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Abstract. In the multi-pickup and delivery problem with time windows (MPDPTW) a set of 

vehicles must be routed to satisfy a set of client requests between given origins and 

destinations. A request is composed of several pickups of different items, followed by a 

single delivery at the client location. This paper introduces two new formulations for the 

MPDPTW, the 2-index formulation and the asymmetric representatives formulation. In 

addition, we also present an existing 3-index formulation for this problem and improve it by 

means of several preprocessing and valid inequalities. We solve the problem exactly via a 

branch-and-cut algorithm. We introduce several families of valid inequalities to strengthen 

the LP relaxations of the proposed formulations. Computational results are reported on 

different types of instances to firstly highlight the advantage of adding different families of 

valid inequalities then to compare the performance of the different formulations presented 

in this paper. While the heuristic and exact algorithms of the literature prove optimality for 

16 instances containing up to 50 nodes, we prove optimality for 41 instances for cases 

containing up to 100 nodes from the existing benchmark set. 
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1 Introduction

In the multi-pickup and delivery problem a request is composed of several pickups to
be delivered to one location. Vehicles can perform pickups of different requests in any
sequence, as long as all pickups of a single request are performed prior to its delivery.
This problem was recently introduced in the literature [Naccache et al., 2018] and finds
many practical applications, the most notable in food delivery: customers call a company
and request several dishes from different restaurants. The company must then pickup
all dishes prior to delivering them to the customer’s home. Obviously, the company can
combine orders of different customers in the same vehicle trip. Some of these locations
(either pickups or deliveries) can have time windows (TWs). Practical examples and a
review of distribution problems at large can be found in Coelho et al. [2016].

The only work dealing with the multi-pickup and delivery problem with time windows
(MPDPTW) is that of Naccache et al. [2018] who developed a hybrid adaptive large
neighborhood search (ALNS) with improvement operations, and proposed a mixed-integer
formulation for the problem which was then used to solve the problem via branch-and-
bound. The MPDPTW shares many characteristics with problems previously studied in
the literature, namely the pickup and delivery problem (PDP) and the sequential ordering
problem (SOP). These are briefly reviewed next.

Heuristic algorithms for the PDP are the ALNS [Pisinger and Ropke, 2007], the parallel
neighborhood descent [Subramanian et al., 2010], and the particle swarm optimization [Ai
and Kachitvichyanukul, 2009, Goksal et al., 2013]. Exact algorithms include the branch-
and-cut of Ropke et al. [2007], the branch-cut-and-price of Ropke and Cordeau [2009] and
the set partitioning-based algorithm of Baldacci et al. [2011]. The SOP is a related prob-
lem which aims at solving an asymmetric traveling salesman problem with precedence
constraints, meaning that nodes have a partial order imposed to their visits [Escudero,
1988]. This problem also models real-world applications in manufacturing and in trans-
portation [Ezzat et al., 2014]. Several methods exist to solve the SOP, including local
searches [Savelsbergh, 1990], branch-and-cut [Ascheuer et al., 2000], parallel sequential
algorithm [Guerriero and Mancini, 2003], genetic algorithm [Seo and Moon, 2003], and
other mathematical programming tools [Letchford and Salazar-González, 2016]. Dual
bounds were obtained by lagrangian relaxation by Alonso-Ayuso et al. [2003].

In transportation problems, when multiple homogeneous vehicles are considered, sym-
metric solutions can be obtained by reassigning the same set of customers to different
vehicles. This is known to yield weak relaxations and to a repetitive branch-and-bound
tree [Jans and Desrosiers, 2013]. To overcome this problem, we develop a new formulation
for distribution problems in which this kind of symmetry is no longer present. This new
model is called the asymmetric representatives formulation (ARF).

The goal of this paper is to provide the first exact algorithm for the MPDPTW,
providing the first dual bounds for the problem and obtaining tight solutions for large
instances. To this end, we propose three formulations for the problem, and design a
state-of-the-art branch-and-cut algorithm to solve them. Several families of cuts are
adapted from the literature and improved to tackle this difficult problem. We compare the
formulations in terms of efficiency and we show the value of introducing valid inequalities
and preprocessing in strengthening their relaxations.
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The remainder of the paper is organized as follows. Section 2 provides a formal
description of MPDPTW, and introduces three mixed integer formulations in Section
3. Section 4 introduces several families of valid inequalities used in the branch-and-cut
algorithm, which is then described in Section 5, along with preprocessing techniques
and separation procedures. Computational experiments are presented in Section 6 and
conclusions follow in Section 7.

2 Problem description

The MPDPTW is defined on a graph G = (V,A) in which the set of vertices V = P ∪D∪
{0, p+n+1}. The set P = {1, ..., p} defines the pickup nodes, and D = {p+1, ..., p+n} is
the set of delivery nodes where |D| = n and p ≥ n. Nodes 0 and p+n+ 1 are the starting
and ending depot. Let R = {r1, . . . , rn} be the set of requests to be routed. Each request
r ∈ R is represented by a set of pickup nodes Pr ⊆ P and one delivery node dr ∈ D. Let
N = P ∪ D be the set of customer nodes. Let r(i) be the request associated with node
i ∈ N . An uncapacitated fleet of m identical vehicles in the set K is available to serve
the requests. Each vertex i ∈ V has a service time si and a time window [ai, bi] allowing
the vehicle to arrive at i prior to ai but waiting until ai to service the node, and service
must start not later than bi. Vehicles depart from the depot at a0 and must return not
later than b0.

The set of arcs A = V × V minus arcs that lead to infeasible solutions. For instance,
we omit arc (i, j) if: (i) i is a delivery node and j is one of its pickup nodes,(ii) if
ai + si + tij > bj, (iii) i is the start depot and j is a delivery node, or (iv) i is a pickup
node and j is the end depot. A distance dij ≥ 0 and a travel time tij ≥ 0 are associated
with each arc (i, j) ∈ A. Let A+(i) and A−(i) be the sets of incoming and outgoing arcs
from node i ∈ V .

A solution to the problem minimizes the routing cost and assigns all requests to the
vehicles, guaranteeing that a request is served by a single vehicle.

3 Mathematical models

In this section we propose three mathematical formulations to the problem. The first one
is a three-index formulation in which vehicles are identified by an index in the variables,
presented in Section 3.1. The second formulation is a classical two-index formulation
adapted to the special structure of the problem, shown in Section 3.2. The third model is
based on the Asymmetric Representatives Formulation and is introduced in Section 3.3.

3.1 Three-index formulation

The problem can be mathematically formulated with the following decision variables:

• xkij equal to 1 if arc (i, j) is traversed by vehicle k, 0 otherwise;

• yrk equal to 1 if request r is satisfied by vehicle k, 0 otherwise;
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• Si indicating the starting time of service at node i ∈ V .

The MPDPTW can then be formulated as follows:

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (1)

s.t.
∑

j∈A+(i)

xkij = yr(i)k k ∈ K, i ∈ N (2)

∑
j∈A−(i)

xkji = yr(i)k k ∈ K, i ∈ N (3)

∑
j∈A+(0)

xk0j ≤ 1 k ∈ K (4)

∑
k∈K

yrk = 1 r ∈ R (5)

Sj ≥ Si + (si + tij +M)
∑
k∈K

xkij −M (i, j) ∈ A (6)

ai ≤ Si ≤ bi i ∈ V (7)

Sdr ≥ Si + si + tidr i ∈ Pr, r ∈ R (8)

xkij, yrk ∈ {0, 1} (i, j) ∈ A, r ∈ R, k ∈ K (9)

Si ≥ 0 i ∈ V. (10)

The objective function (1) minimizes the overall transportation cost. Constraints (2)
and (3) are degree constraints associated with nodes visited by vehicle k. They also ensure
that all the nodes of a request are visited by the same vehicle. Constraints (4) ensure that
at most K vehicles are used in the solution. Constraints (5) force a request to be served by
exactly one vehicle. Constraints (6) and (7) guarantee schedule feasibility with respect to
time windows. Note that constraints (6) also eliminate subtours. The precedence order is
preserved via constraints (8). Constraints (9) and (10) impose the nature and the domain
of the variables. M is a big enough number and can be set to the maximum return time
to the depot bp+n+1.

3.2 Two-index formulation

A known problem with the three-index formulation is that the number of variables is large
because for each arc there are |K| variables. In this section we formulate the problem
using the well-known two-index formulation. Pairing and precedence inequalities need to
be added to ensure that all nodes of a request are served by the same vehicle. In other
words, the same unit of flow must pass through the nodes of a request to ensure feasibility.
To impose these inequalities, it is convenient to define set S of all node subsets S ⊆ V
such that 0 /∈ S, Pr ⊂ S, dr /∈ S, and p + n + 1 ∈ S for at least one request r(i). The
problem can be mathematically formulated with the following decision variables:

• xij equal to 1 if arc (i, j) is traversed by a vehicle, 0 otherwise;
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• Si indicating the starting time of service at node i ∈ V .

The MPDPTW can then be formulated as follows:

min
∑

(i,j)∈A

cijxij (11)

s.t.
∑
i∈N

xij = 1 ∀j ∈ N (12)∑
j∈N

xij = 1 i ∈ N (13)∑
j∈N

x0j ≤ |K| (14)∑
i∈S

∑
j∈S

xij ≤ |S| − 1 S ⊆ N (15)∑
i∈S

∑
j∈S

xij ≤ |S| − 2 S ⊆ S (16)

Sj ≥ Si + si + tij −M (1− xij) i ∈ N, j ∈ N (17)

ai ≤ Si ≤ bi i ∈ V (18)

Sdr ≥ Si + si + tidr i ∈ Pr, r ∈ R (19)

xij ∈ {0, 1} i ∈ N, j ∈ N. (20)

Si ≥ 0 i ∈ V. (21)

The objective function (11) minimizes the overall transportation cost. Constraints (12)
and (13) are degree constraints requiring each node to be visited exactly once. Constraint
(14) ensures that the maximum number of vehicles used in the solution is respected.
Constraints (15) are subtour elimination constraints. Constraints (16) are pairing and
precedence constraints, which state for each request r ∈ R represented by a set of pickup
nodes Pr ⊆ P and a delivery node dr ∈ D, for each node p ∈ Pr, node dr is visited after
node p, and both are visited by the same vehicle. Constraints (17) and (18) guarantee
schedule feasibility with respect to time windows. The precedence order is preserved via
constraints (19). Constraints (20) and (21) impose the nature and the domain of the
variables. Again, M is a big number and can be set to the maximum return time to the
depot bp+n+1.

Furtado et al. [2017] have proposed a new compact formulation for the PDPTW, in-
troducing a new way to represent pairing relations. They defined new additional variables
to identify the routes by storing the index of the first node visited by each route. We
define the continuous decision variable vi that is equal to the index of the first node in
the route that visits node i ∈ N . For example, consider that a node j ∈ N is the first
node visited in the route that visits i; as a result we have vi = j. Therefore, the nodes
of a given request r with i, k ∈ Pr and dr ∈ D are visited in the same route if and only
if vi = vk = vdr . The two-index formulation can be improved by adding the new pairing
constraints in addition to constraints (16). The new pairing constraints adapted to the
MPDPTW are defined as follows:
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vd(r) = vi i ∈ Pr, r ∈ R (22)

vj = jx0j j ∈ N (23)

vj ≤ jx0j − |N |(x0j − 1) j ∈ N (24)

vj ≥ vi + |N |(xij − 1) i, j ∈ N (25)

vj ≤ vi + |N |(1− xij) i, j ∈ N. (26)

Constraints (22) guarantee that the pickup nodes and the delivery node of a given
request belong to the same route. Constraints (23) and (24) ensure that the route identifier
is taken as the index of the first visited node. Constraints (25) and (26) guarantee that
the index of the first node is forwarded to the next nodes in the route. The value |N |
represents the number of customer nodes and it is given by |N | = (n+ p).

3.3 Asymmetric representatives formulation

The ARF for the MPDPTW is inspired by the work of Jans and Desrosiers [2013] for
the job grouping problem. It is based on the idea of identifying a cluster of requests by
its lowest indexed request. This formulation is mainly used to eliminate the symmetry
between identical vehicles in the case of a homogeneous transportation fleet. It also yields
a smaller problem due to the reduction of the number of arcs in the graph G. Symmetry
exists when for each feasible solution, other alternative feasible solutions are obtained with
the same value of the objective function by just reassigning the same clusters of requests
to different vehicles. Symmetry breaking is possible by imposing a request assignment rule
in the form of symmetry breaking constraint. This constraint ensures that the assignment
of a request i to a higher indexed cluster j > i is not allowed. The number of clusters in
this formulation equals the number of requests to be served. The illustration in Figure
1.a shows an example of the logic behind the ARF with three requests. In this example
we show how the ARF breaks the symmetry by imposing the request assignment rule.
The first request r1 must be assigned to the first cluster. For the second request r2, we
impose that it must belong to either the first or the second clusters. Finally, the third
request r3 must be assigned to one of the first three clusters.

In this formulation the binary variable yrk is defined to indicate whether or not request
r is assigned to cluster k. It is also used to indicate whether or not a cluster of requests is
assigned to one of the vehicles; for instance, if ykk = 1, it means that the cluster of requests
with the identifier k is assigned to one of the identical vehicles. Otherwise ykk = 0, the
cluster is closed and no request can be assigned. In this formulation we also add a new
constraint to prevent pairs of infeasible requests from being assigned to the same cluster.
To this end we define W = {(i, j) ∈ R×R| i and j cannot be feasibly served together by
one vehicle} as the set of infeasible pairs of requests. It represents pairs of requests that
cannot be in the same route because they lead to an infeasible path.

The problem can be mathematically formulated with the following decision variables:

• xkij equal to 1 if arc (i, j) is present in cluster k, 0 otherwise;

• yrk equal to 1 if request r is present in cluster k, 0 otherwise;
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• Si indicating the starting time of service at node i ∈ V .

To ease the readability, variable yrk = 0 if r < k, and xkij = 0 if r(i) < k or r(j) < k.
The ARF for the MPDPTW is then as follows:

min
∑
k∈R

∑
(i,j)∈A

cijx
k
ij (27)

s.t.
∑

j∈A+(i)

xkij = yr(i)k k ∈ R, i ∈ N (28)

∑
j∈A−(i)

xkji = yr(i)k k ∈ R, i ∈ N (29)

∑
j∈A+(0)

xk0j ≤ 1 k ∈ R (30)

∑
k∈R

ykk ≤ |K| (31)∑
k∈R

yrk = 1 r ∈ R (32)∑
r∈R:r>k

yrk ≤ ykk(|R| − k) k ∈ R (33)

yrk + yr′k ≤ 1 k, r′, r ∈ R, (r, r′) ∈ W (34)

Sj ≥ Si + (si + tij +M)
∑
k∈K

xkij −M (i, j) ∈ A (35)

ai ≤ Si ≤ bi i ∈ V (36)

Sdr ≥ Si + si + tidr i ∈ Pr, r ∈ R (37)

xkij, yrk ∈ {0, 1} (i, j) ∈ A, r, k ∈ R (38)

Si ≥ 0 i ∈ V. (39)

The objective function (27) minimizes the overall transportation cost. Constraints
(28) and (29) are degree constraints associated with nodes in cluster k. They also ensure
that all the nodes of a request are in the same cluster. Constraints (30) ensure that at
most one vehicle departs from the depot for each cluster. Constraint (31) ensures that at
most |K| vehicles are used in the solution. Constraints (32) force a request to be present in
exactly one cluster. Constraints (33) ensure that the cluster k is open only if the request
k is assigned to this cluster. Constraints (34) ensure that pairs of infeasible requests
cannot be in the same cluster. Constraints (35) and (36) guarantee schedule feasibility
with respect to time windows. The precedence order is preserved via constraints (37).
Constraints (38) and (39) impose the nature and the domain of the variables. M is a big
enough number and can be set to the maximum return time to the depot bp+n+1.

To further improve the ARF, it is possible to rearrange the indices of the requests
such that fewer arcs are considered in the formulation. This is demonstrated in Figure
1.b which shows how many feasible arcs exist between the three requests of the example.
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For the clusters represented in Figure 1.a, we should consider all arcs between requests
1, 2 and 3 for cluster 1 (totaling 3+10+11+10+3+5=42), plus all arcs between requests
2 and 3 for cluster 2 (totaling 11+10+3=24), plus all arcs within request 3 for cluster 3
(totaling 3 arcs), for a total number of arcs in the formulation equal to 42+24+3=69.

By rearranging the requests within the clusters as shown in Figure 1.c, cluster 1
continues with 42 arcs, cluster 2 now only contains the arcs between requests 1 and 3
(totaling 3+5+3=11), and cluster 3 only the arcs within request 3, i.e., 3 arcs. The
formulation for the clusters represented by Figure 1.c contains only 42+11+3=56 arcs.

Cluster 1 r1 r2 r3

Cluster 2 r2 r3

Cluster 3 r3

r1 r2 r3

r1 3 10 5
r2 11 10
r3 3

Cluster 1r2 r1 r3

Cluster 2r1 r3

Cluster 3r3

Number of arcs: 69
a)

# arcs within and
between requests Number of arcs: 56

c)b)

Figure 1: An example of ARF

An MIP was formulated to determine the best order of input requests that yields the
lowest number of arcs in the input graph G. The MIP is formulated with the following
parameters and decision variables:

Parameters:

• eij equal to the number of feasible arcs between requests i and j;

• ei equal to the number of feasible arcs from the depot to all pickups of request i,
plus the arc from the drop to the depot, plus feasible arcs between each pair of
nodes of request i.

Variables:

• uki equal to 1 if request i is the first in cluster k;

• vki equal to 1 if request i is in cluster k;

• zkij equal to 1 if requests i and j are both in cluster k.

The MIP can then be formulated as follows:

min
∑
k∈R

∑
j∈R

∑
i∈R,i<j

eijz
k
ij +

∑
k∈R

∑
j∈R

ejv
k
j (40)

s.t.
∑
k∈R

uki = 1 i ∈ R (41)∑
i∈R

uki = 1 k ∈ R (42)
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vki ≥ uki i, k ∈ R (43)

zkij ≥ vki + vkj − 1 i, j, k ∈ R, i < j (44)

vli ≥ uki −
∑
j∈R

ulj i, j, k ∈ R, l < k, (i, j) ∈ W (45)

uki ∈ {0, 1} i, k ∈ R (46)

vki ≥ 0 i, k ∈ R (47)

zkij ≥ 0 i, j, k ∈ R. (48)

The objective function (40) minimizes the overall number of arcs. Constraints (41)
and (42) ensure that a request can be assigned to the first position in exactly one cluster.
Constraints (43) force variables vki to be dependent on variables uki to ensure the feasibility
of the model guaranteeing the existence of the request in the same cluster where it appears
in the first position. Constraints (44) link variables zkij to vki . Constraints (45) ensure that
pairs of infeasible requests cannot be in the same cluster. Constraints (46)–(48) impose
the nature and the domain of the variables.

4 Valid inequalities

This section describes several families of valid inequalities for the MPDPTW. The use-
fulness of these inequalities is demonstrated through computational experiments in Sec-
tion 6.2. To describe them, an additional notation is needed. For any node subset
S ⊆ V , we define x(S) =

∑
i,j∈S xij, and for any node subsets S and T , we define

x(S, T ) =
∑

i∈S
∑

j∈T xij.

4.1 Lifted subtour elimination constraints

Lifted subtour elimination constraints were used for solving the dial-a-ride problem [Cordeau,
2006], and PDPTW [Ropke et al., 2007]. Consider the classical subtour elimination con-
straint (15). It can also be lifted in the case of MPDPTW by taking into account the fact
that for each request r(i), the set of pickup nodes Pr must be visited before the delivery
node dr. For any set S ⊆ N , let π(S) = {i ∈ Pr|dr ∈ S} and σ(S) = {dr ∈ D|i ∈ Pr ∩ S}
denote the sets of predecessors and successors of S. Two families of inequalities were pro-
posed by Balas et al. [1995] for the precedence constrained asymmetric TSP which also
apply to the MPDPTW by considering the fact that each node i ∈ N is either the prede-
cessor or the successor of exactly one node [Ropke et al., 2007]. For S ⊆ N , the following
inequality, called a successor inequality (or σ-inequality) is valid for the MPDPTW:

x(S) +
∑

i∈S̄∩σ(S)

∑
j∈S

xij +
∑

i∈S̄\σ(S)

∑
j∈S∩σ(S)

xij ≤ |S| − 1. (49)

Similarly, the following predecessor inequality (or π-inequality) is valid for the MPDPTW:
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x(S) +
∑
i∈S

∑
j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑
j∈S̄\π(S)

xij ≤ |S| − 1. (50)

4.2 Infeasible path constraints

An infeasible path can occur in different ways. For instance the violations of time windows
may give rise to a path that is infeasible. In some other cases a given path could satisfy
time windows, however precedence relationships are not respected, i.e., a pickup node of
a given request visited after the delivery node of the same request. Forbidding such paths
can be accomplished through different valid inequalities. In general, let F = (k1, ..., kl)
be an infeasible path and let A(F ) be the arc set of F . The following inequality is valid:

l−1∑
i=1

xki,ki+1
≤ |A(F )| − 1. (51)

Infeasible path constraints can be strengthened in different ways. In this paper we
consider two different ways to strengthen inequality (51). The first one is inspired by the
existence of pairing and precedence relations between nodes of the same request, and the
second one is based on the idea of eliminating infeasible paths by considering groups of
infeasible paths sharing some common arcs which was introduced in Ropke et al. [2007]
and known as fork constraints. In what follows, we discuss in detail the strengthening of
the infeasible path inequality.

4.2.1 Infeasible drop/pickup paths

This section introduces valid inequalities for the MPDPTW that aim to forbid infeasible
paths violating a special case of the pairing and precedence constraints. For a given
request r ∈ R, let F = (0, k1, k2, ..., kl, dr) be an infeasible path in G such that not all
pickups of r are on the path from 0 to dr. A way to strengthen inequality (51) for this
case is to consider that any ordering of the nodes k1 to kl and dr will lead to an infeasible
solution. Let S = {k1, k2, ..., kl} be a node subset. Inequality (51) can then be replaced
by the following stronger valid inequality:

x(0, S) + x(S ∪ {dr}) ≤ |S|. (52)

The same idea can be used in the case of paths from a pickup to the depot. For a
given request r ∈ R, let F = (p, k1, k2, ..., kl, 0) be an infeasible path in G such that p ∈ Pr
and ki 6= dr for i = 1, ..., l. This infeasible path can be forbidden using inequality (51),
however, a similar way as in the case of depot to drop paths is used to strengthen it in the
case of pickup to depot paths. We consider that any ordering of the nodes k1 to kl and
p will lead to an infeasible solution. Let S = {k1, k2, ..., kl} be a node subset. Inequality
(51) can then be replaced by the following stronger valid inequality:
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x(S ∪ {p}) + x(S, 0) ≤ |S|. (53)

The same idea can also be used in the case of paths from the drop to a pickup node of
the same request. For a given request r ∈ R, let F = (dr, k1, k2, ..., kl, p) be an infeasible
path in G such that p ∈ Pr and dr is the drop node of r. Let S = {k1, k2, ..., kl} be a node
subset. The following valid inequality can replace inequality (51) to forbid an infeasible
drop to pickup path:

x(dr, S) + x(S) + x(S, p) ≤ |S|. (54)

4.2.2 Infeasible requests paths

Paths can be infeasible if they contain nodes belonging to pairs of infeasible requests.
Although inequality (51) can be used to forbid them, a stronger inequality is used in
this case. For a given pair of nodes i, j ∈ N such that (r(i), r(j)) ∈ W , the path
F = (i, k1, k2, ..., kl, j) is infeasible in G. Let S = {k1, k2, ..., kl} be a node subset. The
following inequality is valid for the MPDPTW:

x({i, j} ∪ S) ≤ |S|. (55)

4.2.3 Fork constraints

As stated before, the main idea of the fork constraints is to eliminate infeasible paths by
considering groups of infeasible paths sharing some common arcs. Inequalities (56) and
(57) are called infork and outfork inequalities, respectively.

Let F = (k1, ..., kl) be a feasible path in G, and S1, ..., Sl, T ⊂ N , such that kj /∈ Sj+1

for j = 2, ..., k − 1. If for any integer h ≤ l and any node pair i ∈ Sh, j ∈ T , the path
(i, k1, ..., kh, j) is infeasible, then the following inequality is valid for the MPDPTW:

l∑
h=1

∑
i∈Rh

xi,kh +
l−1∑
h=1

xkh,kh+1
+
∑
j∈T

xkl,j ≤ l. (56)

Let F = (k1, ..., kl) be a feasible path in G, and S, T1, ..., Tl ⊂ N , such that kj /∈ Tj−1 for
j = 2, ..., l. If for any integer h ≤ l and any node pair i ∈ S, j ∈ Th, the path (i, k1, ..., kh, j)
is infeasible, then the following inequality is valid for the MPDPTW:

∑
i∈R

xi,k1 +
l−1∑
h=1

xkh,kh+1
+

l∑
h=1

∑
j∈Th

xkh,j ≤ l. (57)

4.3 New valid inequalities

This section describes a set of new valid inequalities for the MPDPTW. Additional con-
straints can be added to the ARF by considering the fact that some requests might be
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alone in their cluster. Let Fk = (k1, ..., kl) be the optimal path to service the nodes of the
request k ∈ R in a single route for l > 1. Then the following inequality is valid for the
ARF: ∑

(i,j)∈Fk

xkij ≥ |Fk|(ykk −
∑

r∈R,r 6=k

yrk). (58)

For each pair of requests r1, r2 ∈ R such that dr1 and dr2 are the drop nodes of r1 and
r2 respectively, the following inequalities are valid for MPDPTW:∑

i∈Pr1

xidr2 +
∑
i∈Pr2

xidr1 ≤ 1 (59)

∑
i∈Pr1

xidr2 +
∑
j∈Pr2

xdr1j ≤ 1 (60)

∑
j∈Pr1

xdr2j +
∑
i∈Pr2

xidr1 ≤ 1 (61)

∑
j∈Pr1

xdr2j +
∑
j∈Pr2

xdr1j ≤ 1. (62)

For each node i ∈ N , the following inequality is valid for MPDPTW:

ti ≥
∑
j∈N

xij(t0j + tji + sj). (63)

Inequalities 59–63 are valid for the 2-index formulation and they can easily be adapted
to the ARF and the 3-index formulation by only taking into consideration the index k in
the decision variable.

5 Branch-and-cut algorithm

In this section we describe the branch-and-cut algorithm developed to solve the MPDPTW.
After applying the preprocessing techniques presented in 5.1, the algorithm starts by solv-
ing the LP-relaxation of the problem. The models are solved using a commercial MIP
solver that is in charge of solving the LP relaxations and branching. The description of the
separation procedures used to generate the valid inequalities from Section 4 is presented
in Section 5.2.

5.1 Preprocessing

This section describes the preprocessing procedures that are performed prior to applying
the branch-and-cut algorithm. The goal is to modify the input graph G in order to reduce
it, and to tighten time windows associated with each node i ∈ N .
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5.1.1 Infeasible request pairs

Section 3.3 defined the set W of pairs of requests that cannot be in the same route because
they lead to an infeasible path. In order to build such a set, we perform three main steps
for each pair of requests r1, r2 ∈ R:

Step 1 : we try to find an initial feasible solution through the insertion of the requests
in a route. If the solution is feasible we move to the next pair of requests. If the solution
is not feasible we continue to step 2.

Step 2 : few iterations of the ALNS of Naccache et al. [2018] are performed to find a
feasible solution. Again, if the solution is feasible, we move to the next pair of requests.
If the solution of the ALNS is infeasible, we continue to step 3.

Step 3 : we enumerate all possible feasible paths built using nodes belonging to both
requests. If no feasible path is found, then the pair (r1, r2) is added to the set W .

5.1.2 Time-windows tightening

The time-windows are tightened following the procedure described in Ascheuer et al.
[2001]. This procedure is implemented through four steps for each node k ∈ N . We cycle
through these steps until no more changes can be made to the time windows:

Step 1 : ak ← max{ak,mini∈A+(k){ai + si + tik}} ∀k ∈ N | A+(k) 6= ∅.
Step 2 : ak ← max{ak,min{bk,minj∈A−(k){aj − sk − tkj}} ∀k ∈ N | A−(k) 6= ∅.
Step 3 : bk ← min{bk,max{ak,maxi∈A+(k){bi + tik}} ∀k ∈ N | A+(k) 6= ∅.
Step 4 : bk ← min{bk,maxj∈A−(k){bj − sk − tkj}} ∀k ∈ N | A−(k) 6= ∅.
In this paper, we propose a second time-windows tightening procedure that is based on

enumerating all possible paths formed by nodes of each request r ∈ R. Let F (r) represent
all possible paths of request r. Let hFk be the arrival time at node k in path F . For the
drop node dr we have:

adr ← max{adr ,min
k∈Pr

{ min
F∈F (r)

{hFk + sk + tkdr}}}

And for each pickup node k ∈ Pr we have:

ak ← max{ak, min
i∈Pr\{k}

{ min
F∈F (r)

{hFi + si + tik}}}.

5.1.3 Arc elimination

Each one of the three formulations presented in this paper is defined on a complete graph
G. However, due to time windows, infeasible pairs of requests, and pairing and precedence
constraints, many arcs cannot belong to a feasible solution. Therefore they can be removed
from the graph. The following are the arcs eliminated from the graph:

1. Arcs (0, dr), (p, 0), and (dr, p) are infeasible for each request r ∈ R such that p ∈ Pr
and dr is the drop node of the request r.

2. Arc (i, j) ∈ A is infeasible if ai + si + tij > bj.

3. Arc (i, j) ∈ A is infeasible if (r(i), r(j)) ∈ W .

12

A Branch-and-Cut Algorithm for the  Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2019-04



4. For each request r ∈ R, we enumerate all possible feasible paths built using nodes
of r. Arc (i, j) ∈ A such that r(i) = r(j) = r is infeasible if it does not belong to
any of the feasible paths.

5. For each pair of requests r1, r2 ∈ R such that (r1, r2) /∈ W , we enumerate all possible
feasible paths built using nodes belonging to both requests. Arc (i, j) ∈ A such that
r(i) = r1 and r(j) = r2 is infeasible if it does not belong to any of the feasible paths.

5.2 Separation procedures

We now describe the separation procedures used to identify violated inequalities. In
addition to the valid inequalities in Section 4, we have also separated the pairing and
precedence constraints (constraints (16) in the 2-index formulation), the infeasible drop
to pickup constraints (54) and the generalized order constraints (GOC) adapted to the
MPDPTW, however these inequalities are not used in this paper because of their negative
impact on the performance of the 2-index formulation in terms of CPU time. The valid
inequalities introduced in this paper are only generated for the 2-index formulation. This
is due to their negative impact on the CPU time when they are adapted and generated
for the ARF and the 3-index formulation.

5.2.1 Lifted subtour elimination constraints

The separation procedure of the lifted subtour elimination constraints starts by separating
the subtour elimination inequalities represented by the inequality (15) in the 2-index
formulation. The CVRPSEP package is used in this case. It is a package of separation
routines for the capacitated vehicle routing problem developed by Lysgaard et al. [2004].
We have adapted to the case of the MPDPTW. When a subtour S is identified, inequalities
(49) and (50) are generated by adding all other arcs in the left-hand side of the cut.

5.2.2 Infeasible drop/pickup paths

This section describes the separation procedure used to generate inequalities (52) and
(53) for a fractional solution at a given node of the tree. In the case of the infeasible
drop paths, in the first step of the heuristic, for each request r, we try to find a path
from the depot 0 to the drop dr by depth search on graph G. If a path exists, we check
the feasibility of the path: all the pickups of request r must be in the path, otherwise a
pairing and precedence constraint is violated. The same logic is used in the case of the
infeasible pickup paths: for each request r, we try to find a path from each pickup node p
such that p ∈ Pr to the depot 0 using a depth search in G. If a path exists, we check the
feasibility of the path: the drop dr of request r must be in the path, otherwise a pairing
and precedence constraint is violated.

5.2.3 Infeasible request paths

Inequalities (55) are separated using a heuristic similar to the one described in Section
5.2.2. For each pair of nodes i, j ∈ N such that (r(i), r(j)) ∈ W , we try to find a path
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from node i to node j by depth search on graph G. If a path exists, inequality (55) is
generated to forbid this path.

5.2.4 Fork constraints

We separate infork constraints (56) in three different ways. The first way starts by check-
ing for a path from the depot 0 to the drop dr for each request r ∈ R using a depth-first
search on graph G. If a path exists, we check the feasibility of the path: all pickups of
request r must be in the path, otherwise the path is infeasible. If the path is infeasible,
we then add the depot node 0 to the set R1 and the drop node dr to the set T . In the
next step we add as many nodes as possible to the sets R1, ..., Rl, T . The second way
to separate constraints (56) is similar to the previous one, however in this case for each
request r ∈ R and for each pickup node p ∈ Pr we check for an infeasible path from p
to the depot 0. We then add the pickup node p to the set R1 and the depot node 0 to
the set T . Finally, we add as many nodes as possible to the sets R1, ..., Rl, T . Lastly, we
also separate infork constraints (56) by checking for a path between each pair of nodes
i, j ∈ N such that (r(i), r(j)) ∈ W ; if such a path exists, we add node i to the set R1 and
node j to the set T , and we add as many nodes as possible to sets R1, ..., Rl, T .

Knowing that the outfork constraints (57) are similar to the infork constraints as they
are only obtained by reversing the orientation of the arcs reaching path the F (see Section
4.2.3), their separation is similar to the separation of the infork constraints.

6 Computational experiments

This section describes the computational experiments. Section 6.1 introduces the charac-
teristics of the MPDPTW instances. The results of detailed and extensive computational
experiments are then presented in Section 6.2.

6.1 Test instances

The test instances used in this paper were proposed by Naccache et al. [2018], and they
originate from the Li and Lim [2001] instances for the PDPTW. The characteristics of the
instances are presented in Table 1. Each instance type is defined by three main elements:
the TW type, the maximum length of the requests, and the number of nodes (instance
size). An instance is defined as Without when the TW of the original node is deleted, as
Normal when the TW for each node is slightly enlarged by opening it 150 units earlier
and closing it 150 units later, or as Large when the TW for each node is enlarged by
opening it 300 units earlier and closing it 300 units later. For each instance, the size of a
request must be more than or equal to two, meaning that a request must at least contain
one pickup and one delivery node. Requests can contain at most 4 (Short requests) or
8 (Long requests) pick-up and delivery nodes depending on the type of the instance.
Instances contain 25, 35, 50 or 100 nodes, meaning we do not use instances with 400
nodes from Naccache et al. [2018], but we created new instances with 35 nodes to better
evaluate the exact algorithm. At the end we have 24 instance types, and for each type
we generate five instances which make a total of 120 instances. For better understanding,
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we give an example about how to read the instance’s name: the instances of type L 8 25
represent Large TW, Long requests, 25 nodes and are denoted L 8 25 1 to L 8 25 5.

Table 1: Instance types
Without TW Normal TW Large TW

Instance Short Long Short Long Short Long
size requests requests requests requests requests requests
25 W 4 25 W 8 25 N 4 25 N 8 25 L 4 25 L 4 25
35 W 4 35 W 8 35 N 4 35 N 8 35 L 4 35 L 8 35
50 W 4 50 W 8 50 N 4 50 N 8 50 L 4 50 L 8 50
100 W 4 100 W 8 100 N 4 100 N 8 100 L 4 100 L 8 100

6.2 Computational results

The experiments reported here have been performed on a desktop computer equipped
with a 2.67 GHz Intel processor operating under the Scientific Linux 6.3. Each test
was allowed to run for a maximum of 1 hour and to use up to 28 GB of RAM. The
branch-and-cut algorithm is coded in C++ and CPLEX 12.8 is used to perform the
computational experiments. The algorithm is only applied to the 2-index formulation, as
adapting and adding the valid inequalities to the 3-index formulation and to the ARF did
not improve their effectiveness, and for some instances the runtime increases. We first
start by assessing the effectiveness of the ARF with and without imposing the order of the
input requests. We then report the results of the branch-and-cut algorithm applied to the
2-index formulation under different scenarios. Finally, we compare the results of the three
formulations proposed in this paper. The optimality gap presented in the next sections

is calculated as 100 ∗
(
BestUpperBound−LowerBound

BestUpperBound

)
. The best upper bound is obtained by

checking for each instance the minimum value between the solution obtained by ALNS in
Naccache et al. [2018] and any of our solutions selection. This way, we focus on improving
the dual bounds for this difficult problem.

6.2.1 ARF with and without imposing the order of the input requests

Section 3.3 presented a MIP to improve the effectiveness of the ARF by imposing the order
of the input requests. The model was then solved by branch-and-bound using CPLEX
12.8. Since the lower bound improves very slowly and the optimality gap is very large, we
developed a quick heuristic algorithm to determine the best possible order of the input
requests which yields the lowest number of arcs in the input graph G. The algorithm is
composed of three main parts: it starts by sorting the requests according to the number
of arcs per request represented by the parameter ei in the MIP (see Section 3.3) from
the request with the largest ei to the smallest. We then use a simulated annealing (SA)
algorithm for a limited number of iterations to improve the solution. Finally, in order to
further improve the solution obtained by the SA, we developed a local search algorithm

15

A Branch-and-Cut Algorithm for the  Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2019-04



where we swap all possible pairs of requests searching for the best improvement of the
solution.

Table 2 reports the results obtained by the ARF under different scenarios and the
results obtained by the 3-index formulation. Three different scenarios of the ARF are
described in this table: the first scenario represents the worst order of the input requests,
the second scenario represents the case where the requests are randomly classified as they
appear in the instances, and the third case represents the best case where the algorithm
is used. The first column in Table 2 reports the results of the 3-index formulation, then
each one of the next three columns represents one possible scenario of the ARF. The rows
report the following information respectively: the average number of arcs in each scenario
(including the 3-index), the average runtime for instances solved to optimality by all the
scenarios simultaneously, the average gap at the root node of the tree for all instances,
the average optimality gap for instances unsolved by all the scenarios simultaneously, the
number of instances solved in each scenario, and finally the number of instances solved
by all scenarios.

Table 2: ARF with different request input order

3-index
Worst case

ARF
Random case

ARF
Best case

ARF
Average # of arcs 15037.4 15667.8 12693.8 9779.8
Average runtime (s) 264.9 36.5 31.0 21.1
Avg gap root (%) 27.7 24.9 25.1 22.6
Avg gap final (%) 38.8 36.1 35.2 33.9
Solved 50 60 60 60
Solved by all 50

Results in Table 2 show that the algorithm has proven to be efficient in improving
the performance of the ARF. The average number of arcs and the average runtime for
instances solved to optimality under the three scenarios of the ARF have significantly
decreased in the best case compared to the worst and random cases. Moreover, the LP
relaxation of the ARF has been strengthened as the average gap at the root node of the
tree for all instances decreases from 24.9% in the worst case and 25.1% in the random
case to 22.6% in the best case. Finally, a considerable improvement of the lower bound is
achieved through the application of the algorithm: the average gap for instances unsolved
by all the three scenarios of the ARF simultaneously was improved by 2.2% in the best
case compared to the worst case, and by 1.3% compared to the random case. Overall,
the algorithm was able to improve the effectiveness of the ARF through a considerable
reduction of the problem size by reducing the number of arcs in the input graph.

The comparison between the results obtained by the 3-index formulation and the
results obtained by the best case of the ARF show that the ARF yields a smaller and easier
problem than the 3-index formulation and this can be seen through the results that report
a significant decrease of the average number of arcs from 15037.4 to 9779.8, the average
runtime for instances solved to optimality by the 3-index and the ARF simultaneously
from 264.9 seconds to 21.1 seconds, and the average gap for instances unsolved by both
formulations from 38.8% to 33.9 %. In addition, the best case of the ARF solved to
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optimality 10 more instances than the 3-index formulation.

6.2.2 The impact of valid inequalities on the 2-index formulation

In this section, we measure the strength of each family of valid inequalities introduced in
Section 4 on the 2-index formulation. In Table 3 we report a summary of the results for
all instances tested under different scenarios. Column LP reports the results obtained by
solving the LP relaxation of the 2-index formulation, where a separation procedure of the
classical infeasible path constraints is used in this case to ensure the feasibility of the solu-
tions. The next 4 columns report the results obtained by generating violated inequalities
of one of the following families: lifted subtour elimination constraints (LSEC), infeasible
drop/pickup path constraints named pairing and precedence constraints (PC), infeasible
request path constraints (IRC), and fork constraints (FC). Each one of the scenarios repre-
sented by the previous 4 columns uses only one type of valid inequalities. The last column
(Full) reports the results obtained when using all valid inequalities described in Section
4 as well as the preprocessing techniques of Section 5.1. The rows report the following
information respectively: the average runtime for all instances, the average runtime for
instances solved to optimality by all the scenarios simultaneously, the average optimality
gap for instances unsolved by all the scenarios simultaneously, the number of instances
solved in each scenario, and finally the number of instances solved by all scenarios.

Results show that using any of the four families of valid inequalities yields a small
improvement in the number of instances solved to optimality per each scenario and in the
average optimality gap for instances unsolved by all the scenarios simultaneously. The
largest improvement in the average runtime for instances solved by all is obtained with
the generation of FC, while the LSEC have limited impact. However, combining all the
valid inequalities yields significant improvements.

Table 3: Summary of the results for all instances tested under different scenarios
LP LSEC PC IRC FC Full

Average time (s) 2420.7 2419.9 2369.8 2372.3 2346.8 2303.2
Avg time by all (s) 161.1 145.9 135.3 125.4 82.0 56.6
Average gap (%) 35.4 33.5 35.0 33.6 34.2 31.3
Solved 42 41 43 44 44 46
Solved by all 41

6.2.3 Performance of the formulations with and without preprocessing

In this section we present the results of testing the three formulations presented in this
paper with and without the application of the preprocessing techniques described in Sec-
tion 5.1. Table 4 reports the results of testing the three formulations under two scenarios
named: Without representing the case where the preprocessing techniques are not used
and With representing the case where the preprocessing techniques are used. For each
formulation and for each scenario, Table 4 reports the following results: the average run-
time for all instances, the average runtime for instances solved to optimality by all the
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formulations, the average gap at the root node of the tree for all instances, the average
optimality gap for instances unsolved by all the formulations, and the number of instances
solved to optimality. The average preprocessing time is 0.6 seconds, however, this can be
up to 15.5 seconds for some instances with 100 nodes. Note that the 3-index formulation
without preprocessing techniques is equivalent to the model proposed by Naccache et al.
[2018].

Table 4: Results of testing the three formulations with and without preprocessing
2-index 3-index ARF

Without With Without With Without With
Average time (s) 3052.8 2303.2 2786.9 2210.4 2711.6 1826.7
Avg time by all (s) 615.1 167.9 155.2 106.6 41.6 7.8
Avg gap root (%) 46.5 28.6 48.1 27.7 46.7 22.6
Avg gap final (%) 43.7 36.4 47.5 38.8 46.3 33.9
Solved 22 46 30 50 32 60

The results show that the preprocessing techniques have a significant impact on im-
proving the effectiveness of the three formulations. A considerable reduction in problem
size and improvement in Average time, Avg time by all, Avg gap root and Avg gap
final are achieved through the application of these techniques in all the formulations.
Moreover, the number of instances solved to optmality per formulation has significantly
increased due to the use of the preprocessing techniques. The 2-index formulation solves
24 more instances, the 3-index formulation solves 20 more instances, and the ARF solves
28 more instances.

6.2.4 Comparison between the three formulations

In this section, we compare the strength of the three proposed formulations and their
performance in solving the MPDPTW. Table 5 reports the results for all instances tested
on the following formulations: 2-index formulation, 3-index formulation, and ARF. For
each formulation we report the number of instances solved to optimality per instance
type, the average gap at the root node of the tree, the average optimality gap after 1
hour of runtime for unsolved instances per instance type, and finally the average runtime
for instances solved to optimality per instance type. At the bottom of the table, the last
three rows report the following information: Average reports the average value for all
instances per column type, Avg by all reports for columns Gap root and Gap final the
average value per each column for instances unsolved by all formulations, and for column
Time it reports the average runtime for instances solved to optimality by all formulations.
Finally Sum reports the overall number of instances solved by each formulation.

The results in Table 5 show that the ARF outperforms the two other formulations as
it solves 60 instances to optimality out of 120 compared to 50 and 46 instances solved to
optimality by the 3-index and the 2-index formulations, respectively. For instances that
were solved to optimality by all formulations, ARF required less runtime, the average
by all runtime for ARF is 7.8 seconds compared to 106.6 seconds and 167.9 seconds for
3-index and 2-index formulations, and when none of the models could solve to optimality
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a set of instances per each type, the average by all optimality gap of the ARF was 33.9%
which is the best gap among the gaps of all the formulations. The ARF also has the lowest
average by all optimality gap at the root node 39.1% which means that its LP relaxation
is the strongest among the proposed formulations. In Table 5, we also notice that the
average by all optimality gap at root node for the 2-index and 3-index formulations are
somewhat equivalent and slightly different, meaning that the proposed 2-index formulation
is competitive. Moreover, it is important to highlight that those results from the ARF are
obtained thanks to the developments in preprocessing the input data as shown in Section
6.2.1.

Table 6 reports the number of instances solved by each one of the formulations classified
according to the number of nodes per instance. Results show that the ARF solves more
instances in the four categories presented in the table than the other two formulations, and
it solves 5 instances with 100 nodes, confirming that the ARF outperforms the two other
formulations. We also notice that although the 2-index formulation solves fewer instances
than the ARF and the 3-index formulation, it was able to solve 2 large instances with 100
nodes. This reinforces the statement about the competitiveness of our 2-index formulation
and algorithm.

Table 5: Summary of the results for all instances tested on three formulations
2-index 3-index ARF

Instance Solved
Gap root

(%)
Gap final

(%)
Time (s) Solved

Gap root
(%)

Gap final
(%)

Time (s) Solved
Gap root

(%)
Gap final

(%)
Time (s)

l 4 25 3 27.6 10.8 152.8 5 26.7 - 262.5 5 19.8 - 126.0
l 4 35 1 33.4 22.6 3312.7 2 33.7 18.3 711.7 3 28.3 13.2 398.5
l 4 50 0 44.0 36.0 - 0 47.4 37.6 - 0 41.1 27.8 -
l 4 100 0 54.4 53.3 - 0 58.0 56.3 - 0 52.9 50.5 -
l 8 25 5 9.3 - 3.2 5 8.8 - 2.0 5 3.3 - 0.2
l 8 35 5 14.9 - 25.9 5 10.0 - 4.8 5 4.7 - 1.0
l 8 50 2 22.4 12.5 966.7 4 21.8 20.2 1865.5 4 12.1 15.2 33.0
l 8 100 0 36.4 32.5 - 0 35.9 32.7 - 0 19.8 17.4 -
n 4 25 5 8.3 - 2.3 5 4.7 - 0.5 5 1.8 - 0.2
n 4 35 5 15.6 - 78.0 5 8.0 - 2.6 5 2.2 - 0.4
n 4 50 2 23.4 15.0 390.9 2 20.0 10.0 511.9 5 9.8 - 57.8
n 4 100 0 38.6 35.4 - 0 38.8 35.6 - 0 21.9 19.0 -
n 8 25 5 1.4 - 0.2 5 1.8 - 0.2 5 0.0 - 0.1
n 8 35 5 2.6 - 0.7 5 1.2 - 0.3 5 0.0 - 0.0
n 8 50 5 4.8 - 27.1 5 3.9 - 16.0 5 1.3 - 0.3
n 8 100 2 10.3 1.5 1300.0 0 9.7 6.7 - 5 2.6 - 29.2
w 4 25 0 33.2 19.5 - 0 33.6 25.4 - 0 33.4 25.5 -
w 4 35 0 39.4 29.6 - 0 40.0 37.3 - 0 40.0 37.1 -
w 4 50 0 46.2 39.7 - 0 46.4 45.6 - 0 46.4 45.2 -
w 4 100 0 54.9 53.0 - 0 55.5 54.8 - 0 55.4 54.5 -
w 8 25 1 26.5 11.8 215.6 1 26.0 14.8 709.1 2 22.8 18.5 391.6
w 8 35 0 35.2 23.6 - 1 32.4 26.9 1177.2 1 27.3 25.8 13.2
w 8 50 0 47.1 38.3 - 0 47.0 43.3 - 0 44.8 41.2 -
w 8 100 0 56.3 53.4 - 0 54.2 51.3 - 0 51.7 48.7 -
Average - 28.6 19.3 2303.2 - 27.7 20.0 2210.4 - 22.6 17.0 1826.7

Avg by all - 43.2 36.4 167.9 - 43.7 38.8 106.6 - 39.1 33.9 7.8
Sum 46 - - - 50 - - - 60 - - -

7 Conclusion

In this paper we have designed and implemented a new branch-and-cut algorithm for the
MPDPTW. We introduced two new formulations for MPDPTW in addition to the exist-
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Table 6: Number of solved instances classified according to the number of nodes per
instance

Size Solved by 2-index Solved by 3-index Solved by ARF
25 19 21 22
35 16 18 19
50 9 11 14
100 2 0 5
Sum 46 50 60

ing 3-index formulation. The first new formulation named 2-index formulation does not
require the use of a vehicle index to impose pairing and precedence constraints, as in the
case of 3-index formulation. In addition, we introduced valid inequalities to strengthen
the LP-relaxation of this formulation. The second new model named asymmetric repre-
sentatives formulation (ARF) is based on the idea of identifying a cluster of requests by its
lowest indexed request. We have conducted extensive computational experiments on the
two new formulations as well as on the 3-index formulation. We have also evaluated the
strength of the valid inequalities which were generated only for the 2-index formulation.
The results indicate that the pairing and precedence constraints have the largest impact
in decreasing the optimality gap. We have also developed and tested an exact and a
heuristic algorithm to determine the best input order for the ARF, yielding a significantly
smaller and easier problem.

Results show that the ARF outperforms the 2-index and 3-index formulations as it
solves more instances to optimality, it has less runtime on instances solved by all formula-
tions, it yields better lower bounds, and it is capable of solving many large instances with
100 customer nodes. We hope these developments will attract more research for other
distribution problems further extending our methods.
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