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Abstract. Bike sharing systems (BSSs) rely on daytime redistribution to provide bikes for rentals 
and free rack slots for returns in order to warrant a reliable service level to users. Tactical planning 
of BSSs exploits mobility demand forecasts to answer service level expectations through a cost-
efficient use of redistribution vehicles. We propose a novel formulation of service network design 
that coordinates redistribution and vehicle routing decisions in space and time to produce regular 
master tours. This formulation explicitly integrates resource-management decisions by considering 
limited redistribution budget to acquire and operate vehicles, as well as an accurate time 
representation of pickups and deliveries of bikes at stations. We propose a matheuristic relying on 
a neighborhood search scheme to find solutions of good quality for real-world sized problem 
instances in reasonable time. To produce starting solutions, we propose a construction heuristic 
decomposing the daytime redistribution process into three phases: determine pickup and delivery 
activities, link pickups and deliveries into transport requests, and assign transport requests to master 
tours. To evaluate the operational performance of master tours, we propose a simulation approach 
in which stochastic mobility demand is gradually revealed over time. In the simulation, master tours 
are carried out as planed by service network design, whereas pickups and deliveries are adjusted 
to place a suitable number of bikes according to the stations' needs. In our computational study, we 
show that master tours improve the level of service in BSSs with high and regular mobility patterns, 
e.g., commuting activities. 
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1 Introduction

Station-based bike sharing systems (BSSs) have emerged as a cheap and sustainable
approach for providing first-and-last-mile connections between transport hubs and points
of interest (Ricci, 2015). To perform rides, users rent bikes at stations, and return
them later to an empty rack slot of any station. Operators of BSSs strive to offer a
reliable service level so that users perform bike rides as demanded. To accomplish this
objective, operators must deal with stations running full and empty several times during
a day because of limited bike racks at stations and spatio-temporal dynamics of mobility
demand (de Chardon et al., 2016). Bike redistribution is a fundamental activity to place
bikes and empty rack slots whenever requested by users (Shu et al., 2013). To this end,
operators require vehicles for station visits and driver-rebalancers for picking up and
delivering bikes, also called handling activities.

Several studies analyzing recorded bike rides provide evidence that mobility demand
in cities is usually stable over a season (O’Brien et al., 2014; Corcoran et al., 2014; Vogel
et al., 2011). For example, commuters typically ride to work in the morning and back
home in the afternoon, whereas in hilly cities users typically ride from top to bottom of a
hill. Consequently, the times of day at which high-demanded stations run full or empty
can be predicted with a high degree of confidence. These insights allow for meaningful
forecasts to be used for planning daytime redistribution. Tactical planning for BSSs
exploits these forecasts to design and assign resources to regular master tours that are
operated day after day, defining when to visit stations and how long to perform handling
activities.

Designing master tours requires an efficient management of resources to improve the
level of service without damaging the economical viability of the operators. The monetary
budget for bike redistribution is typically scarce since user-based business models lead
to low revenues from bike rentals (Intelligent Energy Europe, 2011). In addition, next
to the driving time of vehicles between stations, assigning sufficient handling time to
station visits is of utmost importance as it covers a significant part of driver-rebalancer’s
working hours (de Chardon et al., 2016). This paper is the first attempt of considering
these resource management issues explicitly at the tactical planning level. To this end,
we follow advances in transport planning (e.g., Andersen et al. (2009); Crainic et al.
(2014)) to appropriately coordinate vehicle routing and redistribution decisions in space
and time by introducing a novel formulation of service network design for bike sharing
systems (SNDBSS). This formulation is based on a time-expanded network that explicitly
considers driving and handling times as well as budget limitations for acquiring vehicles
and designing master tours.

Obtaining solutions of good quality for SNDBSS instances is far from being trivial be-
cause of the high interdependence among master tours, handling activities, and mobility
demand forecasts. Therefore, we design a construction heuristic for producing starting
solutions in elaborate sequential steps. To improve this solution, we adopt the neighbor-
hood search scheme of Hewitt et al. (2010) and introduce a matheuristic that carefully
fixes variables associated with master tour decisions, and then finds a solution for the
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resulting reduced MIP problem using a solver. Computational experiments suggest the
effectiveness of tailoring this neighborhood search scheme to SNDBSS.

When master tours are implemented, their operational performance is subject to a
stochastic mobility demand which is gradually revealed over time. Because of day-to-day
demand variations, the observed distribution of bikes when vehicles are on the road may
differ from the determined one by SNDBSS. Although we stick to the execution of master
tours, handling activities require adjustments with respect to the observed bike distribu-
tion and expected stations’ needs. In this paper, we evaluate the operational performance
of master tours with a discrete-event simulation mimicking the implementation phase.

This paper makes the following contributions. First, we introduce a new and compre-
hensible formulation of SNDBSS integrating resource management decisions into tactical
planning. Second, we present a solution methodology combining exact and heuristic
techniques to produce SNDBSS solutions of high quality in a reasonable runtime. Third,
we evaluate master tour performance in an operational setting and discuss managerial
implications. Our experiments show that although differences between mobility demand
forecasts and observations exist, master tours obtained from tactical planning are able
to improve the level of service of BSSs with high commuting activity.

The paper is organized as follows. Section 2 reviews the existing literature in BSSs
and resource management. Section 3 provides a statement of the problem studied. Sec-
tion 4 introduces the time-expanded network formulation. The solution methodology is
presented in Section 5. Section 6 introduces the simulation approach. In Section 7, we
report on the computational experiments. Finally, conclusions are given in Section 8.

2 Literature Review

BSSs have been a source of intensive research in the last decade. The literature about
BSSs considers planning at strategic, tactical, and operational levels to provide a reliable
service level in a cost-efficient manner, see for example Laporte et al. (2018).

Strategic planning determines the number, location, and capacity of stations over
long-term horizons (Lin and Yang, 2011; Garćıa-Palomares et al., 2012; Lin et al., 2013).
These strategic decisions are subject to high implementation costs as well as land-use
regulation (Institute for Transportation and Development Policy, 2014). Approaches for
bike redistribution assume these strategic decisions remain unalterable for the subordi-
nate planning levels.

Operational planning determines vehicle routing and redistribution decisions over
short-term horizons, for example, one day. We distinguish here between overnight and
daytime redistribution. Approaches for overnight redistribution assume mobility demand
is negligible in those hours. The goal is to achieve a suitable distribution of bikes among
stations for the beginning of the daytime (Raviv et al., 2013; Rainer-Harbach et al.,
2015; Ho and Szeto, 2014; Erdoğan et al., 2015; Freund et al., 2016; Forma et al., 2015;
DellAmico et al., 2018; Espegren et al., 2016). Operational approaches for daytime
redistribution consider a stochastic and dynamic environment in which decisions are made
based on current observations and short-term demand forecasts. Pfrommer et al. (2014)
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study the trade-off between the costs of offering incentives for returning shared vehicles at
low-demanded stations and the costs of redistribution activities. Brinkmann et al. (2015)
propose a single-vehicle inventory routing problem and myopic policies for determining
decisions based on safety stocks of bikes and empty rack slots. In Brinkmann et al.
(2018), look-ahead policies derived from approximate dynamic programming techniques
are proposed to anticipate future shortages of bikes and empty racks slots. Ghosh et al.
(2017) and Shui and Szeto (2018) adapt overnight redistribution approaches to address
daytime redistribution in a rolling horizon framework.

Tactical planning aims to design master tours for daytime redistribution over mid-
term horizons, for example, a season. Although tactical planning of BSSs has gained
more attention in recent years, existing approaches make simplified assumptions with
respect to resource management. Contardo et al. (2012) present a MIP formulation on a
time-expanded network, in which each station and time period involves a demand of bikes
or empty rack slots. Bikes are artificially added or removed at stations if redistribution
does not suffice to fulfill demand; the objective is to minimize these artificial activities.
Kloimüllner et al. (2014) adapt the formulation for overnight redistribution presented
in Rainer-Harbach et al. (2015) to cope with tactical planning, but do not consider
handling time accurately. Vogel et al. (2014) propose a MIP formulation determining
time-dependent bike transports among stations to minimize shortages of bikes and empty
rack slots. As the formulation does not assign bike transports to master tours, the lack
of synchronization may lead to an excessive use of resources. Brinkmann et al. (2016)
propose a multi-vehicle inventory routing problem with deterministic demands, aiming at
minimizing the gap between the actual and desired distribution of bikes. Redistribution
costs are not taken into account. In Angeloudis et al. (2014), a redistribution plan is
produced in two steps. The first step determines master tours by solving a multi-vehicle
traveling salesman problem. The second step determines redistribution quantities with
a flow assignment model. This work does not consider an accurate representation of
handling time. Kloimüllner et al. (2015) introduce a cluster-first route-second approach
with the strong assumption that operators only address full and empty stations. Zhang
et al. (2017) introduce a stochastic non-linear formulation to take redistribution decisions.
They embed the formulation into a rolling horizon approach to determine vehicle routes
within a certain time interval. Notice, that none of these papers evaluate the performance
of tactical plans within their implementation.

We consider research advances in service network design for freight transportation
as blueprints for integrating resource management to BSSs’ tactical planning. Resource
management has become relevant in the research community as it leads to more consistent
transportation plans requiring less adjustments when they are implemented. Pedersen
et al. (2009) introduce vehicle-balance constraints to ensure that the inflow and outflow
of resources is balanced at each location and point in time. Crainic et al. (2014) intro-
duce a service network design problem in which resources at terminals are costly, limited,
and guided by operational rules. Zhu et al. (2014) introduce a service network design
formulation for freight rail transportation which allows for double consolidation by group-
ing cars into blocks that are then grouped to make up trains. Service network design
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formulations are typically built on time-expanded networks to represent time-dependent
decisions. These formulations are in most cases computationally intractable using exact
methods because finding feasible solutions with respect to resource management issues is
far from being trivial. The literature reports solution methodologies based on matheuris-
tics to produce solutions of good quality in reasonable runtime (Vu et al., 2013; Chouman
and Crainic, 2014; Teypaz et al., 2010).

3 Problem Statement

We adopt the standard problem setting used in the literature for daytime redistribution
in station-based BSSs (Laporte et al., 2018). This setting considers a set of stations, one
vehicle depot without bike storage facilities, users requesting bikes and empty rack slots,
a homogeneous fleet of vehicles performing master tours, and driver-rebalancers picking
up and delivering bikes. The goal of bike redistribution is to minimize user dissatisfaction
by providing sufficient bikes and empty rack slots at each station. User dissatisfaction
is directly related with full and empty stations as they lead to failed rental requests and
failed return requests, respectively. A failed rental request occurs if a user cannot rent a
bike at an empty stations. In turn, a failed return request takes place if a user cannot
return a bike at a full station.

We build on the work of Datner et al. (2017) to model mobility demand and measure
user dissatisfaction. Mobility demand is thus defined in terms of users’ demanded bike
rides. A demanded bike ride brings a user directly from its place of origin to its place of
destination (for the sake of simplicity, these places coincide with the location of stations).
A demanded ride can be performed if at least one bike is available at the station of origin
and at least one empty rack is available at the station of destination. Notice that there
exists an interdependence among stations because of failed rental requests and failed
return requests. If no bike is available at the station of origin, a user may walk to
another station to request a bike. If the user did not rent a bike and refrains from using
the BSS to achieve its destination, the return request is then eliminated at the station
of destination. If no empty rack slot is available at the station of destination, the user
must roam among stations to end the ride. In these cases, a journey defines the route a
user makes to achieve its destination.

Assuming that users aim to minimize their journeys’ travel times, we adopt the jour-
ney dissatisfaction function (JDF) as a metric of service level. The JDF returns a non-
negative value with respect to the user’s performed journey and demanded bike ride
(henceforth called demanded journey as well). The demanded journey returns a JDF
value of zero, whereas any other journey returns a positive JDF value because of the
dissatisfaction caused by roaming among stations to start or end a bike ride. The JDF
value is computed based on the excess travel time, namely the difference of travel times
involving the performed journey and the demanded bike ride. As in Datner et al. (2017),
we assume that journeys’ travel times are calculated based on users’ walking and riding
times. The authors emphasis that the JDF can be adapted to measure other sources of
dissatisfaction, for example, the “cost” of using alternatives modes of transportation to
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achieve a destination.
A station state defines the number of bikes which are currently available at the station.

As the capacity of a station is limited, there exists an interdependency between the
number of bikes and empty racks slots in it; one placed bike for rentals blocks one rack
slot for returns. The number of bikes in the BSS remains fixed so that a bike is either
placed in a station, loaded on a vehicle, or used to perform a bike ride. The station state
varies over time because of rentals and returns of bikes as well as handling activities.
We define station state alterations (SSA) as a station visit and a bike quantity to pick
up or deliver. A transport service defines the movement of a loaded vehicle between two
stations.

At the tactical planning level, SNDBSS determines the SSAs to implement and the
transport services to define time-ordered sequences of SSAs, which are assigned to master
tours. A monetary budget limits the acquisition of vehicles and the design of master tours.
The objective is to minimize the overall JDF value (OJDFV) based on a mobility demand
forecast. Under the assumption that mobility demand displays highly regular patterns,
one can rely on deterministic demand to determine with a high degree of confidence when
stations require redistribution. For instance, Figures 1a and 1b show the station states for
New York’s Citibike BSS in the morning and evening, respectively, for a typical summer
weekday. Each circle depicts a single station; the bigger the circle, the more bikes in
racks at the respective station. We see that bikes are accumulated in working districts
during the morning and residential districts during the evening. Because of the regularity
of commuting rides, a similar distribution of bike is observed for different working days.
Nevertheless, during the implementation phase, one needs to adjust handling activities
based on day-to-day variations of the bike distribution. Tactical planning can thus at
best provide guidelines to pick up or deliver bikes during the implementation phase. In
this work, we show that this procedure can contribute to improve the service level in
BSSs with high dominance of commuting rides.

4 Mathematical Formulation of SNDBSS

In this section, we introduce a mathematical formulation for SNDBSS. The mathematical
formulation aims to produce master tours. We first introduce the general notation, then
we present the mathematical formulation for SNDBSS, which takes the form of a MIP.

4.1 General Notation

Let S0 = {0, 1..., SMAX} be the set of locations. Location 0 represents the vehicle depot
and locations in S = S0 \ {0} represent stations. Each station i ∈ S has a capacity of
ci bike racks; the depot has no bike racks. The daytime redistribution occurs within a
workday length denoted by T = {0, 1, ..., TMAX}. The workday length is divided into
chronological and equal-length time periods t ∈ T . Let b define the number of bikes in
the BSSs. We assume that all bikes are placed at a station in time periods 0 and TMAX .
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(a) morning (b) evening

Figure 1: Number of bikes in racks at stations in New York’s Citi Bike, reflecting mobility
patterns in a summer season’s weekday. Reference: http://bikes.oobrien.com/

We introduce two set of nodes to represent the interplay between stations and vehicles
with respect to handling activities. Let NS be the set of rack nodes. A rack node
(i, t) ∈ NS encodes the number of bikes in racks at station i and time period t. In

addition, let NV be the set of vehicle nodes. A vehicle node ˆ(i, t) ∈ NV encodes the
number of bikes in a vehicle if it parks at station i and time period t. In this way, bike
flows from rack nodes to vehicle nodes represent pickups, whereas bike flows from vehicle
nodes to rack nodes represent deliveries.

The mobility demand forecast is denoted by d = (U,
⋃
u∈U Qu). Let U be the set of

users. Each u ∈ U is associated with a set of journeys Qu. Every journey q ∈ Qu brings
user u from its station of origin i to its station of destination j. Each journey q involves
a travel time Tq. Let qd ∈ Wu be the demanded journey of user u. The user’s realized
journey is denoted by qr ∈ Qu, with Tqd ≤ Tqr .

In order to represent variations of station states due to user requests, we define Θ+
it

and Θ−it as the set of all user-journey tuples (u, q) which respectively end and start the
bike ride at station i and time period t.

The vehicle link set AV permits to model master tour decisions. This set is comprised
by the vehicle movement link set AVM , the holding link set AHO, and the handling link
set AHA. A vehicle movement link e ∈ AVM allows for the decision that one vehicle moves
between two locations. A holding arc link e ∈ AHO permits that one or more vehicles
park at the depot during one time period. A handling link e ∈ AHA permits that one
vehicle stays at a station to either pick up or deliver bikes during one time period.

We consider redistribution flows to encode either transport services or handling ac-
tivities. We denote the redistribution link set by AR. This set consists of the transport
service set AT , the pick-up link set AP , and the delivery link set AD. A transport service
link a ∈ AT connects two vehicle nodes from different stations to move a bike quantity
from one station to another. To depict handling activities, we define the pick-up link set
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Figure 2: The time-expanded network of SNDBSS.

AP and the delivery set AD. If a handling link e ∈ AHA is used, either the corresponding
pick-up link a ∈ AP allows a bike flow from a rack node to a vehicle node during one
time period, or the delivery flow of bikes is permitted by the corresponding delivery link
a ∈ AD from a vehicle node to a rack node. We denote the pick-up and delivery link
associated by a handling link e ∈ AHA by P(e) and D(e), respectively. Notice that pickup
and delivery activities must not simultaneously occur in a station and time period. If the
formulation considers handling costs in the objective function, simultaneous pickup and
delivery activities will never occur in an optimal solution. Nevertheless, if handling costs
are excluded from the objective function, the topology of the search space must generate
consistent solutions with respect to such a behavior as well. Therefore, to obtain the
desired behavior regardless of the objective function, the formulation presented below
considers the binary variable αe, e ∈ AHA. This binary variable equals one if pick-up
bike flows though a ∈ P(e) are permitted, otherwise the delivery of bikes though D(e) is
permitted.

In Figure 2, we show a time-expanded network with two stations and seven time
periods. The y-axis represents physical nodes of a BSS infrastructure, whereas the x-axis
represents the workday length by time periods. The black fill of each node depicts the
station’s fill level or vehicle load, accordingly. Hence, a completely white node means
that the station (or vehicle) is empty, whereas a completely black node tells that the
station is full. We observe that stations 1 and 2 become full and empty, respectively,
due to mobility demand that is not shown for the sake of illustration. A master tour
is depicted as a schedule of vehicle flows. First, the vehicle stays at the depot for one
period, which is represented by a holding vehicle link. Then, the vehicle requires one
time period to arrive at station 1. Notice that the vehicle parks at station 1 for one
time period. Here, a pickup flow encodes that bikes are moved from the station to the
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vehicle, thus altering the fill of the respective rack and vehicle nodes. After that, the
loaded vehicle drives to station 2. Again, the vehicle stays there for one time period to
move bikes from the vehicle to the station. At the end of the work day, the vehicle must
return to the depot.

Each vehicle has a load capacity of C bikes. If a handling link e ∈ AHA is used, a
maximum of µe bikes can be picked up or delivered through it. Let R(e) be the set of
redistribution links that can be used whether vehicle link e ∈ AV is set. Let A+(i, t) and
A−(i, t) represent the outgoing and incoming link set at node (i, t), respectively.

Let βuq be the JDF value returned by journey q realized by user u. The sum of all
these values is defined as the overall JDF value (OJDFV). The objective is to minimize
the OJDFV.

With respect to redistribution costs, let F be a fixed cost of using a vehicle unit. We
define ke as the fixed costs to set a link e ∈ AVM ∪ AHA. Costs are limited by a given
budget B.

4.2 The MIP

We now define the variables of the formulation:

� I ti : bikes at rack node (i, t) ∈ NS

� wti : bikes at vehicle node ˆ(i, t) ∈ NV

� v: vehicle fleet size

� zuq : one whether user u performs journey q, zero otherwise

� ye: quantity of vehicle flow assigned to link e ∈ AV

� xa: quantity of redistribution flow assigned to link a ∈ AR

� αe ∈ AHA: one whether picking up bikes is permitted though link a ∈ P(e), zero
otherwise

With the notation, the mathematical formulation F for redistribution planning given
mobility demand forecast d reads as follows:

min
{∑
u∈U

∑
q∈Qu

βuqzuq
}

(1)

s.t. ∑
q∈Qu

zuq = 1, ∀u ∈ U (2)

Iti ≤ ci, ∀(i, t) ∈ NS (3)∑
i∈S

I0
i = b (4)
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It+1
i = Iti −

∑
a∈A+

P (i,t)

xa +
∑

a∈A−D(i,t+1)

xa −
∑

(u,q)∈Θ+
it

zuq +
∑

(u,q)∈Θ−i,t+1

zuq, ∀(i, t) ∈ NS : i ∈ S, t < T

(5)∑
a∈A+

P (i,t)

xa +
∑

(u,q)∈Θ+
it

zuq ≤ Iti , ∀(i, t) ∈ NS : i ∈ S, t < T
(6)

ωt+1
i = ωti −

∑
a∈A+

T
ˆ(i,t)∪A+

D
ˆ(i,t)

xa +
∑

a∈A−T ˆ(i,t+1)∪A−P ˆ(i,t+1)

xa, ∀ ˆ(i, t) ∈ NV : i ∈ S, t < T
(7)

ωti = 0, ∀i ∈ S,∀t ∈ {0, T } (8)∑
a∈A+

V M
ˆ(i,t)∪A+

D
ˆ(i,t)

xa ≤ ωti , ∀ ˆ(i, t) ∈ NV : t 6= {0, T }
(9)

ωti ≤ C
∑

e∈A−V (i,t)

ye, ∀ ˆ(i, t) ∈ NS , : t 6= {0, T } (10)

M
(
1−

∑
e∈A+

T
ˆ(i,t)

ye
)
≥ ωt+1

i , ∀ ˆ(i, t) ∈ N0 : t 6= {0, T } (11)

∑
a∈R(e)

xa ≤ Cye, ∀e ∈ AVM ∪AHA (12)

xa = 0, ∀a ∈ AVM : i(a) = 0 ∨ j(a) = 0 (13)

xa ≤ µe(1− αe), ∀e ∈ AHA : a ∈ P(e) (14)

xa ≤ µeαe, ∀e ∈ AHA : a ∈ D(e) (15)∑
e∈A+

V
ˆ(i,t)

ye =
∑

p∈A−V ˆ(i,t)

ye, ∀i ∈ S, t ∈ T : t 6= {0, T } (16)

∑
e∈A+

V
ˆ(i,t)

ye ≤ 1, ∀(i, t) ∈ NS : t 6= {0, T } (17)

∑
e∈A+

V (0,0)

ye =
∑

p∈A−V (0,T )

ye = v (18)

Fv +
∑

e∈AV M∪AHA

keye +
∑

a∈AP∪AD

qaxa ≤ B (19)

Iti ∈ Z+, ∀(i, t) ∈ NS (20)

ωti ∈ Z+, ∀ ˆ(i, t) ∈ NV (21)

xa ∈ Z+, ∀a ∈ A\AHO (22)

zuq ≥ {0, 1}, ∀u ∈ U,∀q ∈ Qu (23)

ye ≥ Z+, ∀e ∈ AHO (24)

ye ≥ {0, 1}, ∀e ∈ AV \AHO (25)

αe ≥ {0, 1}, ∀e ∈ AHA (26)
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v ∈ Z+ (27)

The objective function (1) minimizes the OJDFV associated to users’s performed
journeys. Equation (2) makes sure that each user performs one journey. Equation (3)
ensures that the number of bikes at a rack node cannot exceed the station capacity.
Equation (4) ensures that all bikes are placed at some station at the beginning of the
workday length. The flow conservation of bikes at rack nodes is ensured by Equation
(5). Equation (6) imposes that the bike outgoings from a rack node do not exceed
the number of bikes that are currently placed at the station. Equation (7) ensures
the flow conservation of bikes at vehicle nodes. Equation (8) enforces that vehicles are
empty at the beginning and end of the workday length. Equation (9) ensures that the
bike outgoings from a vehicle node do not exceed the number of bikes of the vehicle
load. Equations (10-11) ensure that the vehicle node can have bikes only if it is visited
by a vehicle. Equation (12) links master tours with bike flows. Bikes can be moved
neither from nor to the depot (13). Equations (14) and (15) ensure that bikes are not
simultaneously picked-up and delivered at a station and time period. The vehicle-balance
constraints are established in (16). Equation (17) prohibits that two or more vehicles
park simultaneously at one station. Equation (18) ensures that all vehicles start and
end master tours at the depot. Equation (19) imposes budget limitations. Finally, the
variable domain is established in (20 - 27).

5 Solution Methodology for SNDBSS

Producing high-quality solutions is challenging because of the management of interde-
pendent resources. As stated in Andersen et al. (2009), vehicle-balance constraints (16)
cause slow convergence of commercial solvers. In addition, Equation (19) that limits the
acquisition and use of vehicles to a certain budget capacity is hard to handle because of
its combinatorial nature.

In Section 5.1, we adopt the matheuristic proposed in Hewitt et al. (2010) by tai-
loring the neighborhood search scheme to the SNDBSS. In Section 5.2, we propose a
construction heuristic to provide the matheuristic with a starting solution of reasonable
quality.

5.1 Matheuristic

A high-level description of the matheuristic is depicted in Algorithm 1. We define an
operator to be a selection method of vehicle flow variables. In each iteration, operators
free a minor part of the vehicle flow variables resulting in a reduced MIP problem. A
solution of the reduced MIP problem is then produced using a commercial solver. The
operators choose vehicle flow variables describing feasible detours of existing master tours
in the incumbent solution. A detour is defined by the time period where a vehicle leaves
its assigned master tour, a time-ordered sequence of station visits within the detour
(including the handling time at each station visit), and the time period in which the
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vehicle returns to the original master tour. So a reduced MIP problem contains active
vehicle flow variables defining master tours in the incumbent solution as well as candidate
vehicle flow variables defining detour opportunities. We propose three operators: one
for linking stations with overflow of bikes to stations with shortages of bikes for quick
improvements of the OJDFV, and two for providing diversification to the search. Over
iterations, we update probabilities for the execution of each operator according to its
contribution in finding solutions of better quality.

Algorithm 1 High-level description of the matheuristic

Require: SNDBSS problem, starting solution
1: Set incumbent solution = starting solution
2: while Runtime limit condition is not met do
3: Free vehicle flow variables to be candidate using operators
4: Solve reduced MIP problem using a solver
5: if solution found by solving reduced MIP problem is better than incumbent so-

lution then
6: Set incumbent solution = solution found by solving reduced MIP problem
7: end if
8: Set probabilities for using operators
9: end while

The matheuristic builds and solves reduced MIP problems until a termination condi-
tion is met. To speed up the search, we follow the two-step approach introduced by Raviv
et al. (2013). Within the iterative process, variables related to Equations (18)-(21) are
addressed as continuous variables (the first step). Once the iterative process concludes,
vehicle flow variables are fixed to their value in the incumbent solution, and we produce
the final solution using a commercial solver, with all variables taking integer values this
time (the second step). As shown in Raviv et al. (2013), a solver can produce an integer
solution quickly in the second step with minor deterioration of solution quality.

In Section 5.1.1, we describe the matheuristic operators to be used for building reduced
MIP problems. In Section 5.1.2, we introduce the procedure for assigning probabilities
to apply these operators.

5.1.1 Operators for Defining Detours in Reduced MIP Problems.

Figure 3 illustrates possible detours from existing master tours. For the sake of simplicity,
we only depict rack nodes and vehicle links. Solid lines depict active vehicle links for
master tours, whereas dashed lines depict candidate vehicle links for detours. We observe
that candidate vehicle links define two possible detours. The first detour arrives at station
2 in the second time period, stays one time period, and then returns to the original master
tour to station 1 in the fourth time period. The second detour arrives at station 4 in
the fourth time period, stays one period, and then returns to the original master tour
to station 1 in the sixth time period. Notice, that a detour may involve several station
visits as long as it returns to the original master tour.
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Figure 3: Feasible detours derived from an incumbent solution.

Each operator defines a detour in two generic steps. The first step determines a sub-
path connecting non-active rack nodes. Here, the sub-path involves up to two station
visits within the detour, but this can be easily extended to more station visits. The
assigned handling time at each station visit is subject to the operator applied. Let
(i1, t1) be a non-active rack node chosen by the operator. Let t̄1 be the integer number
of time periods a vehicle stays at station i1. So, the rack node sequence (i1, t1), (i1, t1 +
1), ..., (i1, t1 + t̄1) depicts the first station visit. The first step concludes if the detour only
involves one station visit. Otherwise, let (i2, t2) represent a non-active rack node where
the second station visit begins. This rack node is selected so that (i1, t1+t̄) and (i2, t2) can
be connected by a feasible vehicle link. Handling time t̄2 is then assigned for the second
station visits as done for the first one before. Thus, the generated sub-path involving two
station visits is given by (i1, t1), (i1, t1 +1), ..., (i1, t1 + t̄1), (i2, t2), (i2, t2 +1), ..., (i2, t2 + t̄2).

The second step connects the generated sub-path with one master tour in the incum-
bent solution. More specifically, a feasible vehicle link must connect an active node of
a master tour with (i1, t1), and a feasible vehicle link must connect (i2, t2 + t̄2) with an
active rack node of the master tour. Notice that connecting the generated sub-path with
all master tours is possible will lead to a very large MIP problem. Instead, the sub-path
is connected with only one master tour according to the costs ke associated with leaving
and returning to the original master tour. With a roulette wheel selection criterion, we
ensure that detours of lower cost are heuristically chosen with higher probability.

We propose three operators to choose sub-paths:

� Random-period operator (RPO): detours through different stations in one time
period.

� Random-station operator (RSO): detours through one station for different time
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periods.

� Fill-level based operator (FBO): detours redistributing a large number of bikes.

RPO permits vehicle detours through different stations in a randomly chosen time
period trandom. Each vehicle detour consists of: 1) a candidate vehicle movement link
connecting one active rack node with one non-active rack node (i, trandom) ∈ NS, 2) a
randomly chosen number of candidate handling links to allow pick-up or delivery of bikes,
and 3) a vehicle movement link to return to one active rack node of the original vehicle
tour. Since the number of vehicle detour possibilities can get very large, the number of
detours chosen in an iteration is limited by parameter $.

RSO explores several detours through a randomly chosen target station irandom over
different time periods. The way how vehicle detours are composed only differs from the
RPO in that one candidate vehicle movement link connects one active rack node to one
non-active rack node (irandom, t) ∈ NS. Similarly to RPO, a maximal number of ϕ are
chosen.

FBO relies on the intuitive idea that stations with a deficit of bikes may receive them
from a station with a surplus of bikes. FBO chooses a maximum of % vehicle detour pos-
sibilities. The FBO conducts a vehicle detour as follows. First, the operator generates a
sub-path connecting non-active rack nodes. The sub-path represents a transport service,
together with the corresponding handling time at each station. Stations are chosen such
that a large bike volume between the origin and destination station is redistributed. FBO
tries to connect the generated sub-path with an existing vehicle tour in order to yield a
feasible detour. The rack nodes associated with the origin and destination stations are
chosen using roulette wheel selection. The selection of the first rack node is based on the
fill level I ti/ci,∀(i, t) ∈ NS, whereas the second rack node is based on the ratio between
the number of free bike racks and the station capacity, that is, (1− I ti )/ci,∀(i, t) ∈ NS.

5.1.2 Defining a Suitable Mix of Operators

Given the characteristics of the three operators, FBO will outperform RPO and RSO
in early iterations of the matheuristic since it can identify promising transport services
involving large redistribution quantities. However, FBO loses its effectiveness in later
iterations because it can hardly improves a solution made of fully loaded vehicles. Ran-
domization provided by RPO and RSO helps escaping from local optima. However, there
still exists a chance that FBO finds solutions of superior quality after escaping from local
optima. We utilize these observations by changing the relative frequency of applying
operators over iterations.

A suitable mix of operators can guide an effective exploration of the search space even
with small reduced MIP problems, thus reducing the computational effort. Let n denote
the total number of detours chosen to build a reduced MIP problem, that is, n = $+ϕ+%.
Given a value of n, we dynamically adjust $, ϕ, and % according to the performance
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Figure 4: Behavior of πFBO for different values rFBO, with (1−ΘFBO) = 0.3.

of operations in previous iterations. We derive probabilities that control the number of
vehicle detours chosen by each operator. The probabilities depend on the success of the
corresponding operator, that is, the number of candidate vehicle flow variables which
becomes active. After defining the probabilities, a roulette wheel selection determines
how many detours are produced by each operator in the next iteration. We spin the
roulette wheel n times. The value of a detour parameter is the number of wins of the
corresponding operator in the roulette wheel. We determine a high probability of FBO
against RPO and RSO in early iterations while decreasing the usage of FBO in further
iterations. The decrease rate of the FBO probability depends on its contribution finding
solutions of improved quality.

Let {o} = {RPO,RSO,FBO} define the set of operators. We define the probability
πo ∈ [0, 1] for choosing a detour using the operator o. In iteration p, the operator o
chooses a number of co candidate vehicle links to build the reduced MIP problem. The
number of candidate vehicle links co the solver sets to one is denoted by so. Based

on these definitions, we define the success ratio ro = (so)2

co
� 0. Notice, that we use

the squared term (so)2 to determine the ratio in order to prevent that the respective
probability πo decreases too fast. In addition, let Θo ∈ [0, 1] be a parameter that avoids
that the probability of operator o decreases to zero.

Thus, at each iteration p, we calculate the probability πFBO for choosing a detour
using the FBS with the following equation:

πFBO := 1− ΘFBOp

rFBO + p
(28)

In Equation (28), probability πFBO approximates 1−ΘFBO over iterations. Parameter
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rFBO controls how quick πFBO converges. The higher the value of πFBO, the slower the
probability converges to 1− ΘFBO. Figure 4 illustrates curves depicting values of πFBO

within iterations for different values of rFBO with ΘFBO = 0.7.
Regarding the probability of RPO and RSO, we follow Niehaus and Banzhaf (2001):

πo := (1− πFBO)
(
Θo + ro

1− 2Θo

Γ

)
, ∀o ∈ {RPO,RSO} (29)

In Equation (29), we define Γ = rRPO+rRSO and ΘRPO = ΘRSO. On the right side of
this equation, the first term indicates that the sum of πRPO and πRPO equals (1−πFBO).
The second term adjusts the probability with respect to the success of the respective
operator.

5.2 Construction Heuristic

The construction heuristic aims to determine a starting solution of reasonable quality.
Finding feasible solutions of SNDBSS instances is far from being trivial due to the strong
interactions among variables representing station states, bike redistribution, and master
tours. The construction heuristic considers three phases in a top-down way:

� The first phase minimizes the number of SSAs satisfying the mobility demand
forecast on a per-station basis.

� The second phase matches suitable pickup SSAs with delivery SSAs to obtain trans-
port requests.

� The third phase assigns transport requests to vehicles by means of a pick up and
delivery problem with time windows (PDPTW), thus determining the vehicle fleet
size as well as master tours.

Figure 5 sketches the top-bottom information flow between phases. Notice, that
the demand satisfied by SSAs determined in the first phase can be hardly met in the
subordinate phases. In order to quickly obtain a starting solution for the matheuristic,
we refrain from bottom-top information flows and thereby refinements of SSAs. In the
following, we describe every phase and its outcome.

The outcomes of the first phase are SSAs in terms of bike quantities rti to handle at
node (i, t) representing station i and time period t. A positive value of rti indicates a
pickup. A negative value of rti signals a delivery. In the first phase, SSAs satisfy bike
rentals and returns neglecting station interdependencies. In Figure 5, we depict SSAs by
black circles with a “P” for pickups or with a “D” for deliveries. We define a procedure
to determine the set of rti by station. This procedure consists of a triggering step and
an adjusting step that are successively executed over iterations. Let I0

i be a given initial
state of station i. The procedure starts in time period tSTART := 0. The triggering
phase determines a set of rti in the time interval [tSTART , T ] using recursive equations.
These recursive equations compute variations of station states I ti due to demand and,
if necessary, triggers an SSA to avoid that a station i becomes full or empty in time
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Figure 5: Framework of the construction heuristic.

period t. The procedure to triggers SSAs is formally stated in Appendix 9.1. Then, the
adjusting phase proceeds as follows. Let tFIRST be the time period in which the first
SSA is determined within the triggering phase in [tSTART , T ]. Then, the bike quantity
rt

FIRST

i is increased or decreased so that future SSAs at this station are avoided. For
example, if two pickup SSAs are triggered each time a station runs full, we may omit
the second SSA by picking up more bikes in the first SSA. The procedure to adjust bike
quantities of SSAs is described in Appendix 9.2. Notice that the adjusting phase is not
executed if less than two SSAs triggered at station i in [tSTART , T ] as no more SSAs can
be omitted. An iteration concludes by setting tSTART := tFIRST + t̄, with t̄ as a minimum
time periods separating two SSAs. So in the next iteration, all SSAs in the time interval
[0, tSTART − 1] remain fixed.

The second phase generates transport requests. The aim is to match pickup SSAs
with delivery SSAs constrained by space, time, and bike quantities. There may be cases
in which a pickup SSA cannot be matched with a delivery SSA as they occur in the same
time period. We overcome this problem by designing time windows for which an SSA
can be performed earlier or later than determined in the first phase. Given an node (i, t)
in which an SSA has been determined, we replicate nodes on the corresponding station
i, one at each time period between t− δ and t. Thus, δ defines the time window length.
The SSA can be performed at one node in the set {(i, t− δ), (i, t− δ + 1), ..., (i, t)}.

For each SSA, we determine δ as follows. We first set δ := 1. Then, we check if
the station state I t−δi of phase one permits that at least a certain subset of the desired
bikes quantity is available. If so, the node (i, t − δ) is included to constitute the time
window. After that, we set δ := δ − 1. We repeat the procedure until: 1) the maximal
time window length δMAX is achieved, 2) the minimal bike volume to pick up or deliver
is not available in node (i, t− δ), or 3) if there already exist a pick-up or delivery SSA in
node (i, t− δ) to avoid the time overlap of requests.
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Figure 6: Illustrative solution of the matching problem.

Figure 6 shows a solution of an instance of the matching problem and the benefits
of designing time windows. The y-axis represents stations, whereas the x-axis represents
time periods. SSAs obtained from the first phase are depicted by black nodes (i, t)
representing station i and time period t. We observe that the alternatives to pair these
SSAs are limited to the way in which they are spread over time. Incorporating time
windows alleviates this timing deficiency. Gray circles depict replications of the first-
phase SSAs in previous time periods. Every dashed oval wraps a certain number of
nodes thus depicting what we now call a SSA request. Black links represent transport
requests matching a bike quantity from a pick-up SSA request to a delivery SSA request.
The matching problem is formally described in Appendix 10.

In the third phase, we rely on the algorithm for the pick up and delivery problem with
time windows (PDPTW) presented in Ropke and Pisinger (2006) to assign vehicles to
transport requests in order to obtain both the vehicle fleet size and the master tours. This
phase considers handling time and resource limitations when determining master tours.
We follow the large neighborhood search of Ropke and Pisinger (2006) to solve problem
instances of PDPTW. In this work, the LNS uses a combination of greedy insertion and
Shaw removal. The reader is referred to the respective paper for more detail. To depict
feasible master tour decisions, the LNS builds solutions which respect the operational
policy that two vehicles cannot park at one station at the same time.

To produce a solution of SNDBSS, we transform the obtained solution of a PDPTW
into vehicle flow variables that depict master tours. Then, we just need to fix the respec-
tive vehicle flow variables and vehicle fleet sizes in the MIP problem so that a solver can
quickly obtain the SNDBSS solution.
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6 Simulation Approach

The SNDBSS formulation presented in this paper fully exploits a mobility demand fore-
cast based on aggregated recorded data to determine master tours. When master tours
are implemented, however, one must deal with differences between the observed mobil-
ity demand and the forecasted one. In the implementation phase, mobility demand is
stochastic and revealed over time, while every user makes choices to perform journeys in-
dependently of the decisions made at the tactical planning level. These choices are related
to the decision a user makes each time it approaches a station to start or end a ride.
These user choices need to be explicitly considered for mimicking the implementation
phase suitably.

We follow Datner et al. (2017) to modify the formulation F presented in Section 4 to
a bi-level formulation in which redistribution activities are upper-level decisions, whereas
the user choices are represented as lower-level decisions. Let Ω be the sample space of ran-
dom events, with ω ∈ Ω representing a random event. A mobility demand realization (a
“day”) for the random event w ∈ Ω is then represented by dω = (U(ω),

⋃
u∈U(ω) Wu(ω)).

The set U(ω) defines a realization of users, while each user u ∈ U(ω) attempts to perform
a journey of the set Wu(ω). Let fu(S) be a function representing the decision-making
process of user u to minimize its travel time. The function fu(S) returns the journey
performed by user u depending on the set of time-dependent station states S each time
the user intends to rent or return a bike at a station.

The formulation F′ that minimizes the OJDFV given mobility demand realization dω

is obtained by modifying Equations (1) and (2) of the formulation F such that:

min
{ ∑
u∈U(ω)

βu,fu(S)

}
(30)

zu,fu(S) = 1, ∀, u ∈ U(ω) (31)

Where zu,fu(S) indicates that the user’s performed journey depends on fu(S), while
βu,fu(S) is the returned JDF value of the respective journey.

Addressing the bi-level formualtion F′ with a standard MIP solver is not suitable
because, in reality, users make choices on their own and not on the basis of the redis-
tribution plan. Therefore, we address the bi-level formulation using simulation. We
simulate choices of every user with respect to walking and riding among stations with
the aim of minimizing its travel time. As mentioned in Section 3, we can adapt the
simulation to represent other users’ sources of satisfaction like the incurred cost of using
alternative transport modes. The reader is referred to Datner et al. (2017) for a formal
definition of these user choices.

In the simulation, the sequence of SSAs determined by SNDBSS remain unalterable,
that is, the values of vehicle flow variables ye are given by the optimization. However, one
requires guidelines to adjust bike flows with respect to the mobility demand realization
dω.

To this end, we adopt the long-term redistribution strategy (LTR) introduced in
Brinkmann et al. (2015) and derive target station states from the optimization. A target

18

Integrating Resource Management in Service Network Design for Bike Sharing Systems

CIRRELT-2019-06



station state indicates the number of pursued bikes after a station visit. In the simulation,
handling activities are determined so that the target states are achieved as close as
possible. Achieving the target state depends on the current state, the available bikes for
picking up, the available empty rack slots for delivery, the load and transport capacity of
vehicles, as well as the available handling time at each station visit. Another concern to
be considered when determining handling activities at a station is that rental and return
requests alter its state within the visiting time of a vehicle. These user requests must be
considered for each time period in order to produce accurate decisions regarding handling
activities.

We denote by [t1, t2] the time interval where vehicle v stays at station i. The variable
I t1i tells the state of station i in time period t ∈ [t1, t2]. In this station, redistribution
activity aims to achieve a target state τ t2i in time period t2. We set τ t2i := b0.25 ∗ cic if a
pick up is performed within [t1, t2] in the optimization. In case a delivery is performed, we
set τ t2i := b0.75∗cic . As users may request bikes or empty rack slots within time interval
[t1, t2], we propose a procedure to determine handling decisions at each time period t
of this interval. In the procedure, we assume that handling activity is determined once
mobility demand is revealed in time period t.

We first set t := t1. Then, the following equation determines the number of bikes to
pick up or deliver at time period t:

δ := min{µ, τ t2i − I ti} (32)

In Equation (32), a positive δ indicates the need of delivering bikes at station i, while
a negative δ suggests picking up bikes. The parameter µ indicates the maximal number
of bikes that can be handled within t and t + 1. In this equation, we assume that users
have already requested bikes at time period t.

Handling the determined number of bikes δ depends on the load of vehicle v denoted
by ωv, and its capacity C. In this way, the achieved state δ∗ is determined by:

ι :=


min{δ, ωv, I t+1

i }, if δltr > 0

max{δ, ωv − C, I t+1
i − ci}, if δltr < 0

0, otherwise

(33)

Equation (33) indicates that the number of bikes to handle is given by the minimum
between δ, ωv, and I t+1

i if a delivery of bikes is required; the maximum between δltr,
ωv − C, and I t+1

i − ci if picking-up bikes is required; or zero whenever no handling
operation is necessary. We assume that users already requested empty rack slots at time
period t+ 1.

Then, we update t := t + 1 and repeat the procedure based on Equations (32) and
(33) until t = t2.

While the master tours always start without bike load on the vehicles, a vehicle may
return to the depot with some bike load that they could not deliver within the workday
length. We assume that these bikes can be placed at stations within the overnight
redistribution process.
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Table 1: Description of input data after filtering.

Bay Area (BA) Nice Ride (NR) Hubway (HU)

City San Francisco Minneapolis Boston
Number of stations 35 190 140
Min - Max - Avg. bike racks per station 15 - 27 - 19 15 - 35 - 18 11 - 46 -17
Year period 01 Mai - 31 Aug. 01 Mai - 31 Aug. 01 Mai - 31 Aug.
Avg. rides by day 1,167 2,305 4,551

7 Computational Experiments

The computational experiments aim at evaluating the effectiveness of the solution meth-
ods proposed to address SNDBSS, and at evaluating the performance of master tours
by means of simulation. The methods are implemented in C++ using ILOG Concert
Technology to access CPLEX 12.5 as the MIP solver. The simulation is implemented
in Python 3.6. The experiments are performed on a computer with an AMD Ryzen
Threadripper 1950X 3.4GHz processor and 64 GB of RAM that operate under Ubuntu
Linux version 16.04.4.

7.1 Input Data

We generate problem instances using the 2015 free available data of three BSSs located
in the USA: San Francisco’s Bay Area (BA)1, Minneapolis’s Nice Ride (NR), and Boston’s
Hubway (HU). Available data include size and location of stations as well as recorded bike
rides performed by users. We assume Euclidean distances between stations. We remove
recorded rides with duration of less than 5 minutes as they typically result from technical
deficiencies at bikes or station’s racks. The recorded bike rides performed on weekends
and holidays are also removed because they display different user patterns in contrast to
workdays. In addition, we remove stations that have been operated less than one month.
Recorded rides related to these stations are removed as well.

Table 1 provides a general description of the filtered data. BA is the smallest and NR

the largest BSS in terms of number of stations. With respect to user demand, we note
that HU almost doubles the average daily rides compared to NR, although both BSS have
a similar number of stations. Furthermore, NR only generates around 12 rides per day,
whereas all other BSS exceed 30 rides per day. The reader is referred to the respective
website of each BSS for a more detailed description of the system.

We recognize that one major limitation of a recorded ride data is that it only informs
stations and timestamps in which bikes are rented and returned at stations. In other
words, a recorded ride data does not inform whether a user roams among stations because
of failed rental and return requests. Although research efforts are necessary to derive a
more trustworthy representation of mobility demand, this is beyond the scope of this
paper.

1In 2017, San Francisco’s Bay Area changed its name to Ford GoBike.
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7.2 Generating Problem Instances

For each BSS, we generate one instance for a-priori optimization and one instance of
hindsight simulation. An instance of SNDBSS is defined in terms of the network in-
frastructure, mobility demand forecast, and all candidate redistribution and master tour
decisions. Modeling all journeys a user could make to achieve its destination leads to
a computationally intractable SNDBSS instances. We model journeys with which users
either perform demanded rides or walk directly to their destinations. Other user choices
to make journeys are represented in the simulation. An instance of the simulation is
defined in terms of the network infrastructure, a set of mobility demand realizations, as
well as master tours received from SNDSS. We consider a workday length of 16 hours
starting at 6:00 AM. To obtain a detailed representation of time for the redistribution
decisions, we split the workday length into 10-minutes time periods.

The network infrastructure includes the vehicle depot, which is assumed to be located
in the center of the coverage area. The total number of bikes available in the BSS is
around 50% of the total number of bike racks available. Thus, BA, NR, and HU disposes of
347, 1591, and 1192 bikes, respectively. We set the initial states using the guided local
search introduced by Datner et al. (2017). We assume that these initial states can be
achieved by overnight redistribution.

We divide the recorded ride data into two sets. The training data set is used to
generate the mobility demand forecasts for SNDBSS instances. The test data set is
used to generate 512 mobility demand realizations for each instance of the simulation
approach.

Let (i, j, t) be a tuple defined by the station of origin i and station of destination j for
user’s demanded ride which start at time period t. We aggregate recorded ride data so
that we obtain for each possible tuple combination a real-valued ride’s demand rate rijt.
To obtain a realization, these demand rates are discretized using Poisson distribution,
obtaining integer demand values. The integer demand value associated with tuple (i, j, t)
indicates the number of users which intend the respective demanded ride.

Recorded ride data displays the spatio-temporal dynamics of mobility demand, com-
pare Vogel et al. (2011). As shown by O’Brien et al. (2014), BA and HU depicts a clear
dominance of commuting activities, whereas NR is mostly used for leisure purposes. The
reader is referred to O’Brien et al. (2014) for an extensive analysis of ride data in several
cities.

We consider the following parameters to generate problem instances. The cost F of
acquiring a vehicle is 250.00AC. The cost ke of using a vehicle movement link e ∈ AVM is
2.00AC per kilometer driven. The cost ke of using a handling link e ∈ AHA is 0.50AC. The
handling time is one minute per bike. Each vehicle has a capacity C of 20 bikes. We
assume a constant speed of 30km

hr
. Riding and walking speed of users are 15km

hr
and 5km

hr
,

respectively. The budget B is 1.50AC per bike in the BSS, that is, a total of 520.50AC for
BA, 2386.50AC for NR, and 1788.00AC for HU.
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7.3 Performance of the Construction Heuristic

We consider the following setting for the construction heuristic. In the first phase, the
procedural approach considers a minimal time distance t̄ of four time periods between
two SSAs, that is, the the time to unload all the bikes from a full vehicle. In the second
phase, we impose a maximal time windows length of three hours, that is, δMAX := 18.
The matching problems are solved using CPLEX with minor computational effort. In
the third phase, the LNS algorithm used to address PDPTW instances stops after either
1000 iterations or 30 minutes runtime.

We consider the improvement ratio as measure for comparing solutions of SNDBSS.
The improvement ratio is a metric taking values between 0 and 1 to measure the fraction
of demanded bike rides satisfied. In other words, the improvement ratio is the percentage
reduction of the OJDFV to the no-redistribution solution.

Table 2: Results of the construction heuristic.

BSS No Redist. Random Solutions Construction Heuristic

OJDF OJDF Imp. Ratio OJDF Imp. Ratio Vehicles Runtime (s)

BA 28.84 25.62 0.11 19.02 0.34 1 1.41
NR 11.01 9.15 0.17 4.80 0.56 4 3.68
HU 63.01 55.16 0.12 40.13 0.36 3 21.88

For the sake of comparison, we generate for each BSS a pool of 50 solutions with
randomly produced master tours. The vehicle fleet size v of these random solutions is
an input given by the solution of the construction heuristic. Table 2 shows the results,
where we report the BSS, the OJDFV (the excess travel time in hours) for a solution
in which no redistribution is performed; the average OJDFV and average improvement
ratio of 50 random solutions; the OJDFV, improvement ratio, and vehicle fleet size of
solutions generated by the construction heuristic; and the runtime in seconds that the
construction heuristic requires to reach the solution. With respect to the improvement
ratio, we observe that the construction heuristic obtains solutions around three times as
good as the ones obtained by the random procedure. We also note that the construction
heuristic produces solutions in less than one minute for each BSS. The construction
heuristic suggests the acquisition of one vehicle for BA, which makes sense as a second
vehicle would consume a major part of the given budget, remaining less budget in order
to operate master tours. NR and HU certainly require more vehicles than BA due to their
higher dimensions in terms of stations and demanded rides.

7.4 Performance of the Matheuristic

We follow the guidelines of Section 5.1.2 to build reduced MIP problems. Regarding the
size of these reduced MIP problems, we test on each BSS for n = 50; 100; 200; 400; and
800. Recall, that the parameter n indicates the number of vehicle detours considered in
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a reduced MIP problem. We set the maximal time for exploring a reduced MIP problem
to 900 seconds. We set the runtime limit of the matheuristic to 3600 seconds.

Table 3: Results of the matheuristic.

BSS n OJDFV Std-dev Imp. Ratio Iterations % Budget Used

BA 50 11.76 0.75 0.59 2086.4 0.81
100 11.57 1.40 0.60 1892.6 0.84
200 10.75 0.33 0.60 1005.6 0.83
400 9.57 0.99 0.67 116.2 0.83
800 11.38 0.92 0.61 5.8 0.81

NR 50 0.00 0.00 1.00 246.2 0.98
100 0.00 0.00 1.00 117.8 0.99
200 0.00 0.00 1.00 131.4 0.99
400 0.00 0.00 1.00 87.2 0.99
800 0.06 0.13 0.99 28.0 0.98

HU 50 16.3 1.50 0.74 249.0 0.96
100 13.5 2.17 0.79 233.4 0.97
200 17.7 4.71 0.72 55.6 0.97
400 30.4 1.55 0.52 4.0 0.89
800 38.1 3.60 0.40 4.0 0.78

In Table 3, we report the average results of 5 runs for each BSS and value of n, where
we report the OJDFV, the standard deviation (Std-dev) the improvement ratio, the
average number of iterations performed until the runtime limit of 3600 seconds is reached,
and percentage of budget consumed both to acquire vehicles and to operate master tours.
Solutions of the construction heuristic are used as starting solutions for the matheuristic.
This includes the vehicle fleet size which remains fixed within iterations. With respect
to the improvement ratio, we observe that the solutions obtained by the matheuristic are
around twice as good as the ones obtained by the construction heuristic. This shows that
the construction heuristic is useful for quickly producing starting solutions of reasonable
quality, but the matheuristic is key to obtaining high-quality solutions. As expected,
the number of iterations within the time limit is inversely related to the value of n since
increasing n yields larger reduced MIP problems to be explored. We also note that the
sweet spot for n depends on the size of the BSS. For BA, which is the smallest BSS with
respect to stations and mobility demand, we obtain the best matheuristic performance
for n = 400. In the case of HU, n = 100 leads to the highest average improvement ratio.

Next, we observe that in all cases budget B is almost fully consumed and directly
affects the number of vehicles to acquire. For example, for BA and n = 400, 48% of the
budget is used for acquiring vehicles, and 35% for designing master tours. If a second
vehicle would be acquired, the used budget for this item would jump to 96%, resulting
in less remaining budget for designing master tours. This shows that the construction
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heuristic determines a reasonable vehicle fleet size for instances of SNDBSS. For NR, an
average improvement ratio of 1.0 is nearly always reached. In this BSS, an improvement
ratio of 1.0 could be reached with even less budget. For HU, higher improvement ratios
could be achieved by increasing the budget. Below, we study this trade-off between
redistribution resources and OJDFV in more detail.

Now, we study the quality of the solutions obtained by the matheuristic. To this end,
we build a reduced MIP instance comprising all vehicle flow-related variables ye ever
explored within the matheuristic. All other ye are fixed to zero. Then, we solve the MIP
instance with CPLEX, using the best solution obtained by the matheuristic for a warm
start. We run CPLEX for 180,000 seconds. In Table 4, we report the BSS, the best
solution reached by the matheuristic as well as the solution and best bound obtained
with CPLEX for the MIP instance. We exclude NR from this analysis as an optimal
solution was obtained for the respective MIP problem, that is, the OJDFV equals 0.00.
We observe that solutions of better quality are obtained with high computational efforts.
For instance, CPLEX is only able to reach a solution of better quality after 118300
seconds for HU. We also observe that the optimality gap is very large. This is expected
because solutions to the LP relaxation exhibits many fractional values close to zero. In
other words, fractional vehicle flow variables can reach OJDFV closed to zero, although
they are far from being close to an integer solution.

Notice that the reported MIP bound is not obtained from the full MIP problem, but
from the restricted one. Unfortunately, performing the former analysis on the full MIP
instance was not possible as the available memory space was insufficient to load these
instances. However, as the matheuristic selects promising ye within the search, we claim
that the gap between the bounds of an original MIP instance and the this reduced MIP
instance should be reasonably close.

Table 4: Quality of matheuristic solutions.

BSS Best Math Sol. Best red. MIP Sol. Best red. MIP Bound Opt. Gap

BA 7.77 6.43 1.35 78.98%
HU 10.24 9.67 0.84 91.34%

Next, we discuss the application of operator probabilities within the iterations of
the matheuristic. Figure 7 shows the average probabilities over iterations for HU and
n = 100. The x-axis represents iterations of the matheuristic. The y-axis represents
the probabilities. The stacked area graphs indicate the application of each operator over
iterations. As expected, we observe that the application of FBO quickly decreases within
the first iterations since the proposed equations which derive probabilities encourage this
behavior. In later iterations, no major variations in the application of FBO are observed.
Meanwhile, we do not identify a clear superiority of one operator over the others. How-
ever, variations of these applications over iterations indicate that the matheuristic finds
solutions of superior quality even in late phases of the search process. This shows that
the combination of operators is beneficial to escape from local optima.
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Figure 7: Probabilities of operators for HU and n equals 100.

7.5 Evaluating Master Tour Performance

In this section, we evaluate master tour performance in the optimization and the simu-
lation. We study the effect of both varying the vehicle fleet size and increasing station
capacities. To solving the SNDBSS instances, we run the matheuristic as before with
the value of n yielding solutions of superior quality for the respective BSS. For each BSS
and vehicle fleet size, we consider two instances: one with the original station capacities,
and one in which we increase the capacity of the busiest 10% of the stations to 100.
The budget constraint is excluded from this analysis as redistribution efforts are already
limited by the fixed vehicle fleet size.

In Table 5, we report the BSS in the first column and the respective number of vehicles
in the second column. We report the OJDF and the handled bikes by vehicle (“Redist.
by Vehicle”) for: the optimization with original station capacities (columns three and
for), the optimization with increased station capacities (columns five and six), the simu-
lation with original station capacities (columns seven and eight), and the simulation with
increased station capacities (columns nine and ten).

First, we focus on the results for the optimization with original station capacities.
As expected, we observe that adding vehicles to the fleet improves the solution quality.
This is expected as the matheuristic exploits knowledge of the mobility demand forecast
over the workday length. Hence, adding vehicles to the fleet can not deteriorate solution
quality. However, the marginal contribution of the additional vehicle tends to decrease.
In HU, for example, we clearly observe that adding a third vehicle is beneficial as the
OJDF decreases around 65%. Despite the OJDFV decreases around 50% by adding
the fourth vehicle, the marginal decrease just halves. For BA, an OJDFV equals zero is
obtained with three vehicles. However, the major improvement of the solution quality is
achieved with just one vehicle. For NR, we observe that an OJDV equals zero is achieved
for all vehicle fleet sizes evaluated. With respect to redistribution efforts, we observe
that for every BSS the number of handled bikes by vehicle reduces with respect to the

25

Integrating Resource Management in Service Network Design for Bike Sharing Systems

CIRRELT-2019-06



Table 5: Results for different vehicle fleet sizes and station capacities.

Optimization Simulation

Original Station Cap. Increased Station Cap. Original Station Cap. Increased Station Cap.

BSS Veh. OJDFV Redist/Vehicle OJDFV Redist/Vehicle OJDFV Redist/Vehicle OJDFV Redist/Vehicle

BA 0 28.84 0.00 17.11 0.00 17.96 0.00 12.51 0.00
1 7.77 264.00 4.13 160.00 14.13 147.91 10.95 100.77
2 4.16 175.00 1.57 105.00 14.77 106.90 10.52 35.73
3 0.00 130.67 0.00 80.00 12.50 82.60 10.62 36.81

NR 0 11.01 0.00 9.01 0.00 7.24 0.00 5.18 0.00
3 0.00 79.33 0.00 53.33 7.38 39.44 4.88 8.88
4 0.00 46.50 0.00 45.00 7.72 33.26 4.95 10.24
5 0.00 40.80 0.00 39.60 7.27 20.38 5.12 9.33

HU 0 63.01 0.00 48.64 0.00 80.29 0.00 56.07 0.00
2 29.32 220.00 16.00 213.00 76.19 146.65 53.88 112.17
3 10.24 212.00 4.85 193.33 72.45 136.66 55.12 119.80
4 5.57 181.00 3.01 161.50 67.43 106.80 50.75 76.27
5 1.75 160.00 0.84 136.40 65.64 105.13 51.72 80.49

vehicle fleet size. In other words, adding further vehicles leads to a successively smaller
utilization of them.

Next, we focus on the results for the optimization with increased station capacity. We
observe that the development of the OJDF and handled bikes by vehicles with respect
to the vehicle fleet size is similar to the results for the instances with original station
capacity. However, we note that increasing the capacity of high-demanded stations gen-
erally improves the solution quality. In addition, less redistribution effort is required
as a station with more bike racks is able to serve additional rental and return requests
before redistribution becomes necessary. Despite these results seem promising to be im-
plemented in practice, increasing station capacity is not always feasible due to land-use
regulations and high implementation costs.

Now, we compare the optimization and simulation results. For a BSS and a given
number of vehicles, there exists clear differences between the OJDFV obtained for the
optimization and the simulation. For BA and HU, although daytime redistribution con-
tributes to reduce OJDFV, the stochasticity of mobility demand affects the performance
of master tours within the simulation. Regarding NR, we observe that in the simulation
approach redistribution worsens the solution quality even with a large fleet of vehicles.
The results suggest that since NR is mostly used for leisure, large variations of mobility
demand over days negatively impact master tour performance. These observations are
also valid for the results of the simulation with increased station capacities. This shows
that considering deterministic mobility demand in tactical planning is not suitably for
BSSs with high day-to-day variations in mobility demand. For these instances, a com-
bination of overnight redistribution and intra-day control of bike redistribution should
provide better results.
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8 Conclusions

We introduce a novel service network design problem to address the redistribution pro-
cess in bike sharing systems at the tactical planning level. Tactical planning exploits
repetitive and predictable mobility patterns to produce regular master tours for redistri-
bution operations. We explicitly integrate resource management in the formulation to
produce an accurate representation of routing decisions, putting special emphasis on the
necessary handling time at each station visit, as well as limited resources for acquiring
and operating vehicles. The proposed MIP formulation is based on a time-expanded
network representing redistribution and vehicle routing decisions in terms of flows. Ad-
dressing problem instances of this rich formulation is very challenging given the complex
interplay between coexisting flows in the time-expanded network, the incorporation of
vehicle-balance constraints to generate feasible master tours, and the fine time granularity
required to represent handling operations.

We propose two solution methods to address large problem instances of the MIP for-
mulation. The first one is a construction heuristic which breaks down the decision-making
process of bike redistribution into three phases. The respective phases successively de-
termine SSAs, transport services, and master tours. The main virtue of the construction
heuristic is that it quickly produces a good starting solution for the proposed matheuris-
tic. The matheuristic relies on a neighborhood-search scheme in order to find qualitative
solutions within iterations. The matheuristic builds and solves reduced MIP problems
which involve a small number of vehicle flow variables of the original problem instance.
We provided evidence the proposed solution methods are able to produce solutions of
good quality in a reasonable runtime.

We show that the marginal benefit and utilization of vehicles decrease by enlarging
the vehicle fleet size. In principle, fulfilling expected user demand is theoretically possible
with a large number of vehicles, but impracticable due to excessive redistribution costs. In
practice, a trade-off between redistribution costs and service level is subject to negations
between the municipality and the operator. We claim that the developed approach may
be used as a tool to support such negotiations.

To evaluate the master tour performance, we proposed a simulation approach in
which the master tours are given by the service network design formulation, whereas
handling activities are adjusted online to cope with day-to-day variations of mobility
demand. The results show that our deterministic MIP model can produce master tours of
reasonable performance for bike sharing systems dominated by communing rides despite
the stochastic and dynamic nature of mobility demand. However, the results when users
mainly perform rides for irregular demand indicate that the proposed methodology for
designing master tours is not adequate. Therefore, future work will consider integrating
demand stochasticity to service network design in order to reduce the gap between the
optimization and simulation results. Another interesting avenue for future research is to
temporarily increase the capacity of some stations in order to both reduce redistribution
efforts and increase the service level. In practice, operators offer valet services, that is,
additional staff who collects the overflow of bikes at stations. Service network design can
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contribute to determine when and how long these valet services need to be offered.
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9 Annex 1 - Phases of the Procedural Approach

We introduce the recursive equations to obtain SSAs during the triggering phase. Then,
we describe the adjusting phase.

9.1 Triggering Phase

Let I ti be the bikes in racks at station i and time period t. We assume a given number of
bikes I0

i at station i and time period 0. Demanded rides wd are used as input. Let Ω+
it

and Ω−it be the set of demanded rides wd which respectively end and start at station i
and time period t. Then, we denote f t+1

i as the difference between the number of return
requests in time period t + 1 and the number of rental requests in time period t. The
value of f t+1

i is computed using Equation (34).

f t+1
i = −

∑
wd∈Ω+

it

wd +
∑

wd∈Ω−i,t+1

wd, ∀i ∈ S, t < T
(34)

A positive value of f ti means that demanded rides lead to an increase of the bikes in
racks on station i and time period t, whereas a negative value represents a decrease of
bikes. If f ti equals zero, there is no variation in the bikes in racks because of bike rides.
In time period 0, the value of f 0

i is zero.
Let ci the capacity of station i in terms of bike racks. If the number of bike in racks

at station i is out of the interval [0, ci], we trigger an SSA to pick up or deliver a certain
bike volume rti in time period t. A negative value of rti means that a pickup of bikes is
required, whereas a positive value indicates the volume of bikes to deliver. If no SSA is
necessary, the bike volume rti is zero. Let θti be the pursued number of bikes in racks on
station i and time period t if a SSA is performed. Here, θti = dci/2e. The bike quantity
to pick up or deliver by an SSA is limited by the vehicle load capacity C.

9.2 Adjusting Phase

We describe the procedure to adjust one SSA based on the next SSA performed at the
same station. The aim is to omit further SSAs at one station by varying the bike quantity
of a preceding SSA.

Let rti and rt
′
i bike quantities for SSAs in time period t andt′, respectively, at station

i, with t < t′. No SSA occurs in the time interval [t + 1, t′ − 1]. In addition, we define
the minimum and maximum number of bikes in racks between [t+ 1, t′− 1] by IMIN and
IMAX , respectively. We define four cases to adjust rti :

1. This case involves two pickup SSAs. The bike volume to pick up |rti | may increase
up to IMIN units.

2. This is the case if both SSAs delivers bike volumes at station i. Now, the bike
volume to deliver |rti | may increase up to ci − IMAX units.
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3. This case first involves a pickup SSA and then a delivery SSA. Thus, the bike
volume to pick up |rti | may decrease to min{IMIN , ci − IMAX} units.

4. Finally, first a delivery SSA and then a pickup SSA occurs. The procedure to define
the decrease in volume of bikes to deliver |rti | is the same that we consider for case
3.

10 Annex 2 - Matching Problem

We state the matching problem to pair pickup and delivery SSAs. For each SSA, we
define a node (i, t) representing station i and time period t. A node involves either a
pickup of bikes if rti < 0, or a delivery of bikes if rti > 0.

We denote the set of pick-up and delivery nodes by NP and ND, respectively. The
available bike volume to be picked up at node nP ∈ NP is denoted by anP

, whereas the
bike volume to be delivered at node nD ∈ ND is bnD

. We refer to these nodes as pickup
and delivery requests, denoted by RP and RD, respectively. The available bike volume to
pick-up at request rp ∈ RP is denoted by Arp , whereas bike volume required at delivery
node rd ∈ RD is denoted by Brd .

Each request is defined by a set of nodes. Let NP (rD) and ND(rD) the node sets which
belong to the pick-up request rP and rD, respectively. Since it is possible that the total
bike volume to pick up is not equal to the bike volume to deliver, i.e.,

∑
rp∈RP

Arp 6=∑
rd∈RD

Brd , we introduce the non-negative variables αrP and βrD indicating dummy
bike volume, i.e., volume that is not picked-up or delivered from requests rP ∈ RP and
rD ∈ RD, respectively. Each lost bike volume unit is penalized with a cost θ.

The decision of establishing a redistribution request between two nodes is modeled by
the binary variable ykl, k ∈ NP , l ∈ ND, whereas the respective redistribution volume is
represented by the non-negative continuous variable xkl, k ∈ NP , l ∈ ND. The volume to
redistribute is bounded by the capacity of the redistribution request Ckl, k ∈ NP , l ∈ ND.
The volume allowed for a redistribution request depends on the minimum bike volume
of the corresponding pick-up and delivery node, i.e., min{ak, bl}, the number of available
time periods to perform the redistribution between the targeted stations, and the vehicle
load capacity C. To avoid excessive driving time for performing redistribution, a fix cost
fkl is considered if the redistribution request ykl is set.

With the aforementioned notation, the transportation problem reads as follows:

min z =
∑
k∈NP

∑
l∈ND

fklykl + θ
( ∑
rP∈RP

αrP +
∑

rD∈RD

βrD
)

(35)

s.t. ∑
k∈NP (rP )

∑
l∈ND

xkl + αrP = ArP , ∀rP ∈ RP (36)

∑
k∈NP

∑
l∈ND(rD)

xkl + βd = BrD , ∀rD ∈ RD (37)
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∑
k∈NP (rP )

∑
l∈ND

ykl ≤ 1, ∀rP ∈ RP (38)

∑
k∈NP

∑
l∈ND(rD)

ykl ≤ 1, ∀rD ∈ RD (39)

xkl ≤ Cklykl, ∀k ∈ NP , l ∈ ND (40)

xkl ≥ 0, ∀k ∈ NP , l ∈ ND (41)

ykl ≥ {0, 1}, ∀k ∈ NP , l ∈ ND (42)

αrP ≥ 0, ∀rP ∈ RP (43)

βrD ≥ 0, ∀rD ∈ RD (44)

The objective function (35) minimizes the fixed costs redistribution requests and the
penalty cost associated with lost volumes of bikes that cannot be picked up or delivered
by the requests. Equation (37) indicates that the sum of all redistributed bikes from
a pick-up request plus the unmet bike volume is equal to the expected bike volume to
pick up. In the same way, Equation (38) says that the sum of all redistributed bikes to
a delivery request plus the unmet bike volume is equal to the expected bike volume to
deliver. Equations (39-40) enforce that only one redistribution decision can be established
from or to a request. Finally, Equations (41-44) state the domain of the variables.
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