂ D. (22)

Now let us formulate the A-MDmTSP without using any Dk-type inequalities by including the

above constraints.

Corollary 4.2. The A-MDmTSP is correctly formulated as min (2a) subject to (2b), (2c) and

completed with

(i) tour size constraints (4) and (18) (subtours are also eliminated),

(ii) path elimination constraints (21) and (22).

4 Separation algorithms

Efficient separation procedures for the model constraints and valid inequalities introduced in Sec-

tion 3 are crucial for the computational performance of the overall branch-and-cut framework.

Failing to find violated inequalities in a quick manner results in increased run-times. In the follow-

ing, we discuss the heuristic and exact procedures used for separating the valid inequalities.

Let x∗ be the LP solution for which the inequalities are required to be separated. We call x∗a the

capacity/weight of arc a ∈ A. Define Cs(x
∗) as the set of strongly connected components of customer

nodes in x∗. For each strongly connected component C ∈ Cs(x
∗), there can be sent a positive flow

between all nodes i, j ∈ C. The set of weakly connected components Cw(x∗) of customer nodes

equals the set of strongly connected components on a modified graph G′ = (V,A′), where each arc

(i, j) ∈ A′ has capacity x∗ij := x∗ij + x∗ji. For convenience, we refer to Cs(x
∗) and Cw(x∗) by Cs and

Cw, respectively. Note that finding connected components is done by standard depth-first search

methods.

Before discussing our new separation algorithms, we briefly summarize the separation algorithms

described in the literature that are exploited in our branch-and-cut algorithm. The seperation
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algorightms for the CAT inequalities (9) and the D+
k and D−k inequalities (5) and (6) are adapted

versions of the separation procedures described by Fischetti and Toth [10]. For both the CAT

inequalities and the D+
k and D−k inequalities, we first identify the set of weakly connected compo-

nents Cw. Then, separation is done for each component separately. For the CAT inequalities, we

have to impose our definition of arc incompatibility (see Section 3.2.1) in order to remain valid for

A-MDVRPs. Regarding the D+
k and D−k inequalities, we refrain ourselves from using the heuristic

procedure described by Fischetti and Toth [10], and instead use the exact separation procedure for

separating these inequalities as its run-time is negligible compared to the overall run-time of the

branch-and-cut algorithm.

The separation of D+
k and D−k tour size constraints for the A-MDmTSP is done by the same

procedure as for the regular D+
k and D−k inequalities. However, we simply prune a partial tour as

soon as the depth-first search method considers tour larger or equal to `min, and we automatically

have a separation algorithm for the D+
k and D−k tour size constraints. Note that `max is enforced

by setting the vehicle capacity equal to `max and all customer demands qi (i ∈ V ) equal to 1.

Moreover, we separate the subtour elimination constraints (4), the large- and homogeneous mul-

tistar inequalities, and the framed capacity inequalities (see Section 3.2.3) with the help of the

procedures given by Lysgaard et al. [18]. However, these separation algorithms are tailored for

capacitated routing problems with a single depot and a symmetric edge set. In order to still be

able to use those separation algorithms, we modify the arc capacities to x̂∗ij := x∗ij +x∗ji. We ensure

that xij + xji < 1 for all i, j ∈ V by means of explicitly including all the subtour elimination

constraints of size 2.

4.1 D+
k and D−k depot-fixing constraints

We now introduce the separation algorithm for the Dk depot constraints (7) as described by The-

orem 2. We only discuss the separation of the D+
k depot constraint since the separation algorithm

for the D−k depot constraint (8) can be obtained by swapping the indices. The separation algo-

rithm is based on a depth-first search with sophisticated pruning rules. This may sound similar

to the separation of D+
k and D−k inequalities as described by Fischetti and Toth [10], however, the

separation algorithm differs structurally as will be made clear in the following.

Let I = {i1, i2, . . . , ik} ⊆ V be a sequence of distinct customer nodes. To be valid for the integer

polytope of the A-MDVRP, it is sufficient to only consider sequences I for which
∑

s∈D x
∗
i1,s

+
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∑
s∈D x

∗
s,ik

> 1. Furthermore, we only consider sequences I for which each customer is an element

of the same connected component.

Observe that partitioning the set of depots into O and O2 := D \O only affects the first two terms

of (7) and is independent of the other terms. For a given LP solution x∗, we find the partitioning

corresponding to the highest violation by greedily assigning depots into a set such that it contributes

the most to the violation, that is, we assign a depot s ∈ D to O if x∗i1,s ≥ x
∗
s,ik

and to O2 otherwise.

For the optimal partitioning we have∑
s∈O

xi1,s +
∑

s∈D\O

xs,ik =
∑
s∈D

max
{
x∗i1,s, x

∗
s,ik

}
.

To find the sequence I with the largest violation φ(I), we use a depth-first search approach similar

as for the Dk inequalities without depots. For each weakly connected component C ∈ Cw, we

consider all pairs of customers nodes i, j ∈ C for which
∑

s∈D x
∗
i1,s

+
∑

s∈D x
∗
s,ik

> 1. For any pair,

we initialize the sequence I = {i, j} and iteratively explore all options under the restriction that

node i remains first and node j remains last in the sequence. At each iteration, we calculate the

degree of violation and a valid inequality is returned when a positive violation is observed.

A pruning rule is used to avoid a complete enumeration of all sequences. Let B = {b1, . . . , bη} ⊆

V \ I be the sequence of η customer nodes that is inserted into I such that we obtain I+ =

{i1, . . . , ik−1, b1, . . . , bη, ik}. We let ∆(I | B) denote the violation increase when B is inserted into

I. By explicitly deriving ∆(I | B) = φ(I+)− φ(I) we get

∆(I | B) = x∗ik,bη + x∗b1,ik−1
− x∗ik,ik−1

− η

+

η∑
j=1

x∗i1,bj +
k−1∑
h=1

η∑
j=1

x∗ih,bj +

η−1∑
h=1

η∑
j=h+1

x∗bh,bj

+

η∑
h=2

x∗bh,bh−1
+

η∑
h=1

x∗bh,ik .

(23)

Observe that the total weight of the incoming arcs into B is at most x∗(V ′,B) = η since |B| = η.

Furthermore, x∗(V ′,B) = x∗(D,B) + x∗(V,B) and thus x∗(V,B) = η − x∗(D,B). It follows that

x∗(V,B) ≤ η −
∑

s∈D x
∗
s,b1

. Consequently,

x∗ik,bη +

k−1∑
h=1

η∑
j=1

x∗ih,bj +

η−1∑
h=1

η∑
j=h+1

x∗bh,bj +

η∑
h=2

x∗bh,bh−1
≤ x∗(V,B) ≤ η −

∑
s∈D

x∗s,b1 . (24)

Substituting (24) into (23) gives

∆(I | B) ≤ x∗b1,ik−1
−
∑
s∈D

x∗s,b1 − x
∗
ik,ik−1

+

η∑
j=1

x∗i1,bj +

η∑
h=1

x∗bh,ik . (25)
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The third term of the right-hand side of (25) is a known constant for any sequence I. Furthermore,

the fourth term (i.e., the sum of weights from node i1 towards a node of the new inserted sequence B)

is at most 1−α where α is the current outgoing weight from node i1. The fifth term (i.e., the sum

of weights from all nodes of B towards node ik) is at most 1 − β where β is the current incoming

weight into node ik. For a given sequence I we have,

α(I) =
∑
s∈D

x∗i1,s +
k∑

h=2

x∗i1,ih ,

β(I) =
∑
s∈D

x∗s,ik +
k−1∑
h=1

x∗ih,ik .

Substituting the upper bounds 1− α(I) and 1− β(I) into (25) gives

∆(I | B) ≤ x∗b1,ik−1
−
∑
s∈D

x∗s,b1 − x
∗
ik,ik−1

+ 2− α(I)− β(I). (26)

Upper bound (26) only depends on the known sequence I and on the first node of the sequence B.

Hence, the upper bound can be exploited during the depth-first search to prune parts of the

enumeration tree.

For a particular I, let φ(I) be the current violation of (7). Moreover, let φmax be the largest

violation of (7) found so far during the depth-first search. We know that if φ(I)+∆(I | B) ≤ φmax,

the customer sequence I and all its further extensions in the enumeration tree can be pruned.

Using the upper bound (26) on ∆(I | B), we obtain the following pruning rule,

x∗b1,ik−1
−
∑
s∈D

x∗s,b1 ≤ φmax − φ(I) + α(I) + β(I) + x∗ik,ik−1
− 2. (27)

This rule is easily incorporated in the depth-first search by maintaining the values of α(I), β(I),

and φ(I) in the following way:

α(I+) = α(I) + x∗i1,b1 ,

β(I+) = β(I) + x∗b1,ik ,

φ(I+) = φ(I) + x∗ik,b1 + x∗b1,ik−1
− x∗ik,ik−1

+ x∗i1,b1

+ x∗({i1, . . . , ik−1}, b1) + x∗b1,ik − 1.

4.2 Separating path-elimination constraints

Separating the depot fixing constraints (3) and (21) has been done for symmetric edge sets by

Belenguer et al. [6]. However, for asymmetric arc sets some structurally different steps need to be
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taken. For completeness, we fully describe our separation procedure.

We first discuss the separation of inequalities (3), and then we discuss the changes required for

separating inequalities (21). Recall that a violated inequality (3) is determined by two nodes

i, j ∈ V , a subset S ⊂ V \{i, j}, and a subset I ⊂ D.

For each C ∈ Cw, we consider all pairs of customer nodes i, j ∈ C. Given i and j, we can determine

I ⊆ D such that
∑

o∈I x
∗
oi +

∑
s∈D\I x

∗
js is maximized. Two things are noticed: (i) finding I is

independent of finding S ⊂ V such that x(γ(S ∪ {i, j})) is maximized, and (ii) if that particular

sum is smaller than one, there will be no violated inequality (3) since we assume that the subtour

elimination constraints are already satisfied.

After having determined candidate nodes i and j, we need to find a subset S ⊂ V in order to

maximize x(γ(S∪{i, j})). We consider a modified graph G̃ = (Ñ , Ã), with Ñ = D∪Cw∪{s+}∪{s−},

where s+ is an artificial source node and s− an artificial sink node. Let Ã := {(i, j) : i, j ∈ Ñ}. Let

cuv be the arc capacity of any (u, v) ∈ Ã, where cuv := x∗uv + x∗vu. Moreover, we create arcs from

s+ to both i and j, and we create arcs from each o ∈ D to s+, all with a large enough capacity

making them not being selected in a minimum cut.

We then determine the minimum weighted (s+, s−)-cut in graph G̃. All the nodes on the s+-side

of the minimum weighted cut will be part of the set S. If the found I, S, i, and j lead to a violated

inequality (3), we add it to the model.

Summarizing, this method is exact and finds for every i and j a depot-fixing inequality with the

largest violation in the form of inequality (3). The method can be easily adapted to separate

constraints (21), since only calculating the sums corresponding to the connection of i and j to the

depots is different. This remains independent from the remaining separation procedure, and hence,

no structural changes are required except calculating the depot sums differently.

4.3 Comb inequalities

Separation of ATSP comb inequalities (11) is done by means of the procedure of Lysgaard et al.

[18] for finding strengthened comb inequalities. The procedure returns a handle H ⊂ V ′ and a

set of teeth T1, . . . , Tπ ⊂ V ′. To check the returned inequalities for validity for the A-MDVRP, we

verify whether T` ∪ Tk = ∅ for all `, k ∈ {1, . . . , π} with ` 6= k. As is described in Proposition 1, we

check which element contains the depot, and insert all other depots in the same element. If (11) is

Valid Inequalities and a Branch-and-Cut Algorithm for Asymmetric Multi-Depot Routing Problems

CIRRELT-2019-02 21



violated, we add the valid inequality to the model.

In order to separate T -comb inequalities, we consider two different separation algorithms. First,

we focus on T -comb inequalities with a single tooth T , and refer to those inequalities as T1-comb

inequalities. The second separation algorithm finds general T -comb inequalities (with multiple

teeth).

Both separation procedures are based on a greedy search for finding violated T (1)-comb inequalities,

similar as in Benavent and Mart́ınez [7] but with some minor adaptations. For completeness, we

fully describe our heuristic separation procedure.

We first get all weakly connected components Cw and in each of those connected components we

perform the following greedy search. For the T1-comb inequalities, we search a tooth T that

contains a single depot, and we iteratively add customers so that δ+(x(T )) is as small as possible.

We stop when adding a customer results in x(δ+(T )) < 2. We initialize the handle H = V ∩T , and

iteratively add customers so that x(δ+(H)) is as small as possible. Then, if x(δ+(T ))+x(δ+(T )) < 4,

a violated T1-comb inequality is found. Notice that we repeat this greedy search for each depot in

each weakly connected component.

T -comb inequalities are found by a similar procedure, except that we need to find multiple teeth

instead of a single tooth. For each connected component, we create for each depot a tooth as for

the T1-comb inequalities. This results in a collection of teeth of size d, the number of depots.

Then the following procedure is repeated n1 times. We take an arbitrary subset of teeth, and

check whether the teeth are not pairwise disjoint, and check whether the teeth spans the complete

connected component. In either case, no violated T -comb inequality can be found and we continue

with a new random selection of teeth.

What remains is to search for handle H. We initialize H with Cw ∩ V and iteratively remove

customers from H while checking for a violated T -comb inequality with the current set H and the

randomly selected teeth. If no customers remain in H, the search is terminated and we start over

with a new random selection of teeth.
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5 Branch-and-cut algorithm

Our branch-and-cut framework for solving A-MDVRPs consists of two simultaneously running

algorithms. First, we have the branch-and-cut algorithm including the valid inequalities and ac-

companying separation algorithms that are discussed throughout Sections 3 and 4. Second, we

have designed a simple yet effective upper bound procedure based on the δ-compact formulation

(Pδ).

We note that the following chosen parameter values and the order of calling valid inequalities are

the result of an extensive preliminary computational campaign. These values are kept fixed for all

the different problem variants solved with the branch-and-cut framework. One might argue that

different parameter values for each problem variant would perform better, however, we chose not

to do so since using parameter values that work well on all problem types enhances the general

applicability of the branch-and-cut framework.

5.1 A novel and easy to implement upper bound procedure

The upper bound procedure is based on iteratively solving the δ-compact formulation (Pδ) as

introduced in Section 2.1. Recall that this formulation is obtained from (Pc) by removing the

(n− δ) most expensive outgoing arcs to customers at each customer node.

For a given δ, we solve the δ-compact formulation with standard off-the-shelf commercial MIP

solvers. We use Gurobi 8.0, since preliminary experiments have shown that it provides high quality

upper bounds relatively fast. When a new solution is found, we store the corresponding solution

into a global variable that is accessible by the branch-and-cut algorithm (implemented in CPLEX

12.8). The branch-and-cut algorithm checks during its search for improved upper bounds, and

whenever available, it uses the solution provided by (Pδ) as new incumbent solution.

The overall working of the upper bound procedure is as follows. We iteratively solve δ-compact

formulations. We differentiate three different phases in our upper bound procedure, where each

phase is characterized by a series of values for δ and a maximum run-time. In the first phase, we

allow for a short run-time for small values of δ in order to find an upper bound relatively quick.

The second phase allows for more time solving (Pδ), starting at the δ that has provided the best

upper bound from the first phase. If the second stage is finished, we turn to a third phase that is

characterized by long run-times and large deltas.
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When we increase δ or change from phase, the new model is initialized with the best solution so

far. Based on initial experiments, for the first phase we range δ from 5 to min{10, |V |} with a

maximum run-time of 20 seconds for each δ. In the second phase, we set the maximum run-time to

300 seconds and let δ range up to min{25, |V |}. Finally, the run-time is increased to 600 seconds

and we let δ range up to min{50, |V |}.

Using the upper bound procedure has three clear advantages. First, if the upper bound becomes

close enough to the lower bound, variable fixing (i.e., pricing out variables by their reduced costs)

will eliminate a significant number of variables thereby decreasing the problem size. Second, the

branch-and-bound tree will have a smaller size, thereby being easier and quicker to maintain.

Third, CPLEX will normally dive into the branch-and-bound tree in order to find some incumbent

solution. We noticed that this behaviour of CPLEX is less expensive in terms of run-time when

the upper bound from the matheuristic (using Gurobi) is used to provide new incumbent solutions.

5.2 Branch-and-cut implementation

The separation algorithms are coded in the user- and lazy callback routines of CPLEX 12.8. The

user callback is called for every fractional LP solution, whereas the lazy callback is called for every

integer LP solution. As the user callback is rather expensive in terms of run-time, it is only called

for the first Nuser nodes of the branch and bound tree, and once these are processed it is called once

every F user branch-and-bound nodes. We examine the branch-and-bound nodes in a worst-bound

first manner, which implies that we call our separation algorithms on branch-and-bound nodes that

determine the current global lower bound. Initial experiments have shown that Nuser = 200 and

F user = 200 are suitable values for all problem types.

The root-node of the branch-and-bound tree is additionally controlled by the parameter N root which

specifies the maximum number of so-called cut loops (i.e., the number of times iterating between

solving the LP relaxation and adding valid inequalities). Although adding more valid inequalities

to the root node will increase the LP relaxation, it will also result in more complex rows of the

simplex tableau that are notoriously more difficult to process efficiently, leading to increased run-

times for finding LP relaxations in branch-and-bound nodes. Initial experiments have shown that

N root = 250 is a suitable value for all problem types.

An overview of all the valid inequalities included in the branch-and-cut algorithm is provided in

Table 2. It specifies the order in which all separation routines are executed, which is kept fixed
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throughout all the numerical experiments as presented in this paper. We employ a few common

acceleration strategies to speed-up the branch-and-cut algorithm. First, while calling the valid

inequalities in the order as specified in Table 2, we terminate the callback procedure as soon as one

of the valid inequalities has found an inequality violating the current LP solution. Second, a valid

inequality is only added if it is violated by more than a predetermined threshold. Third, we limit

the number of valid inequalities that we add during each call of their corresponding separation

procedures.

Table 2: Branch-and-cut details regarding the order of separation procedures being called, their violation

threshold, and the maximum number of added inequalities per call of the separation procedure. A * indicates

that there is no limit on the number of added inequalities

Order Valid inequality Threshold Max number of cuts

1 Subtour Elimination constraints (4) 0.1 100

2 Path-eliminating constraints (3) or (21) 0 *

3 D+
k - and D−

k depot constraints (7) and (8) 0 *

4 D+
k - and D−

k tour size constraints (19) and (20) 0 *

5 CAT inequalities (9) 0 *

6 D+
k - and D+

k inequalities (5) and (6) 0 *

7 Framed capacity inequalities (17) 0.1 10

8 Homogeneous multi-star inequalities (15) 0.1 10

9 Generalized large multi-star inequalities (16) 0.1 10

11 ATSP-comb inequalities (12) 0.1 5

11 T1-comb inequalities (14) 0.1 5

12 T-comb inequalities (14) 0.1 5

In addition, we include all subtour elimination constraints of size 2 directly into our model formula-

tion. We also consider subtour elimination constraints of size 3 and size 4, but including all of them

is computationally intractable. Hence, we include, for each customer node, the 5 vehicle subtours

of shortest length. We add those to a pool of lazy constraints which are then automatically checked

for violation at each integer LP solution during the branch-and-bound. Moreover, for instances

with more than 100 customers we do not consider vehicle subtours of size 4, and for instances with

more than 200 customers we do not consider subtours of size 3. Finally, when solving A-MDTSP

instances, we limit the maximum number of outgoing arcs of any depot to 1.
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6 Numerical experiments

In this section, we assess the numerical performance of the branch-and-cut framework. We start

by comparing the performance of our branch-and-cut framework with the (only yet existing) set

of benchmark instances for A-MDVRPs by Bektaş et al. [4]. Thereafter we propose a set of newly

developed benchmark instances. These instances are then used to study the impact of the valid

inequalities on the root node optimality gaps, and to examine the numerical performance of our

complete branch-and-cut-framework.

To study the effectiveness of the proposed branch-and-cut framework (i.e., the valid inequalities

and the upper bound procedure), we compare the framework with a standard branch-and-cut

algorithm consisting of subtour elimination constraints and the depot-fixing constraints in the

fashion of Laporte et al. [14], which are commonly used in the literature (see, e.g., Belenguer et al.

[6]) and can be considered state-of-the-art. We refer to this standard branch-and-cut algorithm

without the upper bound procedure and without the new valid inequalities as the basic algorithm.

Our branch-and-cut framework is implemented in C++17 and uses CPLEX 12.8 for the branch-

and-cut algorithm and Gurobi 8.0 for the upper bound procedure. All experiments are performed

on an Intel Xeon E5 2680v3 CPU (2.5GHz) with 24GB memory. Our framework uses six parallel

running threads (which are commonly available on new desktop machines), from which five are

assigned to the branch-and-cut algorithm and one to the upper bound procedure. Besides the

24GB memory, we allow the algorithms to store nodes on a hard drive with 50GB storage. We note

in advance that the additional storage is particularly used by the basic algorithm and is typically

not required for our branch-and-cut framework. In order to foster future research, we provide free

access to our implementation of the algorithms and to our benchmark instances2.

6.1 Comparison to Bektaş et al. [4]

To the best of our knowledge, there is only a single set of benchmark instances available that

coincides with one of the four problem variants we consider in this study. Namely, the A-MDTSP

instances of Bektaş et al. [4].

The performance of our branch-and-cut framework on the instances of Bektaş et al. [4] is shown

in Table 3. For each instance, we present the root node relaxation, the best upper bound, and

2When published: URL of public Github repository here
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the run-time in seconds. Column ∆Gap (%) presents the relative root node gap reduction of our

framework compared to the algorithm of Bektaş et al. [4], where we defined the gap as the difference

between the optimal objective value and the root node relaxation.

Table 3: Results on the benchmark instances of Bektaş et al. [4]. The lower bounds of the two unsolved instances
(marked with an asterisk symbol) are 1624 and 1614. The column ∆Gap (%) shows the relative gap reduction
between the root node relaxation and the optimal objective value of our framework compared to that of Bektaş et al.
[4]

Results of Bektaş et al. [4] Branch-and-cut framework

Root obj. time (s) Root obj. time (s) ∆Gap (%)

bgs-100-05-1a 865.00 879 5 879.00 879 3 100.0
bgs-100-10-1a 856.25 873 20 871.04 873 5 88.3
bgs-100-20-1a 848.85 861 25 857.72 861 5 73.0
bgs-100-05-2a 948.54 954 5 954.00 954 2 100.0
bgs-100-10-2a 945.37 952 5 952.00 952 2 100.0
bgs-100-20-2a 931.00 933 4 933.00 933 1 100.0
bgs-100-05-3a 893.41 904 13 904.00 904 4 100.0
bgs-100-10-3a 890.92 904 28 901.46 904 7 80.6
bgs-100-20-3a 871.07 879 30 877.02 879 5 75.0
bgs-200-10a 1291.88 1296 5 1296.00 1296 5 100.0
bgs-200-20a 1290.14 1295 5 1295.00 1295 4 100.0
bgs-200-40a 1288.33 1293 12 1293.00 1293 18 100.0
bgs-300-10a 1609.54 * 1627 10800 1621.12 1626 292 70.4
bgs-300-20a 1604.09 1622 10387 1615.56 1622 220 64.0
bgs-300-30a 1599.22 * 1617 10800 1610.64 1617 173 64.2
bgs-300-40a 1593.11 1606 799 1602.08 1606 62 69.6
bgs-300-60a 1583.37 1592 533 1590.72 1592 166 85.2

Average 1171.18 - 1969 1179.61 - 57 86.5

Our framework solves all instances within five minutes, thereby solving two instances that were not

solved before (namely bgs-300-10a and bgs-300-30a). We also improve the best known upper bound

for instance bgs-300-30a, which is underlined and bold. The run-times for small instances (up to

200 customers) are comparable, and for the larger instances we clearly outperform the algorithm of

Bektaş et al. [4]. For instance, our framework solves instance bgs-300-20a around fifty times faster

than the algorithm of Bektaş et al. [4]. Furthermore, the developed valid inequalities are able to

considerably close the root node gaps for all instances (on average by 86.5% compared to Bektaş

et al. [4]), and eight instances are solved in the root node.
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6.2 New benchmark instances

We consider three classes of asymmetric cost-structures (called I, II, and III), which are in line with

the ATSP instances of Fischetti and Toth [10]. Recall that cij is the traveling cost between nodes

i, j ∈ V ′, and let U{a, b} denote the uniform integer distribution with support {a, a+1, . . . , b−1, b}.

The three asymmetric cost-structure classes are generated as follows.

I. cij ∼ U{1, 1000}.

II. cij := aij + bij , where aij = aji ∼ U{1, 1000} and bij ∼ U{1, 20}.

III. cij := dij + bij , where dij is the floored Euclidean distance between i and j, and bij is as

defined above.

For the instances of Class III, we considered a grid [0, 500] × [0, 500] from which we draw the

geographical locations of the nodes. For half of the nodes, we did this uniformly along the grid,

while for the other half, we created clusters of random sizes.

In total, we consider twelve problem categories, namely four problem variants (A-MDTSP, A-

MDmTSP, A-MDCVRP, A-CLRP) with each three asymmetric cost-structures (I, II, III). We

varied the number of customers and depots for each of the problem variants. The A-MDTSP

instances range from 200 – 400 customers with 30–50 depots, the A-MDmTSP instances contain

between 50 – 100 customer with 5 – 20 depots, and the A-MDCVRP and A-CLRP instances consist

of 40 – 85 customers and 5 – 20 depots. For each considered combination of the number of customers

and the number of depots we created three replications. Thus we have 45× 3, 69× 3, 63× 3, and

63× 3 instances for the A-MDTSP, A-MDmTSP, A-MDCVRP, and A-CLRP, respectively, giving

a total of 720 instances.

Each instance is named XX n r x, where XX is the problem variant considered (i.e., A-MDTSP,

A-MDmTSP, A-MDCVRP, A-CLRP), n is the number of customers, r is the number of depots,

and x the replication index.

The other parameter values are independently drawn from a uniform distribution for each instance.

For the A-MDmTSP, we draw the minimum tour length uniformly between 2 and 6, and the

maximum tour length uniformly between 15 and 25. For the A-MDCVRP, we let customers demand

be random between 15 and 25, and the vehicles capacity is uniformly drawn between 150 and 300.

For the A-CLRP, capacity characteristics are equal to the A-MDCVRP and the depot opening costs
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are generated uniformly between 500 and 3000 for each instance. An overview of all the instances

and the detailed results of solving these with basic algorithm and the branch-and-cut framework

are provided in the appendix in Tables 8–15.

6.3 Valid inequalities and effect on root node

To examine the effect of the proposed valid inequalities on the root node relaxation, we consider

six combinations of the valid inequalities discussed in this study. To provide a fair comparison of

the impact of our inequalities, we disabled all standard CPLEX cuts that are otherwise added by

default. We remark that similar results were observed when these cuts are enabled.

Table 4 presents the average root node relaxation when only the path elimination constraints by

Laporte et al. [14] are used (column Path), when only the Dk depot inequalities are used (column

Dk depot), and when both are used (column Both). To show the effect of the other valid inequalities,

we include the root node results with and without separating the other valid inequalities for each

of the three different depot fixing methods. Next, we define the root node gap as the difference

between the best known solution and the root node relaxation. The column ∆Gap (%) shows

the average and maximum percentage of the root node optimality gap reduction when we use our

complete branch-and-cut framework (i.e., with fract. cuts, Both) instead of the basic algorithm

(i.e., without fract. cuts, Path).

Adding the proposed valid inequalities reduces root node optimality gaps with 16.5%, 8.3%, 7.8%,

and 0.4% on average for the A-MDTSP, A-MDmTSP, A-MDCVRP, and A-CLRP instances, re-

spectively. Furthermore, the asymmetry class considerably affects the effectiveness of the proposed

valid inequalities, as the root node gap reduces on averages by 1.5%, 9.5%, and 13.8% for the

asymmetry classes I, II, and III, respectively. Thus, for the first three problem types, the effect

of the added valid inequalities is clearly visible in the root node optimality gaps, whereas for the

last problem type the strength of the valid inequalities will become more clear in the complete run

of the branch-and-cut framework (discussed in the next section). This is mainly related to the

large root node optimality gaps of the A-CLRP instances (mostly between 20-30%) and for the

A-MDTSP-I (mostly larger than 75% due to the lack of reasonable upper bounds), while the other

problem types typically have a root node optimality gap smaller than 10%.

In addition, using the Dk depot inequalities instead of the path elimination constraints results in

higher root node relaxations for 715 out of 720 instances. Including our fractional valid inequalities
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Table 4: Average root node lower bounds for various combinations of valid inequalities

without fract. cuts with fract. cuts ∆Gap (%)

Type Asy. Path Dk depot Both Path Dk depot Both Avg. Max.

A-MDTSP I 1395.0 1395.6 1395.6 1395.4 1396.0 1396.0 1.6 17.4
II 4025.0 4027.3 4027.3 4026.7 4028.9 4028.9 20.7 67.2
III 7715.8 7729.3 7729.3 7734.1 7747.1 7747.1 27.2 49.4
Avg. 4378.6 4384.1 4384.1 4385.4 4390.7 4390.7 16.5 -

A-MDmTSP I 1485.4 1485.8 1485.9 1486.1 1486.6 1486.6 1.4 14.5
II 2530.9 2537.6 2537.7 2533.3 2540.0 2540.0 10.1 32.3
III 3722.9 3738.5 3738.5 3732.6 3748.0 3748.0 13.5 35.8
Avg. 2579.7 2587.3 2587.4 2584.0 2591.5 2591.5 8.3 -

A-MDCVRP I 1486.7 1488.9 1489.0 1488.0 1490.2 1490.3 2.5 28.3
II 2388.1 2396.1 2396.1 2392.7 2400.7 2400.8 6.7 30.0
III 3482.1 3497.5 3497.5 3493.9 3507.0 3507.0 14.3 50.5
Avg. 2452.3 2460.8 2460.9 2458.2 2466.0 2466.0 7.8 -

A-CLRP I 2565.8 2566.4 2566.4 2566.9 2567.5 2567.5 0.4 7.0
II 3495.3 3497.2 3497.2 3497.0 3498.6 3498.6 0.4 1.6
III 4318.7 4319.9 4319.9 4324.9 4325.8 4325.8 0.5 2.0
Avg. 3459.9 3461.2 3461.2 3462.9 3464.0 3464.0 0.4 -

does (almost) not affect the difference between the column Path and Dk depot . We conclude

that the Dk depot inequalities are computationally stronger than the traditional path elimination

constraints, however, the two inequalities are not redundant to each other. We therefore choose to

use both the traditional path elimination constraints and the Dk depot constraints in the branch-

and-cut framework.

To show the notable performance of the proposed valid inequalities for some particular instances, we

zoom in on instance A-MDTSP-II 20 200 1 with optimal objective value 3240. Adding all proposed

inequalities increases the root node relaxation from 3227.4 to 3235.9, i.e., the root node optimality

gap is closed by 67.2%. We note that both algorithms solve the root node within a second.

6.4 Performance of the branch-and-cut framework

We solved all benchmark instances of the 12 problem categories with both the branch-and-cut

framework and the basic algorithm. Recall that the basic algorithm can be considered as what is

readily known in the literature for solving the A-MDVRP, namely, it is a branch-and-cut algorithm

with subtour elimination constraints and the traditional path elimination constraints.

Tables 5–7 present various summary statistics of the basic algorithm, the branch-and-cut frame-
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Table 5: Summary statistics of the performance of the basic algorithm. Nsol gives the number of instances
for which a feasible solution is found, #≤x% indicate the number of instance with an optimality gap smaller
or equal to x%, and nodes is the number of processed branch-and-bound nodes

Type Asy. #inst Nsol #≤0% #≤1% #≤5% LB time (s) nodes (103)

A-MDTSP I 45 14 7 8 10 1403.80 15368* 107
II 45 41 33 39 40 4041.02 5886* 46
III 45 45 28 43 45 7819.31 7876* 129

A-MDmTSP I 69 47 29 30 32 1535.74 10993 82
II 69 65 46 49 52 2605.44 7628 80
III 69 69 48 50 60 3883.13 6330 83

A-MDCVRP I 63 51 31 31 35 1567.79 10620 105
II 63 44 18 19 20 2470.18 13237 97
III 63 62 42 44 56 3636.46 7314 144

A-CLRP I 63 55 35 36 37 2986.91 9163 56
II 63 49 29 31 32 4266.30 10256 56
III 63 52 24 24 29 5383.89 12037 134

*We remark that 29, 9, and 19 out of 45 A-MDTSP instances stopped prematurely by reaching the memory limit.

Table 6: Summary statistics of the performance of the branch-and-cut framework. Nsol gives the number
of instances for which a feasible solution is found, #≤x% indicate the number of instance with an optimality
gap smaller or equal to x%, and nodes is the number of processed branch-and-bound nodes

Type Asy. # inst Nsol #≤0% #≤1% #≤5% LB time (s) nodes (103)

A-MDTSP I 45 45 12 12 18 1412.43 13980* 127
II 45 45 39 39 41 4043.86 4399 21
III 45 45 45 45 45 7831.82 2400 14

A-MDmTSP I 69 69 41 45 58 1557.13 7887 82
II 69 69 59 59 65 2617.60 3967 65
III 69 69 56 61 69 3897.58 4657 82

A-MDCVRP I 63 63 37 38 48 1592.97 7894 107
II 63 63 25 26 38 2516.33 11430 141
III 63 63 44 51 63 3652.26 6693 139

A-CLRP I 63 63 43 47 57 3018.25 7050 65
II 63 62 35 36 51 4329.92 8517 80
III 63 63 25 26 40 5590.65 11492 132

*We remark that 13 out of 45 A-MDTSP instances stopped prematurely by reaching the memory limit.

work, and a comparison of both, respectively. For detailed information on an individual instance

level, we refer to Tables 8–15 in the Appendix. In Tables 5 and 6, the columns #≤x% indicate the

number of instances with an optimality gap smaller than x%, LB is the average lower bound of

all instances, time is the average run-time of all instances, and nodes is the number of processed

branch-and-bound nodes. In Table 7, time denotes the average run-time for instances that are

solved to optimality by both algorithms, gap presents the average gap for instances that are not

solved to optimality by one of the algorithms, and LB is the average lower bound for the remaining
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Table 7: Summary statistics comparing both algorithms. Time is the average time of the instances that
are solved by both algorithms, gap the average gap of the instances where both algorithms found an upper
bound but at least one did not prove optimality, and LB the average lower bound of the remaining instances,
i.e., at least one algorithm did not find an upper bound.

basic algorithm branch-and-cut framework

Type Asy. time (s) gap (%) LB time (s) gap (%) LB

A-MDTSP I 1080 21.3 1396.6 406 1.3 1407.5
II 1481 2.7 4329.4 1051 9.3 4344.5
III 1729 0.6 - 869 0.0 -

A-MDmTSP I 1327 196.6 1590.7 104 0.9 1632.3
II 2442 104.7 2659.4 362 1.1 2704.9
III 1224 6.6 - 376 1.1 -

A-MDCVRP I 3003 156.6 1545.3 344 2.8 1596.0
II 1329 103.3 2634.4 164 3.4 2697.7
III 1971 5.3 4253.8 1121 1.4 4341.2

A-CLRP I 2094 33.8 3444.2 364 1.4 3534.6
II 1177 45.6 4622.7 252 2.5 5009.7
III 2348 28.1 5757.3 1519 5.0 6194.9

Avg. 1832 63.1 2656.3 586 2.4 2770.2

instances (i.e., instances for which at least one algorithm could not find a feasible solution).

The key observation is that our branch-and-cut framework solves considerably more instances to

optimality for each problem type. For instance, from the 69 A-MDmTSP-I instances, our framework

solves 41 instances to optimality, while the basic algorithm only solves 29 instances. The main

reason is that the branch-and-cut framework provides higher lower bounds than the basic algorithm,

which is observed uniformly for all the 12 problem categories. For the A-MDmTSP-I instances, the

average lower bound increases from 1535.74 to 1557.13.

Second, the basic algorithm has difficulty finding feasible solutions, which our framework effectively

overcomes by using the upper bound procedure described in Section 5.1. The basic algorithm fails to

find feasible solutions for 35, 26, 32, and 33 instances of the A-MDTSP, A-MDmTSP, A-MDCVRP

and A-CLRP, respectively, whereas the branch-and-cut framework finds feasible solutions to all

instances. This is as well exemplified by the number of instances with relatively small optimality

gaps. Using the branch-and-cut framework instead of the basic algorithm increases the number of

instances with optimality gaps smaller than 5% from 90 to 104, from 144 to 194, from 111 to 151,

and from 100 to 150 for the four problem variants, respectively. The average optimality gap for the

instances for which both algorithms found feasible solutions but did not solve to optimaly, equals

2.4% for the branch-and-cut framework and 63.1% for the basic algorithm, as is shown in Table 7.
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Comparing the run-times of the basic algorithm and the branch-and-cut framework, it should be

noted that the branch-and-cut framework is on average faster than the basic algorithm for each

of the 12 problem categories. Significant run-time decreases can be found when we zoom in on

individual instances. For instance, A-CLRP-II 75 10 2 is solved to optimality by both algorithms,

however the basic algorithm needs 13549 seconds compared to 1422 seconds for the branch-and-cut

framework, which is around ten times faster. On average, the run-time of the instances solved

to optimality by both algorithms equals 586 seconds for the branch-and-cut framework and 1832

seconds for the basic algorithm, as is denoted in Table 7.

In addition, due to adding all valid inequalities, the branch-and-bound tree is searched more ef-

fectively. This has two major consequences. First, for some problem categories, this leads to a

reduction in the number of processed branch-and-bound nodes. For instance, a reduction from

129 · 103 to 14 · 103 for problem category A-MDTSP-III. Second, searching the branch-and-bound

tree more effectively may result in the pruning of more branch-and-bound nodes, and thereby the

ability to process more nodes. In other words, memory is used more efficiently which is exemplified

by the number of instances stopped before the time limit due to reaching the memory limit of 75GB

(57 versus 13).

Finally, a difference in computational performance is noted among the different asymmetry classes.

Comparing between the basic algorithm and the branch-and-cut framework, it is notable that espe-

cially for asymmetry class I the number of instances solved to optimality (or within small optimality

gaps) increases when using the branch-and-cut framework instead of the basic algorithm. There

is no clear ordering in the difficulty of the asymmetry classes over the all 12 problem categories.

However, within each problem variant, a clear ordering in difficulty is observed. For the A-MDTSP

and A-MDmTSP, it holds that when distances are closer to the Euclidian one, both algorithms

are able to provide higher quality solutions. For the A-MDCVRP this effect is not as clear, as

asymmetry class II seems to be most difficult there. Finally, for the A-CLRP class, the Euclidean

arc costs with noise (i.e., class III) seems to be most difficult.

7 Conclusion

In this paper we have studied a class of routing problems that are characterized by an asymmetric

cost structure and the presence of multiple depots. Based on the derivation of new valid inequalities

with model-describing capabilities, we have developed a generic branch-and-cut framework that can
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solve multiple variants of the A-MDVRP efficiently.

Backbone of the branch-and-cut framework is a branch-and-cut algorithm that exploits, among

others, a series of generalizations of so-called Dk inequalities that result in a set of constraints that

eliminate subtours, ensure that tours start and end at the same depot, and impose limits on the

maximum number of customers in a tour. Next to the branch-and-cut algorithm, the framework

employs an upper bound procedure which is based on iteratively solving a compact mixed integer

programming formulation of a restricted version of the A-MDVRP.

The computational efficiency of the branch-and-cut framework is assessed on known and new bench-

mark sets. On existing instances of the A-MDTSP our algorithm has proved optimality to all

instances, significantly closing the gaps at the root node compared to a state-of-the-art approach.

Our method uses, on average, only 4.3% of the run-time.

When solving a large set of newly developed benchmark instances for four problem variants of the

A-MDVRP, the derived valid inequalities appear to be effective for three of the problem variants.

For instance, root node optimality gaps are closed by up to 67.2% and on average by 10.2%. To

further assess the performance of the branch-and-cut framework, we developed a basic branch-

and-cut algorithm based on traditional methods to model and solve A-MDVRPs. Overall, the

framework significantly outperforms the basic algorithm as it solves more instances to optimality

due to improved lower bounds and upper bounds. In addition, the new framework is considerably

faster and uses less memory. The performance is exemplified by the ability to solve Asymmetric

Multi-Depot Traveling Salesman Problem instances up to 400 customers and 50 depots (before,

only solutions to instances of 300 customers and 60 depots were available in the literature).

Our implementation of the branch-and-cut framework and the newly constructed benchmark in-

stances are openly shared to stimulate future research in this field. Such future research might take

our branch-and-cut framework as a starting point to solve new and practically inspired routing

problems with asymmetric cost structures and multiple depots.
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Appendix: Solutions to benchmark instances

In Tables 8 - 15 we provide the statistics of solving the benchmark instances with the branch-

and-cut framework and with the basic algorithm. Each table is dedicated to a particular problem

variant, with each four columns of a table indicating the asymmetry class.

Valid Inequalities and a Branch-and-Cut Algorithm for Asymmetric Multi-Depot Routing Problems

36 CIRRELT-2019-02



Table 8: Branch and cut framework solutions to the A-MDTSP instances

Instance
A-MDTSP

I II III

LB UB Gap Nod. time (s) LB UB Gap Nod. time (s) LB UB Gap Nod. time (s)

200 20 0 1395 1395 0.00 0 75 3094 3094 0.00 0 35 6320 6320 0.00 3 229
200 20 1 1392 1392 0.00 3 113 3240 3240 0.00 0 22 5896 5896 0.00 0 392
200 20 2 1574 1574 0.00 36 401 3567 3567 0.00 0 135 5748 5748 0.00 0 373
200 30 0 1348 1348 0.00 309 6582 3313 3313 0.00 0 57 5836 5836 0.00 0 147
200 30 1 1437 1437 0.00 16 341 3470 3470 0.00 0 118 6102 6102 0.00 0 166
200 30 2 1357 1357 0.00 182 4682 3112 3112 0.00 0 69 5927 5927 0.00 3 198
200 40 0 1465 1495 2.07 515 18000 3149 3149 0.00 4 203 5861 5861 0.00 0 75
200 40 1 1472 1520 3.28 483 18000 3450 3450 0.00 5 294 6131 6131 0.00 3 190
200 40 2 1421 1421 0.00 622 11604 3227 3227 0.00 0 60 6526 6526 0.00 0 93
300 20 0 1542 1542 0.00 3 321 3676 3676 0.00 0 131 7660 7660 0.00 0 1462
300 20 1 1474 1474 0.00 2 414 3747 3747 0.00 0 134 7704 7704 0.00 0 1634
300 20 2 1401 1401 0.00 21 1175 3833 3833 0.00 0 372 7535 7535 0.00 1 468
300 30 0 1491 1547 3.74 200 18000 3848 3848 0.00 1 404 7356 7356 0.00 0 517
300 30 1 1524 1566 2.76 151 18000 4245 4245 0.00 3 681 7565 7565 0.00 3 553
300 30 2 1516 1947 28.45 168 18000 3895 3895 0.00 3 513 7282 7282 0.00 1 548
300 40 0 1466 7341 400.62 130 18000 4247 4247 0.00 15 3348 7277 7277 0.00 0 192
300 40 1 1462 3259 122.86 141 16646 3885 3885 0.00 202 16371 7440 7440 0.00 0 738
300 40 2 1364 1549 13.53 191 18000 3943 3943 0.00 13 2054 7323 7323 0.00 19 1947
350 30 0 1410 1410 0.00 105 5720 4339 4339 0.00 24 7065 8047 8047 0.00 1 831
350 30 1 1360 3579 163.18 111 14466 4152 4152 0.00 1 371 8169 8169 0.00 1 1293
350 30 2 1328 1365 2.75 255 18000 4361 4361 0.00 6 1807 8373 8373 0.00 6 1521
350 40 0 1295 4096 216.21 107 14471 4249 4461 5.00 65 18000 8253 8253 0.00 97 6767
350 40 1 1374 4036 193.79 103 16034 4199 4199 0.00 25 4126 8642 8642 0.00 18 2048
350 40 2 1357 13275 878.27 102 15834 4082 4082 0.00 2 887 8214 8214 0.00 7 1001
350 50 0 1434 17573 1125.67 94 18000 4132 4132 0.00 10 3000 8169 8169 0.00 1 747
350 50 1 1483 5980 303.16 105 18000 4245 4245 0.00 4 1794 7843 7843 0.00 0 2383
350 50 2 1349 24896 1745.32 103 17278 4350 51724 1089.17 62 18000 8144 8144 0.00 12 1444
375 30 0 1472 1679 14.06 110 18000 4163 4163 0.00 1 894 8306 8306 0.00 21 3249
375 30 1 1440 1440 0.00 36 3658 4212 4212 0.00 0 705 8516 8516 0.00 2 1510
375 30 2 1429 11941 735.67 78 18000 4393 4393 0.00 0 1039 8668 8668 0.00 18 2901
375 40 0 1396 1857 33.00 74 18000 4557 4557 0.00 35 8574 8550 8550 0.00 2 1486
375 40 1 1440 2263 57.10 84 18000 4346 4346 0.00 6 1654 8850 8850 0.00 0 1356
375 40 2 1374 43445 3061.64 81 13031 4301 4301 0.00 152 11745 8388 8388 0.00 63 8648
375 50 0 1418 7498 428.64 86 18000 4310 4310 0.00 0 925 8885 8885 0.00 1 742
375 50 1 1265 15156 1098.15 80 13544 4283 49826 1063.28 54 18000 8602 8602 0.00 16 2395
375 50 2 1353 52028 3744.53 88 15535 4298 4298 0.00 49 8498 8549 8549 0.00 79 7993
400 30 0 1351 2066 52.93 76 17522 4578 4578 0.00 4 1451 8802 8802 0.00 31 8255
400 30 1 1437 14744 926.33 73 17697 4429 4429 0.00 11 2407 9311 9311 0.00 55 11696
400 30 2 1304 1354 3.82 114 18000 4327 4327 0.00 0 1316 9028 9028 0.00 17 2947
400 40 0 1419 1627 14.68 80 18000 4534 4705 3.78 50 18000 8539 8539 0.00 3 1459
400 40 1 1464 40257 2649.40 68 18000 4534 4534 0.00 1 1844 9053 9053 0.00 55 13157
400 40 2 1404 3356 139.00 61 18000 4447 7587 70.61 56 18000 8766 8766 0.00 31 5334
400 50 0 1378 7168 420.17 80 16237 4277 4277 0.00 3 2257 8848 8848 0.00 7 2023
400 50 1 1391 2937 111.19 71 13682 4496 50245 1017.43 35 18000 8520 8520 0.00 5 1831
400 50 2 1332 17694 1228.88 80 18000 4439 4439 0.00 7 2578 8908 8908 0.00 11 3025
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Table 9: Basic algorithm solutions to the A-MDTSP instances

Instance
A-MDTSP

I II III

LB UB Gap Nodes time (s) LB UB Gap Nodes time (s) LB UB Gap Nodes time (s)

200 20 0 1395 1395 0.00 13 312 3094 3094 0.00 0 24 6320 6320 0.00 92 834
200 20 1 1392 1392 0.00 16 299 3240 3240 0.00 0 25 5896 5896 0.00 7 87
200 20 2 1574 1574 0.00 60 548 3567 3567 0.00 1 41 5748 5748 0.00 3 62
200 30 0 1333 2340 75.59 213 18000 3313 3313 0.00 0 18 5836 5836 0.00 6 70
200 30 1 1437 1437 0.00 149 3255 3470 3470 0.00 1 40 6102 6102 0.00 13 149
200 30 2 1346 1430 6.24 336 14967 3112 3112 0.00 1 42 5927 5927 0.00 97 1020
200 40 0 1444 - - 217 18000 3149 3149 0.00 24 402 5861 5861 0.00 4 64
200 40 1 1453 - - 206 18000 3450 3450 0.00 26 522 6131 6131 0.00 120 1061
200 40 2 1404 - - 186 18000 3227 3227 0.00 0 44 6526 6526 0.00 13 115
300 20 0 1542 1542 0.00 25 493 3676 3676 0.00 0 84 7660 7660 0.00 56 1044
300 20 1 1474 1474 0.00 21 546 3747 3747 0.00 0 43 7704 7704 0.00 2 130
300 20 2 1401 1401 0.00 59 2104 3833 3833 0.00 3 161 7535 7535 0.00 34 726
300 30 0 1479 - - 115 5670 3848 3848 0.00 6 350 7356 7356 0.00 14 253
300 30 1 1517 1882 24.10 116 9789 4245 4245 0.00 20 703 7565 7565 0.00 107 1772
300 30 2 1504 - - 121 7025 3895 3895 0.00 9 314 7282 7282 0.00 141 2080
300 40 0 1456 - - 117 6504 4247 4247 0.00 52 1938 7277 7277 0.00 6 182
300 40 1 1452 - - 115 8312 3876 3889 0.33 168 11819 7440 7440 0.00 56 926
300 40 2 1354 - - 112 8784 3943 3943 0.00 104 3977 7297 7334 0.51 247 7303
350 30 0 1404 1916 36.47 96 9324 4332 4357 0.58 102 9617 8047 8047 0.00 92 1841
350 30 1 1351 - - 90 4207 4152 4152 0.00 2 234 8169 8169 0.00 190 5137
350 30 2 1323 1342 1.41 197 18000 4361 4361 0.00 16 579 8373 8373 0.00 100 3272
350 40 0 1288 - - 149 18000 4229 - - 91 6237 8232 8260 0.34 215 8383
350 40 1 1359 - - 89 4748 4199 4199 0.00 85 5342 8603 8659 0.66 160 4893
350 40 2 1347 - - 88 6521 4082 4082 0.00 62 5108 8187 8224 0.45 384 8682
350 50 0 1419 - - 88 6542 4127 4142 0.37 124 9688 8169 8169 0.00 71 1519
350 50 1 1474 - - 87 7989 4245 4245 0.00 61 5229 7843 7843 0.00 7 278
350 50 2 1341 - - 88 9604 4335 - - 91 5501 8101 8161 0.74 150 5452
375 30 0 1463 - - 80 5011 4163 4163 0.00 8 465 8282 8312 0.37 130 6198
375 30 1 1438 1446 0.58 156 18000 4212 4212 0.00 1 198 8516 8516 0.00 33 865
375 30 2 1418 - - 79 5079 4393 4393 0.00 3 243 8637 8687 0.58 156 6641
375 40 0 1386 - - 79 4122 4548 4578 0.65 102 18000 8550 8550 0.00 45 1375
375 40 1 1433 - - 80 4178 4346 4346 0.00 45 2928 8850 8850 0.00 126 4915
375 40 2 1367 - - 79 3921 4290 4378 2.04 83 10177 8322 8407 1.02 117 4681
375 50 0 1405 - - 79 4576 4310 4310 0.00 6 402 8885 8885 0.00 250 5591
375 50 1 1253 - - 79 4576 4269 - - 81 14512 8566 8616 0.59 149 4634
375 50 2 1340 - - 79 3981 4290 4311 0.49 133 18000 8516 8577 0.72 122 5516
400 30 0 1347 - - 172 18000 4578 4578 0.00 77 7497 8792 8805 0.14 521 18000
400 30 1 1430 - - 72 3828 4429 4429 0.00 29 1278 9263 9346 0.90 103 5066
400 30 2 1300 1365 4.98 173 18000 4327 4327 0.00 6 497 9010 9031 0.23 218 8003
400 40 0 1412 - - 71 4492 4529 4556 0.60 154 18000 8539 8539 0.00 256 7222
400 40 1 1457 - - 71 5482 4534 4534 0.00 20 1044 8992 9104 1.25 96 4217
400 40 2 1395 - - 70 5580 4433 5189 17.06 84 6636 8726 8779 0.61 113 5501
400 50 0 1370 - - 69 5305 4277 4277 0.00 63 7739 8824 8862 0.43 167 4951
400 50 1 1380 - - 70 4162 4484 - - 71 7642 8506 8523 0.20 555 18000
400 50 2 1318 - - 69 5515 4439 4439 0.00 34 1356 8908 8908 0.00 235 5805
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Table 10: Branch and cut framework solutions to A-MDmTSP instances

Instance
A-MDmTSP

I II III

LB UB Gap Nodes time (s) LB UB Gap Nodes time (s) LB UB Gap Nodes time (s)

50 5 0 1294 1294 0.00 0 2 1893 1893 0.00 0 1 2856 2856 0.00 0 10
50 5 1 1187 1187 0.00 0 12 2487 2487 0.00 0 2 2901 2901 0.00 3 16
50 5 2 1356 1356 0.00 1 10 1938 1938 0.00 0 1 3286 3286 0.00 10 60
50 10 0 1681 1681 0.00 0 6 2680 2680 0.00 0 2 2595 2595 0.00 0 12
50 10 1 1410 1410 0.00 0 9 2079 2079 0.00 0 3 2868 2868 0.00 1 6
50 10 2 1372 1372 0.00 1 8 1902 1902 0.00 0 3 3013 3013 0.00 0 3
60 5 0 1736 1736 0.00 16 221 2613 2613 0.00 6 32 3250 3250 0.00 73 494
60 5 1 1636 1636 0.00 22 182 2424 2424 0.00 0 6 3431 3431 0.00 0 13
60 5 2 1650 1650 0.00 97 1275 2507 2507 0.00 19 109 3883 3883 0.00 161 4967
60 10 0 1354 1354 0.00 2 14 2421 2421 0.00 1 5 3140 3140 0.00 0 8
60 10 1 1772 1772 0.00 0 10 2372 2372 0.00 0 2 3432 3432 0.00 0 12
60 10 2 1873 1873 0.00 30 150 2528 2528 0.00 0 6 3200 3200 0.00 43 214
70 5 0 1959 1997 1.94 177 18000 2568 2568 0.00 103 1949 3601 3601 0.00 2 46
70 5 1 1428 1428 0.00 8 108 2661 2661 0.00 25 271 3511 3539 0.79 318 18000
70 5 2 1651 1651 0.00 17 166 2757 2757 0.00 0 9 3559 3559 0.00 0 4
70 10 0 1578 1578 0.00 0 19 2286 2286 0.00 0 7 3684 3684 0.00 14 122
70 10 1 1538 1538 0.00 13 52 2479 2479 0.00 1 11 3332 3332 0.00 1 30
70 10 2 1415 1415 0.00 8 21 2555 2555 0.00 0 12 3819 3819 0.00 0 8
75 5 0 1630 1630 0.00 1 23 2590 2590 0.00 2 22 3851 3851 0.00 3 49
75 5 1 1802 1802 0.00 1 30 2744 2744 0.00 2 23 3761 3761 0.00 3 93
75 5 2 1827 1827 0.00 57 3631 2420 2420 0.00 12 149 4024 4024 0.00 105 2566
75 10 0 1350 1350 0.00 6 66 2630 2630 0.00 119 4881 3545 3545 0.00 13 93
75 10 1 1514 1551 2.43 182 18000 2807 2807 0.00 15 197 3987 3987 0.00 25 279
75 10 2 1771 1826 3.08 169 18000 2725 2725 0.00 462 17452 3610 3610 0.00 325 5391
80 5 0 1482 1510 1.87 126 18000 2413 2413 0.00 48 647 4296 4296 0.00 4 169
80 5 1 1423 1467 3.13 215 18000 2622 2622 0.00 47 555 4248 4248 0.00 5 317
80 5 2 1719 1719 0.00 34 644 2778 2778 0.00 173 6659 4096 4161 1.59 103 18000
80 10 0 1344 1344 0.00 4 35 2525 2525 0.00 4 26 3721 3721 0.00 1 43
80 10 1 1499 1499 0.00 22 484 2379 2379 0.00 14 63 3976 3976 0.00 436 6180
80 10 2 1559 1559 0.00 25 419 2672 2672 0.00 3 24 3831 3831 0.00 0 33
80 20 0 1352 1352 0.00 72 393 2075 2075 0.00 2 14 3744 3744 0.00 1 42
80 20 1 1321 1321 0.00 39 166 2813 2813 0.00 34 314 3641 3641 0.00 1 30
80 20 2 1584 1584 0.00 306 3182 2635 2635 0.00 53 626 3891 3891 0.00 40 355
85 5 0 1721 1731 0.60 185 18000 2686 2686 0.00 9 106 4222 4244 0.53 233 18000
85 5 1 1478 1611 9.01 118 18000 2844 2901 2.02 144 18000 4136 4136 0.00 1 56
85 5 2 2043 2195 7.42 108 18000 2588 2588 0.00 221 11483 4264 4328 1.51 197 18000
85 10 0 1559 1597 2.43 145 18000 2772 2772 0.00 11 120 4234 4234 0.00 386 15270
85 10 1 1589 1613 1.51 180 18000 2634 2634 0.00 211 9653 3843 3926 2.15 186 18000
85 10 2 1648 1735 5.26 126 18000 2644 2644 0.00 195 11243 4268 4268 0.00 412 10685
85 20 0 1451 1451 0.00 18 124 2360 2360 0.00 21 221 3922 3922 0.00 0 50
85 20 1 1480 1480 0.00 21 229 2659 2659 0.00 141 2463 3688 3688 0.00 0 21
85 20 2 1390 1390 0.00 140 1469 2520 2520 0.00 108 1808 4033 4033 0.00 84 2197
90 5 0 1761 2006 13.89 85 18000 2924 3088 5.62 172 18000 4279 4279 0.00 8 365
90 5 1 1530 1530 0.00 7 131 2732 2732 0.00 0 22 4167 4167 0.00 105 4709
90 5 2 1494 1494 0.00 45 3378 2879 2879 0.00 23 506 4098 4172 1.80 225 18000
90 10 0 1740 2191 25.96 60 18000 2605 2662 2.18 162 18000 4066 4066 0.00 4 238
90 10 1 1457 1457 0.00 114 4606 2521 2521 0.00 14 100 4058 4058 0.00 72 1288
90 10 2 1293 1293 0.00 8 65 2742 2742 0.00 2 41 4174 4259 2.04 192 18000
90 20 0 1460 1460 0.00 12 83 2439 2439 0.00 1 23 3991 3991 0.00 27 265
90 20 1 1377 1377 0.00 18 103 2610 2610 0.00 13 223 3759 3759 0.00 0 20
90 20 2 1538 1538 0.00 319 4723 2678 2678 0.00 51 735 3998 3998 0.00 0 46
95 5 0 1592 1592 0.00 171 10456 2827 2827 0.00 8 266 4521 4521 0.00 4 266
95 5 1 1486 1498 0.84 190 18000 2833 2833 0.00 25 424 4410 4410 0.00 20 362
95 5 2 1452 1481 2.02 137 18000 2706 2706 0.00 137 7579 4682 4682 0.00 76 10126
95 10 0 1590 1626 2.26 106 18000 2832 2832 0.00 135 6648 4508 4533 0.55 192 18000
95 10 1 1602 1748 9.08 131 18000 3096 3096 0.00 14 868 4152 4173 0.50 355 18000
95 10 2 1724 2006 16.36 75 18000 2610 2653 1.65 190 18000 4039 4039 0.00 17 282
95 20 0 1555 2978 91.48 53 18000 2621 2840 8.34 191 18000 4152 4291 3.36 163 18000
95 20 1 1603 1603 0.00 37 170 2660 2660 0.00 9 136 4202 4202 0.00 227 7944
95 20 2 1232 1235 0.22 302 18000 2613 2613 0.00 13 202 4144 4181 0.90 237 18000
100 5 0 1790 1857 3.73 98 18000 3293 3293 0.00 41 898 4291 4291 0.00 4 141
100 5 1 1653 1680 1.63 122 18000 2958 3052 3.18 115 18000 4542 4542 0.00 0 68
100 5 2 1859 1931 3.86 104 18000 3125 3181 1.79 170 18000 4374 4550 4.02 117 18000
100 10 0 1655 1903 15.00 52 18000 3129 3301 5.49 99 18000 4733 4733 0.00 191 9395
100 10 1 1575 3362 113.50 38 18000 2795 2878 2.97 121 18000 4300 4422 2.83 122 18000
100 10 2 1604 1631 1.68 156 18000 2880 2880 0.00 38 576 4403 4403 0.00 2 126
100 20 0 1592 1992 25.14 54 18000 2793 2933 5.01 427 18000 4299 4299 0.00 21 629
100 20 1 1533 1533 0.00 182 3311 2390 2390 0.00 3 90 4077 4077 0.00 1 54
100 20 2 1268 1274 0.46 245 18000 2638 2638 0.00 85 3190 4321 4321 0.00 48 1058
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Table 11: Basic algorithm solutions to A-MDmTSP instances

Instance
A-MDmTSP

I II III

LB UB Gap Nod. time (s) LB UB Gap Nod. time (s) LB UB Gap Nod. time (s)

50 5 0 1294 1294 0.00 0 0 1893 1893 0.00 0 1 2856 2856 0.00 0 2
50 5 1 1187 1187 0.00 0 1 2487 2487 0.00 0 0 2901 2901 0.00 4 14
50 5 2 1356 1356 0.00 3 16 1938 1938 0.00 0 1 3286 3286 0.00 4 8
50 10 0 1681 1681 0.00 1 4 2680 2680 0.00 0 0 2595 2595 0.00 0 0
50 10 1 1410 1410 0.00 1 3 2079 2079 0.00 2 6 2868 2868 0.00 1 1
50 10 2 1372 1372 0.00 3 5 1902 1902 0.00 0 2 3013 3013 0.00 0 1
60 5 0 1736 1736 0.00 27 883 2613 2613 0.00 10 46 3250 3250 0.00 188 2216
60 5 1 1636 1636 0.00 65 961 2424 2424 0.00 3 13 3431 3431 0.00 1 5
60 5 2 1624 1726 6.28 260 18000 2507 2507 0.00 53 1403 3863 3883 0.52 449 18000
60 10 0 1354 1354 0.00 4 10 2421 2421 0.00 2 6 3140 3140 0.00 1 5
60 10 1 1772 1772 0.00 10 53 2372 2372 0.00 0 3 3432 3432 0.00 2 14
60 10 2 1873 1873 0.00 80 1578 2528 2528 0.00 1 6 3200 3200 0.00 36 198
70 5 0 1896 - - 85 18000 2568 2568 0.00 138 12716 3601 3601 0.00 31 411
70 5 1 1428 1428 0.00 39 602 2661 2661 0.00 34 425 3477 3561 2.41 187 18000
70 5 2 1651 1651 0.00 119 6286 2757 2757 0.00 1 7 3559 3559 0.00 0 2
70 10 0 1578 1578 0.00 3 21 2286 2286 0.00 5 18 3684 3684 0.00 30 246
70 10 1 1538 1538 0.00 32 249 2479 2479 0.00 4 15 3332 3332 0.00 7 58
70 10 2 1415 1415 0.00 53 165 2555 2555 0.00 11 130 3819 3819 0.00 0 4
75 5 0 1630 1630 0.00 7 52 2590 2590 0.00 13 279 3851 3851 0.00 22 306
75 5 1 1802 1802 0.00 3 71 2744 2744 0.00 11 116 3761 3761 0.00 13 591
75 5 2 1815 1840 1.36 134 18000 2420 2420 0.00 50 1218 4024 4024 0.00 240 6160
75 10 0 1350 1350 0.00 40 1097 2630 2630 0.00 202 17265 3545 3545 0.00 13 168
75 10 1 1438 - - 88 18000 2807 2807 0.00 176 9565 3987 3987 0.00 126 1483
75 10 2 1718 - - 80 18000 2677 2796 4.45 194 18000 3610 3610 0.00 359 14642
80 5 0 1442 2318 60.71 65 18000 2413 2413 0.00 99 4170 4296 4296 0.00 16 676
80 5 1 1377 5641 309.56 88 18000 2610 2633 0.88 148 18000 4248 4248 0.00 33 1530
80 5 2 1686 - - 73 18000 2732 2975 8.88 112 18000 3997 5396 34.99 62 18000
80 10 0 1344 1344 0.00 6 51 2525 2525 0.00 27 295 3721 3721 0.00 9 74
80 10 1 1499 1499 0.00 94 4618 2379 2379 0.00 28 176 3953 3994 1.04 435 18000
80 10 2 1529 2828 84.97 100 18000 2672 2672 0.00 7 16 3831 3831 0.00 3 29
80 20 0 1352 1352 0.00 274 2953 2075 2075 0.00 11 69 3744 3744 0.00 2 15
80 20 1 1321 1321 0.00 180 2716 2813 2813 0.00 53 1129 3641 3641 0.00 8 57
80 20 2 1548 - - 165 18000 2635 2635 0.00 400 6849 3891 3891 0.00 125 781
85 5 0 1664 4112 147.05 58 18000 2686 2686 0.00 33 1617 4207 4252 1.07 234 18000
85 5 1 1409 - - 59 18000 2792 6613 136.85 50 18000 4136 4136 0.00 2 66
85 5 2 1994 - - 61 18000 2537 5508 117.15 70 18000 4207 4546 8.06 98 18000
85 10 0 1518 7165 371.94 89 18000 2772 2772 0.00 24 110 4177 4280 2.47 277 18000
85 10 1 1549 - - 73 18000 2579 3216 24.72 87 18000 3794 4028 6.16 94 18000
85 10 2 1609 - - 66 18000 2628 2647 0.74 197 18000 4241 4287 1.09 289 18000
85 20 0 1451 1451 0.00 207 3487 2360 2360 0.00 204 2122 3922 3922 0.00 3 26
85 20 1 1480 1480 0.00 119 6689 2659 2659 0.00 226 5341 3688 3688 0.00 0 5
85 20 2 1384 1390 0.45 572 18000 2520 2520 0.00 254 4765 4033 4033 0.00 216 11528
90 5 0 1714 - - 46 18000 2873 21436 646.12 62 18000 4279 4279 0.00 30 1712
90 5 1 1530 1530 0.00 44 2599 2732 2732 0.00 1 21 4133 4193 1.45 160 18000
90 5 2 1467 6521 344.42 55 18000 2879 2879 0.00 109 10863 4063 4369 7.54 89 18000
90 10 0 1698 - - 58 18000 2564 15309 497.07 65 18000 4066 4066 0.00 26 777
90 10 1 1433 1489 3.91 167 18000 2521 2521 0.00 59 983 4058 4058 0.00 90 5219
90 10 2 1286 1402 8.99 181 18000 2742 2742 0.00 23 434 4103 4334 5.63 96 18000
90 20 0 1460 1460 0.00 63 577 2439 2439 0.00 50 742 3991 3991 0.00 64 482
90 20 1 1377 1377 0.00 146 716 2610 2610 0.00 49 495 3759 3759 0.00 0 4
90 20 2 1496 1853 23.85 160 18000 2678 2678 0.00 481 17006 3998 3998 0.00 0 11
95 5 0 1548 1856 19.94 69 18000 2817 2951 4.76 115 18000 4521 4521 0.00 17 1675
95 5 1 1443 6638 359.94 63 18000 2833 2833 0.00 65 4147 4410 4410 0.00 21 406
95 5 2 1411 - - 46 18000 2673 2882 7.84 80 18000 4647 4831 3.95 106 18000
95 10 0 1561 - - 50 18000 2790 3253 16.58 104 18000 4422 4736 7.09 61 18000
95 10 1 1570 - - 75 18000 3068 9418 206.94 64 18000 4124 4197 1.78 276 18000
95 10 2 1695 - - 55 18000 2572 - - 64 18000 4039 4039 0.00 49 1913
95 20 0 1521 - - 55 18000 2579 - - 96 18000 4075 5121 25.67 90 18000
95 20 1 1603 1603 0.00 175 2012 2660 2660 0.00 25 300 4196 4202 0.14 260 18000
95 20 2 1194 - - 84 18000 2613 2613 0.00 80 1591 4098 4209 2.72 134 18000
100 5 0 1755 14142 705.96 47 18000 3266 3594 10.04 94 18000 4291 4291 0.00 13 496
100 5 1 1623 6316 289.16 55 18000 2924 5091 74.11 41 18000 4542 4542 0.00 2 143
100 5 2 1817 - - 46 18000 3086 3964 28.44 51 18000 4306 4841 12.41 72 18000
100 10 0 1627 - - 44 18000 3083 9222 199.11 51 18000 4678 4826 3.17 125 18000
100 10 1 1541 - - 48 18000 2750 - - 47 18000 4225 4617 9.28 92 18000
100 10 2 1578 12140 669.55 59 18000 2863 2965 3.55 119 18000 4403 4403 0.00 9 106
100 20 0 1560 - - 43 18000 2737 - - 122 18000 4299 4299 0.00 55 1426
100 20 1 1507 3468 130.19 121 18000 2390 2390 0.00 96 5809 4077 4077 0.00 3 35
100 20 2 1241 - - 89 18000 2629 2649 0.76 300 18000 4321 4321 0.00 121 2999
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Table 12: Branch and cut framework solutions to A-MDCVRP instances

Instance
A-MDCVRP

I II III

LB UB Gap Nodes time (s) LB UB Gap Nodes time (s) LB UB Gap Nodes time (s)

40 5 0 1548 1548 0.00 1 11 2248 2248 0.00 0 1 2838 2838 0.00 3 11
40 5 1 1700 1700 0.00 2 21 2235 2235 0.00 1 11 2890 2890 0.00 0 7
40 5 2 1549 1549 0.00 0 4 2219 2219 0.00 4 14 3035 3035 0.00 1 13
40 10 0 1516 1516 0.00 0 5 2595 2595 0.00 6 25 2558 2558 0.00 0 1
40 10 1 1420 1420 0.00 0 5 1776 1776 0.00 0 3 2736 2736 0.00 0 5
40 10 2 1560 1560 0.00 19 86 2180 2180 0.00 9 46 2418 2418 0.00 43 569
45 5 0 1707 1707 0.00 0 9 2164 2164 0.00 2 12 3264 3264 0.00 0 9
45 5 1 1760 1760 0.00 2 8 2488 2488 0.00 0 3 3080 3080 0.00 119 807
45 5 2 1427 1427 0.00 16 59 2340 2340 0.00 331 5021 3456 3456 0.00 7 105
45 10 0 1376 1376 0.00 1 11 1817 1817 0.00 3 15 2779 2779 0.00 300 2188
45 10 1 1640 1640 0.00 19 63 2373 2486 4.75 432 18000 3010 3010 0.00 6 52
45 10 2 1293 1293 0.00 0 4 2230 2230 0.00 2 16 2920 2920 0.00 0 7
50 5 0 1568 1568 0.00 73 338 2224 2331 4.81 463 18000 3692 3692 0.00 847 14370
50 5 1 1370 1370 0.00 58 502 2802 2802 0.00 274 3190 3291 3305 0.44 701 18000
50 5 2 1381 1381 0.00 3 24 2036 2036 0.00 7 21 3378 3378 0.00 1 22
50 10 0 1682 1682 0.00 0 6 2699 2699 0.00 4 41 2623 2623 0.00 0 5
50 10 1 1498 1498 0.00 66 530 2252 2370 5.23 332 18000 3142 3142 0.00 0 12
50 10 2 1372 1372 0.00 2 20 1948 1948 0.00 7 44 2949 2949 0.00 0 4
55 5 0 1627 1627 0.00 45 509 2387 2387 0.00 127 1613 3310 3413 3.10 388 18000
55 5 1 2179 2314 6.20 226 18000 2962 3199 8.01 223 18000 4369 4369 0.00 147 5531
55 5 2 1735 1735 0.00 37 229 2880 2880 0.00 48 398 3706 3737 0.83 312 18000
55 10 0 1465 1465 0.00 128 2368 2323 2472 6.43 379 18000 3780 3838 1.54 348 18000
55 10 1 1556 1556 0.00 31 245 2556 2556 0.00 124 1861 3427 3427 0.00 0 27
55 10 2 1323 1323 0.00 12 36 2488 2488 0.00 1 11 2882 2882 0.00 0 14
60 5 0 1935 2063 6.59 217 18000 2913 3129 7.40 202 18000 3488 3488 0.00 99 902
60 5 1 1656 1656 0.00 65 971 2516 2516 0.00 205 4777 3656 3656 0.00 0 26
60 5 2 1561 1561 0.00 8 64 2535 2585 1.98 269 18000 3767 3767 0.00 0 41
60 10 0 1481 1495 0.95 505 18000 2526 2690 6.51 225 18000 3395 3395 0.00 1 16
60 10 1 1817 1817 0.00 57 550 2338 2338 0.00 9 51 3737 3737 0.00 11 143
60 10 2 2024 2159 6.67 202 18000 2779 3647 31.23 134 18000 3482 3482 0.00 8 169
65 5 0 1483 1483 0.00 5 59 2483 2483 0.00 48 386 3936 3936 0.00 57 851
65 5 1 1831 1913 4.45 173 18000 2924 3196 9.29 175 18000 4077 4219 3.48 257 18000
65 5 2 1628 1628 0.00 121 2658 2636 2636 0.00 212 8915 3826 3826 0.00 11 110
65 10 0 1518 1557 2.58 193 18000 2151 2226 3.47 220 18000 3697 3730 0.89 717 18000
65 10 1 1314 1314 0.00 91 2177 2114 2171 2.70 278 18000 3640 3657 0.47 313 18000
65 10 2 1720 1914 11.30 181 18000 2640 2945 11.57 186 18000 3474 3474 0.00 254 7237
70 5 0 1955 2011 2.85 233 18000 2731 2975 8.95 259 18000 3928 3928 0.00 96 2965
70 5 1 1492 1492 0.00 51 973 2873 2882 0.30 330 18000 3853 3853 0.00 1 62
70 10 0 1644 1644 0.00 64 1643 2323 2392 2.99 233 18000 3916 3979 1.61 535 18000
70 10 1 1668 2189 31.26 117 18000 2793 3571 27.85 95 18000 3977 4026 1.24 249 18000
70 10 2 1464 1487 1.58 550 18000 2609 2770 6.16 155 18000 4157 4157 0.00 3 231
70 5 2 1917 2080 8.52 134 18000 3128 3341 6.81 192 18000 4200 4200 0.00 0 54
75 5 0 1672 1672 0.00 18 139 2753 2753 0.00 155 8426 4048 4134 2.11 189 18000
75 5 1 2013 2112 4.92 177 18000 3146 3373 7.23 128 18000 4341 4529 4.33 107 18000
75 5 2 1857 1857 0.00 146 9111 2499 2544 1.82 211 18000 4482 4482 0.00 271 15783
75 10 0 1350 1350 0.00 5 55 2672 2733 2.29 207 18000 3578 3578 0.00 4 156
75 10 1 1570 1745 11.13 126 18000 2902 3500 20.60 99 18000 4531 4531 0.00 15 549
75 10 2 1765 1795 1.68 217 18000 2716 2873 5.78 197 18000 3693 3762 1.87 213 18000
75 20 0 1495 1678 12.27 110 18000 2604 2718 4.37 125 18000 3987 4024 0.93 206 18000
75 20 1 1670 1695 1.52 257 18000 2645 2740 3.58 224 18000 3462 3462 0.00 2 48
75 20 2 1435 1624 13.14 167 18000 2495 3045 22.07 113 18000 4077 4077 0.00 64 2844
80 10 0 1366 1366 0.00 44 449 2536 2799 10.37 176 18000 3928 3928 0.00 29 831
80 10 1 1629 2040 25.27 86 18000 2506 2733 9.05 111 18000 4367 4428 1.40 277 18000
80 10 2 1583 1602 1.22 154 18000 2669 2669 0.00 43 1166 4051 4051 0.00 139 3263
80 20 0 1358 1358 0.00 314 4337 2065 2139 3.59 137 18000 3875 3875 0.00 0 24
80 20 1 1370 1592 16.24 137 18000 2891 3550 22.81 72 18000 3833 3833 0.00 41 843
80 20 2 1585 1623 2.41 338 18000 2563 2944 14.87 128 18000 3974 4016 1.07 284 18000
85 10 0 1662 2868 72.60 56 18000 2792 3529 26.41 55 18000 5199 5314 2.22 93 18000
85 10 1 1594 1676 5.18 149 18000 2773 3245 17.03 78 18000 4064 4064 0.00 26 1946
85 10 2 1643 1667 1.45 206 18000 2637 2698 2.30 149 18000 4495 4501 0.13 342 18000
85 20 0 1479 2458 66.22 63 18000 2387 2907 21.80 52 18000 4353 4485 3.04 127 18000
85 20 1 1528 1728 13.09 106 18000 2613 3292 25.96 60 18000 4048 4086 0.93 288 18000
85 20 2 1375 1375 0.00 112 995 2431 2650 8.99 107 18000 3968 3968 0.00 180 16810
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Table 13: Basic algorithm solutions to A-MDCVRP instances

Instance
A-MDCVRP

I II III

LB UB Gap Nod. time (s) LB UB Gap Nod. time (s) LB UB Gap Nod. time (s)

40 5 0 1548 1548 0.00 1 2 2248 2248 0.00 0 0 2838 2838 0.00 2 2
40 5 1 1700 1700 0.00 15 71 2235 2235 0.00 2 8 2890 2890 0.00 1 5
40 5 2 1549 1549 0.00 1 1 2219 2219 0.00 10 23 3035 3035 0.00 4 6
40 10 0 1516 1516 0.00 1 1 2595 2595 0.00 14 25 2558 2558 0.00 0 1
40 10 1 1420 1420 0.00 0 0 1776 1776 0.00 1 1 2736 2736 0.00 1 3
40 10 2 1560 1560 0.00 52 284 2180 2180 0.00 12 23 2418 2418 0.00 56 340
45 5 0 1707 1707 0.00 2 7 2164 2164 0.00 9 30 3264 3264 0.00 0 3
45 5 1 1760 1760 0.00 9 40 2488 2488 0.00 2 6 3080 3080 0.00 77 349
45 5 2 1427 1427 0.00 93 1320 2297 2370 3.19 373 18000 3456 3456 0.00 24 289
45 10 0 1376 1376 0.00 4 12 1817 1817 0.00 3 15 2779 2779 0.00 313 2512
45 10 1 1640 1640 0.00 167 5382 2273 2956 30.04 240 18000 3010 3010 0.00 13 49
45 10 2 1293 1293 0.00 0 2 2230 2230 0.00 7 12 2920 2920 0.00 0 1
50 5 0 1568 1568 0.00 213 9773 2113 3514 66.33 163 18000 3692 3692 0.00 731 12403
50 5 1 1370 1370 0.00 170 5597 2779 2806 0.97 398 18000 3225 3464 7.40 317 18000
50 5 2 1381 1381 0.00 6 55 2036 2036 0.00 13 110 3378 3378 0.00 2 24
50 10 0 1682 1682 0.00 3 19 2699 2699 0.00 12 73 2623 2623 0.00 0 1
50 10 1 1498 1498 0.00 287 7063 2164 2661 22.98 197 18000 3142 3142 0.00 1 4
50 10 2 1372 1372 0.00 6 14 1948 1948 0.00 33 254 2949 2949 0.00 0 1
55 5 0 1627 1627 0.00 107 3069 2336 2508 7.36 191 18000 3284 3426 4.32 363 18000
55 5 1 2089 6492 210.83 134 18000 2848 - - 104 18000 4369 4369 0.00 511 15780
55 5 2 1735 1735 0.00 93 2813 2880 2880 0.00 229 8640 3679 3774 2.59 246 18000
55 10 0 1465 1465 0.00 249 13058 2247 2743 22.09 183 18000 3732 3872 3.75 298 18000
55 10 1 1556 1556 0.00 78 1316 2556 2556 0.00 282 10507 3427 3427 0.00 2 28
55 10 2 1323 1323 0.00 14 51 2488 2488 0.00 9 17 2882 2882 0.00 3 25
60 5 0 1851 7559 308.40 115 18000 2788 6544 134.72 95 18000 3488 3488 0.00 88 1005
60 5 1 1656 1656 0.00 151 7700 2464 2727 10.66 153 18000 3656 3656 0.00 1 20
60 5 2 1561 1561 0.00 68 1448 2479 2824 13.93 169 18000 3767 3767 0.00 9 180
60 10 0 1439 1489 3.51 258 18000 2452 3867 57.74 129 18000 3395 3395 0.00 4 14
60 10 1 1791 2684 49.88 172 18000 2338 2338 0.00 48 819 3737 3737 0.00 20 185
60 10 2 1933 6059 213.53 139 18000 2688 - - 110 18000 3482 3482 0.00 23 197
65 5 0 1483 1483 0.00 46 1698 2483 2483 0.00 98 3345 3936 3936 0.00 68 2729
65 5 1 1746 9186 426.17 90 18000 2841 5778 103.36 89 18000 4037 4260 5.53 283 18000
65 5 2 1605 1655 3.15 204 18000 2574 3168 23.09 131 18000 3826 3826 0.00 35 608
65 10 0 1460 5511 277.56 92 18000 2085 3575 71.42 99 18000 3681 3744 1.73 916 18000
65 10 1 1314 1314 0.00 248 13526 2062 2234 8.36 169 18000 3634 3658 0.67 352 18000
65 10 2 1661 - - 112 18000 2564 - - 88 18000 3474 3474 0.00 321 7050
70 5 0 1894 2819 48.84 104 18000 2647 7138 169.67 88 18000 3928 3928 0.00 81 3762
70 5 1 1461 2698 84.72 115 18000 2794 3875 38.68 110 18000 3853 3853 0.00 1 28
70 5 2 1854 - - 87 18000 3059 - - 82 18000 4200 4200 0.00 2 41
70 10 0 1644 1644 0.00 174 11553 2264 2483 9.68 122 18000 3881 4106 5.79 350 18000
70 10 1 1601 - - 94 18000 2710 - - 86 18000 3936 4078 3.60 226 18000
70 10 2 1407 5452 287.44 173 18000 2546 19978 684.68 92 18000 4157 4157 0.00 19 254
75 5 0 1672 1672 0.00 57 2489 2693 4906 82.20 84 18000 3982 4393 10.32 112 18000
75 5 1 1963 5544 182.47 97 18000 3054 - - 73 18000 4254 - - 86 18000
75 5 2 1815 4383 141.49 91 18000 2449 16598 577.88 77 18000 4402 4550 3.37 148 18000
75 10 0 1350 1350 0.00 32 952 2611 6210 137.87 91 18000 3578 3578 0.00 4 58
75 10 1 1502 - - 83 18000 2830 - - 80 18000 4531 4531 0.00 61 803
75 10 2 1715 5683 231.31 94 18000 2659 - - 77 18000 3626 3878 6.95 190 18000
75 20 0 1460 2954 102.32 94 18000 2553 7553 195.89 99 18000 3949 4077 3.24 275 18000
75 20 1 1627 3196 96.45 126 18000 2598 - - 96 18000 3462 3462 0.00 6 56
75 20 2 1388 - - 98 18000 2441 - - 78 18000 4077 4077 0.00 146 4666
80 10 0 1366 1366 0.00 80 3761 2488 - - 78 18000 3928 3928 0.00 126 3628
80 10 1 1579 - - 63 18000 2442 6913 183.04 68 18000 4316 4508 4.44 175 18000
80 10 2 1538 - - 77 18000 2639 3128 18.53 104 18000 4051 4051 0.00 196 4438
80 20 0 1334 1381 3.49 341 18000 2023 - - 75 18000 3875 3875 0.00 2 30
80 20 1 1319 - - 104 18000 2840 - - 67 18000 3833 3833 0.00 205 4532
80 20 2 1549 6904 345.63 123 18000 2521 - - 92 18000 3955 3988 0.84 488 18000
85 10 0 1614 - - 66 18000 2734 - - 54 18000 5091 6701 31.63 89 18000
85 10 1 1561 - - 80 18000 2712 - - 59 18000 4064 4064 0.00 92 16638
85 10 2 1605 3439 114.21 99 18000 2598 2938 13.10 99 18000 4453 4516 1.42 269 18000
85 20 0 1435 - - 66 18000 2325 - - 51 18000 4287 4494 4.84 140 18000
85 20 1 1491 - - 73 18000 2572 - - 60 18000 4012 4073 1.52 247 18000
85 20 2 1365 1386 1.50 499 18000 2387 - - 76 18000 3939 3999 1.53 205 18000
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Table 14: Branch and cut framework solutions to A-CLRP instances

Instance
A-CLRP

I II III

LB UB Gap Nod. time (s) LB UB Gap Nod. time (s) LB UB Gap Nod. time (s)

40 5 0 2281 2281 0.00 0 5 4222 4222 0.00 0 4 4297 4297 0.00 0 27
40 5 1 3048 3048 0.00 66 907 3836 3836 0.00 8 49 4426 4426 0.00 0 10
40 5 2 2831 2831 0.00 0 8 2963 2963 0.00 0 6 4110 4110 0.00 0 7
40 10 0 2788 2788 0.00 0 4 4064 4064 0.00 0 2 4144 4144 0.00 15 47
40 10 1 2256 2256 0.00 0 3 2722 2722 0.00 0 4 3963 3963 0.00 1 20
40 10 2 2854 2854 0.00 2 21 3617 3617 0.00 7 50 3981 3981 0.00 122 2147
45 5 0 2769 2769 0.00 0 9 3932 3932 0.00 13 80 4273 4273 0.00 0 14
45 5 1 2613 2613 0.00 0 2 4757 4757 0.00 0 10 4533 4533 0.00 1 32
45 5 2 2581 2581 0.00 1 17 4622 4622 0.00 81 1277 5052 5052 0.00 104 3538
45 10 0 2451 2451 0.00 0 7 3135 3135 0.00 0 8 4724 4724 0.00 100 1733
45 10 1 3464 3464 0.00 9 116 4856 4856 0.00 62 444 5355 5551 3.65 503 18000
45 10 2 2643 2643 0.00 4 30 3761 3761 0.00 1 9 4943 4943 0.00 236 3118
50 5 0 3331 3331 0.00 5 61 4653 4789 2.91 435 18000 6950 7065 1.66 192 18000
50 5 1 2524 2524 0.00 4 38 4718 4718 0.00 6 41 4623 4623 0.00 414 11049
50 5 2 3249 3249 0.00 1 22 3688 3688 0.00 2 24 4641 4641 0.00 0 14
50 10 0 2548 2548 0.00 0 3 3945 3945 0.00 0 3 4256 4256 0.00 79 1412
50 10 1 2729 2729 0.00 0 7 4623 4623 0.00 55 625 5596 5596 0.00 29 834
50 10 2 2520 2520 0.00 227 6622 3255 3255 0.00 4 50 4589 4662 1.60 339 18000
55 5 0 2693 2693 0.00 1 27 4369 4369 0.00 9 73 5231 5231 0.00 3 90
55 5 1 3855 3855 0.00 150 7796 5408 5408 0.00 124 1577 6953 7020 0.97 145 18000
55 5 2 3091 3091 0.00 0 9 4436 4436 0.00 26 239 5953 6040 1.47 205 18000
55 10 0 3679 3679 0.00 295 14822 4158 4280 2.95 269 18000 6020 6169 2.47 149 18000
55 10 1 2731 2731 0.00 3 46 5219 5219 0.00 77 1852 5376 5376 0.00 44 552
55 10 2 2297 2297 0.00 5 48 3537 3537 0.00 8 69 4538 4538 0.00 66 1781
60 5 0 3773 3965 5.10 200 18000 5054 5124 1.39 278 18000 6409 6409 0.00 36 907
60 5 1 3193 3193 0.00 274 16648 4500 4557 1.27 200 18000 6555 6725 2.59 554 18000
60 5 2 3467 3467 0.00 0 14 3625 3625 0.00 7 222 5663 5663 0.00 3 139
60 10 0 3002 3002 0.00 5 118 4654 4681 0.59 314 18000 5416 5678 4.84 322 18000
60 10 1 3046 3046 0.00 202 9713 3671 3671 0.00 13 359 5096 5096 0.00 16 1150
60 10 2 3955 3974 0.47 147 18000 5318 5747 8.07 163 18000 5637 5836 3.54 253 18000
65 5 0 2850 2850 0.00 17 210 3564 3564 0.00 4 190 6186 6382 3.17 142 18000
65 5 1 3061 3061 0.00 97 5943 4952 5025 1.47 263 18000 6262 6262 0.00 73 1963
65 5 2 3670 3670 0.00 52 1264 4866 4866 0.00 4 108 5275 5275 0.00 402 7870
65 10 0 2756 2822 2.39 210 18000 4089 4089 0.00 1 55 6198 6975 12.53 150 18000
65 10 1 2811 2811 0.00 2 74 3163 3163 0.00 116 3968 5430 5430 0.00 22 1495
65 10 2 2935 3039 3.54 178 18000 5276 5410 2.54 242 18000 5974 6593 10.36 210 18000
70 5 0 3487 3487 0.00 118 8150 5104 5265 3.16 144 18000 6278 6355 1.23 181 18000
70 5 1 2598 2598 0.00 8 169 5132 5132 0.00 16 434 5066 5066 0.00 1 46
70 5 2 3735 3782 1.27 134 18000 6487 6910 6.53 90 18000 6445 6800 5.51 181 18000
70 10 0 3107 3107 0.00 120 8127 4157 4157 0.00 28 2070 5783 6041 4.46 172 18000
70 10 1 3773 4125 9.32 77 18000 5633 6668 18.37 39 18000 6063 6646 9.61 186 18000
70 10 2 2836 2836 0.00 36 1237 4219 4318 2.35 202 18000 6355 6594 3.76 161 18000
75 5 0 2534 2534 0.00 0 19 4754 4754 0.00 20 854 6061 6421 5.95 199 18000
75 5 1 3698 3722 0.64 170 18000 5398 5518 2.22 131 18000 6383 6829 6.99 82 18000
75 5 2 2750 2750 0.00 2 56 3778 3778 0.00 3 159 6519 6604 1.30 228 18000
75 10 0 2970 2970 0.00 1 60 3825 3825 0.00 7 391 5132 5430 5.80 164 18000
75 10 1 3502 3625 3.53 63 18000 5083 5464 7.49 110 18000 7106 7866 10.70 102 18000
75 10 2 2818 2818 0.00 19 1422 3912 3971 1.50 184 18000 5200 5709 9.78 97 18000
75 20 0 2984 2995 0.36 186 18000 4215 4567 8.36 45 18000 5815 6260 7.65 172 18000
75 20 1 2570 2570 0.00 0 38 4117 4117 0.00 223 16092 5332 5527 3.66 203 18000
75 20 2 3766 3815 1.31 66 18000 4894 5656 15.58 41 18000 6230 7353 18.02 87 18000
80 10 0 2410 2410 0.00 1 42 4447 4447 0.00 15 1124 6010 6355 5.73 213 18000
80 10 1 3563 3641 2.20 80 18000 4001 4421 10.51 83 18000 6477 7248 11.90 49 18000
80 10 2 2897 2981 2.91 127 18000 4286 4436 3.50 80 18000 6729 7458 10.84 119 18000
80 20 0 2327 2334 0.30 213 18000 3736 3891 4.14 122 18000 5640 6150 9.04 142 18000
80 20 1 3045 3291 8.07 86 18000 5296 5928 11.94 20 18000 6045 7090 17.28 85 18000
80 20 2 3016 3203 6.20 59 18000 4559 4835 6.06 138 18000 5863 6488 10.65 113 18000
85 10 0 3408 3744 9.87 56 18000 6181 6640 7.42 36 18000 6740 7631 13.23 32 18000
85 10 1 3289 3330 1.24 103 18000 4884 4982 2.01 150 18000 5813 6215 6.92 47 18000
85 10 2 3094 3196 3.30 98 18000 4002 4184 4.54 104 18000 6486 6972 7.50 108 18000
85 20 0 3822 4924 28.84 20 18000 5122 6439 25.70 22 18000 6774 7643 12.82 59 18000
85 20 1 3227 3358 4.06 91 18000 4337 4459 2.82 154 18000 5594 6189 10.63 98 18000
85 20 2 2580 2580 0.00 6 217 4330 4535 4.74 77 18000 5642 6139 8.80 81 18000
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Table 15: Basic algorithm solutions to A-CLRP instances

Instance
A-CLRP

I II III

LB UB Gap Nod. time (s) LB UB Gap Nod. time (s) LB UB Gap Nod. time (s)

40 5 0 2281 2281 0.00 1 7 4222 4222 0.00 0 3 4297 4297 0.00 6 26
40 5 1 3048 3048 0.00 148 5767 3836 3836 0.00 18 63 4426 4426 0.00 2 5
40 5 2 2831 2831 0.00 1 4 2963 2963 0.00 0 1 4110 4110 0.00 0 2
40 10 0 2788 2788 0.00 0 1 4064 4064 0.00 0 1 4144 4144 0.00 12 26
40 10 1 2256 2256 0.00 0 1 2722 2722 0.00 0 2 3963 3963 0.00 8 43
40 10 2 2854 2854 0.00 14 178 3617 3617 0.00 19 345 3981 3981 0.00 214 1949
45 5 0 2769 2769 0.00 1 16 3932 3932 0.00 17 177 4273 4273 0.00 0 6
45 5 1 2613 2613 0.00 0 1 4757 4757 0.00 0 3 4533 4533 0.00 9 40
45 5 2 2581 2581 0.00 12 201 4622 4622 0.00 140 3613 4996 5065 1.38 166 18000
45 10 0 2451 2451 0.00 0 4 3135 3135 0.00 4 23 4724 4724 0.00 303 5541
45 10 1 3464 3464 0.00 37 875 4856 4856 0.00 99 2676 5082 5658 11.33 549 18000
45 10 2 2643 2643 0.00 24 540 3761 3761 0.00 2 11 4943 4943 0.00 438 4061
50 5 0 3331 3331 0.00 24 567 4375 7962 82.01 150 18000 6765 7120 5.25 263 18000
50 5 1 2524 2524 0.00 17 272 4718 4718 0.00 19 406 4623 4623 0.00 77 1064
50 5 2 3249 3249 0.00 3 66 3688 3688 0.00 7 148 4641 4641 0.00 0 14
50 10 0 2548 2548 0.00 0 2 3945 3945 0.00 0 11 4256 4256 0.00 156 1951
50 10 1 2729 2729 0.00 0 3 4623 4623 0.00 148 5007 5596 5596 0.00 220 5153
50 10 2 2520 2520 0.00 249 12486 3255 3255 0.00 19 335 4529 4879 7.72 242 18000
55 5 0 2693 2693 0.00 15 538 4369 4369 0.00 15 155 5231 5231 0.00 19 473
55 5 1 3767 4297 14.08 127 18000 5275 7581 43.70 113 18000 6868 7173 4.44 163 18000
55 5 2 3091 3091 0.00 3 162 4436 4436 0.00 73 2918 5922 6019 1.64 258 18000
55 10 0 3568 4382 22.80 129 18000 4037 5368 32.98 138 18000 5854 8283 41.50 184 18000
55 10 1 2731 2731 0.00 41 1389 5219 5219 0.00 114 2306 5376 5376 0.00 98 1947
55 10 2 2298 2298 0.00 15 188 3537 3537 0.00 10 78 4538 4538 0.00 89 3286
60 5 0 3682 4714 28.03 110 18000 4842 9199 89.97 89 18000 6409 6409 0.00 182 6885
60 5 1 3122 3331 6.69 126 18000 4429 5029 13.56 129 18000 6578 6773 2.97 582 18000
60 5 2 3467 3467 0.00 4 169 3625 3625 0.00 40 1719 5663 5663 0.00 31 344
60 10 0 3002 3002 0.00 53 3191 4330 6977 61.13 91 18000 5444 5752 5.66 385 18000
60 10 1 2992 3259 8.92 179 18000 3671 3671 0.00 44 2745 5096 5096 0.00 93 6321
60 10 2 3848 6403 66.41 88 18000 4963 6208 25.09 84 18000 5336 7565 41.77 156 18000
65 5 0 2850 2850 0.00 68 4776 3564 3564 0.00 21 923 6186 6484 4.82 123 18000
65 5 1 3009 3273 8.77 112 18000 4727 - - 79 18000 6262 6262 0.00 150 6551
65 5 2 3670 3670 0.00 117 13577 4867 4867 0.00 23 1036 5275 5275 0.00 230 4167
65 10 0 2715 2849 4.94 158 18000 4089 4089 0.00 8 400 5774 7276 26.00 151 18000
65 10 1 2811 2811 0.00 18 784 3088 3622 17.29 108 18000 5430 5430 0.00 83 6395
65 10 2 2843 4859 70.88 87 18000 4901 11607 136.82 85 18000 5296 7044 33.01 194 18000
70 5 0 3408 4065 19.29 89 18000 4628 - - 61 18000 6053 6650 9.86 107 18000
70 5 1 2598 2598 0.00 40 2780 5132 5132 0.00 51 2329 5066 5066 0.00 4 80
70 5 2 3638 - - 73 18000 6002 - - 48 18000 5961 7717 29.46 104 18000
70 10 0 3090 3119 0.95 160 18000 4052 5966 47.23 69 18000 5618 6527 16.17 105 18000
70 10 1 3670 - - 55 18000 5207 - - 49 18000 5660 - - 126 18000
70 10 2 2836 2836 0.00 93 9162 3991 - - 60 18000 6090 7543 23.85 136 18000
75 5 0 2534 2534 0.00 10 405 4754 4754 0.00 56 5645 5446 6860 25.96 122 18000
75 5 1 3635 4965 36.59 83 18000 5349 5554 3.83 121 18000 5974 8567 43.40 74 18000
75 5 2 2750 2750 0.00 14 339 3778 3778 0.00 11 1043 5847 8244 41.01 101 18000
75 10 0 2970 2970 0.00 3 136 3810 4148 8.88 103 18000 4909 5523 12.51 112 18000
75 10 1 3426 - - 65 18000 4725 - - 50 18000 6593 9309 41.19 102 18000
75 10 2 2818 2818 0.00 77 13549 3840 5555 44.67 79 18000 4896 5847 19.42 102 18000
75 20 0 2924 4843 65.61 50 18000 4009 - - 39 18000 5470 - - 83 18000
75 20 1 2570 2570 0.00 16 749 4098 4133 0.86 185 18000 5059 5742 13.51 215 18000
75 20 2 3631 - - 53 18000 4514 - - 50 18000 5843 - - 98 18000
80 10 0 2410 2410 0.00 5 379 4440 4465 0.57 89 18000 5233 12652 141.75 101 18000
80 10 1 3504 4479 27.83 59 18000 3854 5434 41.00 60 18000 5983 - - 83 18000
80 10 2 2860 3053 6.74 117 18000 4141 7753 87.21 46 18000 5998 - - 80 18000
80 20 0 2274 3853 69.43 64 18000 3586 - - 42 18000 5346 6758 26.42 149 18000
80 20 1 2962 - - 57 18000 4955 - - 33 18000 5672 - - 101 18000
80 20 2 2953 6250 111.68 39 18000 4309 6528 51.49 40 18000 5343 - - 70 18000
85 10 0 3341 - - 48 18000 5530 - - 31 18000 6402 - - 35 18000
85 10 1 3238 5516 70.33 62 18000 4370 - - 43 18000 5515 - - 78 18000
85 10 2 3041 3987 31.13 45 18000 3951 4809 21.73 52 18000 5931 8782 48.06 101 18000
85 20 0 3752 - - 39 18000 4569 - - 34 18000 6219 - - 56 18000
85 20 1 3135 - - 36 18000 4219 8495 101.35 49 18000 5226 - - 62 18000
85 20 2 2570 2699 5.04 91 18000 3906 - - 35 18000 5412 11256 107.98 69 18000
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