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RÉSUMÉ

Le problème de conception de réseau avec coûts fixes et capacités (MCFND) et le pro-

blème de conception de réseau multicouches (MLND) sont parmi les problèmes de

conception de réseau les plus importants. Dans le problème MCFND monocouche, plu-

sieurs produits doivent être acheminés entre des paires origine-destination différentes

d’un réseau potentiel donné. Des liaisons doivent être ouvertes pour acheminer les pro-

duits, chaque liaison ayant une capacité donnée. Le problème est de trouver la conception

du réseau à coût minimum de sorte que les demandes soient satisfaites et que les capa-

cités soient respectées. Dans le problème MLND, il existe plusieurs réseaux potentiels,

chacun correspondant à une couche donnée. Dans chaque couche, les demandes pour un

ensemble de produits doivent être satisfaites. Pour ouvrir un lien dans une couche par-

ticulière, une chaîne de liens de support dans une autre couche doit être ouverte. Nous

abordons le problème de conception de réseau multiproduits multicouches à flot unique

avec coûts fixes et capacités (MSMCFND), où les produits doivent être acheminés uni-

quement dans l’une des couches.

Les algorithmes basés sur la relaxation lagrangienne sont l’une des méthodes de ré-

solution les plus efficaces pour résoudre les problèmes de conception de réseau. Nous

présentons de nouvelles relaxations à base de nœuds, où le sous-problème résultant se

décompose par nœud. Nous montrons que la décomposition lagrangienne améliore si-

gnificativement les limites des relaxations traditionnelles.

Les problèmes de conception du réseau ont été étudiés dans la littérature. Cependant,

ces dernières années, des applications intéressantes des problèmes MLND sont apparues,

qui ne sont pas couvertes dans ces études. Nous présentons un examen des problèmes de

MLND et proposons une formulation générale pour le MLND. Nous proposons égale-

ment une formulation générale et une méthodologie de relaxation lagrangienne efficace

pour le problème MMCFND. La méthode est compétitive avec un logiciel commercial

de programmation en nombres entiers, et donne généralement de meilleurs résultats.

Mots cles : Conception de réseau, relaxation lagrangienne, méthode de sous-

gradient, méthode de faisceaux, programmation en nombres entiers.
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ABSTRACT

The multicommodity capacitated fixed-charge network design problem (MCFND) and

the multilayer network design problem (MLND) are among the most important network

design problems. In the single-layer MCFND problem, several commodities have to

be routed between different origin-destination pairs of a given potential network. Ap-

propriate capacitated links have to be opened to route the commodities. The problem

is to find the minimum cost design and routing such that the demands are satisfied and

the capacities are respected. In the MLND, there are several potential networks, each

at a given layer. In each network, the flow requirements for a set of commodities must

be satisfied. However, the selection of the links is interdependent. To open a link in a

particular layer, a chain of supporting links in another layer has to be opened. We ad-

dress the multilayer single flow-type multicommodity capacitated fixed-charge network

design problem (MSMCFND), where commodities are routed only in one of the layers.

Lagrangian-based algorithms are one of the most effective solution methods to solve

network design problems. The traditional Lagrangian relaxations for the MCFND prob-

lem are the flow and knapsack relaxations, where the resulting Lagrangian subprob-

lems decompose by commodity and by arc, respectively. We present new node-based

relaxations, where the resulting subproblem decomposes by node. We show that the

Lagrangian dual bound improves significantly upon the bounds of the traditional relax-

ations. We also propose a Lagrangian-based algorithm to obtain upper bounds.

Network design problems have been the object of extensive literature reviews. How-

ever, in recent years, interesting applications of multilayer problems have appeared that

are not covered in these surveys. We present a review of multilayer problems and pro-

pose a general formulation for the MLND. We also propose a general formulation and

an efficient Lagrangian-based solution methodology for the MMCFND problem. The

method is competitive with (and often significantly better than) a state-of-the-art mixed-

integer programming solver on a large set of randomly generated instances.

Keywords: Network Design, Multilayer Network Design, Lagrangian Relax-

ation, Subgradient Method, Bundle Method, Mixed-Integer Programming.
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CHAPTER 1

INTRODUCTION

Network design is a well-known class of problems in combinatorial optimization.

The multicommodity capacitated fixed-charge network design problem (MCFND), with

interesting applications in transportation, telecommunications, logistics and production

planning [64, 70], as well as the multilayer network design problem (MLND) that re-

cently presented interesting applications in the fields of transportation [17, 31, 88] and

telecommunications [33, 61], are among the most important network design problems.

In the single-layer MCFND, several commodities, such as goods, data or people,

have to be routed between different origin-destination pairs of a given potential network.

The flow of each commodity is permitted to split on different paths from the origin

to destination. A predefined maximum flow (capacity) can be routed on each link of

the network. A network has to be designed by selecting appropriate links to route the

commodities. A fixed design cost has to be paid to open a link. In addition, a variable

flow cost is imposed to route each unit of commodity demand on each link. The problem

is to find the minimum cost design and routing such that the demands and the capacities

are satisfied.

In multilayer network design, however, unlike a typical network design problem,

there are several networks, each at a given layer. Each network has its nodes, potential

arcs with (or without) limited capacities, and, possibly, commodities. The commodi-

ties, if any, need to be routed from their origins to their destinations in each layer to

satisfy the demands. To route the commodities, appropriate arcs have to be selected (or

opened) by paying a fixed cost. A particular layer might not have any commodity, but

still has to be designed to support the routing of other layers. At least one layer has

commodities to route. There are two types of coupling constraints between the layers,

flow connectivity and design connectivity requirements. A common type of design con-

nectivity requirements arises when each link in a layer can be selected only if some arcs

(typically forming a path or a cycle) are opened in another layer. The flows in a layer
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might also be related to the flows of another layer, corresponding to flow connectivity

requirements. For example, the amount of flow on each arc in a particular layer might be

computed based on the flow on several arcs in another layer. In general, the objective is

to find a minimum cost design and routing for all layers, while satisfying typical network

design constraints in each layer, as well as coupling constraints between layers.

Among different versions of the MLND problems, in this thesis, we address a version

of the problem called the multilayer single flow-type multicommodity capacitated fixed-

charge network design problem (MSMCFND), where commodities are routed only in

layer l = 1, given a set of layers L = {1,2, .., |L|}. The amount of flow on each link

in a particular layer l ≥ 2 is equal to the amount of flow on its corresponding links in

layer l− 1 and consequently to the amount of flow on its corresponding links in layer

l = 1. The application that motivates our work on the MMCFND is described in Zhu

et al. [88], which proposes a three-layer network to model a problem in rail freight

transportation planning where a double consolidation policy is performed. First, cars are

grouped into so-called blocks (blocking process). Then, they are grouped into services

to make up trains (train make-up process). The next step is to select the services and

define their frequencies. To propose a formulation determining blocking, train make-up,

and service selection decisions simultaneously, Zhu et al. [88] considered a three-layer

network including: 1) a car layer that consists of links on which cars are moved in each

terminal; 2) a block layer that includes block links from the origins to the destinations of

the blocks; and 3) a service layer that includes service links to support block movements.

In the car layer, the flows of commodities are moved via the car links and the projected

block links from the block layer. To design a block link, a chain of supporting services

has to be opened in the service layer. The flow of each service is equal to the summation

of the flows on all its supported blocks. The problem is to find a minimum cost blocking

and service design, and flow routing of the cars, while considering flow capacity of the

blocks and the services, blocking capacity of each terminal, and design connectivity of

the block and the service layers.

Lagrangian-based algorithms are one of the most effective solution methods to solve

network design problems, in particular the single-layer MCFND (see [27] and [53] for
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example). The single-layer MCFND is typically formulated as a Mixed-Integer Pro-

gramming (MIP) model including two main sets of constraints: 1) flow conservation con-

straints ensuring that the demands of the commodities are satisfied, and 2) flow capacity

constraints ensuring that the flow on each arc does not exceed its capacity. The usual

Lagrangian relaxations for the formulation are the so-called shortest path and knapsack

relaxations, which are obtained, respectively, by relaxing capacity constraints and flow

conservation equations. For the first one, the resulting Lagrangian subproblem decom-

poses into a collection of shortest path subproblems, one for each commodity, while the

second one allows solving the Lagrangian subproblem as a series of continuous knapsack

subproblems, one for each arc. Therefore, the shortest path and knapsack relaxations are

also known as commodity-based and arc-based relaxations, respectively. The nodes of

a network are the other entities that can be considered as decomposition components.

The first goal of this thesis is to present new relaxations where the Lagrangian subprob-

lem decomposes by node to propose a new Lagrangian-based matheuristic to solve the

problem.

The applications of network design models and their solution techniques have been

surveyed in [23, 64, 71]. However, in recent years, interesting applications of multi-

layer network design have appeared, that are not covered in these surveys. To the best

of our knowledge, the only survey paper on multilayer networks is [59] which studies

the general concept of multilayer networks, but does not cover the multilayer network

design problem. In addition, several research works, particularly in transportation (crew

scheduling [17] and railway engineering [88], for example), are missing in this sur-

vey. Therefore, the second objective of this thesis is to fill this gap. We propose a new

classification of multilayer network design problems, and we synthesize its applications

in transportation and telecommunications, as well as the methods used to solve these

problems. Our synthesis emphasizes the multilayer structure of the problems such as

the number of layers, and the coupling constraints between layers, rather than general

network design characteristics. This focus allows to understand the multilayer network

design features better and to identify new research avenues. We propose a general formu-

lation to facilitate the exposition of multilayer network design problem while covering
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many applications.

Motivated by the success of Lagrangian-based heuristics for the single-layer MCFND,

we propose a Lagrangian-based matheuristic for the MSMCFND. Although there are ef-

fective Lagrangian-based heuristics for the MCFND (see [53], [82], [27], and [60]), these

methods cannot be adapted in a straightforward way to the MMCFND. Indeed, the chal-

lenge in multilayer network design is how to handle the significant additional complexity

incurred by the coupling constraints between layers. On the one hand, these additional

constraints complicate the task of developing Lagrangian relaxations that keep a balance

between the quality of the lower bound and the computational efficiency of solving the

Lagrangian subproblem. On the other hand, the derivation of effective feasible solutions

becomes significantly more difficult in the presence of these constraints. We propose a

Lagrangian-based matheuristic solution method based on a slope scaling scheme. The

idea of slope scaling is to iteratively solve a linear multicommodity flow formulation,

and to use the flow distribution to adjust the linear approximation at the next iteration.

When the slope scaling method stalls, a perturbation move changes the initial linear ap-

proximation to start a new slope scaling procedure; for more details on slope scaling, see

[27] and [56]. The Lagrangian relaxation approach provides not only the lower bounds

to evaluate the obtained feasible solutions, but also guides the slope scaling search by

providing initial solutions and by defining the perturbation moves.

The remainder of this thesis is organized as follows. Chapter 2 provides: 1) a litera-

ture review on different versions of network design problems as well as the formulations

and solution methods for the MCFND, and 2) an overview on the existing Lagrangian re-

laxation methods for the MCFND. In Chapter 3, we present new node-based Lagrangian

relaxations, where the resulting Lagrangian subproblem decomposes by node. We show

that the Lagrangian dual bound improves upon the so-called strong linear programming

(LP) bound, known to be equal to the Lagrangian dual bounds of the shortest path and

knapsack relaxations. We also propose a Lagrangian-based matheuristic algorithm to

obtain upper bounds. The results show that the proposed algorithm is competitive with

the state-of-the-art heuristics in the literature on a large set of benchmark instances.

In Chapter 4, we propose a general formulation for the multilayer network design
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problem, which can cover a wide range of applications. We also present a state-of-the-

art review and synthesis of multilayer network design problems and discuss their solu-

tion approaches in transportation and telecommunications. In Chapter 5, we propose a

general formulation for the MSMCFND. We also propose an efficient solution methodol-

ogy based on Lagrangian relaxation to solve the large-scale MSMCFND instances. The

proposed algorithm is enhanced by intensification, diversification, and post-optimization

procedures using long-term and short-term memories. The results show that the resulting

algorithm is competitive with (and often significantly better than) a state-of-the-art MIP

solver on a large set of randomly generated instances, not only with respect to the ob-

tained upper bounds, but also in terms of optimality gaps. Finally, Chapter 6 summarizes

the thesis and proposes potential future research directions.

Chapters 3 to 5 are the preliminary versions of research articles co-authored with my

thesis supervisors, and Chapter 3, with three other researchers. The article of Chapter 3,

co-authored with Tolga Bektaş, Teodor Gabriel Crainic, Antonio Frangioni, Bernard

Gendron, and Enrico Gorgone, is under final algorithmic implementations. The articles

of Chapters 4 and 5, co-authored with Teodor Gabriel Crainic and Bernard Gendron,

have been submitted to, respectively, European Journal of Operational Research and

Computers and Operations Research. My role in these three chapters include the devel-

opment, implementation, and testing the algorithms and formulations, as well as writing

the papers.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we first provide an overview of the main variants of network design

problems. Then, we present different formulations of the MCFND and the solution meth-

ods proposed in the literature, with a focus on Lagrangian relaxation methods. Finally,

we discuss research avenues to conclude the chapter.

2.1 An Overview of Network Design Problems

Network design has a wide range of applications for planning and operations in

transportation, telecommunications, logistics, and distribution systems. In the context

of transportation systems, such applications are, for example, to decide the construc-

tion or improvement of infrastructures and facilities, and the selection of transportation

services, their frequencies, and schedules.

In network design problems, we are given a graph including nodes and links and

several demands between pairs of nodes. The common feature of all network design

problems is the decision to be made about selecting a subset of links to route the de-

mands. A fixed cost, associated with some or all of the links, has to be paid for using

or selecting a link. A variable cost, that depends on the volume of traffic, might also

be associated with each link. The objective is to select a subset of links in the network

to satisfy the demands and minimize the total cost. Network design problems can be

categorized into different classes. Many survey papers with classification schemes exist

in the literature [23, 64, 71]. In the following subsections, we summarize some classes

of network design problems.

2.1.1 Directed or Undirected

In network design problems, the graph is either directed or undirected. In directed

graphs, a link can be used only in a particular direction, while in an undirected graph,
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one can use a link in both directions. An undirected graph can be transformed into a

directed graph using pairs of links in both directions.

2.1.2 Multicommodity or Single-Commodity

A commodity is a product or a data type that has to be moved between origins and

destinations. The origins provide supplies of the commodity, while the destinations re-

quire demands of the commodity. When there are several commodities with different

origins and destinations, the resulting problem is called multicommodity network design.

In this case, the resources and the capacities of the links are shared between the com-

modities. There are applications where only a single commodity has to be moved, known

as single-commodity network design. There are also some special applications where the

commodities have to be routed from several origins to a single destination. For example,

in a raw material distribution application, several origins serve the demand of a single

destination. In addition, one can see the same commodity type with different origins and

destinations as different commodities, each with several origins and a single destination,

resulting in a multicommodity network design problem.

2.1.3 Capacitated or Uncapacitated

Capacity is a property of the network that can be defined for each link (or node).

It limits the maximum flow of the commodities that can be routed through the link (or

node). In undirected graphs, the link capacity limits the total flow that can be routed in

both directions. If the link (or node) is selected to be part of the network design, then

the corresponding capacity is available. Otherwise, the link is closed, and there is no

capacity to route the flow of the commodities. Sometimes, the problem is to determine

the number of facilities, each with a given capacity, installed on the links (or nodes), as

in the network loading [65, 71].

A node capacity can be converted into a link capacity by splitting each node into

two nodes and defining a link between them with a capacity equal to the node capacity.

Therefore, there is no loss of generality in considering only link capacities.
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In a capacitated network design problem, each link has a limited flow capacity equal

to the resource or facility capacity installed on the link. When the capacity of each

link is at least equal to the total demands of all commodities, then the problem is called

uncapacitated network design problem.

2.1.4 Flow and Design Cost

Typically, there are two types of costs in network design problems. The flow variable

cost is the per unit cost of flow for each commodity on each link. This cost depends on

the type of commodity and the link. The design cost is the cost of installing or adding

facilities to a link. When the problem is only to decide opening and closing the links

(not installing a number of facilities on the links), then the cost is called fixed cost or

fixed charge.

2.1.5 Bifurcated or Non-Bifurcated Flow

Each commodity’s flow can be either bifurcated or non-bifurcated. The former

means that each commodity’s flow can be split and routed on multiple paths, i.e., flow-

splitting or bifurcated routing is allowed, while the latter means that the flow of each

commodity has to be routed through a single path from its origin to its destination.

2.1.6 Side Constraints: Topological and Budget Constraints

There are several side constraints that can be added to a network design problem

among which topological and budget constraints are the most important ones. Topolog-

ical restrictions are imposed upon the configuration of the network. The examples are:

1) forcing the final design to be a spanning tree, and 2) limiting the resources shared by

several links; see [23] for more details. There are several types of budget constraints,

which restrict the design or routing costs to a limited budget. The examples are: 1)

limiting the maximum cost of building a network to a total budget, and 2) forcing the

maximum cost of routing each commodity to a limited available budget.
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2.1.7 Time-Dependency

Sometimes the form of the network, the resource availability, and the flow of the

commodities are time-dependent resulting in time-dependent network design. One way

to model a given time-dependent network design problem is to attach the time dimension

to the network by building a time-space network in which the physical nodes (terminals

or stations in transportation planning, for example) are duplicated on the time horizon

to represent the time dependency. A node in such a network represents a terminal at a

specific time, and each link represents a transfer from a terminal at a specific time to

either the same or a different terminal at another time in the future (see [88] for more

details).

2.1.8 Deterministic or Stochastic

Most network design problems in the literature are deterministic: they assume that

there is perfect knowledge of the data. However, in practice, the data is uncertain. For

instance, the demands and the costs might change in the future depending on different

situations. Stochastic programming is a way to deal with uncertainty when probabil-

ity distributions are known. For example, when demands are uncertain, a two-stage

stochastic programming model can be considered, where the first stage focuses on the

link selection decisions, while the second stage focuses on the routing decisions, which

are directly influenced by the uncertain demands. Several scenarios can be generated to

represent the uncertainty of the second stage, and the model seeks to minimize the cost

of the design at the first stage plus the expected routing cost over all scenarios at the

second stage (see [30] for more details).

2.1.9 Single-Layer or Multilayer

As mentioned before, the single-layer network design problem is to find the min-

imum cost design and routing on a given potential network such that the demands of

commodities are satisfied. In multilayer network design, there are several networks,

each at a given layer, where any link in that layer corresponds to a chain of links (a path
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or a cycle) of another layer. To open (or design) a link in a given layer, the correspond-

ing path or cycle in the other layer has to be opened. The flows in a layer might also be

related to the flows of another layer.

2.2 An Overview of Lagrangian relaxation for Mixed-Integer Programming

Consider the following general Mixed-Integer Programming (MIP) prolem:

(PMIP) ZMIP = min cx (2.1)

A1x≤ b1 (2.2)

A2x≤ b2 (2.3)

x≥ 0 and integer (2.4)

where A1 and A2 are, respectively, m1× n and m2× n matrices, and b1 and b2 are, re-

spectively, vectors of dimension m1 and m2. Then, the following Lagrangian relaxation

of PMIP is obtained by relaxing constraints (2.2) and by letting α ≥ 0,α ∈ Rn, be the

corresponding Lagrange multipliers:

(PLR (α)) ZLR (α) = mincx+α(A1x−b1) (2.5)

s.t. (2.3) ,(2.4)

Given a particular vector of multipliers α , PLR (α) is the Lagrangian subproblem.

The Lagrangian dual, ZLD = maxα ZLR(α), should then be solved to find the best possi-

ble lower bound. Note that ZLD ≥ ZLP where ZLP is the LP relaxation bound obtained

by dropping integrality constraints. However, if the Lagrangian subproblem has the in-

tegrality property [46], i.e., if its LP relaxation always has an integral optimal solution,

then the Lagrangian dual provides the same optimal value as that of the LP relaxation

lower bound (ZLD = ZLP).

The Lagrangian function ZLR(α) is concave, but unfortunately non-differentiable.

Lagrangian-Based Methods for Single and Multi-Layer Multicommodity Capacitated Network Design

CIRRELT-2019-07



11

However, it is easy to compute a subgradient direction for any choice of the Lagrange

multipliers. There are several methods to solve the Lagrangian dual problem among

which the subgradient and bundle methods are the most popular and efficient ones. We

describe these methods in the following subsections.

2.2.1 Subgradient Method

A subgradient method includes moving from a current point αi to a new point αi+1

using a step size si and a direction di in the following simple formula:

αi+1 = αi + sidi (2.6)

In a simple subgradient method, di is considered to be equal to the current subgradient

gi computed as the violation of the relaxed constraints (A1x−b1) when the variables (x)

are fixed to the values found by solving the Lagrangian subproblem in the current point

αi. A simple approach to compute the step size is si = µi (Ze
LD−Z (αi))/gidi where Ze

LD

and µi are an estimation for the value of ZLD and a scaling parameter, respectively. For

the details on the different strategies to compute the step size and the scaling parameter,

see [41].

2.2.2 Bundle Method

The idea of the bundle method is to compute the direction using a bundle B of the

subgradients found so far. The direction di with respect to the current point αi is found

by solving the following quadratic problem:

min
θ

{
1
2

t‖∑
b∈B

gbθb‖2 + ∑
b∈B

Ebθb; s.t. ∑
b∈B

θb = 1,θ ≥ 0

}
(2.7)

where for each bundle member b ∈ B, gb and t > 0 are the corresponding subgradient

vector and the so-called trust region parameter, respectively. Eb = ZLR(αb)+ gb(αi−
αb)−ZLR(αi) is the current linearization error. The ascent direction is then computed

using the convex combination of the subgradients defined by θ . Valuable information
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can be extracted from the solution θ to produce integer feasible solutions. The quadratic

problem in bundle methods is the Augmented Lagrangian of the standard Dantzig-Wolfe

(DW) approach, with a linear Lagrangian term related to the current point (stability

center) and a quadratic term related to the stability parameter (t > 0). Let εLin be the

relative precision required, then a general stopping condition is when the bundle finds

an epsilon-subgradient g such that t∗||g|| ≤ εLin|Ze
LD|, where t∗ is a parameter which is

an estimate of the longest step that can be performed and ||g|| is a norm-like function.

Different estimates can be used for Ze
LD, although using the best lower bound found so

far is pretty common. A detailed explanation of the bundle method can be found in [39]

and [26].

2.3 Multicommodity Capacitated Fixed-Charge Network Design Problem: For-

mulations and Solution Methods

In this thesis, we focus on the deterministic MCFND with bifurcated flows and di-

rected links. The problem is assumed to have no side constraint. We also consider a

multilayer version of the problem. In the following subsections, we state the MCFND

and present its arc-based and path-based formulations.

2.3.1 Problem Statement

In the MCFND, there is a directed network with a set of nodes and a set of links.

Several commodities have to be transferred between different pairs of nodes. Each link

is characterized by 1) a fixed cost that has to be paid for using the link; 2) per unit

flow variable costs incurred when routing flow of the commodities on the link; and 3) a

capacity that limits the amount of flow of all commodities on the link. A network should

be designed by selecting or opening links to route the commodities, while considering

the capacities. The obtained network has to be the minimum cost network in terms of

fixed and variable costs.

In a transportation network, for example, the nodes, links and commodities, depend-

ing on the specific application, may correspond to cities, roads or tracks, and goods,
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respectively. In a telecommunications network, these elements might correspond to, for

example, switch centers, transmission facilities, and data traffic, respectively.

2.3.2 Formulations

The MCFND is normally formulated in an arc-based or a path-based form [23] where

the decision variables are associated with the arcs or the paths of the network, respec-

tively. The following subsections present these formulations.

2.3.2.1 Arc-Based Formulation

The MCFND is defined on a directed graph G = (N,A), where N is the set of nodes

and A is the set of arcs. For each node i ∈ N, we define the sets of forward and backward

neighbours, N+
i and N−i , respectively. Each commodity k ∈ K corresponds to an origin-

destination pair such that dk units of flow must travel between the origin O(k) and the

destination D(k). The objective function to be minimized includes a cost ck
i j ≥ 0 for

routing one unit of commodity k ∈ K through arc (i, j) ∈ A and a fixed cost fi j ≥ 0 for

using arc (i, j) ∈ A, thus providing a capacity ui j > 0 on the arc. A classical model for

the MCFND introduces two sets of variables: xk
i j is the flow of commodity k ∈ K on arc

(i, j) ∈ A, while yi j is 1, if arc (i, j) ∈ A is used, and 0, otherwise. The model is written

as follows:

min ∑
(i, j)∈A

∑
k∈K

ck
i jx

k
i j + ∑

(i, j)∈A
fi jyi j (2.8)

∑
j∈N+

i

xk
i j− ∑

j∈N−i

xk
ji = bk

i ∀i ∈ N,∀k ∈ K (2.9)

∑
k∈K

xk
i j ≤ ui jyi j ∀(i, j) ∈ A (2.10)

xk
i j ≤ sk

i jyi j ∀(i, j) ∈ A,∀k ∈ K (2.11)

xk
i j ≥ 0 ∀(i, j) ∈ A,∀k ∈ K (2.12)

yi j ∈ {0,1} ∀(i, j) ∈ A (2.13)
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The objective function (2.8) is to minimize the total routing and design costs. Con-

straints (2.9) are the usual flow conservation equations ensuring that the demands are

routed from the origins to the destinations, where:

bk
i =


+dk, if i = O(k),

−dk, if i = D(k),

0, otherwise,

∀i ∈ N,∀k ∈ K.

Capacity constraints (2.10) ensure that the sum of the flows on each arc (i, j) ∈ A

does not exceed its capacity ui j. These are also known as linking constraints because

they ensure that no flow is allowed on arc (i, j) ∈ A, unless arc (i, j) is open and its fixed

cost is paid. Constraints (2.11) are strong linking constraints, where sk
i j = min(dk,ui j).

Although constraints (2.11) are redundant (valid) for the MIP model, adding these in-

equalities significantly improve the lower bounds for the linear programming (LP) re-

laxation [42]. Therefore, the LP relaxation with the strong inequalities is called strong

LP relaxation, while the LP relaxation without the strong linking constraints is the weak

LP relaxation. Constraints (2.12) and (2.12) define the domain of the decision variables.

Continuous flow variables mean that the flow of each commodity is bifurcated.

2.3.2.2 Path-Based Formulation

Another formulation of the MCFND is the path-based model. Let Pk be the set of

paths for commodity k∈K, and P=∪k∈KPk. Let δ
pk
i j = 1, if arc (i, j)∈A belongs to path

p ∈ Pk (0, otherwise). We introduce a flow variable hk
p which is the flow of commodity

k ∈ K on path p ∈ Pk. Then, the path-based formulation takes the following form:

min ∑
p∈P

∑
k∈K

sk
phk

p + ∑
(i, j)∈A

fi jyi j (2.14)
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s.t. (2.13) and

∑
p∈Pk

hk
p = dk ∀k ∈ K (2.15)

∑
k∈K

∑
p∈Pk

hk
pδ

pk
i j ≤ ui jyi j ∀(i, j) ∈ A (2.16)

∑
p∈Pk

hk
pδ

pk
i j ≤ sk

i jyi j ∀(i, j) ∈ A,∀k ∈ K (2.17)

hk
p ≥ 0 ∀k ∈ K,∀p ∈ Pk (2.18)

Constraints (2.15) ensure the demands are satisfied. Constraints (2.16) and (2.17) are

the capacity and strong linking constraints, respectively. sk
p = ∑(i, j)∈A ck

i jδ
pk
i j is the flow

cost of commodity k ∈ K on path p ∈ Pk. The arc-based flow variables are related to the

path-based flow variables with the formula xk
i j = ∑p∈Pk hk

pδ
pk
i j ,∀(i, j) ∈ A,∀k ∈ K.

2.3.3 Solution Methods

Cutting-plane algorithms, relaxations, heuristics, meta and matheuristics, and hybrid

solution methods (combining heuristics and exact techniques) are the main solution ap-

proaches for the MCFND. In the following subsections, we review and explain these

solution methods, except the relaxations. We provide a comprehensive review of the

relaxation methods, particularly Lagrangian relaxation methods in Section 2.3.4.

2.3.3.1 Cutting-Plane Methods

Well-known valid inequalities for the MCFND are: the strong linking constraints

(2.11), cutset inequalities, cover inequalities, minimum cardinality inequalities, flow

cover inequalities, and flow pack inequalities [14]. For each subset of nodes S ⊂ N,

a cutset (S, S̄) is a subset of arcs with tail in S and head in S̄ = N \S. The cutset inequal-

ities then state that the capacity of a cutset must be sufficient to carry the demands of the

commodities originating from the partition to its complementary set.

Cover and minimum cardinality inequalities are 0-1 knapsack structured inequalities.

A subset of a cutset (S, S̄) is said to be a cover C if the total capacity of the arcs in

(S, S̄) \C does not cover the demand of the cutset. The cover inequalities then ensures
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that at least one arc from the cover C must be opened in order to meet the demand.

Minimum cardinality inequalities derived by sorting the capacities of the arcs in a cutset

in non-increasing order. These inequalities guarantee the least number of arcs in a cutset

that must be used in every solution. To obtain the flow cover and flow pack inequalities,

the flow variables are inserted into cutset inequalities; see [14] for more details.

In LP-relaxation-based methods, such as LP-based branch-and-bound, strong in-

equalities are able to improve the lower bounds significantly [42]. These inequalities,

and the other inequalities mentioned above, can be included a priori to the model. How-

ever, this makes the LP relaxation too large and degenerate [44]. Therefore, an option

is to generate these inequalities in a cutting-plane algorithm where they are added it-

eratively to the model to improve the lower bound. This approach has been applied in

[14].

Chouman et al. [14] applied the strong, cover, minimum cardinality, flow cover, and

flow pack inequalities in a cutting-plane algorithm. In the problem they address, the

flow variable costs are independent of the commodities. Therefore, the commodities

with the same origin can be aggregated into a single commodity. Without commodity-

dependent costs, this transformation leads to the same optimal solution as the original

commodity representation with one origin and one destination per commodity. They

use 196 benchmark instances with up to 100 nodes, 700 arcs, and 400 commodities to

test the algorithm. The results show that the strong linking inequalities are effective for

the disaggregated representation of the commodities, while the other types of cuts are

effective for the instances with many nodes and few commodities. Adding the cover

inequalities along with the strong linking inequalities improve the lower bound, but for

the instances with a large number of commodities (hundreds of commodities) the im-

provement is small and such instances are still very difficult to solve. To improve this

approach and to solve larger instances, Gendron and Larose [43] added a column gen-

eration approach into a branch-and-cut procedure to obtain a branch-and-price-and-cut

procedure. In this procedure, at each node of the branch-and-bound tree, the LP relax-

ation is solved by adding in a dynamic way not only the strong linking inequalities (row

generation), but also the flow variables (column generation). The proposed method was
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tested on the same set of 196 benchmark instances with up to 100 nodes, 700 arcs, and

400 commodities. This procedure can solve larger instances in terms of the number of

commodities more efficiently than the cutting-plane method without column generation.

Cutting-plane algorithms based on the Benders decomposition method [9], which

generate Benders cuts at each iteration, are presented in [19]. In addition, Costa et al.

[20] compared the Benders, cutset, and metric inequalities for the network design prob-

lem. The metric inequalities define every possible capacity vector for which there is a

feasible multicommodity flow by projecting out the flow variables from the formulation.

They performed computational tests on a set of benchmark instances that contains up

to 100 nodes, 700 links, and 400 commodities. The computational results show that

the time for the Benders decomposition algorithm to reach a first feasible solution is

improved by strengthening the Benders feasibility cuts to metric inequalities.

2.3.3.2 Heuristics

Network design problems are NP-hard, therefore solving them to optimality with

an exact solution method is difficult for large-scale instances. A heuristic is a solution

method that can obtain good or near-optimal solutions in a reasonable time. Unlike an

exact solution method, a heuristic does not guarantee the optimality, but it is generally

more time efficient than an exact method.

Kim and Pardalos [56] proposed a slope scaling algorithm to solve a fixed-charge

transportation problem. Crainic et al. [27] adapted the approach to the MCFND, and im-

prove its performance by adding a long-term memory. The information collected during

the slope scaling procedure is used to perform intensification/diversification phases, per-

turb the linear approximation, and start a new procedure. A capacity scaling approach

has been used in Katayama et al. [55]. Like slope scaling, capacity scaling is an iterative

solution method, but it depends on changing the arc capacities using the flow volumes

on the arcs.

A tabu search [49] solution method was proposed in Crainic et al. [25]. Tabu search

is a metaheuristic solution method, which iteratively improves the current solution by

moving to a neighborhood solution. It prevents revisiting previously searched solutions
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by putting the visited solutions’ attributes into a tabu list. The solutions containing these

attributes can not be visited for a specific number of iterations. It also moves to a worse

solution if no better solution is found. The neighborhood structure proposed in Crainic

et al. [25] is based on simplex pivots. The proposed solution method works well for

the large-scale instances. Ghamlouche et al. [47] proposed a cycle-based tabu search.

The idea is based on searching the solution space by rerouting commodities around a

cycle. The algorithm defines a neighborhood by introducing a cycle, and then reroute

the commodities around the cycle, which opens and closes several arcs. The results show

the powerful performance of the cycle-based neighborhood. This solution approach was

then strengthened by Ghamlouche et al. [48] in a path relinking procedure. The feasible

solutions from the tabu search procedure produce a reference set. This reference set is

then used to produce a new solution by linking to a reference solution. The experiments

show better performance of this solution method in comparison with the tabu search

procedure. Kim et al. [57] introduced short-term memories to the algorithm of Crainic

et al. [27] and integrated the search into a tabu search procedure.

Recently, an evolutionary algorithm has been applied to the MCFND in Paraskevopou-

los et al. [77]. Evolutionary algorithms are a class of population-based metaheuristics

where the algorithm tries to improve a population of solutions. The proposed algorithm

evolves a population of solutions in which an iterated local search is interlinked as a

post-improvement method. Besides, a new cycle-based neighborhood structure is pro-

posed which can partially reroute multiple commodities. Computational results on a set

of benchmark instances show that the proposed evolutionary algorithm can reach high-

quality solutions in reasonable computational times.

2.3.3.3 Matheuristics

Matheuristics combine exact mathematical programming solution methods and heuris-

tics to take advantage of both approaches. In Hewitt et al. [52], an innovative solution

method is proposed for the bifurcated and non-bifurcated MCFND based on the inte-

gration of the arc-based and path-based formulations. It finds feasible solutions using a

local search in the arc-based formulation and applies an LP relaxation in the path-based
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formulation to find lower bounds. The information that is obtained during the solution of

the path-based formulation is used in the arc-based formulation to find a better feasible

solution. The proposed algorithm is compared with CPLEX and with the cycle-based

tabu search proposed in Ghamlouche et al. [47]. The authors use instances with up to

500 nodes, 3,000 arcs, and 200 commodities. In comparison with CPLEX, the proposed

solution approach is effective. For nearly all instances in their test set, the solution is bet-

ter than the solution of the cycle-based tabu search algorithm, and this solution is found

much faster. Rodríguez-Martín and José Salazar-González [80] applied local branching

cuts to partition the solution, and used MIP solvers to solve each obtained local domain.

This idea has also been applied by Fischetti et al. [37] to solve the multi-level network

design problem.

Chouman and Crainic [13] proposed a hybrid approach based on a metaheuristic

(tabu search) and a mathematical programming method. The mathematical program-

ming algorithm works on a restricted formulation obtained through a partial variable

fixing. The cycle-based tabu search tries to improve the obtained feasible solution by

exploring the design variables neighborhood. The mathematical programming algorithm

finds feasible solutions, while the tabu search improves these solutions by exploring a

local area.

2.3.4 Lagrangian-Based Algorithms

In this section, we first explain the usual Lagrangian relaxations of the MCFND, and

then we review the Lagrangian-based solution methods proposed for the MCFND. The

existing Lagrangian methods can be categorized into: 1) Lagrangian-based heuristics,

and 2) Lagrangian-based branch-and-bound methods. We explain these categories in the

following subsections.

2.3.4.1 Lagrangian Relaxations for MCFND

The usual Lagrangian relaxations for the formulation are the so-called knapsack and

flow relaxations, which are obtained, respectively, by relaxing flow conservation equa-
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tions (2.9) and capacity constraints (2.10) as well as strong linking constraints (2.11).

The first one allows solving the Lagrangian subproblem as a collection of continuous

knapsack subproblems, one for each arc; while for the second one, the resulting La-

grangian subproblem decomposes into a collection of shortest path subproblems, one

for each commodity. Therefore, the knapsack and flow relaxations are also known as

commodity-based and arc-based relaxations, respectively.

2.3.4.2 Lagrangian-Based Heuristics

Gendron and Crainic [42] proposed and studied the classical Lagrangian relaxations

including the flow and knapsack relaxations. They show that both Lagrangian relaxations

yield the same theoretical lower bound. The LP relaxation also generates the same bound

because the Lagrangian subproblems of both Lagrangian relaxations have the integrality

property. The authors concluded that although the knapsack relaxation has nice practical

and theoretical properties, more sophisticated procedures than the classical subgradi-

ent method need to be developed to find better bounds. The flow relaxation, however,

obtains the best performances with respect to the quality of the lower bounds. They

also proposed a Lagrangian-based primal heuristic to assess the quality of the generated

bounds. At each iteration of the subgradient procedure, a subset of arcs is obtained by

applying specific rules on the solution of the Lagrangian subproblem. A restricted flow

problem is then solved where only the subset of arcs exists in order to find upper bounds.

The best obtained upper bound is then used to guide the subgradient procedure.

Crainic et al. [27] presented a Lagrangian-based heuristic using a slope scaling ap-

proach that iteratively solves a linear approximation of the original formulation. In the

proposed heuristic, the initial costs are set to heuristic values. When the slope scaling

stalls, a perturbation method adjusts the costs to trigger another slope scaling procedure.

Once the number of performed slope scaling procedures reaches a predefined maximum

number, a bundle-based process is launched to find a lower bound and new Lagrange

multipliers. The Lagrange multipliers are then used to reinitialize the linearized costs

and start another slope scaling procedure followed by a predefined number of perturba-

tions.
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Crainic et al. [26] compared bundle and subgradient methods applied to optimize the

Lagrangian dual of the two classical Lagrangian relaxations. The authors conclude that

although bundle methods are more difficult to implement, they outperform subgradient

approaches as they converge in much fewer iterations and are more robust relative to the

parameter values, problem specifications, and different relaxation types. In comparison

with the standard simplex approach, also, the proposed bundle method can find better

lower bounds in a fraction of the time the simplex method needs. Further improvements

on bundle methods with an application to the MCFND problem can be found in [40].

2.3.4.3 Lagrangian-Based Branch-and-Bound Methods

Holmberg and Yuan [53] proposed a Lagrangian-based branch-and-bound approach

using the knapsack relaxation. They choose a subgradient method to solve the La-

grangian dual where, similar to [42], a restricted multicommodity flow problem is solved

in the primal heuristic. The subset of arcs in the restricted flow problem is determined

by either the branching information or the design solution of the Lagrangian subprob-

lem. The best obtained upper bounds are used not only to guide the subgradient method,

but also to cut branches in the branch-and-bound tree. To test the proposed solution

method, they used 65 instances with up to 150 nodes, 1000 arcs, and 282 commodities.

The results are compared with CPLEX. They show that the proposed solution methods

can solve 9 instances to optimality and can find feasible solutions for all other instances,

while CPLEX can solve 8 instances to optimality, is not able to find even a feasible

solution for 13 instances, and cannot initialize the solution process for 9 instances.

Sellmann et al. [82] proposed a Lagrangian-based branch-and-cut approach using

so-called minimum cardinality cuts and a number of variable fixing strategies. The two

classical Lagrangian relaxations, flow and knapsack, are tested and compared. The re-

sults show that the knapsack relaxation is more effective with respect to the convergence

of the subgradient algorithm. Although they used a simple subgradient method for the

Lagrangian dual optimization, the results of the proposed exact branch-and-bound are

competitive and encouraging in comparison with a state-of-the-art MIP solver. They

also proposed a Lagrangian heuristic with different variable fixing approaches. The re-
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sults of the proposed heuristic approach also outperform the other proposed heuristics in

the literature. They used 48 benchmark instances with up to 24 nodes, 440 arcs, and 160

commodities. The results show that the first relaxation is preferable because of its per-

formance when embedded into a subgradient method. The results also show that using

cardinality cuts improves the total computational time.

Kliewer and Timajev [60] proposed a Lagrangian-based branch-and-cut algorithm

that uses cover inequalities and local cuts. Local cuts are inspired from the classical

reduced cost variable fixing procedure in a branch-and-bound tree. They show how

to add the inequalities to the Lagrangian subproblem without destroying their known

structure, knapsack or flow. The results show that the proposed algorithm outperforms

many other methodologies in the literature. To test the proposed algorithm, different

benchmark data instances with up to 30 nodes, 700 arcs, and 400 commodities are used.

The results show that the proposed solution method outperforms CPLEX. The results

also show that adding cuts can further improve the performance of the proposed solution

method.

2.4 Discussion and Summary

In this thesis, among the variants of the network design problem, we focus on the

two following important problems: 1) the multicommodity capacitated fixed-charge net-

work design problem, MCFND, with interesting applications in transportation, telecom-

munications, logistics and production planning [64, 70], and 2) the multilayer network

design problem, MLND, that recently showed interesting applications in the fields of

transportation [17, 31, 88] and telecommunications [33, 61].

There are several solution methods that can be applied to these problems. Heuristics

can obtain near-optimal solutions, especially for large instances, but the main drawback

is how to assess the quality of obtained solutions. The lower bounds obtained by the

relaxations and valid inequalities can help to determine the quality of the solutions ob-

tained by heuristics.

Lagrangian-based algorithms are one of the most effective solution methods to solve
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network design problems, in particular the MCFND (see [53] and [27] for example).

The heuristic side of the algorithms produces the upper bound, while the relaxation side

provides the lower bound to assess the quality of the solutions. The usual Lagrangian

relaxations for the MCFND are the so-called flow and knapsack relaxations, which are

obtained, respectively, by relaxing capacity constraints and flow conservation equations.

For the first one, the commodity-based relaxation, the resulting Lagrangian subproblem

decomposes into a collection of flow subproblems, one for each commodity; while the

second one, the arc-based relaxation, allows solving the Lagrangian subproblem as a col-

lection of continuous knapsack subproblems, one for each arc. The nodes of a network

are the other entities that can be considered as decomposition components. Therefore,

the first goal of this thesis is to present new relaxations decomposing the Lagrangian

subproblem by node and to propose a new Lagrangian-based matheuristic to solve the

problem.

There are many surveys on the MCFND in the literature [23, 64, 71]. In this chapter,

we also reviewed the formulations and the solution methods proposed in the literature for

the MCFND. For multilayer networks, however, to the best of our knowledge, the only

survey is Kivelä et al. [59], which does not cover the multilayer network design problem

and its applications, specifically in transportation. Therefore, the second objective of

this thesis is to fill this gap by 1) proposing a new classification of multilayer network

design problems, as well as a general formulation to facilitate the exposition of multi-

layer network design problems; and 2) synthesizing its applications in transportation and

telecommunications, as well as the methods used to solve these problems.

Inspired by the existing effective Lagrangian-based heuristics for the single-layer

MCFND, the third objective of the thesis is to propose a Lagrangian-based matheuris-

tics for the MSMCFND. The challenge in multilayer network design problems, is how

to handle the significant additional complexity incurred by the coupling constraints be-

tween the layers which complicate: 1) the task of developing Lagrangian relaxations that

keep a balance between the quality of the lower bound and the computational efficiency

of solving the Lagrangian subproblem; and 2) the derivation of effective feasible solu-

tions. We propose a Lagrangian relaxation approach method, which not only provides
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the lower bounds, but also guides a heuristic search to find the high quality upper bounds.
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CHAPTER 3

NODE-BASED LAGRANGIAN RELAXATIONS FOR MULTICOMMODITY

CAPACITATED FIXED-CHARGE NETWORK DESIGN

The usual Lagrangian relaxations for multicommodity capacitated fixed-charge net-

work design are the so-called flow (or commodity-based) and knapsack (or arc-based)

relaxations, where the resulting Lagrangian subproblems decompose by commodity and

by arc, respectively. We present new node-based Lagrangian relaxations, where the re-

sulting Lagrangian subproblem decomposes by node. We show that the Lagrangian dual

bound improves upon the so-called strong linear programming bound, known to be equal

to the Lagrangian dual bounds of the flow and knapsack relaxations. We also propose a

Lagrangian-based matheuristic algorithm to obtain upper bounds. The results show that

the proposed algorithm is competitive with the state-of-the-art heuristics in the literature

on a large set of benchmark instances.

3.1 Introduction

In the multicommodity capacitated fixed-charge network design (MCFND) problem,

several commodities such as goods, data or people, have to be routed between different

origin-destination pairs of a given potential network. A predefined maximum flow (ca-

pacity) can be routed on each arc of the network. A network has to be designed by

selecting appropriate links to route the commodities. A fixed design cost has to be paid

to open an arc. In addition, a variable flow cost is imposed to route each unit of commod-

ity demand on each arc. The problem is to find the minimum cost design and routing

such that the demands are satisfied and the capacities are respected.

The problem is typically formulated as a Mixed-Integer Programming (MIP) model

that includes two main sets of constraints: 1) flow conservation equations ensuring that

the demands of the commodities are satisfied, and 2) capacity constraints ensuring that

the flow on each arc does not exceed its capacity. The usual Lagrangian relaxations
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for this formulation are the so-called flow (also known as shortest path) and knapsack

relaxations, which are obtained, respectively, by relaxing capacity constraints and flow

conservation equations. For the first one, the resulting Lagrangian subproblem decom-

poses into a collection of shortest path subproblems, one for each commodity; while

the second one allows solving the Lagrangian subproblem as a collection of continuous

knapsack subproblems, one for each arc. Therefore, the flow and knapsack relaxations

are also known as commodity-based and arc-based relaxations, respectively.

The contribution of this paper is twofold. First, we present new node-based La-

grangian relaxations where the Lagrangian subproblem decomposes by node. We show

that the Lagrangian dual bound improves upon the so-called strong linear programming

(LP) bound, known to be equal to the Lagrangian dual bounds of the flow and knapsack

relaxations. We evaluate the proposed relaxations on a set of benchmark instances. We

compare the obtained bounds with the strong LP relaxation bounds. The average and

maximum improvement of the best proposed node-based relaxation over the strong LP

lower bounds are 1.7% and 20.5%, respectively. Second, inspired and motivated by the

success of Lagrangian-based matheuristic approaches for the MCFND (see [53], [82],

[27], and [60]), we present an effective algorithm based on the proposed node-based La-

grangian relaxations to solve the problem. We observe that the algorithm is competitive

with the state-of-the-art heuristics in the literature.

The paper is organized as follows. Section 3.2 provides a review of the recent litera-

ture on the MCFND. Section 3.3 presents the formulation of the MCFND. In Section 3.4,

we describe the proposed Lagrangian relaxations. Section 3.5 provides an overview

about the subgradient and bundle methods which we use as non-differentiable optimiza-

tion (NDO) solvers. In Section 5.3.2, we present a primal heuristic to be used in con-

junction with the NDO solvers. Section 3.7 presents the proposed algorithm combining

the NDO solvers and the primal heuristic. In Section 3.8, we present the experimental re-

sults and the analysis of the relaxations and the algorithm. In Section 3.9, we summarize

this work, and we propose future research directions.
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3.2 Literature Review

A number of efficient exact and heuristic solution methods have been proposed in the

literature, mainly based on a combination of the following techniques: 1) mathematical

programming, including Lagrangian relaxation, column generation, Benders decompo-

sition [9], local branching [36] and Iterative Linear Programming, ILP, [84], 2) meta-

heuristics including tabu search [49], simulated annealing [58], evolutionary algorithms,

path relinking and scatter search [50], and 3) heuristics including capacity scaling [55]

and slope scaling [56]. In this section, we review the proposed solution methodologies

in the literature with a focus on Lagrangian-based algorithms.

Gendron and Crainic [42] studied the classical flow and knapsack relaxations. The

authors conclude that although the knapsack relaxation has nice practical and theoret-

ical properties, more sophisticated procedures than the traditional subgradient method

need to be developed to find better bounds. The flow relaxation, however, obtains the

best performances with respect to the quality of the lower bounds. They also proposed a

Lagrangian-based primal heuristic to find upper bounds. At each iteration of the subgra-

dient procedure, a subset of arcs is obtained by applying specific rules on the solution

of the Lagrangian subproblem. A restricted flow problem is then solved where only the

subset of arcs exists. The best obtained upper bound is then used to guide the subgradient

procedure.

Holmberg and Yuan [53] proposed a Lagrangian-based branch-and-bound algorithm

for the MCFND problem using the knapsack relaxation. The scheme can be either an

exact method or a heuristic when performed for a limited time. The authors chose a

subgradient method to solve the Lagrangian dual where, similar to Gendron and Crainic

[42], a restricted multicommodity flow problem is solved in the primal heuristic. The

subset of arcs in the restricted flow problem is determined by either the branching infor-

mation or the design solution of the Lagrangian subproblem. The best obtained upper

bounds are used not only to guide the subgradient, but also to cut the branches of the

branch-and-bound tree.
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Crainic et al. [26] compared bundle and subgradient methods to optimize the La-

grangian dual of the two classical Lagrangian relaxations. The authors conclude that

although bundle methods are more difficult to implement, they outperform subgradient

approaches, as they converge in much fewer iterations and are more robust relative to

the parameter values, problem specifications, and different relaxation types. In compar-

ison with the standard simplex approach, also, the proposed bundle can find better lower

bounds in a fraction of the time the simplex method needs. Further improvements on

bundle method with an application to the MCFND problem can be found in Frangioni

and Gorgone [40].

Sellmann et al. [82] proposed a Lagrangian-based branch-and-bound algorithm for

the MCFND problem. The two traditional Lagrangian relaxations, shortest path and

knapsack, are tested and compared. The results show that the knapsack relaxation is

more effective with respect to the convergence of the subgradient algorithm. Although

they used a simple subgradient method for the Lagrangian dual optimization, the results

of the proposed exact branch-and-bound are competitive and encouraging in comparison

with a state-of-the-art MIP solver. They also proposed a Lagrangian heuristic with dif-

ferent variable fixing techniques. The results of the proposed heuristic also outperformed

the other heuristics reported in the literature.

Crainic et al. [27] presented a Lagrangian-based heuristic using a slope scaling

scheme. The idea of slope scaling is to iteratively solve a linear multicommodity flow

formulation, and to use the flow distribution to adjust the linear approximation at the next

iteration. When the slope scaling method stalls, a perturbation move changes the initial

linear approximation to start a new slope scaling procedure; for more details on slope

scaling, see [27] and [56]. Once the number of performed slope scaling procedures

reaches a predefined maximum number, a bundle-based process is launched to find a

lower bound and new Lagrange multipliers. The Lagrange multipliers are then used to

reinitialize the linearized costs and start another slope scaling procedure followed by a

predefined number of perturbations.

Like Holmberg and Yuan [53] and Sellmann et al. [82], Kliewer and Timajev [60]

proposed a Lagrangian-based branch-and-bound algorithm with additional valid inequal-

Lagrangian-Based Methods for Single and Multi-Layer Multicommodity Capacitated Network Design

CIRRELT-2019-07



29

ities. The main contribution is how to apply the inequalities in the Lagrangian relaxation

without destroying the known structure (knapsack or flow) of the subproblems. The re-

sults show that their proposed algorithm outperforms many other methodologies in the

literature.

Beside the Lagrangian-based solution methods, other heuristic and exact methodolo-

gies are proposed in the literature. The heuristics include tabu search [24, 25, 28, 47],

path relinking [48], scatter search [2, 78], capacity scaling [54, 55], simulated anealing

[86], local branching [80], ILP [45] and a problem specific matheuristic proposed by

Hewitt et al. [52]. The exact solution methods include Benders decomposition [20, 22],

branch-and-cut [14], and branch-and-price-and-cut [43].

In summary, the Lagrangian relaxations proposed so far in the literature for the

MCFND, to the best of our knowledge, are the traditional arc-based (knapsack) and

commodity-based (flow) relaxations. The proposed Lagrangian heuristics, consequently,

are also based on these relaxations. Therefore, the goal of this paper is to come up with

new node-based Lagrangian relaxations and heuristics to find high quality lower and

upper bounds.

3.3 Multicommodity Capacitated Fixed-charge Network Design Formulation

The MCFND is defined on a directed graph G = (N,A), where N is the set of nodes

and A is the set of arcs. For each node i ∈ N, we define the sets of forward and backward

neighbours, N+
i and N−i , respectively. Each commodity k ∈ K corresponds to an origin-

destination pair such that dk units of flow must travel between the origin O(k) and the

destination D(k). The objective function to be minimized includes a cost ck
i j ≥ 0 for

routing one unit of commodity k ∈ K through arc (i, j) ∈ A and a fixed cost fi j ≥ 0 for

using arc (i, j) ∈ A, thus providing a capacity ui j > 0 on the arc. A classical model for

the MCFND introduces two sets of variables: xk
i j is the flow of commodity k ∈ K on arc

(i, j) ∈ A, while yi j is 1, if arc (i, j) ∈ A is used, and 0, otherwise. The model is written

as follows:
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min ∑
(i, j)∈A

∑
k∈K

ck
i jx

k
i j + ∑

(i, j)∈A
fi jyi j (3.1)

∑
j∈N+

i

xk
i j− ∑

j∈N−i

xk
ji = bk

i ∀i ∈ N,∀k ∈ K (3.2)

∑
k∈K

xk
i j ≤ ui jyi j ∀(i, j) ∈ A (3.3)

xk
i j ≤ sk

i jyi j ∀(i, j) ∈ A,∀k ∈ K (3.4)

xk
i j ≥ 0 ∀(i, j) ∈ A,∀k ∈ K (3.5)

yi j ∈ {0,1} ∀(i, j) ∈ A (3.6)

The objective function (3.1) is to minimize total routing and design costs. Constraints

(3.2) are the usual flow conservation equations ensuring that the demands are routed from

the origins to the destinations, where:

bk
i =


+dk, if i = O(k)

−dk, if i = D(k)

0, otherwise

∀i ∈ N,∀k ∈ K

Capacity constraints (3.3) ensure that the sum of flows on each arc (i, j) ∈ A does

not exceed its capacity ui j. These are also known as linking constraints because they

ensure that no flow is allowed on arc (i, j) ∈ A, unless it is open and its fixed cost is

paid. Constraints (3.4) are strong linking constraints, where sk
i j = min(dk,ui j). Al-

though constraints (3.4) are redundant (valid) for the MIP model, adding these inequal-

ities significantly improves the lower bounds for the LP relaxation [42]. Therefore, the

LP relaxation with the strong inequalities is called strong LP relaxation, while the LP

relaxation without the strong linking constraints is said to be weak LP relaxation.

The so-called knapsack and flow relaxations are obtained by relaxing constraints

(3.2) and (3.3)-(3.4), respectively. The Lagrangian subproblem of the knapsack relax-

ation decomposes by arc, i.e., a knapsack problem P
(i, j)
Kn for each arc (i, j) ∈ A. The
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subproblem decomposes by commodity in the flow relaxation, i.e., a shortest path prob-

lem Pk
Sh for each commodity k ∈ K.

The model has to be slightly reformulated to come up with the new node-based re-

laxations. We introduce the following notation for each node i ∈ N:

— KO
i = {k ∈ K | i = O(k)}, the commodities for which i is the origin;

— KD
i = {k ∈ K | i = D(k)}, the commodities for which i is the destination;

— KT
i = {k ∈ K | i 6= O(k),D(k)}, the commodities for which i is a transshipment

node.

We also consider the following basic properties: 1) for each commodity k ∈ K, it is

well-known that the flow conservation equation at i = D(k) (or at i = O(k)) is redundant,

and 2) because the costs are nonnegative, for each arc (i, j) ∈ A, xk
i j = 0 if k ∈ KO

j (or

k ∈ KD
i ). We then rewrite the flow conservation equations (3.2) as follows:

∑
j∈N+

i

xk
i j− ∑

j∈N−i

xk
ji = 0 ∀i ∈ N,∀k ∈ KT

i (3.7)

∑
j∈N+

i

xk
i j = dk ∀i ∈ N,∀k ∈ KO

i (3.8)

xk
i j = 0 ∀(i, j) ∈ A,∀k ∈ KO

j ∪KD
i (3.9)

Note that, since we rewrite the flow conservation constraints (3.2) at i ∈ N,k ∈ KO
i

as constraints (3.8), constraints (3.9) must be added to the model. Otherwise, the model

might be infeasible in some special cases. Suppose that in Figure 3.1, for example, a

unit of demand has to be flown from node 1 to node 4. Then the routing in the cycle

(1,2,3,1) is an optimal solution when we remove constraints (3.9) from the reformu-

lation, while this solution is certainly not feasible for the original problem. Therefore,

constraints (3.9) ensure that no flow comes back to the origin node in the reformulated

flow conservation constraints.
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1 2 4
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(1,1)

(1,1)

(1,1)

(100,100)

(flow cost, fixed cost)

Figure 3.1 – Small network example.

3.4 Node-Based Lagrangian Relaxations

We now present three new node-based decomposition methods obtained by applying

Lagrangian relaxation on three different reformulations. The first reformulation is ob-

tained by replacing (3.2) with (3.7)-(3.9). In addition to this replacement, the two other

reformulations use the Lagrangian decomposition technique [51] by introducing copies

of design and flow variables, respectively denoted zi j, ∀(i, j) ∈ A, and vk
i j, ∀(i, j) ∈ A,

∀k ∈ K, which are defined with the following copy constraints:

zi j− yi j = 0 ∀(i, j) ∈ A (3.10)

vk
i j− xk

i j = 0 ∀(i, j) ∈ A,∀k ∈ K (3.11)

The following redundant constraints are added to the two last reformulations to
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strengthen the Lagrangian subproblems:

∑
j∈N−i

vk
ji = dk ∀i ∈ N,∀k ∈ KD

i (3.12)

vk
ji = 0, ∀( j, i) ∈ A,∀k ∈ KO

i ∪KD
j (3.13)

∑
k∈K

vk
ji ≤ u jiz ji ∀( j, i) ∈ A (3.14)

vk
ji ≤ sk

jiz ji ∀( j, i) ∈ A,∀k ∈ K (3.15)

vk
ji ≥ 0 ∀( j, i) ∈ A,∀k ∈ K (3.16)

z ji ∈ {0,1} ∀( j, i) ∈ A (3.17)

The two last reformulations are based on replacing (3.2) with (3.7)-(3.9) and adding

(3.10)-(3.17) to the formulation. In the third reformulation, the flow conservation equa-

tions (3.7) are also replaced by:

∑
j∈N+

i

xk
i j− ∑

j∈N−i

vk
ji = 0, i ∈ N,k ∈ KT

i . (3.18)

Since we associate no costs with the added variables, for any optimal solution to

the original model, there exists a feasible solution to the reformulation with the same

objective function value, and vice-versa. In the three following subsections, we present

the proposed Lagrangian relaxations where constraints are relaxed in such a way that

subproblems decompose by node.

3.4.1 First Reformulation-Lagrangian Relaxation

Recall that the first formulation consists of constraints (3.3)-(3.9). We relax con-

straints (3.7) in a Lagrangian way by introducing πk
i , ∀i ∈ N,∀k ∈ KT

i , as the Lagrange

multipliers of each of these constraints. The following valid inequalities are also added

to improve the relaxation:

∑
j∈N+

i

xk
i j ≤ gk

i ∀i ∈ N,∀k ∈ KT
i (3.19)
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where gk
i = min{dk,∑ j∈N−i

u ji}, ∀i∈ N,∀k ∈ KT
i . The resulting Lagrangian subproblem

decomposes by node. The subproblem for each node i ∈ N is then:

(P i
L) Zxy

i (π) = min ∑
j∈N+

i

(
∑
k∈K

ck
i j(π)x

k
i j + fi jyi j

)
(3.20)

∑
j∈N+

i

xk
i j = dk ∀k ∈ KO

i (3.21)

∑
j∈N+

i

xk
i j ≤ gk

i ∀k ∈ KT
i (3.22)

xk
i j = 0 ∀ j ∈ N+

i ,∀k ∈ KD
i ∪KO

j (3.23)

∑
k∈K

xk
i j ≤ ui jyi j ∀ j ∈ N+

i (3.24)

xk
i j ≤ sk

i jyi j ∀ j ∈ N+
i ,∀k ∈ K (3.25)

xk
i j ≥ 0 ∀ j ∈ N+

i ,∀k ∈ K (3.26)

yi j ∈ {0,1} ∀ j ∈ N+
i (3.27)

where

ck
i j(π) =



ck
i j +πk

i −πk
j , if k ∈ KT

i ∩KT
j ,

ck
i j +πk

i , if k ∈ KT
i \KT

j ,

ck
i j−πk

j , if k ∈ KT
j \KT

i ,

ck
i j, if k ∈ KO

i ∩KD
j ,

∀ j ∈ N+
i ,∀k ∈ K.

This node-based relaxation is called location relaxation because the resulting sub-

problem for each node i ∈ N is a Capacitated Facility Location Problem (CFLP) P i
L.

As illustrated in Figure 3.2, KO
i ∪KT

i and N+
i are the sets of customers and facilities,

respectively. Constraints (3.21) ensure that for each customer k ∈ KO
i the total supplies

from all facilities in N+
i is equal to the demand of the customer dk. For each customer

k ∈ KT
i , constraints (3.22) ensure the total flow from all the facilities is at most gk

i . Con-

straints (3.22) prevent any flow to KD
i and KO

j customers. Inequalities (3.24) are the
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linking constraints ensuring that there is no flow from a facility if it is close. Strong

inequalities (3.25) have the same interpretation of the strong inequalities of the network

design problem. Constraints (3.26) and (3.27) define the domain of the decision vari-

ables. In summary, the CFLP problem determines: 1) which facility at node j ∈ N+
i to

open, and 2) what portion of each customer k ∈ KO
i ∪KT

i demand is covered by which

opened capacitated facility. A lower bound on the optimal value of the MCFND is then

obtained as follows: Z1(π) = ∑i∈N Zxy
i (π). The best lower bound is obtained by solving

the Lagrangian dual: Z1 = maxπ Z1(π).

Proposition 3.1. Let ZLP be the strong LP relaxation lower bound then Z1 ≥ ZLP.

Proof. Since the CFLP does not have the integrality property, by solving the Lagrangian

dual we obtain a lower bound that improves upon the strong LP relaxation lower bound.

The Dantzig-Wolfe (DW) reformulation (primal form) of the Lagrangian dual is

needed to implement the bundle method. To build this reformulation, let Qi be the in-

dex set of the extreme points of the convex hull of the Lagrangian subproblem feasible

domain for i ∈ N, i.e., (x(q),y(q))q∈Qi, i ∈ N, are these extreme points. Also let θ(q)

be the variable representing the weight associated with the extreme point indexed by

q ∈ Qi, i ∈ N. The master problem of the DW reformulation of the Lagrangian dual is

then written as:

Z2 = min ∑
i∈N

∑
q∈Qi

θ(q)

 ∑
j∈N+

i

∑
k∈K

ck
i jx

k
i j(q)+ ∑

j∈N+
i

fi jyi j(q)

 (3.28)

∑
j∈N+

i

∑
q∈Qi

θ(q)xk
i j(q)− ∑

j∈N−i

∑
q∈Q j

θ(q)xk
ji(q) = 0 ∀i ∈ N,∀k ∈ KT

i (π
k
i ) (3.29)

∑
q∈Qi

θ(q) = 1 ∀i ∈ N (3.30)

θ(q)≥ 0 ∀i ∈ N,q ∈ Qi (3.31)

This is the disaggregated form of the master problem of the DW reformulation. There
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i
Ki

O

j ∈ Ni
+

Ki
T∪

Figure 3.2 – Capacitated facility location subproblem of the location relaxation

is also the aggregated form where the Lagrangian subproblem is considered as a single

model, rather than being decomposed by node. Then Q represents the index set of the

extreme points of the convex hull of the Lagrangian subproblem feasible domain. In the

experimental results, we consider both the disaggregated and the aggregated models.

3.4.2 Second Reformulation-Lagrangian Relaxation

As mentioned before, the second reformulation includes constraints (3.3)-(3.17). In

the second relaxation, the copy constraints (3.10) and (3.11), as well as the flow conser-

vation equations (3.7) are relaxed. In addition to (3.19), the following valid inequalities

are also added to improve the relaxation:

∑
j∈N−i

vk
ji ≤ hk

i , ∀i ∈ N,∀k ∈ KT
i , (3.32)

where hk
i = min{dk,∑ j∈N+

i
ui j}, ∀i ∈ N,∀k ∈ KT

i . The resulting Lagrangian subproblem

decomposes not only by node but further, for each node, into two independent subprob-

lems, one in variables (x,y) only, the other in variables (v,z) only.
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As before, we denote by πk
i , ∀i ∈ N, ∀k∈ KT

i , the Lagrange multipliers associated

with the flow conservation equations (3.7). We also denote by γi j, ∀(i, j) ∈ A, and ωk
i j,

∀(i, j) ∈ A, ∀k ∈ K, the Lagrange multipliers associated with (3.10) and (3.11), respec-

tively.

The first subproblem, in variables (x,y), can be written as follows, for each node

i ∈ N:

(P i
LF) Zxy

i (γ,ω,π) = min ∑
j∈N+

i

(
∑
k∈K

ck
i j(ω,π)xk

i j + fi j(γ)yi j

)
(3.33)

(3.21)− (3.27)

where fi j(γ) = fi j− γi j, ∀ j ∈ N+
i , and

ck
i j(ω,π) =



ck
i j−ωk

i j +πk
i −πk

j , if k ∈ KT
i ∩KT

j ,

ck
i j−ωk

i j +πk
i , if k ∈ KT

i \KT
j ,

ck
i j−ωk

i j−πk
j , if k ∈ KT

j \KT
i ,

ck
i j−ωk

i j, if k ∈ KO
i ∩KD

j ,

∀ j ∈ N+
i ,∀k ∈ K.

The second subproblem, in variables (v,z), can be written as follows, for each node

i ∈ N:

(P i
LB) Zvz

i (γ,ω) = min ∑
j∈N−i

(
∑
k∈K

ck
ji(ω)vk

ji + f ji(γ)z ji

)
(3.34)

∑
j∈N−i

vk
ji = dk ∀k ∈ KD

i (3.35)

∑
j∈N−i

vk
ji ≤ hk

i ∀k ∈ KT
i (3.36)

vk
ji = 0 ∀ j ∈ N−i ,∀k ∈ KO

i ∪KD
j (3.37)
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∑
k∈K

vk
ji ≤ u jiz ji ∀ j ∈ N−i (3.38)

vk
ji ≤ sk

jiz ji ∀ j ∈ N−i ,∀k ∈ K (3.39)

vk
ji ≥ 0 ∀ j ∈ N−i ,∀k ∈ K (3.40)

z ji ∈ {0,1} ∀ j ∈ N−i (3.41)

where f ji(γ) = γ ji, ∀ j ∈ N−i and ck
ji = ωk

ji, ∀ j ∈ N−i , ∀k ∈ K.

The two subproblems of each node i ∈ N are capacitated facility location problems.

In the first (P i
LF ) and second (P i

LB) subproblems, the “customers" correspond, respec-

tively, to the sets KO
i ∪KT

i and KD
i ∪KT

i , while the “facilities" correspond, respectively,

to the sets N+
i (forward neighbours set) and N−i (backward neighbours set). This node-

based relaxation is then called forward-backward location relaxation.

A lower bound on the optimal value of the MCFND is obtained as follows:

Z2(γ,ω,π) = ∑
i∈N

(Zxy
i (γ,ω,π)+Zvz

i (γ,ω)).

To obtain the best possible lower bound, we have to solve the Lagrangian dual: Z2 =

maxγ,ω,π Z2(γ,ω,π). Let Ri be the index set of the extreme points of the convex hull of

the Lagrangian subproblem feasible domain for i ∈ N, i.e., (x(r),y(r),v(r),z(r))r∈Ri, i ∈
N, are these extreme points. Also let θ(r) be the variable representing the weight as-

sociated with extreme point indexed by r ∈ Ri, i ∈ N. The master problem of the DW

reformulation of the Lagrangian dual is then:

Z2 = min ∑
i∈N

∑
r∈Ri

θ(r)

 ∑
j∈N+

i

∑
k∈K

ck
i jx

k
i j(r)+ ∑

j∈N+
i

fi jyi j(r)

 (3.42)

∑
r∈R j

θ(r)zi j(r)− ∑
r∈Ri

θ(r)yi j(r) = 0 ∀(i, j) ∈ A,(γi j) (3.43)

∑
r∈R j

θ(r)vk
i j(r)− ∑

r∈Ri

θ(r)xk
i j(r) = 0 ∀(i, j) ∈ A,∀k ∈ K,(ωk

i j) (3.44)
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∑
j∈N+

i

∑
q∈Ri

θ(r)xk
i j(r)− ∑

j∈N−i

∑
r∈R j

θ(r)xk
ji(r) = 0 ∀i ∈ N,∀k ∈ KT

i ,(π
k
i ) (3.45)

∑
r∈Ri

θ(r) = 1 ∀i ∈ N (3.46)

θ(r)≥ 0 ∀i ∈ N,r ∈ Ri (3.47)

Proposition 3.2. Z2 ≥ Z1 ≥ ZLP.

Proof.

Z2 = max
γ,ω,π

Z2(γ,ω,π) =

max
γ,ω,π

{
∑
i∈N

(
Zxy

i (γ,ω,π)+Zvz
i (γ,ω)

)}
≥

max
γ=0,ω=0,π

{
∑
i∈N

(
Zxy

i (γ,ω,π)+Zvz
i (γ,ω)

)}
=

max
π

{
∑
i∈N

Zxy
i (π)

}
= Z1

Proposition 3.2 states that, in comparison with the location relaxation, the forward-

backward location relaxation produces better lower bounds. However, the number of

subproblems are doubled in the forward-backward relaxation. In addition, the number of

Lagrange multipliers is increased to |A|+ |A||K|+∑i∈N |KT
i |, while it is only ∑i∈N |KT

i |
in the location relaxation.

Aggregation schemes

One drawback of this reformulation-relaxation is the large number of copy con-

straints, in particular with respect to the flow variables, which introduce |A||K| Lagrange

multipliers. One could handle this issue by adding the copy constraints dynamically,

only when they are violated by the current Lagrangian subproblem solution. However, it

is very likely that a large number of copy constraints will be added this way, unless we

add other constraints linking the flow variables to their copies. Another approach is to
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replace the large number of copy constraints by some aggregated form, thus reducing the

number of Lagrange multipliers. This comes at the cost of weakening the lower bound

obtained from the Lagrangian dual. A third approach, which combines the two tech-

niques, is to add aggregated linking constraints to the reformulation, while also adding

the disaggregated copy constraints (3.11) dynamically. The constraints will be added

every f add iterations if the amount of violation is more than a tolerance εadd .

There are many ways to define aggregated linking constraints. We seek aggregation

schemes that reduce the number of Lagrange multipliers significantly, while at the same

time, retaining the quality of the Lagrangian dual lower bound. To this aim, we enforce

the following rule in choosing an appropriate aggregation scheme: At optimality, the

master problem gives two feasible multicommodity flow solutions (possibly the same),

one expressed in terms of the original flow variables, the other in terms of the copy

variables. Moreover, these two multicommodity flow solutions have the same cost. With

this rule in mind, we propose to add the following aggregated linking constraints to the

reformulation:

∑
j∈N+

i

xk
i j− ∑

j∈N+
i

vk
i j = 0 ∀i ∈ N,∀k ∈ KT

i (3.48)

∑
j∈N−i

vk
ji− ∑

j∈N−i

xk
ji = 0 ∀i ∈ N,∀k ∈ KT

i (3.49)

∑
( j,i)∈A

∑
k∈K

ck
jiv

k
ji− ∑

(i, j)∈A
∑
k∈K

ck
i jx

k
i j = 0 (3.50)

These constraints ensure that the original flow variables and their copies both define

feasible multicommodity flow solutions, even if all the disaggregated linking constraints

(3.11) are relaxed. Equation (3.50) ensures that the original flow variables and their

copies both have the same total routing cost. When this constraint is relaxed in a La-

grangian way, the Lagrange multiplier represents the relative weight given to the original

variables and their copies in the objective function.

These constraints are then relaxed in a Lagrangian way, yielding the following sub-

problems for each node i ∈ N, where µk
i , νk

i , i ∈ N, k ∈ KT
i , and δ are the Lagrange
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multipliers associated with constraints (3.48), (3.49) and (3.50), respectively:

(P i
LF,agg) Zxy

i (γ,ω,π,δ ,µ,ν) = min ∑
j∈N+

i

(
∑
k∈K

ck
i j(ω,π,δ ,µ,ν)xk

i j + fi j(γ)yi j

)
(3.51)

subject to (3.21)-(3.27), where

ck
i j(ω,π,δ ,µ,ν)=



(1−δ )ck
i j−ωk

i j +πk
i −πk

j +µk
i −νk

j , if k ∈ KT
i ∩KT

j ,

(1−δ )ck
i j−ωk

i j +πk
i +µk

i , if k ∈ KT
i \KT

j ,

(1−δ )ck
i j−ωk

i j−πk
j −νk

j , if k ∈ KT
j \KT

i ,

(1−δ )ck
i j−ωk

i j, if k ∈ KO
i ∩KD

j ,

∀ j∈N+
i ,∀k∈K,

and

(P i
LB,agg) Zvz

i (γ,ω,δ ,µ,ν) = min ∑
j∈N−i

(
∑
k∈K

ck
ji(ω,δ ,µ,ν)vk

ji + f ji(γ)z ji

)
(3.52)

subject to (3.35)-(3.41), where

ck
ji(ω,δ ,µ,ν) =



δck
ji +ωk

ji−µk
j +νk

i , if k ∈ KT
i ∩KT

j ,

δck
ji +ωk

ji +νk
i , if k ∈ KT

i \KT
j ,

δck
ji +ωk

ji−µk
j , if k ∈ KT

j \KT
i ,

δck
ji +ωk

ji, if k ∈ KD
i ∩KO

j ,

∀ j ∈ N−i ,∀k ∈ K.

A lower bound on the MCFND problem is then:

Z2(γ,ω,π,δ ,µ,ν) = ∑
i∈N

(Zxy
i (γ,ω,π,δ ,µ,ν)+Zvz

i (γ,ω,δ ,µ,ν)).

The best lower bound is obtained by the Lagrangian dual:

Z2
agg = max

γ,ω,π,δ ,µ,ν
Z2(γ,ω,π,δ ,µ,ν).
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The corresponding master problem of the DW reformulation takes the following form:

Z2
agg = min ∑

i∈N
∑

q∈Qi

θ(q)

 ∑
j∈N+

i

∑
k∈K

ck
i jx

k
i j(q)+ ∑

j∈N+
i

fi jyi j(q)

 (3.53)

subject to (3.43)-(3.47), and

∑
j∈N+

i

∑
q∈Qi

θ(q)xk
i j(q)− ∑

j∈N+
i

∑
q∈Q j

θ(q)vk
i j(q) = 0 i ∈ N,k ∈ KT

i (µk
i ) (3.54)

∑
j∈N−i

∑
q∈Qi

θ(q)vk
ji(q)− ∑

j∈N−i

∑
q∈Q j

θ(q)xk
ji(q) = 0 i ∈ N,k ∈ KT

i (νk
i ) (3.55)

∑
q∈Qi

θ(q)

(
∑

( j,i)∈A
∑
k∈K

ck
jiv

k
ji(q)− ∑

(i, j)∈A
∑
k∈K

ck
i jx

k
i j(q)

)
= 0 (δ ) (3.56)

3.4.3 Third Reformulation-Lagrangian Relaxation

Recall that the third reformulation consists of constraints (3.3)-(3.6) and (3.8)-(3.18).

After applying Lagrangian relaxation on constraints (3.10) and (3.11), the Lagrangian

subproblem decomposes by node, using the fact that A can be partitioned into forward

sets, A = ∪i∈NN+
i , or into backward sets, A = ∪i∈NN−i . If we denote by γi j, (i, j) ∈ A,

and ωk
i j, (i, j)∈ A, k ∈K, the Lagrange multipliers associated with constraints (3.10) and

(3.11), respectively, the Lagrangian subproblem for each node i ∈ N can be written as:

(P i
F) Zi(γ,ω)=min ∑

j∈N+
i

(
∑
k∈K

ck
i j(ω)xk

i j + fi j(γ)yi j

)
+ ∑

j∈N−i

(
∑
k∈K

ck
ji(ω)vk

ji + f ji(γ)z ji

)
(3.57)

∑
j∈N+

i

xk
i j− ∑

j∈N−i

vk
ji = 0 ∀k ∈ KT

i (3.58)

∑
j∈N+

i

xk
i j = dk ∀k ∈ KO

i (3.59)

xk
i j = 0 ∀ j ∈ N+

i ,∀k ∈ KD
i ∪KO

j (3.60)
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∑
k∈K

xk
i j ≤ ui jyi j ∀ j ∈ N+

i (3.61)

xk
i j ≤ dkyi j ∀ j ∈ N+

i ,∀k ∈ K (3.62)

xk
i j ≥ 0 ∀ j ∈ N+

i ,∀k ∈ K (3.63)

yi j ∈ {0,1} ∀ j ∈ N+
i (3.64)

∑
j∈N−i

vk
ji = dk ∀k ∈ KD

i (3.65)

vk
ji = 0 ∀ j ∈ N−i ,∀k ∈ KO

i ∪KD
j (3.66)

∑
k∈K

vk
ji ≤ u jiz ji ∀ j ∈ N−i (3.67)

vk
ji ≤ dkz ji ∀ j ∈ N−i ,∀k ∈ K (3.68)

vk
ji ≥ 0 ∀ j ∈ N−i ,∀k ∈ K (3.69)

z ji ∈ {0,1} ∀ j ∈ N−i (3.70)

where fi j(γ) = fi j− γi j, j ∈ N+
i , f ji(γ) = γ ji, j ∈ N−i , ck

i j(ω) = ck
i j−ωk

i j, j ∈ N+
i ,k ∈ K

and ck
ji(ω) = ωk

ji, j ∈ N−i ,k ∈ K. This subproblem is a multicommodity single-node

fixed-charge network flow problem P i
F , not studied before, to the best of our knowledge.

We call this relaxation the single-node flow relaxation.

A lower bound on the optimal value of the MCFND is then obtained as follows:

Z3(γ,ω) = ∑i∈N Zi(γ,ω). The best possible lower bound is obtained by solving the

Lagrangian dual: Z3 = maxγ,ω Z3(γ,ω). Let Pi be the index set of the extreme points of

the convex hull of the Lagrangian subproblem feasible domain for i∈N, i.e., (x(p),y(p),

v(p),z(p))p∈Pi, i∈N, are these extreme points. Also let θ(p) be the variable representing

the weight associated with extreme point indexed by p ∈ Pi, i ∈ N. The master problem

of the DW reformulation is then written as:

Z3 = min ∑
i∈N

∑
p∈Pi

θ(p)

 ∑
j∈N+

i

∑
k∈K

ck
i jx

k
i j(p)+ ∑

j∈N+
i

fi jyi j(p)

 (3.71)
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∑
p∈Pj

θ(p)zi j(p)− ∑
p∈Pi

θ(p)yi j(p) = 0 ∀(i, j) ∈ A (γi j) (3.72)

∑
p∈Pj

θ(p)vk
i j(p)− ∑

p∈Pi

θ(p)xk
i j(p) = 0 ∀(i, j) ∈ A,∀k ∈ K (ωk

i j) (3.73)

∑
p∈Pi

θ(p) = 1 ∀i ∈ N (3.74)

θ(p)≥ 0 ∀i ∈ N,∀p ∈ Pi (3.75)

Proposition 3.3. Z3 ≥ Z2 ≥ Z1 ≥ ZLP.

Proof. We denote by Sx the set of flow vector x that satisfy flow conservation equations

(3.7). For each node i ∈ N, we introduce the sets Svx
i , Sxy

i and Svz
i that correspond, re-

spectively, to the solutions that satisfy constraints (3.58), (3.59)-(3.64) and (3.65)-(3.70).

Using this notation, the convex hull of the Lagrangian subproblem feasible domain for

i ∈ N can be written in a compact way as follows:

Z3 = max
γ,ω

Z3(γ,ω) =

max
γ,ω

{
∑
i∈N

Zi(γ,ω)

}
=

min
{

cx+ f y|y = z,x = v,(x,y,v,z) ∈ ∩i∈Nconv(Svx
i ∩Sxy

i ∩Svz
i )
}
≥

min
{

cx+ f y|y = z,x = v,(x,y,v,z) ∈ ∩i∈N
(
conv(Svx

i )∩ conv(Sxy
i ∩Svz

i )
)}

=

min
{

cx+ f y|y = z,x = v,(x,y,v,z) ∈ ∩i∈N
(
Svx

i ∩ conv(Sxy
i ∩Svz

i )
)}

=

min
{

cx+ f y|y = z,x = v,(x,v) ∈ ∩i∈NSvx
i ,(x,y,v,z) ∈ ∩i∈Nconv(Sxy

i ∩Svz
i )
}
=

min
{

cx+ f y|y = z,x = v,x ∈ Sx,(x,y) ∈ ∩i∈Nconv(Sxy
i ),(v,z) ∈ ∩i∈Nconv(Svz

i )
}
=

max
γ,ω,π

{
∑
i∈N

(
Zxy

i (γ,ω,π)+Zvz
i (γ,ω)

)}
=

max
γ,ω,π

Z2(γ,ω,π) = Z2

Proposition 3.3 states that in comparison with the forward-backward location re-
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laxation, the single-node flow relaxation produces better lower bound. However, the

corresponding subproblem of the single-node flow relaxation is more difficult to solve

as it does not decompose by forward and backward subproblems.

Aggregation schemes

In order to tackle the issue of the large number of Lagrange multipliers involved in

the copy constraints of the flow variables, we proceed as in the forward-backward lo-

cation relaxation approach. These constraints are relaxed and gradually added to the

master problem. The relaxation is also strengthened by the addition of constraints that

satisfy the same rule as above: At optimality, the master problem gives two feasible mul-

ticommodity flow solutions having the same cost, one expressed in terms of the original

flow variables, the other in terms of the copy variables. Therefore, the same constraints,

(3.48)-(3.50), as the forward-backward location relaxation are added.

If we denote by µk
i , νk

i , i ∈ N, k ∈ KT
i , and δ , the Lagrange multipliers associated

with constraints (3.48), (3.49) and (3.50), respectively, the Lagrangian subproblem for

each node i ∈ N can be written as:

(P i
F,agg) Zi(γ,ω,µ,ν ,δ ) = min ∑

j∈N+
i

(
∑
k∈K

ck
i j(ω,µ,ν ,δ )xk

i j + fi j(γ)yi j

)

+ ∑
j∈N−i

(
∑
k∈K

ck
ji(ω,µ,ν ,δ )vk

ji + f ji(γ)z ji

) (3.76)

subject to (3.58)-(3.70) where

ck
i j(ω,µ,ν ,δ ) =



(1−δ )ck
i j−ωk

i j +µk
i −νk

j , if k ∈ KT
i ∩KT

j ,

(1−δ )ck
i j−ωk

i j +µk
i , if k ∈ KT

i \KT
j ,

(1−δ )ck
i j−ωk

i j−νk
j , if k ∈ KT

j \KT
i ,

(1−δ )ck
i j−ωk

i j, if k ∈ KO
i ∩KD

j ,

∀ j ∈ N+
i ,∀k ∈ K,
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ck
ji(ω,µ,ν ,δ ) =



δck
ji +ωk

ji−µk
j +νk

i , if k ∈ KT
i ∩KT

j ,

δck
ji +ωk

ji +νk
i , if k ∈ KT

i \KT
j ,

δck
ji +ωk

ji−µk
j , if k ∈ KT

j \KT
i ,

δck
ji +ωk

ji, if k ∈ KD
i ∩KO

j ,

∀ j ∈ N−i ,∀k ∈ K.

Given a set of multipliers, Z3(γ,ω,µ,ν ,δ ) = ∑i∈N Zi(γ,ω,µ,ν ,δ ) is a lower bound

on the objective value of the MCFND problem. The value of the Lagrangian dual, Z3
agg =

maxγ,ω,µ,ν ,δ Z3(γ,ω,µ,ν ,δ ), then gives the best possible lower bound. Let Pi be the

index set of the extreme points of the convex hull of the Lagrangian subproblem feasible

domain for i ∈ N, i.e., (x(p),y(p),v(p),z(p))p∈Pi, i ∈ N, are these extreme points. Also

let θ(p) be the variable representing the weight associated with extreme point indexed

by p ∈ Pi, i ∈ N. The master of the corresponding DW reformulation problem is then

written as:

Z3
agg = min ∑

i∈N
∑
p∈Pi

θ(p)

 ∑
j∈N+

i

∑
k∈K

ck
i jx

k
i j(p)+ ∑

j∈N+
i

fi jyi j(p)

 (3.77)

subject to (3.72)-(3.75) and

∑
j∈N+

i

∑
p∈Pi

θ(p)xk
i j(p)− ∑

j∈N+
i

∑
p∈Pj

θ(p)vk
i j(p) = 0∀i ∈ N,∀k ∈ KT

i (µk
i ) (3.78)

∑
j∈N−i

∑
p∈Pi

θ(p)vk
ji(p)− ∑

j∈N−i

∑
p∈Pj

θ(p)xk
ji(p) = 0∀i ∈ N,∀k ∈ KT

i (νk
i ) (3.79)

∑
p∈Pi

θ(p)

(
∑

( j,i)∈A
∑
k∈K

ck
jiv

k
ji(p)− ∑

(i, j)∈A
∑
k∈K

ck
i jx

k
i j(p)

)
= 0 (δ ) (3.80)

3.5 Solving Lagrangian Dual

Given a particular Lagrangian relaxation, let α and Z(α) be the corresponding La-

grange multipliers and the objective function of the Lagrangian subproblem, respec-

tively. The Lagrangian dual, Z∗ = maxα Z(α), should then be solved to find the best

possible lower bound. The Lagrangian function Z(α) is concave but unfortunately non-
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differentiable. However, it is easy to compute a subgradient direction for any choice of

the Lagrange multipliers. To solve the Lagrangian dual problems of the proposed relax-

ations, we consider two different non-differentiable optimization methods: subgradient

and bundle.

3.5.1 Subgradient Method

A subgradient method includes moving from a current point αi to a new point αi+1

using a step size si and a direction di in the following simple formula:

αi+1 = αi + sidi (3.81)

In a simple subgradient method, di is equal to the current subgradient gi computed as

the violation of the relaxed constraints when the variables are fixed to the values found

by solving the Lagrangian subproblem at the current point αi. A simple approach to

compute the step size is si = µi (Z∗e −Z (αi))/gidi where Z∗e and µi are an estimation for

the value of Z∗ and a scaling parameter, respectively.

We are using a unified subgradient-type algorithm described in Frangioni et al. [41],

where more sophisticated strategies are used for computing both the step size and the

direction. The direction, for example, is computed as di = βigi +(1−βi)di−1, where βi

is the so-called deflection coefficient. In this approach, αi is not necessarily the point of

the current iteration. It can remain unchanged if an ascent direction occurs. For details

on the different strategies to compute the step size and the deflection coefficient see [41].

3.5.2 Bundle Method

The idea of the bundle method is to compute the direction using a bundle B of the

subgradients found so far. The direction di with respect to the current point αi is found

by solving the following quadratic problem:

min
θ

{
1
2

t‖∑
b∈B

gbθb‖2 + ∑
b∈B

Ebθb; s.t. ∑
b∈B

θb = 1,θ ≥ 0

}
(3.82)
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where for each bundle member b ∈ B, gb and t > 0 are the corresponding subgradient

vector and the so-called trust region parameter, respectively. Eb = Z(αb)+gb(αi−αb)−
Z(αi) is the current linearization error. The ascent direction is then computed using

the convex combination of the subgradients defined by θ . Valuable information can be

extracted form the solution of θ to produce integer feasible solutions (see Section 3.7).

The quadratic problem in bundle methods is the Augmented Method of the standard DW

approach, with a linear Lagrangian term related to the current point (stability center) and

a quadratic term related to the stability parameter (t > 0).

Let εLin be the relative precision required, then a general stopping condition is when

the bundle finds an epsilon-subgradient g such that t∗||g|| ≤ εLin|Z∗e |, where t∗ is a pa-

rameter that estimates the longest step that can be performed and ||g|| is a norm-like

function. Different estimates can be used for Z∗e , although using the best lower bound

found so far is pretty common. A detailed explanation of the bundle method can be

found in [39] and [26].

3.6 Primal Heuristic

To obtain upper bounds, we develop a Lagrangian-based primal heuristic using a

slope scaling procedure. Given a design solution vector ŷ, the following multicommodity

capacitated network flow (MCNF) problem is solved at each iteration of the procedure:

min ∑
(i, j)∈A

∑
k∈K

ck
i jx

k
i j (3.83)

s.t. (3.2),(3.5) and

∑
k∈K

xk
i j ≤ ui j, ∀(i, j) ∈ A (3.84)

where the initial linearized cost ck
i j, ∀(i, j) ∈ A, ∀k ∈ K, is computed as follows:

ck
i j = (ck

i j +ρi j)(1+M(1− ŷi j)) (3.85)
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where, ρi j = fi j/ui j and M is a large positive value to avoid routing on the closed arcs

of ŷ. When ŷi j = 1, (i, j) ∈ A, the cost of the corresponding arc is equal to the cost in the

LP relaxation of the model obtained from the MCFND by removing constraints (3.4). If

ŷi j = 0, (i, j) ∈ A, then the cost is set to a large positive value to avoid any flow on the

corresponding arc. Note that, even if ŷi j is fractional, the formula (3.85) can be used:

arcs with small fractional values still have large costs.

After solving the MCNF problem, a flow solution x is obtained and the linearized

costs are updated using the following equation to trigger another iteration:

ck
i j =

 ck
i j +ρi j if xk

i j > 0

ck
i j if xi j = 0

(3.86)

where, ρi j = fi j/∑k∈K xk
i j, and xk

i j,∀(i, j) ∈ A,∀K ∈ K is the flow solution obtained from

solving the current MCNF problem. When xk
i j is positive, this equation ensures that, at

the next iteration, if the flow solution remains the same, the cost on each arc is equal to

the fixed design cost plus the sum of the flow variable costs. If xk
i j = 0, we keep the same

cost because it is large enough to avoid any flow.

At each slope scaling iteration, the algorithm produces a feasible solution for the

original problem. The flow routing solution of the feasible solution is equal to x, while

its design solution y is obtained using the following simple rule:

yi j =

 1 if ∑k∈K xk
i j > 0

0 otherwise
(3.87)

Let zt and zt−1 be the current and the previous objective values of the MCNF problem

at each iteration t of the slope scaling procedure. Then the slope scaling procedure

converges when zt = zt−1. Therefore, the termination condition of the slope scaling

procedure is to reach either the same objective value for two successive iterations or a

predefined maximum number of slope scaling iterations itslope has been attained.

At the end of the slope scaling procedure, an intensification step is performed using a

set of nintens best feasible solutions selected during the process. For each chosen feasible
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solution, an MCNF problem is constructed by 1) fixing the design variable vector to the

corresponding design values of the solution, and 2) setting the costs to the original flow

variable costs. The MCNF problem is then solved in the hope of obtaining a better flow

distribution. The primal heuristic phase is illustrated in Algorithm 3.

The proposed primal heuristic is applied in conjunction with the subgradient or bun-

dle methods described in Section 3.5. When a new upper bound is found in the whole

procedure, the best upper bound found so far, UBbest , is updated if the solution is better

than the current UBbest . We also define a set of feasible solutions found so far, F , with

a limited size (set to 1000) which is also updated whenever a new solution is found. If

the set is full and the solution found is better than the worst solution of F , then the worst

solution is removed from F and the new found solution is added to the set. The set F is

a long-term memory that is used for further improvements, as it is explained in the next

section.

Algorithm 1: Primal heuristic procedure
1: Input design solution→ ŷ
2: Initialize the linearized costs of MCNF problem using ŷ and formula (3.85)
3: Solve MCNF problem→ y,x,zt

4: Compute upper bound
5: Update UBbest and feasible solution set F
6: repeat
7: Update objective function of MCNF problem using x̄ and formula (3.86)
8: Solve MCNF problem→ y,x,zt ,zt−1
9: Compute upper bound

10: Update UBbest and feasible solution set F
11: until the number of iterations is greater than or equal to itslope or zt = zt−1
12: Perform intensification

3.7 The Proposed Algorithm

The proposed Lagrangian-based matheuristic algorithm consists of three main phases:

1) initialization, where the weak or strong LP relaxation of the original problem, PLP,

is solved in order to initialize the Lagrange multipliers of the proposed Lagrangian re-

laxation, 2) Lagrangian, including the bundle (or subgradient) procedure to find lower
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bounds and the slope scaling procedure to obtain upper bounds, and 3) post-optimization,

where a restricted MIP problem PPO is solved to improve the upper bounds.

Different information can be extracted from different relaxations to run the slope

scaling procedure. Therefore, the proposed algorithm is designed in such a way to not

only support all the proposed node-based relaxations but also exploit as much as pos-

sible the provided information of each particular relaxation. In addition, the algorithm

supports the traditional Lagrangian relaxations of the MCFND, the knapsack and flow

relaxations, to compare their results with those of the proposed node-based relaxations.

In the following subsections, we describe the three phases of the algorithm. The last sub-

section summarizes the algorithm and provides a pseudocode for the whole algorithm.

3.7.1 Initialization

The first step in the initialization phase is to solve PLP that helps to have better initial

Lagrange multipliers and better initial lower bound. We test both the weak or strong LP

relaxation. We define a switch, sLP, as a parameter in the algorithm to test the two cases.

The Lagrange multipliers are then initialized to the corresponding dual values of the

relaxed constraints. At the end of the initialization phase, the slope scaling procedure is

called using the design solution of PLP, ŷl p. This slope scaling step provides an initial

upper bound to be used in the bundle (or subgradient) procedure.

3.7.2 Lagrangian Phase

Here we explain the Lagrangian phase including 1) a bundle (or subgradient) proce-

dure to find lower bounds, and 2) a slope-scaling-based primal heuristic procedure to be

performed in conjunction with the bundle (or subgradient) procedure.

Bundle (or subgradient)

We use bundle (or subgradient) method, for itLag maximum number of iterations and

in tLag time limit, to solve the Lagrangian dual. At each iteration of the bundle (or sub-

gradient) procedure, the Lagrangian subproblem of the corresponding relaxation has to
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be solved in order to obtain a lower bound. We use a MIP solver to solve the subprob-

lems of the proposed node-based Lagrangian relaxations. To improve the performance

of the MIP solver on the resolution of the CFLPs (P i
L,∀i∈N) of the location relaxation,

and the forward CFLPs (P i
LF ,∀i ∈ N) of the forward-backward location relaxation, the

following knapsack cut is added to the CFLP problem:

∑
j∈N+

i

ui jyi j ≥ ∑
k∈KO

i

dk (3.88)

In the same way, the following knapsack cut is added to the backward CFLPs (P i
LB,

∀i ∈ N) of the forward-backward location relaxation:

∑
j∈N−i

u jiz ji ≥ ∑
k∈KD

i

dk (3.89)

Both of these inequalities are also added to the third proposed relaxation to improve

the performance of the MIP solver.

It is possible to improve more the performance of the MIP solver by adding a pre-

processing procedure on the flow variables before starting the resolution of the CFLPs.

The preprocessing includes the following rules, ∀i ∈ N:

— In P i
L: xk

i j = 0,∀ j ∈ N+
i ,∀k ∈ K \KO

i , if ck
i j(π)≥ 0.

— In P i
LF : xk

i j = 0,∀ j ∈ N+
i ,∀k ∈ K \KO

i , if ck
i j(ω,π)≥ 0 and fi j(γ)≥ 0.

— In P i
LF,agg: xk

i j = 0,∀ j ∈ N+
i ,∀k ∈ K \KO

i , if ck
i j(ω,π,δ )≥ 0 and fi j(γ)≥ 0.

— In P i
LB: vk

ji = 0,∀ j ∈ N−i ,∀k ∈ K \KD
i , if ck

ji(ω)≥ 0 and f ji(γ)≥ 0.

— In P i
LB,agg: vk

ji = 0,∀ j ∈ N−i ,∀k ∈ K \KD
i , if ck

ji(ω,λ ,δ )≥ 0 and f ji(γ)≥ 0.

Even with the above enhancements, solving the MIP subproblems might be costly

with respect to the computational time. To accelerate the solution of the MIP subprob-

lems, we use the two following approaches: 1) solving the MIP problem to optimality

gap εgap, and 2) limiting the number of nodes of the branch-and-bound tree to a parame-

ter nodelim. To define εgap, we use one of the internal procedures of the bundle method,

which approximately solves the master problem. In this procedure, the relative precision

required to solve the master problem is initially set to εinit = 10−2, and decreased down
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to ε f inal = 10−6 by multiplying it by µeps = 0.95 every seps = 5 steps. We use this pre-

cision to define εgap. nodelim is initially set to 10 and increased by multiplying it by 10

each time the precision is changed.

Since we are solving a MIP model in each of the proposed node-based relaxations,

rather than seeking to find the optimal solution of the Lagrangian subproblem, there is

a possibility to introduce a number of feasible design solutions P to the bundle method

to build a new subgradient vector. Parameter popmax is the maximum number of the

populated solutions to be introduced to the bundle method.

In case of the traditional Lagrangian relaxations, the knapsack subproblems Pa
Kn,∀a∈

A, and the shortest path subproblems Pk
Sh,∀k ∈ K have to be solved, respectively, in the

arc-based and commodity-based relaxations.

Primal Heuristic

At each iteration of the bundle (or subgradient) procedure, the described slope scal-

ing procedure is started if the obtained design solution is new and either the frequency

of the total number of bundle (or subgradient) iterations is equal to a predefined number

f prim or the lower bound has improved significantly since the last time the primal heuris-

tic was called. The improvement is considered to be significant if (LBc−LBl)/LBl >

δ dual , where δ dual is a parameter and LBc and LBl are, respectively, the lower bound

computed at the current iteration and the lower bound obtained the last time primal

heuristic was triggered.

For the location and single-node flow relaxations, the design solutions of the corre-

sponding subproblems ŷL and ŷF are used, respectively, to run the slope scaling proce-

dure. For the forward-backward location and single-node flow relaxations, however, it is

possible to not only use the forward design solution ŷLF but also the backward design so-

lution ŷLB obtained, respectively, from the forward and backward subproblems. For the

knapsack and flow relaxations, respectively, design solutions ŷKn and ŷSh are available

to start the slope scaling procedure.

Recall that set P is the populated feasible design solutions to be given to the bundle

method. We use this set to launch different slope scaling procedures considering param-
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eter popmax as the maximum number of populated solutions to be given as input to the

slope scaling procedure. The design solution p ∈ P for the location, forward-backward

location, and single-node flow relaxations are, respectively, ŷp
L, ŷp

LF (or ŷp
LB) and ŷp

F .

Extracting the populated solutions, however, is not possible for the knapsack and flow

relaxations, because their subproblems provide a single solution.

At each iteration of the bundle procedure, a convexified design solution can be gener-

ated using the convex combination of the previously generated design solutions defined

by θ , the variables of the bundle quadratic problem, as follows:

yconv
i j = ∑

b∈B
θbyb

i j, ∀(i, j) ∈ A (3.90)

where yconv
i j and yb

i j are the convexified design solution and the design solution of the

bundle member b ∈ B of arc (i, j) ∈ A. The obtained convexified design solution ŷconv

is used to trigger another slope scaling step. We define a switch, sconv, as a parameter to

decide whether or not to use the convexified design solution.

At the end of each primal heuristic procedure, in addition to an intensification step

described in Section 5.3.2, a diversification step is performed if the algorithm is not able

to improve the upper bound for a predefined maximum number of primal heuristic steps,

st prim. A primal heuristic step is a complete slope scaling procedure with intensification.

The idea of diversification is to avoid selecting the links that frequently appeared in the

obtained feasible solutions so far. The design solution of the best upper bound found so

far is considered to initialize the linearized cost of formula (3.85) where a large linearized

cost is assigned not only to the closed arcs, but also to a set of arcs (set to 10) selected

randomly from the most frequently opened ones in a percentage (set to 90%) of the set

of feasible solutions, F . Then, a new slope scaling procedure is triggered using this

new initial linearized costs. The selected arcs are marked to avoid choosing them again

in the next diversification step. Therefore, at each diversification step, a new set of

the most frequent arcs are considered to be fixed to a large cost. We restrict the total

number of slope scaling steps in each diversification procedure and the total number of

diversification steps to itdiv and stdiv, respectively.

Lagrangian-Based Methods for Single and Multi-Layer Multicommodity Capacitated Network Design

CIRRELT-2019-07



55

At the end of the bundle (or subgradient) procedure, a slope scaling step is called

using the design solution of the best obtained lower bound ŷbest in the hope of finding a

better upper bound.

Termination Conditions

Three different termination conditions are considered to stop the whole procedure

including the bundle (or subgradient) procedure and the primal heuristic steps: 1) if the

elapsed time reaches a predefined time limit tLag, 2) if the value of the subgradient norm

is less than ε , meaning that the bundle (or subgradient) converged, and 3) if the total

number of the bundle (or subgradient) iterations reaches a predefined number itLag.

3.7.3 Post-Optimization Phase

At the end of the algorithm, a post-optimization phase is performed by solving a re-

stricted MIP problem PPO for a limited time tPostOpt . To build the restricted MIP, we use

a number of elite solutions, the feasible solutions selected from the long term memory

F , with less than δp% gap from the best known feasible solution. The design variables

that are closed in all the elite solutions are fixed to 0. A simple iterative procedure is

performed to set δp% in such a way that f % (set to fall in the interval [ymin
0 ,ymax

0 ]) of the

design variables are set to 0 in the restricted MIP. At the beginning of the procedure, all

the solutions of F are selected as elite. If the percentage of the fixed variables with these

elite solutions fall in the interval [ymin
0 ,ymax

0 ], then the desired percentage is obtained;

otherwise, a new set of elite solutions is built by removing the worst solution of F until

the percentage falls into the desired range. If the percentage jumps over the range, the

procedure back tracks to the last set of elite solutions.

3.7.4 Summary

The algorithm starts with an initialization phase where the dual values of PLP are

used to initialize the Lagrangian multipliers. At the end of initialization phase, a slope

scaling procedure is triggered using the final design solution of the LP relaxation PLP,
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ŷl p.

In the Lagrangian phase, we use a bundle (or subgradient) method to solve the La-

grangian dual. Using the obtained design solution of the Lagrangian subproblem, the

slope scaling heuristic, which is empowered by the intensification and diversification

procedures, finds feasible solutions. At the end of the bundle (or subgradient) proce-

dure, another slope scaling step is performed using the design solution of the best known

lower bound ŷbest . At the end of the algorithm, the post-optimization phase improves the

upper bound using the elite solutions stored in a long-term memory during the algorithm.

The whole algorithm is presented in Algorithm 4. The algorithm recieves as inputs:

1) a relaxation type, which can be either one of the proposed node-based or traditional

relaxations, and 2) the NDO method including either the subgradient or bundle method.

3.8 Experimental Results

We are evaluating the lower bounds of the new Lagrangian relaxations and the per-

formance of the proposed heuristic on C and C+ benchmark instances/., described in

[25]. These instances are available online on http://pages.di.unipi.it/frangio/. Table 3.I

summarizes the characteristics of the instances where |A|, |N|, and |K| are the number

of arcs, number of nodes, and number of commodities, respectively. There are instances

with both loose and tight design capacities. The set also includes instances where the

fixed costs are predominant relatively to the variable costs and the reverse. The char-

acteristics of each instance are described in the result tables of Subsections 3.8.2 and

3.8.3.

In the two following subsections, we analyze and compare the five different La-

grangian relaxations, the node-based and traditional relaxations, in terms of the quality

of the bounds, computing times, and number of iterations, as well as the performance of

the corresponding heuristics in comparison with the state-of-the-art heuristics proposed

so far in the literature for the MCFND.

We have tested the bundle and subgradient methods as the non-differentiable opti-

mizer to solve the Lagrangian dual, see, e.g., [26] for more details. The results show
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Algorithm 2: Lagrangian-based matheuristic for MCFND
1: Input relaxation type and NDO method
2: Solve PLP→ ŷl p
3: Initialize Lagrange multipliers
4: Run primal heuristic using ŷl p
5: repeat
6: switch (relaxation type)
7: case location:
8: Solve P i

L for all i ∈ N → ŷp
L,∀p ∈ P

9: for all p ∈ P do
10: Run primal heuristic using ŷp

L, if starting condition is true
11: end for
12: case forward-backward location:
13: Solve P i

LF and P i
LB for all i ∈ N → ŷp

LF , ŷp
LB,∀p ∈ P

14: for all p ∈ P do
15: Run primal heuristic using ŷp

LF , if starting condition is true
16: Run primal heuristic using ŷp

LB, if starting condition is true
17: end for
18: case single-node flow:
19: Solve P i

F for all i ∈ N → ŷp
F ,∀p ∈ P

20: for all p ∈ P do
21: Run primal heuristic using ŷp

LF , if starting condition is true
22: Run primal heuristic using ŷp

LB, if starting condition is true
23: end for
24: case knapsack:
25: Solve Pa

Kn for all a ∈ A→ ŷKn

26: Run primal heuristic using ŷKn, if starting condition is true
27: case flow:
28: Solve Pk

Sh for all k ∈ K → ŷSh
29: Run primal heuristic using ŷSh, if starting condition is true
30: end switch
31: Compute lower bound→ ŷbest
32: switch (NDO method)
33: case subgradient:
34: Update Lagrange multipliers using subgradient
35: case bundle:
36: Update Lagrange multipliers using bundle→ ŷconv

37: Run primal heuristic using ŷconv

38: end switch
39: until one of the termination conditions is met
40: Run primal heuristic using ŷbest
41: Run post-optimization by solving PPO
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Table 3.I – C and C+ Instances of the MCFND
Name Number of Instances |A| |N| |K|
C 31 230,300,520,700 20,30 40,100,200,400
C+ 12 100-400 25,100 10,30

that the bundle method outperforms the subgradient approach significantly in terms of

lower bound, time, and number of iterations. Therefore, in this section, the results of the

bundle-based method are used to analyze the performance of the relaxations.

3.8.1 Parameter Setting

We use a two-phase parameter setting process to find a suitable set of parameters.

In the first phase, we tune the parameters associated with a particular relaxation and

the bundle method. Table 3.II displays the tested values of the parameters. Columns

FLW, KNP, LOC, FBL, and SNF represent the selected values for the flow, knapsack,

location, forward-backward, and single-node flow relaxations, respectively. The initial

values are shown in bold in column Tested Values. 1) the bundle method is working bet-

ter with no initialization, and 2) although the proposed aggregation schemes accelerate

the procedure for some of the instances, better results have been found by adding the

disaggregated constraints a priori.

In the second phase, we calibrate the primal heuristic parameters in two steps. The

first step is to set f prim (primal heuristic frequency) and δ dual (duality gap to start primal

heuristic parameter). Since the total number of bundle iterations varies significantly for

different relaxations, these two parameters are tuned for each relaxation separately. The

rest of the primal heuristic parameters are the internal parameters of the slope scaling and

post optimization procedures; therefore, a single value is set for all the relaxations. Table

3.III displays the tested and selected values of the parameters of the first step. Columns

FLW, KNP, LOC, FBL, and SNF represent the selected values for the flow, knapsack,

location, forward-backward, and single-node flow relaxations, respectively. The initial

values are shown in bold in column Tested Values. Table 3.IV shows the parameters and

the tested values of the second step. The selected values are shown in bold.
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For both phases, we select 30% of the instances randomly for the parameter setting

process. To find the best values of the parameters, we fix all the parameters, change one

parameter at each time, and select the best value. For the second step of phase two, since

a single set of the primal heuristic parameters is selected for all the relaxations, at each

step of the calibrations, one of the relaxations is selected randomly for the parameter

setting procedure.

3.8.2 Lower Bound Analysis

Table 3.V presents the comparison of the Lagrangian relaxations in terms of lower

bound. The first column shows the characteristics of the instances:

— |N|: number of nodes;

— |A|: number of arcs;

— |K|: number of commodities;

— CDI: Cost Dominance Index defined as the variable flow cost average divided by

the design cost average computed as follows:

(∑k∈K ∑(i, j)∈A ck
i j)/|A| ∗ |K|

(∑(i, j)∈A fi j)/|A|

F refers to the cases where the fixed costs are predominant relatively to the vari-

able costs, and V means the reverse;

— FTI: Flow capacity Tightness Index defined as the flow capacity average divided

Table 3.II – Values of parameters tested for relaxations and Bundle method
Selected Values

Name Description Tested Values FLW KNP LOC FBL SNF

sLP Lagrangian multipliers initialization switch, 0 no initialization, 1 weak LP, 2 cutting plane LP 0, 1, 2 0 0 0 0 0
tLP Lagrangian multipliers initialization time Limit (seconds) 5, 10, 15 - - - - -
sagg aggregation switch, 1 aggregated master problem, 0 disaggregated 0, 1 0 1 0 0 0
popmax max number of populated solutions to be introduced to bundle 1, 2, 5, 10 NA NA 1 1 1
f add addition frequency of disaggregated constraints, 0 add in advance 0, 1, 5, 10 NA NA NA 0 0
saggCons 1 add aggregated constraints, 0 otherwise 0, 1 10 NA NA NA 0 0
εadd precision to check disaggregated constraint violation 10−1, 10−3, 10−6 NA NA NA - -
itLag max number of iterations of NDO solver 500, 1000, 5000, 10000 1000 10000 1000 1000 1000
t∗ stopping parameter of bundle 100, 101, 102, 103, 104, 105, 106 101 101∗ 101 ∗∗ 103 103

εLin stopping parameter of bundle 10−3, 10−4,10−5 10−4 10−4 10−4 10−4 10−4

|B| max bundle size 10000, 20000, 30000, 40000, 50000 20000 50000 20000 50000 50000

*106 is selected for C+ instances
** 103 is selected for C+ instances
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Table 3.III – Values of parameters tested for the primal heuristic
Name Description Tested Values FLW KNP LOC FBL SNF

f prim primal heuristic frequency 1, 5, 10, 15 1 5 10 5 20
δ dual duality gap to start primal heuristic parameter 0.5, 1, 2, 3 - 3 0.5 0.5 2

Table 3.IV – Values of parameters tested for the primal heuristic
Name Description Tested Values

tLag time limit on Lagrangian procedure including subgradient and primal heuristic (hours) 2, 3, 4
itslope max number of slope scaling iterations in each primal heuristic step 15, 20, 25, 30
nintens number of solutions to be used in intensification 1, 4, 8
ymin

0 min % of design variables to be fixed to 0 in post optimization 40, 50, 60
ymax

0 max % of design variables to be fixed to 0 in post optimization 70, 80, 90
st prim max number of primal heuristic steps with no improvement in upper bound to start diversification 10, 20, 30, 40
itdiv total number of slope scaling steps in each diversification procedure 5, 10, 15
stdiv total number of diversification steps 4, 5, 6
popmax number of populated feasible solutions to be used in slope scaling procedure 1, 2, 5, 10
sconv use convexified solution switch, 1 use convexified solution to trigger different slope scaling, 0 otherwise 0, 1

by the total demand computed as follows:

(∑(i, j)∈A ui j)/|A|
∑k∈K dk

L stands for loose flow capacity, while T refers to tight flow capacity.

Note that tLag, time limit on Lagrangian procedure, is set to 2 hours for the lower

bound analysis. Strong LP column is the strong LP lower bounds obtained by relaxing

integrality requirements of the design variables. Columns Flow, Knapsack, Location,

FB-Location, and SN-Flow show, respectively, the gaps between the obtained lower

bounds of the flow, knapsack, location, forward-backward location and single-node flow

relaxations to the strong LP lower bounds computed as 100× (LBS−LBR)/LBS where

LBS and LBR are the lower bounds of the strong LP and any of the relaxations, respec-

tively.

Theoretically, the produced lower bounds of the flow and knapsack relaxations have

to be equal to the strong LP lower bound, because of the integrality property of these

relaxations. Therefore, columns Flow and Knapsack show the computational errors due

to the time and iteration limits. The new Lagrangian relaxations, however, do not have

the integrality property. The Location, FB-Location, and SN-Flow columns show the

improvements of the relaxations upon the strong LP lower bound. The maximum and
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average amounts of improvements are significant. The averages for location, forward-

backward location, and single-node flow relaxations are 0.5%, 0.9%, and 1.7%, respec-

tively, while the maximum amounts of improvements are 4.7%, 7.7%, and 20.5%, re-

spectively.

Table 3.VI shows the gaps between the obtained lower bounds of the relaxations to

the best known upper bounds in the literature (column “Best UB”). Columns “Flow” to

“SN-Flow” are the gaps computed as 100× (UBB−LBR)/UBB where UBB and LBR are

the best known upper bound in the literature and the lower bound of any of the relax-

ations, respectively. The results show that, in comparison with the traditional relaxations,

the location, forward-backward location and single-node flow relaxations improve, on

average, the optimality gaps, by 11%, 20%, and 38%, respectively, if we fix the upper

bounds to the best known upper bounds.

Figure 3.3 shows the average of the computational times of the different Lagrangian

relaxations and the strong LP relaxation. Although the computational times are reason-

able for the location relaxation, the results show a significant computational effort for

the forward-backward and single-node flow relaxations. Figure 3.4 presents the portions

of the times dedicated to solving Lagrangian subproblems (LagSub) and computing La-

grangian multipliers by solving the master problem (NDO). The figure shows the large

amount of time devoted to computing Lagrange multipliers for the flow, knapsack, loca-

tion and forward-backward relaxations, while most of the total time (65%) is dedicated

to solving the Lagrangian subproblems for the single-node flow relaxation.

3.8.3 Upper Bound Analysis

Table 3.VII presents the obtained upper bounds of the Lagrangian heuristics using

different Lagrangian relaxations. The results show that the location relaxation outper-

forms not only the traditional flow-based and knapsack-based heuristics, but also the

forward-backward location and single-node flow relaxations. It finds the best upper

bounds in 27 of the instances (out of 43), while the flow and knapsack relaxations find

the best upper bounds in 18 and 25 of the instances, respectively.

Table 3.VIII presents the comparison of our proposed heuristic (the location-based

Lagrangian-Based Methods for Single and Multi-Layer Multicommodity Capacitated Network Design

CIRRELT-2019-07



62

Table 3.V – Lagrangian lower bounds comparison with strong LP lower bound
Lagrangian Gap to Strong LP

|N|, |A|, |K|, CDI, FTI Strong LP Flow Knapsack Location FB-Location SN-Flow

25,100,10VL 14610.0 0.000 0.000 -0.074 -0.133 -0.224
25,100,10FL 13017.5 0.000 0.000 -1.459 -3.595 -6.794
25,100,10FT 43454.7 0.001 0.000 -2.402 -3.647 -10.332
25,100,30VT 364390.0 0.000 0.000 -0.044 -0.074 -0.145
25,100,30FL 33543.5 0.010 0.000 -0.842 -4.291 -6.815
25,100,30FT 82418.5 0.000 0.000 -0.555 -0.605 -2.168
20,230,40VL 422853.0 0.000 0.000 -0.011 -0.201 -0.207
20,230,40VT 368819.0 0.000 0.000 -0.186 -0.400 -0.613
20,230,40FT 633466.0 0.000 0.000 -0.302 -0.619 -0.878
20,300,40VL 427947.0 0.000 0.000 0.000 -0.256 -0.338
20,300,40FL 575255.0 0.000 0.001 -0.004 -0.011 -1.047
20,300,40VT 460930.0 0.000 0.000 -0.175 -0.312 -0.501
20,300,40FT 596839.0 0.000 0.000 -0.143 -0.269 -0.792

20,230,200VL 91300.6 0.000 0.022 -0.213 -0.189 -0.079
20,230,200FL 132036.0 0.000 0.025 -0.326 -0.273 -0.358
20,230,200VT 95669.3 0.008 0.019 -0.113 -0.098 -0.134
20,230,200FT 131544.0 0.002 0.023 -0.160 -0.125 -0.138
20,300,200VL 73126.9 0.006 0.016 -0.094 -0.091 -0.133
20,300,200FL 110926.0 0.000 0.012 -0.105 -0.075 -0.303
20,300,200VT 74002.7 0.008 0.005 -0.050 -0.045 -0.199
20,300,200FT 103633.0 0.005 0.009 -0.327 -0.315 -0.185
100,400,10VL 27465.3 0.000 0.007 -0.063 -0.598 -1.890
100,400,10FL 19748.1 0.002 0.000 -3.871 -6.351 -11.112
100,400,10FT 48375.4 0.000 0.000 -4.767 -7.713 -20.518
100,400,30VT 380858.0 0.001 0.000 -0.068 -0.135 -0.521
100,400,30FL 45332.4 0.000 0.002 -1.412 -2.299 -5.048
100,400,30FT 117196.0 0.002 0.000 -1.974 -4.790 -10.023
30,520,100VL 53022.9 0.007 0.002 -0.291 -0.309 -0.732
30,520,100FL 90174.2 0.009 0.045 -0.097 -0.067 -0.282
30,520,100VT 51325.6 0.002 0.005 -0.090 -0.397 -0.632
30,520,100FT 94010.8 0.003 0.021 -0.273 -0.301 -0.398
30,700,100VL 47308.1 0.000 0.001 -0.052 -0.061 -0.302
30,700,100FL 58207.2 0.003 0.018 -0.089 -0.094 -0.360
30,700,100VT 45077.7 0.000 0.006 -0.301 -0.388 -0.568
30,700,100FT 53660.9 0.005 0.015 -0.226 -0.307 -0.407
30,520,400VL 111763.0 0.007 0.011 -0.106 -0.070 0.278
30,520,400FL 146680.0 0.005 0.011 -0.085 -0.030 0.647
30,520,400VT 114061.0 0.007 0.012 -0.071 -0.053 0.309
30,520,400FT 149751.0 0.003 0.017 -0.083 -0.031 0.399
30,700,400VL 96605.0 0.000 0.015 -0.080 0.035 1.517
30,700,400FL 130724.0 0.004 0.017 -0.099 0.082 2.454
30,700,400VT 94011.9 0.006 0.010 -0.097 -0.018 1.581
30,700,400FT 127572.0 0.008 0.011 -0.056 0.023 1.397

Average: 0.003 0.008 -0.508 -0.919 -1.781
Maximum: 0.010 0.045 0.000 0.082 2.454
Minimum: 0.000 0.000 -4.767 -7.713 -20.518
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Table 3.VI – Lagrangian lower bounds comparison with best known upper bound
Lagrangian Gap to Best UB

|N|, |A|, |K|, CDI, FTI Best UB Flow Knapsack Location FB-Location SN-Flow

25,100,10VL 14712.00 0.69 0.69 0.62 0.56 0.47
25,100,10FL 14941.00 12.87 12.87 11.60 9.74 6.95
25,100,10FT 49899.00 12.92 12.91 10.82 9.74 3.92
25,100,30VT 365272.00 0.24 0.24 0.20 0.17 0.10
25,100,30FL 37060.00 9.50 9.49 8.73 5.60 3.32
25,100,30FT 85530.00 3.64 3.64 3.10 3.06 1.55
20,230,40VL 423848.00 0.23 0.23 0.22 0.03 0.03
20,230,40VT 371475.00 0.71 0.72 0.53 0.32 0.11
20,230,40FT 643036.00 1.49 1.49 1.19 0.88 0.62
20,300,40VL 429398.00 0.34 0.34 0.34 0.08 0.00
20,300,40FL 586077.00 1.85 1.85 1.84 1.84 0.82
20,300,40VT 464509.00 0.77 0.77 0.60 0.46 0.27
20,300,40FT 604198.00 1.22 1.22 1.08 0.95 0.44

20,230,200VL 94213.00 3.09 3.11 2.88 2.91 3.01
20,230,200FL 137642.00 4.07 4.10 3.76 3.81 3.73
20,230,200VT 97914.00 2.30 2.31 2.18 2.20 2.16
20,230,200FT 135866.00 3.18 3.20 3.03 3.06 3.05
20,300,200VL 74811.00 2.26 2.27 2.16 2.16 2.12
20,300,200FL 115539.00 3.99 4.00 3.89 3.92 3.70
20,300,200VT 74991.00 1.33 1.32 1.27 1.27 1.12
20,300,200FT 107102.00 3.24 3.25 2.92 2.93 3.06
100,400,10VL 28423.00 3.37 3.38 3.31 2.79 1.54
100,400,10FL 23949.00 17.54 17.54 14.35 12.30 8.38
100,400,10FT 63753.00 24.12 24.12 20.50 18.27 8.55
100,400,30VT 384802.00 1.03 1.02 0.96 0.89 0.51
100,400,30FL 49018.00 7.52 7.52 6.21 5.39 2.85
100,400,30FT 136250.00 13.99 13.98 12.29 9.86 5.36
30,520,100VL 53958.00 1.74 1.74 1.45 1.43 1.01
30,520,100FL 93967.00 4.04 4.08 3.94 3.97 3.77
30,520,100VT 52046.00 1.39 1.39 1.30 0.99 0.76
30,520,100FT 97107.00 3.19 3.21 2.92 2.90 2.80
30,700,100VL 47603.00 0.62 0.62 0.57 0.56 0.32
30,700,100FL 59958.00 2.92 2.94 2.83 2.83 2.57
30,700,100VT 45871.50 1.73 1.74 1.44 1.35 1.17
30,700,100FT 54904.00 2.27 2.28 2.04 1.96 1.87
30,520,400VL 112774.40 0.90 0.91 0.79 0.83 1.17
30,520,400FL 149335.40 1.78 1.79 1.69 1.75 2.41
30,520,400VT 114640.00 0.51 0.52 0.43 0.45 0.81
30,520,400FT 152510.00 1.81 1.83 1.73 1.78 2.20
30,700,400VL 97875.00 1.30 1.31 1.22 1.33 2.80
30,700,400FL 134589.80 2.88 2.89 2.78 2.95 5.26
30,700,400VT 95249.60 1.31 1.31 1.20 1.28 2.86
30,700,400FT 129909.60 1.81 1.81 1.74 1.82 3.17

Average: 3.90 3.91 3.46 3.10 2.39
Average Improvement: 0.44 0.80 1.51

Average Improvement (%): 11.35 20.46 38.76
Maximum: 24.12 24.12 20.50 18.27 8.55
Minimum: 0.23 0.23 0.20 0.03 0.00
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|N|, |A|, |K|, CDI, FTI Strong LP Flow Knapsack Location FB-Location SN-Flow

1 c67 25,100,10VL 0.02 0.04 0.02 1.2 0.88 1.93

2 c65 25,100,10FL 0.04 0.21 0.09 3.3 8.7 57.59

3 c66 25,100,10FT 0.03 0.15 0.11 3.58 6.92 39.06

4 c70 25,100,30VT 0.07 0.27 0.37 12.82 11.4 22.53

5 c68 25,100,30FL 0.24 0.57 5.09 28.49 105.11 545

6 c69 25,100,30FT 0.10 0.29 0.96 20.64 50.09 206.38

7 c33 20,230,40VL 0.12 0.12 0.1 6.21 81.87 255.76

8 c35 20,230,40VT 0.13 0.12 0.13 8.26 271.75 1686.99

9 c36 20,230,40FT 0.14 0.16 0.13 6.92 221.39 731.62

10 c41 20,300,40VL 0.17 0.17 0.09 7.05 265.48 158.1

11 c42 20,300,40FL 0.25 0.25 0.54 11.2 109.54 4373.43

12 c43 20,300,40VT 0.17 0.18 0.18 12.81 165.64 666.33

13 c44 20,300,40FT 0.18 0.18 0.16 12.6 310.28 7200

14 c37 20,230,200VL 34.24 11 107.97 633.95 7204.47 7200

15 c38 20,230,200FL 131.15 16.72 112.23 1597.04 7207.46 7200

16 c39 20,230,200VT 41.57 8.06 97.37 787.02 7202.14 7200

17 c40 20,230,200FT 92.79 13.57 120 634.05 7206.57 7200

18 c45 20,300,200VL 67.42 8.23 129.15 291.09 7200.5 7200

19 c46 20,300,200FL 148.38 12.56 130.79 646.94 7206.94 7200

20 c47 20,300,200VT 28.43 4.64 129.7 204.35 7201.96 7200

21 c48 20,300,200FT 106.00 9.02 124.8 292.71 7205.9 7200

22 c73 100,400,10VL 0.07 0.26 0.25 23.93 11.2 16.65

23 c71 100,400,10FL 0.80 1.25 0.76 58.43 69.84 322.5

24 c72 100,400,10FT 0.48 1.46 2.36 55.9 100.73 609.09

25 c76 100,400,30VT 0.32 1.85 13.34 449.11 85.14 151.42

26 c74 100,400,30FL 6.21 11.24 137.31 2062.76 952.52 7200

27 c75 100,400,30FT 3.03 2.42 36.08 658.52 655.73 4097.34

28 c49 30,520,100VL 3.75 1.68 61.2 68.58 7200.59 7200

29 c50 30,520,100FL 39.75 7.78 71.2 359.56 7200.33 7200

30 c51 30,520,100VT 2.72 1.54 17.66 54.31 6000.11 7200

31 c52 30,520,100FT 49.33 6.81 77.61 252.16 7200.36 7200

32 c57 30,700,100VL 2.62 2.37 29.4 86.49 7201.65 7200

33 c58 30,700,100FL 43.71 6.96 67.75 263.53 7200.53 7200

34 c59 30,700,100VT 6.45 2.38 85.77 86.27 7200.6 7200

35 c60 30,700,100FT 13.42 4.07 84.54 122.19 7200.48 7200

36 c53 30,520,400VL 212.12 13.37 469.24 1893.83 7200.91 7200

37 c54 30,520,400FL 801.62 26.96 572.88 1946.52 7208.84 7200

38 c55 30,520,400VT 168.68 11.2 357.63 1364.08 7200.93 7200

39 c56 30,520,400FT 549.08 17.87 455.15 2152.02 7200.92 7200

40 c61 30,700,400VL 487.41 33.2 467.38 3732.14 7203.41 7200

41 c62 30,700,400FL 2379.04 39.96 473.66 5250.8 7205.25 7200

42 c63 30,700,400VT 492.49 14.24 514.97 1498.3 7204.5 7200

43 c64 30,700,400FT 1405.83 22.73 442.97 2427.32 7204.1 7200

Maximum 2379.04 39.96 572.88 5250.80 7208.84 7200.00

Minimum 0.02 0.04 0.02 1.20 0.88 1.93

Average 170.25 7.40 125.56 699.74 4073.34 4677.71
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Figure 3.3 – Average time of Lagrangian relaxation bounding procedures and Strong LP
relaxation
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Figure 3.4 – Elapsed time analysis of Lagrangian relaxation bounding procedures

|N|, |A|, |K|, CDI, FTI Flow Knapsack Location FB-Location SN-Flow

1 c67 25,100,10VL 9 145 52 18 23

2 c65 25,100,10FL 27 378 87 93 165

3 c66 25,100,10FT 20 473 100 65 136

4 c70 25,100,30VT 16 741 168 64 90

5 c68 25,100,30FL 20 2022 223 221 386

6 c69 25,100,30FT 17 1288 216 133 223

7 c33 20,230,40VL 7 167 85 132 156

8 c35 20,230,40VT 7 269 95 239 172

9 c36 20,230,40FT 8 271 78 197 220

10 c41 20,300,40VL 9 155 82 769 119

11 c42 20,300,40FL 13 678 115 178 366

12 c43 20,300,40VT 8 351 101 168 204

13 c44 20,300,40FT 11 272 107 271 210

14 c37 20,230,200VL 24 10000 383 439 513

15 c38 20,230,200FL 21 10000 424 440 486

16 c39 20,230,200VT 22 10000 337 506 508

17 c40 20,230,200FT 22 10000 369 470 473

18 c45 20,300,200VL 21 10000 292 510 463

19 c46 20,300,200FL 27 10000 330 478 469

20 c47 20,300,200VT 18 10000 267 606 533

21 c48 20,300,200FT 19 10000 260 472 481

22 c73 100,400,10VL 7 246 158 37 39

23 c71 100,400,10FL 47 972 278 144 198

24 c72 100,400,10FT 39 1332 232 141 261

25 c76 100,400,30VT 24 2060 508 78 99

26 c74 100,400,30FL 52 10000 782 340 527

27 c75 100,400,30FT 24 3718 639 244 390

28 c49 30,520,100VL 15 8640 160 577 635

29 c50 30,520,100FL 27 10000 325 455 414

30 c51 30,520,100VT 15 2886 145 917 563

31 c52 30,520,100FT 32 10000 284 784 404

32 c57 30,700,100VL 23 5178 180 711 538

33 c58 30,700,100FL 30 10000 326 740 463

34 c59 30,700,100VT 16 10000 166 708 429

35 c60 30,700,100FT 24 10000 203 762 394

36 c53 30,520,400VL 14 10000 461 375 273

37 c54 30,520,400FL 21 10000 431 371 227

38 c55 30,520,400VT 13 10000 418 395 242

39 c56 30,520,400FT 15 10000 447 368 246

40 c61 30,700,400VL 25 10000 496 356 221

41 c62 30,700,400FL 22 10000 524 347 196

42 c63 30,700,400VT 15 10000 420 357 209

43 c64 30,700,400FT 17 10000 447 369 204

Maximum 52 10000 782 917 635

Minimum 7 145 52 18 23

Average 20 5866 284 373 316

�1

Figure 3.5 – Average number of iterations of Lagrangian relaxation bounding procedures
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heuristic) with the state-of-the-art heuristics proposed so far in the literature. LMH

column presents the upper bounds of our proposed bundle-based location Lagrangian

heuristic; while CTS, PR, MCA, CSH, IPS, LocalB, SACG(2), CEA, CCL(2), and

ILP columns are the gaps between the LMH upper bounds and, respectively, the upper

bounds of the cycle-based tabu search [47], path relinking [48], multilevel cooperative

algorithm [28], capacity scaling heuristic [55], integer programming search [52], local

branching [80], simulated annealing column generation [86], cycle-based evolutionary

algorithm [78], combined capacity scaling and local branching [54] and iterative linear

programming [45]. The results show that the proposed algorithm outperforms all the

previously proposed heuristics in the literature on average except the recent ones. How-

ever, the proposed algorithm produces almost the same upper bounds as the last two

methods in much less computational times, see Table 3.IX.

Table 3.IX compares the computational times with those of the heuristics in the liter-

ature. The computational times of the heuristics are normalized based on the CPU type

and the number of used cores, U . We use a method described in [35] and data from

http://www.cpubenchmark.net/. The method is to take Passmark CPU Score (PCPUS)

and normalize the computational times, tnorm, using the following equation:

tnorm = treal ∗ (PCPUSh/PCPUSl)∗U (3.91)

where treal , PCPUSh and PCPUSl are the real computational time, PCPUS of the heuris-

tic, and PCPUS of our machine.

The table shows that the proposed method is much faster than the best heuristics

in the literature, except the recent one proposed by Gendron et al. [45]. Note that the

PCPUSs are not available for CTS and PR methods, and the computational times of

MCA are not reported in [28]. Therefore, the computaional times of these methods are

not presented in the table.

Figure 3.6 analyzes the computational time of the heuristics and shows the portion of

each phase of the algorithm: solving Lagrangian subproblems (LagSub), computing La-

grange multipliers (NDO), Lagrangian Heuristic (Heur), and post-optimization phase
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Table 3.VII – Upper bound comparison of different Lagrangian Heuristics
|N|, |A|, |K|, CDI, FTI Flow Knapsack Location FB-Location SN-Flow

25,100,10VL 14712 14712 14712 14712 14712
25,100,10FL 15540 14954 14941 14941 15239
25,100,10FT 50969 50472 50853 50969 50994
25,100,30VT 365272 365272 365272 365272 365272
25,100,30FL 38482 37747 37622 37500 37535
25,100,30FT 85530 85530 85530 85530 85530
20,230,40VL 425290 423848 423848 423848 423848
20,230,40VT 371475 371475 371475 371475 371475
20,230,40FT 644232 643036 643036 643036 645324
20,300,40VL 431263 429398 429398 429398 429398
20,300,40FL 586406 586077 586077 586077 586077
20,300,40VT 464509 464509 464509 464509 464509
20,300,40FT 604198 604198 604198 604198 604198

20,230,200VL 94228 94218 94213 94218 94468
20,230,200FL 137854 137764 137764 137854 141637
20,230,200VT 97914 97914 97914 97914 101718
20,230,200FT 136618 136102 135962 136303 137464
20,300,200VL 74811 74900 74900 74945 74874
20,300,200FL 116255 115826 115925 116241 115855
20,300,200VT 75358.7 74991 74991 74991 75432
20,300,200FT 107102 107315 107102 107574 107169
100,400,10VL 28423 28423 28423 28423 28423
100,400,10FL 25124 23949 24184 23949 23949
100,400,10FT 68192 64713 65983 64662 65112
100,400,30VT 384802 384802 384802 384802 384802
100,400,30FL 51710 49018 50022 49220 49633
100,400,30FT 137466 137883 141508 137798 141483
30,520,100VL 53968 53968 53968 53964 53958
30,520,100FL 93967 94033 94129 93967 94288
30,520,100VT 52134 52046 52046 52046 52119
30,520,100FT 97854 97107 97348 97348 97754
30,700,100VL 47603 47603 47603 47603 47603
30,700,100FL 60067 60017.3 59995 60056.5 60019
30,700,100VT 45879 45872 45871.5 45871.5 45879
30,700,100FT 54965 54904 54904 54955 54974
30,520,400VL 112897 112784 112968 112901 113404
30,520,400FL 149498 149551 149329 149832 150184
30,520,400VT 114687 114640 114640 114640 114851
30,520,400FT 152924 152922 152722 154000 154825
30,700,400VL 97886 97970 98031 97982 98151.2
30,700,400FL 134789 136176 137070 142489 164175
30,700,400VT 95358.7 95331.8 95396.1 95449.9 95652.5
30,700,400FT 130624 130794 130312 132074 136932

# Best UB out of 43: 15 26 28 23 14
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Table 3.VIII – Proposed heuristic VS state-of-the-art heuristics in literature
|N|, |A|, |K|, CDI, FTI LMH1 CTS PR MCA CSH IPS LocalB SACG SACG2 CEA CCL CCL ILP

25,100,10VL 14712 0.00 0.00 0.00 0.00 NA 0.00 0.00 0.00 0.00 NA NA 0.00
25,100,10FL 14941 0.00 0.00 0.00 -0.64 NA 0.00 0.00 0.00 0.00 NA NA 0.00
25,100,10FT 50853 1.88 1.88 1.80 0.16 NA 1.80 1.88 1.88 1.88 NA NA 1.88
25,100,30VT 365272 -0.03 -0.03 -0.03 0.00 NA 0.00 0.00 0.00 0.00 NA NA 0.00
25,100,30FL 37622 0.10 -0.09 0.04 0.40 NA 0.79 1.49 1.49 0.79 NA NA 1.51
25,100,30FT 85530 -0.90 -1.05 -1.09 -0.32 NA 0.00 0.00 0.00 0.00 NA NA 0.00
20,230,40VL 423848 -0.22 -0.13 -0.67 -0.05 -0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20,230,40VT 371475 -0.11 -0.09 0.00 -0.12 -0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20,230,40FT 643036 -0.43 -0.39 -1.53 -0.23 -0.02 0.00 0.00 0.00 -0.02 0.00 0.00 0.00
20,300,40VL 429398 -0.03 0.00 -0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20,300,40FL 586077 -1.24 -0.74 -1.27 -0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20,300,40VT 464509 -0.05 0.00 -0.32 -0.01 0.00 0.00 -0.03 -0.03 0.00 0.00 0.00 0.00
20,300,40FT 604198 -0.48 -0.96 -2.48 0.00 0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00

20,230,200VL 94213 -5.08 -6.57 -4.64 -0.04 -0.94 -1.15 -1.15 -0.07 -0.27 0.00 0.00 0.00
20,230,200FL 137764 -6.37 -7.42 -3.91 0.09 -2.53 -4.12 -1.45 -0.06 -0.86 0.09 0.09 -0.29
20,230,200VT 97914 -6.98 -6.92 -4.20 -0.06 -1.53 -0.12 -0.07 0.00 -0.30 0.00 0.00 0.00
20,230,200FT 135962 -8.40 -8.53 -3.84 -0.12 -3.17 -3.80 -3.53 -0.82 -0.86 -0.05 0.07 -0.41
20,300,200VL 74900 -7.90 -4.38 -4.42 -0.02 -0.56 -1.97 -1.47 -0.00 -0.51 0.12 0.12 -0.09
20,300,200FL 115925 -6.40 -6.52 -5.20 0.12 -1.40 -2.78 -1.74 -0.44 -0.76 0.15 0.33 -0.39
20,300,200VT 74991 -6.17 -5.17 -3.01 -0.41 -1.61 -1.57 -0.57 0.00 -0.60 0.00 0.00 0.00
20,300,200FT 107102 -6.89 -6.05 -3.80 -0.71 -3.03 -2.53 -2.44 -1.43 -0.41 -0.20 0.00 -0.18
100,400,10VL 28423 -0.89 -0.22 -0.46 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100,400,10FL 24184 0.97 0.67 0.67 -1.14 0.97 -2.09 0.97 0.97 0.97 0.97 0.97 0.97
100,400,10FT 65983 -1.56 1.07 -0.46 -11.49 0.15 -2.08 1.23 1.23 0.64 2.69 3.38 1.12
100,400,30VT 384802 -0.18 -0.03 -0.12 -0.02 -0.01 -0.00 0.00 0.00 -0.05 0.00 0.00 0.00
100,400,30FL 50022 -3.06 -2.60 -0.87 -3.87 0.66 0.30 0.76 1.54 1.11 2.01 2.01 2.01
100,400,30FT 141508 -2.57 0.11 -2.98 -1.98 0.10 -0.09 -0.02 0.35 1.39 2.37 3.72 1.65
30,520,100VL 53968 -1.83 -1.73 -3.31 -0.22 -0.27 -0.11 -0.03 -0.03 -0.24 0.02 0.02 0.02
30,520,100FL 94129 -5.80 -8.42 -6.04 -0.71 -0.28 -2.26 -0.19 0.07 -0.52 0.17 0.17 0.07
30,520,100VT 52046 -1.80 -1.87 -2.82 -0.45 -0.25 -0.16 -0.66 -0.39 -0.26 0.00 0.00 0.00
30,520,100FT 97348 -8.40 -9.02 -5.27 -1.53 -1.58 -3.86 -2.91 -1.23 -0.52 -0.04 0.25 -0.06
30,700,100VL 47603 -1.67 -2.35 -2.66 -0.07 -0.02 0.00 -0.83 0.00 0.00 0.00 0.00 0.00
30,700,100FL 59995 -4.13 -5.16 -6.27 -0.33 -1.18 -0.46 -0.98 -0.66 -0.91 0.06 0.06 -0.09
30,700,100VT 45871.5 -2.51 -2.92 -3.46 -0.65 -0.38 -0.07 -0.60 -0.18 -0.46 0.00 0.00 -0.08
30,700,100FT 54904 -5.43 -3.04 -3.65 -0.83 -1.28 -0.36 -0.20 -0.13 -0.42 0.00 0.00 0.00
30,520,400VL 112968 -6.80 -5.71 -2.39 0.11 -0.95 -1.24 -1.09 -0.67 -0.20 0.17 0.17 -0.01
30,520,400FL 149329 -7.88 -9.23 -4.87 -0.08 -3.27 -5.62 -4.36 -1.13 -1.22 -0.06 -0.00 -0.41
30,520,400VT 114640 -6.06 -4.82 -5.53 -0.00 -0.25 -0.52 -0.85 -0.82 -0.92 0.00 0.00 -0.14
30,520,400FT 152722 -9.96 -7.17 -4.91 -0.01 -1.23 -10.37 -4.75 NA -1.12 0.10 0.14 -0.74
30,700,400VL 98031 -8.92 -7.23 -4.69 0.06 -0.70 -4.69 -3.77 -1.31 -0.71 0.16 0.16 -0.36
30,700,400FL 137070 -8.67 -5.80 -5.05 1.46 -11.31 -5.05 -17.11 2.26 -0.03 1.79 1.81 -1.89
30,700,400VT 95396.1 -6.58 -6.10 -3.98 0.09 -0.81 -3.98 -1.73 -0.15 -0.77 0.15 0.15 -0.35
30,700,400FT 130312 -9.57 -8.21 -6.10 0.13 -1.01 -6.10 -8.58 -0.89 -1.62 0.31 0.31 -0.64

Average: -3.70 -3.32 -2.65 -0.55 -1.02 -1.49 -1.27 -0.02 -0.18 0.30 0.38 0.07
Maximum: 1.88 1.88 1.80 1.46 0.97 1.80 1.88 2.26 1.88 2.69 3.72 2.01
Minimum: -9.96 -9.23 -6.27 -11.49 -11.31 -10.37 -17.11 -1.43 -1.62 -0.20 -0.00 -1.89

# of improvements: 38 35 37 30 28 27 27 20 25 4 1 16
# of draws 2 4 3 4 5 13 11 14 12 17 18 19

# of non-improvements 3 4 3 9 4 3 5 8 6 16 18 8
1 The upper bounds found by the proposed Lagrangian Matheuristic.
2 Columns 3-14 show the gaps between the Lagrangian Matheuristic and the existing heuristics in the literature. A negative value means that

our Lagrangian heuristic provides better upper bound than the heuristic in the literature.
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(PostOpt). The figure shows the high computational effort on the post-optimization

phase for flow, knapsack, and location heuristics. For the forward-backward relaxation,

computing the Lagrange multipliers and the post-optimization phase take most of the

computational time. For the single-node relaxation, however, the computational time is

shared almost evenly among the LagSub, NDO, and PostOpt portions.

3.9 Conclusion

We have proposed three new node-based Lagrangian relaxation-reformulations for

the multicommodity capacitated fixed-charge network design problem. A Lagrangian-

based matheuristic has also been proposed to find upper bounds. We have conducted

significant computational experiments on the benchmark instances. We can summarize

the obtained results as follows:

— The Lagrangian dual bound of the new Lagrangian relaxations improve signif-

icantly upon the strong LP bound (known to be equal to the Lagrangian dual

bounds of the flow and knapsack relaxations).

— The proposed Lagrangian heuristic based on the location relaxation outperforms

traditional flow and knapsack based heuristics.

— The proposed algorithm outperforms almost all the previously proposed heuris-

tics in the literature on average.

Two main fascinating research avenues are: 1) developing exact solution methods

by embedding the proposed Lagrangian relaxation into a branch-and-bound procedure,

and 2) improving the solution time of the subproblems of the new relaxations using the
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Figure 3.6 – Time analysis of Lagrangian-based heuristics
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Table 3.IX – Comparing normalized computational time of proposed heuristic to state-
of-the-art heuristics in literature

LMH 5h CSH IPS LocalB SACG SACG2 CEA CCL CCL ILP

CPU:

Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel
Xeon Pentium Xeon Core2 Duo Core2 Duo Core2 Duo Xeon Core i7 Core i7 Core i7

X5675 D 940 X3350 E4600 E6850 E6850 E5507 4770 4770 4900MQ
@ 3.07GHz @ 3.20GHz @ 2.66GHz @ 2.40GHz @ 3.00GHz @ 3.00GHz @ 2.27GHz @ 3.40GHz @ 3.40GHz @ 2.80GHz

CPU PassMark: 8507 710 3876 1383.00 1951 1951 3144 9792 9792 9060
Used Cores: 1 2 8 2 2 2 1 4 4 1

|N|, |A|, |K|, CDI, FTI

25,100,10VL 2.64 0.22 NA 3.96 11.47 11.47 4.73 NA NA 0.10
25,100,10FL 10.4 1.19 NA 195.09 7.80 7.80 10.75 NA NA 4.52
25,100,10FT 14.23 0.62 NA 195.09 13.30 13.30 323.86 NA NA 57.96
25,100,30VT 44.18 0.53 NA 52.35 29.81 29.81 47.20 NA NA 0.43
25,100,30FL 81.31 2.45 NA 195.09 33.94 33.94 290.60 NA NA 60.48
25,100,30FT 87.49 1.67 NA 195.09 92.19 92.19 17.74 NA NA 9.80
20,230,40VL 22.65 0.50 14.58 106.63 54.12 54.12 399.96 5.53 5.06 1.41
20,230,40VT 36.52 0.55 149.44 143.11 177.05 177.05 45.75 14.27 17.50 1.04
20,230,40FT 37.64 0.63 164.02 195.09 77.06 77.06 356.72 67.22 49.73 4.00
20,300,40VL 27.4 0.53 69.25 47.41 90.36 90.36 39.99 5.53 4.14 179.67
20,300,40FL 65.35 1.03 105.70 195.09 129.81 129.81 140.03 38.21 47.42 22.64
20,300,40VT 54.56 0.63 87.48 195.09 50.91 50.91 1277.30 17.96 17.04 0.49
20,300,40FT 63.84 0.73 247.86 195.09 84.40 84.40 98.75 20.26 17.50 137.85

20,230,200VL 4081.11 73.80 2996.19 195.09 275.21 1128.36 1391.54 14090.26 30106.00 2569.34
20,230,200FL 10284.3 276.76 2518.69 195.09 275.21 504.55 1498.34 20299.49 40973.31 333.19
20,230,200VT 1825.65 87.38 2992.54 195.09 275.21 1078.36 1219.72 9948.77 13328.26 255.11
20,230,200FT 11527.1 324.46 568.62 195.09 275.21 572.89 1156.48 20893.44 52461.27 1009.01
20,300,200VL 17949.1 58.04 2923.29 195.09 275.21 1359.53 1199.58 23241.12 42161.20 340.70
20,300,200FL 17948.5 215.31 2500.47 195.09 275.21 479.78 1519.56 35769.17 39517.46 2728.90
20,300,200VT 1408.59 71.56 1414.26 195.09 275.21 1844.82 1318.36 9935.42 11787.69 150.37
20,300,200FT 17934.4 287.39 1443.42 195.09 275.21 1140.28 2891.25 17487.70 37935.45 1337.67
100,400,10VL 50.69 0.97 127.57 177.83 74.77 74.77 36.29 8.75 10.59 413.97
100,400,10FL 127.82 15.57 32.80 195.09 88.98 88.98 209.62 489.43 505.54 1148.93
100,400,10FT 4548.57 9.28 2963.38 195.09 77.52 77.52 1397.78 12594.81 59757.56 2937.16
100,400,30VT 2792.06 2.97 1202.85 195.09 196.32 196.32 734.35 6920.13 9696.46 783.01
100,400,30FL 3245.25 103.74 3229.47 195.09 275.21 429.78 1479.49 3975.73 12169.84 649.49
100,400,30FT 7426.14 25.69 3236.76 195.09 275.21 553.63 4717.18 50774.29 112500.15 1933.90
30,520,100VL 1205.93 4.49 794.61 195.09 275.21 629.31 1967.45 3096.33 7684.88 1289.21
30,520,100FL 17953.4 67.85 823.77 195.09 275.21 425.66 2304.02 15039.19 30308.58 2934.08
30,520,100VT 17948 6.26 1658.47 195.09 275.21 4186.38 4759.50 9226.83 18713.34 1675.25
30,520,100FT 17950.3 33.33 2970.67 195.09 275.21 462.35 1359.34 22107.11 83229.81 2967.63
30,700,100VL 551.35 6.43 116.64 195.09 275.21 2652.55 1515.57 295.13 354.98 21.25
30,700,100FL 17941.1 19.11 2700.94 195.09 275.21 1831.05 4562.51 13298.33 32047.59 1650.13
30,700,100VT 17947 7.73 1352.29 195.09 275.21 1926.92 1774.42 25595.25 37311.12 872.87
30,700,100FT 17944.3 16.16 1410.61 195.09 275.21 3139.21 4225.09 20515.89 36425.73 1961.25
30,520,400VL 17954.6 94.81 1436.13 195.09 275.21 5918.82 5664.97 27242.18 48228.16 842.29
30,520,400FL 17955.5 435.73 2733.75 195.09 275.21 4463.43 4558.08 15593.07 83088.00 462.49
30,520,400VT 17952.5 38.39 2263.54 195.09 275.21 8256.26 1564.90 17154.36 41117.42 2561.76
30,520,400FT 17955.8 279.41 1698.57 195.09 275.21 4286.83 2385.07 23705.69 69290.57 1637.73
30,700,400VL 17957.2 79.25 809.19 195.09 275.21 8256.26 2345.23 21763.63 46253.42 2890.34
30,700,400FL 17966 297.60 3134.70 195.09 275.21 6413.28 1277.37 33664.59 71184.28 1135.52
30,700,400VT 17956.1 125.04 1330.42 195.09 275.21 8256.26 3715.44 29357.81 53427.23 941.52
30,700,400FT 17959.6 248.23 820.12 195.09 275.21 6552.72 4561.63 37591.52 72695.84 1567.50

Average: 8251 77.30 1487.65 180 196 1815 1683 14644 32282 988
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existing state-of-the-art algorithms for the CFLP in the literature.
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CHAPTER 4

A SURVEY OF MULTILAYER NETWORK DESIGN

In multilayer network design, decisions are represented by different potential net-

works, each at a given layer. In each layer, flow requirements for a set of commodities

must be satisfied. To route the commodities, appropriate arcs have to be selected (or

opened) in each layer. There are several types of coupling constraints between the lay-

ers. For example, to open an arc in a particular layer, supporting arcs in another layer

have to be opened. Applications of the multilayer network design problem can be found

in the fields of transportation and telecommunications. Although this is an important

class of problems in combinatorial optimization, to the best of our knowledge, there is

no survey on the topic which covers extensively multilayer network design problems.

In this paper, we propose the first classification and a state-of-the-art survey of multi-

layer network design problems. The survey focuses on applications in transportation

and telecommunications, as well as on solution methods. We also propose a general

modeling framework that encompasses most multilayer network design problems found

in the literature.

4.1 Introduction

Network design is a well-known and important class of problems in combinatorial

optimization. Multilayer network design represents a special case of network design that

has major applications in the fields of transportation [see, e.g., 17, 31, 88] and telecom-

munications [see, e.g., 33, 61]. Unlike a typical network design problem, in multilayer

network design, there are several networks, each at a given layer. Each network has its

nodes, potential arcs with (or without) limited capacities, and, possibly, commodities.

The demands of commodities, if any, need to be routed from their origins to their des-

tinations in each layer. To route the commodities, appropriate arcs have to be selected

(or opened) by paying a fixed cost. A particular layer might not have any commodity,
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but still has to be designed to support the routing of other layers. At least one layer has

commodities to route.

In multilayer network design, there are two types of coupling constraints between

the layers, flow connectivity and design connectivity requirements. A common type of

design connectivity requirement arises when each link in a layer can be selected only if

some arcs (typically forming a path or a cycle) are opened in another layer. The flows

in a layer might also be related to the flows of another layer, corresponding to flow

connectivity requirements. For example, the amount of flow on each arc in a particular

layer might be computed based on the flow on several arcs in another layer.

Connectivity requirements between layers might be either one-to-one or one-to-

many. When each layer is supporting or is supported by only one other layer, the con-

nectivity requirement is one-to-one while a one-to-many connectivity requirement exists

when at least one of the layers is supporting or is supported by more than one layer. Note

that, for two-layer network design problems, only the one-to-one connectivity is possi-

ble. In general, the objective is to find a minimum cost design and routing for all layers,

while satisfying typical network design constraints in each layer, as well as coupling

constraints between layers.

Multilayer network design is often, but not only, used to integrate decisions at the

same planning level or different planning levels: strategic, tactical and operational. Solv-

ing the multilayer network design problem typically generates an optimal solution that

cannot be obtained by solving sequentially each of the single-layer network design prob-

lems, thus yielding significant cost savings.

An example of such an integration can be found in railway freight planning, where

cars have to be classified in groups called blocks. Then, blocks are grouped into ser-

vices to make up trains moving blocks between terminals. Grouping cars into blocks

avoids performing operations on each car individually in each terminal, which reduces

the number of operations to be performed in each terminal. Zhu et al. [88] presented both

problems of determining blocks (which block to be built) and selecting services in a sin-

gle integrated freight rail service network design problem. They represent the problem

using a three-layer network including car, block and service layers. Each layer consists

Lagrangian-Based Methods for Single and Multi-Layer Multicommodity Capacitated Network Design

CIRRELT-2019-07



73

of a time-space network, where the terminals (physical nodes) are duplicated over the

time horizon to represent the time dependency. A node in such a network represents a

terminal at a specific time, and each arc represents a transfer from a terminal at a given

time to either the same terminal at another time or another terminal at another time. The

service layer, includes moving and stop links of services. The block network determines

the classification policy, which includes service section arcs (each corresponds to a chain

of moving and stop arcs in the service layer) and block transfer arcs to move blocks be-

tween service sections. The car layer consists of block links (each corresponds to a chain

of block transfer arcs and service sections in the block layer) and car arcs on which cars

are moved in each terminal. To open a service section arc in the block layer, a chain of

moving and stop link should be open in the service layer. To select a projected block

link in the car layer, a chain of block and projected service section links need to be open

in the block layer.

Another example can be found in telecommunications, where one layer might be

an internet (virtual) network whose arcs are supported by the arcs in an optical fiber

(physical) layer. A chain of supporting arcs has to be opened in the physical layer to

open an arc in the internet network. In this example, there is an integration of a strategic

decision (physical network design) with a tactical one (virtual network design).

The applications of network design models and their solution techniques have been

surveyed in [64], [70], and [23]. In recent years, a growing number of applications of

multilayer network design have appeared that are not covered in these surveys. To the

best of our knowledge, the only survey paper is Kivelä et al. [59], which does not cover

extensively multilayer network design problems (only a few references on telecommu-

nications applications are cited).

The contribution of this paper is threefold. First, we propose a classification of mul-

tilayer network design problems, which emphasizes the multilayer features, such as the

number of layers and the type of coupling constraints between layers. Second, we syn-

thesize the applications in transportation and telecommunications, as well as the methods

used to solve multilayer network design problems. Third, we propose a general model-

ing framework that encompasses most multilayer network design problems found in the
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literature.

The paper is organized as follows. In Section 4.2, we propose a detailed definition of

multilayer network design, as well as a general modeling framework for network design

model. In Section 4.3, we present our classification of multilayer network design. Based

on the classification and the applications currently proposed in the literature, we iden-

tify four existing classes of problems: 1) two-layer network design problems with design

connectivity requirements; 2) two-layer network design problems with flow connectivity

requirements; 3) three-layer network design problems with one-to-many flow connectiv-

ity requirements; 4) three-layer network design problems with one-to-one flow-design

connectivity requirements. For each these four classes of problems, a detailed survey

is presented in Sections 4.4, 4.5, 4.6, and 4.7, respectively. In particular, we show how

the proposed general modeling framework models most of the problems presented in

the literature. In Section 4.8, we provide a survey on the proposed methods for solving

multilayer network design problems. In Section 4.9, we summarize this work and we

discuss future research directions.

4.2 Multilayer Network Design, Definition and Formulation

In this section, we first propose a definition of multilayer network design. We then

propose a general modeling framework.

4.2.1 Definition

In network design, given a potential network (for simplicity, we assume all arcs are

potential) that might have capacitated arcs, several commodities such as goods, data or

people, have to be routed between different origin and destination points. A network

has to be constructed by opening appropriate arcs between pairs of nodes to route the

commodities. In addition to flow costs, design costs are associated to each arc. Flow

costs are incurred when routing commodities on each arc, while a design cost is incurred

when opening (or selecting) an arc. The problem is to select the arcs such that the de-

mands for the commodities can be routed on the constructed network, and arc capacities
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are respected. The designed network and the final routing must minimize the total cost.

In multilayer network design, instead of one network, there are several networks.

Each network corresponds to a layer that consists of nodes and potential arcs. In each

layer, there might be several commodities to be routed in the network to satisfy demands

between origin and destination nodes. A network has to be designed in each layer to

satisfy the demands for the commodities. Note that some layers might not have any

commodity, but their arcs have to be opened to support the routing of the commodities

in other layers. When there is only one layer that has commodities to route, we have

a multilayer single flow-type network design problem. When we have commodities on

more than one layer, we obtain a multilayer multiple flow-type network design problem.

In addition to flow and design costs, as well as flow capacities that might be associ-

ated with arcs, in multilayer network design, there are typically two types of coupling

constraints between layers: design connectivity and flow connectivity. The first one, de-

sign connectivity, means that an arc opened in a given layer requires some arcs to be

opened in another layer. If arc a of layer l′ requires a set of arcs (for example a set

including arcs b and c) to be opened in layer l, then l′ is said to be supported by l, and

l is said to be supporting of l′. In addition, a is supported by b and c, while b and c are

supporting a.

An illustration is given in Figure 4.1, where arcs 1 and 2 in layer l′ are supported,

respectively, by paths (3,4) and (5,6,4) in layer l. Therefore, l′ is supported by l, and

l is supporting l′. In this particular example, to use arc 1 in layer l′, all its supporting

arcs in layer l, including arcs 3 and 4, have to be opened. For instance, in the integrated

freight rail service network design problem, the design connectivity constraint consists

of opening a chain of supporting services in the service layer to select the correspond-

ing block in the block layer. In telecommunications, the design connectivity constraint

forces an arc opened in the virtual network (the network supported by the physical layer)

to be supported by a chain of physical arcs in the physical layer (the supporting network

of the virtual layer). Note that, design connectivity requirements are not limited to the

above examples. Another type arises when an arc in a layer requires at least one of the

supporting arcs to be opened in another layer (for more details, see the next subsection
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where we describe different types of design connectivity requirements).

Based on the design connectivity constraints, we can define the design capacity con-

straints, a new concept in multilayer network design. The design capacity constraint of

arc b in supporting layer l limits the number of selected arcs in supported layer l′ for

which arc b is the supporting arc. To clarify the definition of design capacity constraints,

consider Figure 4.1. If the design capacity of arc 4 in layer l is equal to 1, then at most

one of arcs 1 or 2 in layer l′ can be opened in a feasible solution. For example, in the

integrated freight rail service network design problem, a design capacity is defined for

each service s and limits the number of selected blocks for which service s serves as

the supporting service. In telecommunications, a design capacity constraint might be

defined for each physical arc p to limit the number of opened virtual arcs for which arc

p serves as a supporting arc.

The second type of connectivity constraints, flow connectivity, relates the flows be-

tween different layers. The simplest such constraint arises when the flow on arc b is

equal to the summation of the flows on all arcs for which b is a supporting arc. In Fig-

ure 4.1, for example, the flow on arc 4 would be equal to the summation of the flows

on arcs 1 and 2. Note that, with this particular type of flow connectivity requirements,

when only one layer has commodities to route, the flows on other layers can be deduced

from the flows on that single layer. Such a problem would be considered as a multilayer

single flow-type network design problem, even though there are flows on several layers.

In the next subsection, we describe other types of flow connectivity constraints.

In some applications of multilayer network design, certain arcs of a layer can be

independent of other layers. For example, in the integrated freight rail service network

design problem, there are some arcs to move cars in each terminal that are not related to

any arc of other layers.

Some problems introduced in the literature appear at first sight to be similar to the

multilayer network design problem. These problems include the multi-echelon network

design problem [18, 29], the multilevel network design problem [7, 21], and the hierar-

chical network design problem [63, 72]. There are two main differences between these

problems and multilayer network design. First, in multilayer network design, each layer
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Figure 4.1 – Multilayer network design example illustrating design connectivity con-
straints: arc 1 in layer l′ is supported by the path made of arcs 3 and 4 in layer l, and arc
2 in layer l′ is supported by the path made of arcs 5, 6, and 4

corresponds to a network including nodes, potential arcs, commodities to be routed on

the designed network, while the concepts of echelon, level, and hierarchy do not neces-

sarily correspond to a network with all these characteristics. The second main difference

is the flow and design connectivity constraints between layers, which do not explicitly

exist in the above problems.

4.2.2 Formulation

Given a set of layers L and a network Gl = (Nl,Al) for each layer l ∈ L, where Nl and

Al are the sets of nodes and arcs of layer l ∈ L, respectively, we define ual and val as the

flow capacity and the design capacity of arc a ∈ Al in layer l ∈ L. Let A+
l (n) and A−l (n)

represent the sets of outgoing and incoming arcs of node n ∈ Nl . A set of commodities

Kl has to be routed through the network of layer l ∈ L. The set Kl might be empty, which

means that there is no commodity to be routed in layer l. The amount of each commodity

k ∈ Kl that must flow from its origin O(k) ∈ Nl to its destination D(k) ∈ Nl is dk.
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We denote by C the set of ordered pairs (l, l′) such that l′ ∈ L is a layer supported by

l ∈ L. In other words, C contains the pairs of layers having a (design or flow) connectivity

requirement between one another. Hence, we call C the set of connectivity requirement

pairs. Let Bal
l′ be the set of arcs in layer l′ supported by arc a ∈ Al . For example, in

Figure 4.1, this set for arc 4 in layer l is {1,2}. Let Dl
bl′ be the set of arcs in layer l

supporting arc b ∈ Al′ . In Figure 4.1, this set for arc 1 in layer l′ is {3,4}.
Two sets of decision variables are considered to formulate the problem, design and

flow variables. The design variables could be binary or integer, depending on the partic-

ular application. When the decision is to open (select) or close (not to select) arc a ∈ Al

of layer l ∈ L, then the design variable yal assumes binary values. When the goal is to

determine the number of capacity units on each arc a ∈ Al of layer l ∈ L, then the design

variable yal has integer values. The flow variables could take binary or continuous values

depending on the problem. When the flow of each commodity has to be routed through

a single path from its origin to its destination (non-bifurcated flows), then the flow vari-

ables take binary values. The variable xk
al then indicates if commodity k ∈ Kl of layer

l ∈ L uses arc a∈Al or not. When the flow of each commodity can be distributed through

several paths, then the flow variable xk
al is continuous, representing the fraction of the de-

mand of commodity k ∈ Kl of layer l ∈ L on arc a ∈ Al . Sets X and Y define required

side constraints, as well as the domains of the flow and design variables, respectively.

Set (X ,Y )ll′ defines the coupling constraints for each pair of layers (l, l′)∈C, which cap-

tures some application-specific connectivity requirements. We present several possible

coupling constraints later in this section.

We use notations Ψ(x) and Φ(y) to represent the total routing cost function and the

total design cost function, respectively. The proposed general multilayer network design

formulation (MLND) can be stated as follows:
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min Ψ(x)+Φ(y) (4.1)

subject to

∑
a∈A+

l (n)

xk
al− ∑

a∈A−l (n)

xk
al = wk

n ∀l ∈ L, ∀n ∈ Nl, ∀k ∈ Kl (4.2)

∑
k∈Kl

dkxk
al ≤ ualyal ∀l ∈ L, ∀a ∈ Al (4.3)

(x,y) ∈ (X ,Y )ll′ ∀(l, l′) ∈C (4.4)

x ∈ X (4.5)

y ∈ Y (4.6)

The objective of the MLND model, (4.1), is to minimize the total routing and design

cost. Constraints (4.2) are the usual flow conservation equations, ensuring that the de-

mands are routed from their origins to their destinations in each layer, where wk
n = 1 if

n = O(k), wk
n = −1 if n = D(k), and 0 otherwise. The flow capacity constraints (4.3),

ensure that the sum of the flows on each arc a ∈ Al in layer l ∈ L does not exceed its flow

capacity ual .

Constraints (4.5) and (4.6) define side constraints and the domains of the decision

variables. There are several side constraints that can be added to a network design prob-

lem, among which design balance and budget constraints are the most important ones.

Design balance constraints arise when, at each node, the number of incoming opened

arcs (representing, for example, resources or vehicles) must be equal to the number of

outgoing opened arcs. A budget constraint limits the cost for building the whole network

to a total budget.

Constraints (4.4) are a set of coupling constraints that, for each connectivity require-

ment (l, l′), link together the domains of the decision variables (x,y) of layer l′ to those of

layer l. Several types of coupling constraints are encountered in the literature, depending

on the applications.

In particular, design capacity constraints ensure that, for each arc a ∈ Al , the number
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of selected arcs supported by a in layer l′, represented by set Bal
l′ , does not exceed its

design capacity val:

yal ≤ ∑
b∈Bal

l′

ybl′ ≤ valyal ∀(l, l′) ∈C, ∀a ∈ Al. (4.7)

The left inequality of (4.7) ensures that if we open arc a in supporting layer l, then at

least one of its supported arcs has to be opened in the supported layer l′.

A second type of coupling constraints is the multilayer all-design linking constraints:

ybl′ ≤ yal ∀(l, l′) ∈C, ∀a ∈ Al, ∀b ∈ Bal
l′ . (4.8)

These constraints simply mean that, to open arc b ∈ Al′ , all its supporting arcs have to be

opened in all supporting layers l. Such constraints arise, for example, in the integrated

freight rail service network design problem, where to open a block, all its supporting

services have to be opened in the service layer.

A third type of coupling constraints is the multilayer min-design linking constraints:

ybl′ ≤ ∑
a∈Dl

bl′

yal ∀(l, l′) ∈C, ∀b ∈ Al′ . (4.9)

These constraints ensure that, for each arc b in a supported layer l′, at least one arc has

to be opened in the supporting layer l ∈ L. Note that, constraints (4.8) implies (4.9),

therefore, in general, one of them might be included in the formulation.

In addition to the above design connectivity coupling constraints, flow connectivity

requirements between layers, whenever they are needed, might be added to the formula-

tion. A first type of flow connectivity requirements is the flow accumulation constraints:

xk
al = ∑

b∈Bal
l′

xk
bl′ ∀(l, l′) ∈C, ∀a ∈ Al, ∀k ∈ K. (4.10)

These constraints simply mean that the flow on each arc a in layer l is equal to the flow

on all the arcs in layer l′ supported by arc a.
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Note that, in some particular cases, constraints (4.10) might contradict flow conser-

vation constraints (4.2). An example is when an arc in layer l supports two or more

reachable arcs in layer l′. Two arcs (x1,y1) and (x2,y2) are said to be reachable if there

is a path from x1 to y2 or from x2 to y1. Consider Figure 4.2 as an example where arcs

a and b are supported, respectively, by paths (1,2) and (4,6,2,7) in layer l. Suppose

that there is a path between arcs a and b (the dashed arc in layer l′), i.e., arcs a and b

are reachable. Arc 2 in layer l supports both arcs a and b in layer l′. Suppose that a

commodity with demand d has to be routed from node A to node B using arcs a and b,

as well as the path between these two arcs (dashed arc). Based on equation (4.10), the

flow on arc 2 is equal to the summation of the flows on arcs a and b, which is 2d. If we

consider the destination node of arc 2, its total incoming flow is 2d, but its total outgoing

flow (on arc 7) is d. So equations (4.10) contradict flow conservation constraints (4.10).

Therefore, constraints (4.2) are not correct on general networks.

l

l'

BA

1 2 3 4 5

6

7

a b

A B

Figure 4.2 – Multilayer network design example showing flow connectivity constraints
contradict flow conservation constraints

This issue does not arise in time-space networks, such as those used in Zhu et al.

[88]. In this type of network, since the arcs are pointing to the next planning horizon, it

is not possible that an arc supports two reachable arcs in another layer.

Another form of flow connectivity requirements might exist when flows are non-

bifurcated, which means the flow of each commodity has to be routed through a single
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path from its origin to its destination. In this case, the following non-bifurcated flow

connectivity constraints, might be added to the model:

∑
k∈Kl′

xk
bl′ ≤ ∑

k∈Kl

xk
al ∀(l, l′) ∈C, ∀a ∈ Al, ∀b ∈ Bal

l′ . (4.11)

For each arc a ∈ Al and b ∈ Bal
l′ , these constraints state that the flow of commodities Kl′

can move on arc b in layer l′ only if there is a flow of commodities Kl on arc a in layer l.

4.3 Multilayer Network Design Taxonomy

In this section, we propose a classification of multilayer network design problems,

and we provide an overview of the existing literature, in light of the proposed classifica-

tion.

4.3.1 Multilayer Network Design Classification

Multilayer network design problems can be categorized into different classes based

on three main dimensions. The first dimension is the number of layers. The second

dimension is the degree of connectivity between layers that includes one-to-one connec-

tivity and one-to-many connectivity. A one-to-one connectivity exists when each layer

is supporting or is supported by only one other layer. A one-to-many connectivity exists

when at least one of the layers is supporting or is supported by more than one layer. Note

that, for two-layer network design problems, the only possible degree of connectivity is

the one-to-one connectivity.

The last dimension is the type of connectivity that includes design connectivity, flow

connectivity, and flow-design connectivity. The last term is used when both types of

connectivity requirements present at the same time. In the integrated freight rail service

network design problem, for example, not only the designs of the layers are connected,

but also the flow of each service is equal to the summation of the flows on its supported

blocks. Figure 4.3 illustrates these three dimensions.
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Figure 4.3 – Classification dimensions of multilayer network design problems

4.3.2 Overview of the Literature

Given the proposed taxonomy, the existing literature fits into 4 classes only: 1) two-

layer network design problems with design connectivity; 2) two-layer network design

problems with flow connectivity; 3) three-layer network design problems with one-to-

many flow connectivity; 4) three-layer network design problems with one-to-one flow-

design connectivity. There are some works in the literature on telecommunications appli-

cations that introduce multilayer network design models with L arbitrary layers [61, 74],

but they focus exclusively on two-layer applications.

The first category, two-layer network design problems with design connectivity, in-

cludes the service network design with resource management [31, 32] and most of the

telecommunications applications [8, 12, 33, 38, 61, 62, 66, 67, 73, 79]. The second

one, two-layer network design problems with flow connectivity, consists of the inte-

grated crew scheduling and aircraft routing problem [10, 16, 17, 68, 69, 81, 83]. The

third class, three-layer network design problems with one-to-many flow connectivity, in-

cludes the integrated crew pairing and assignment problem proposed in Zeighami and

Soumis [87]. The only research work that falls into the forth category, three-layer net-

work design problems with one-to-one flow-design connectivity, is the integrated rail

freight service network design problem proposed by Zhu et al. [88].

Figure 4.4 summarizes all the proposed multilayer network design problems in the
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literature. This figure shows that the only paper that considers one-to-many connectivity

is Zeighami and Soumis [87]. It also shows that almost all contributions in the literature

consider two-layer network design problems with flow or design connectivity. The only

paper that considers both flow and design connectivity requirements is Zhu et al. [88].
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Figure 4.4 – Classification of existing multilayer network design problems in the litera-
ture

The next three sections present a comprehensive survey on the proposed multilayer

network design models in the fields of transportation and telecommunications for each

of the three main classes of problems identified above.

4.4 Two-Layer Network Design Problems with Design Connectivity

In the following subsections, we review the service network design problem with

resource management and the telecommunications applications, the two main classes of
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problems that fall into the category of two-layer network design problems with design

connectivity.

4.4.1 Service Network Design with Resource Management

Service network design with resource management is the only application in the liter-

ature of transportation that falls into the class of two-layer network design problems with

design connectivity. In the following subsections, we first define the problem and review

the existing literature, then we show how the proposed general modeling framework can

model this problem.

4.4.1.1 Problem Definition and Literature Review

Service network design models are broadly used in the field of transportation to

formulate tactical planning problems. Most of these models assume the necessary re-

sources (such as crews, power units, specific vehicles) are available at each terminal

when needed. To overcome this simplification, researchers proposed models recogniz-

ing resource management aspects in service network design (see, e.g., [3, 4]). Crainic

et al. [31] enlarged the considered range of resource management issues. The required

resources to perform services are considered to be assigned to the terminals to which

they must ultimately return, and a limited number of resources are assigned to each

terminal. The problem is to select services in the time-space network and to route the

commodities on the selected services, while the services have to be supported by appro-

priate resource cycles in the resource layer, and the total cost of the designed network,

resource assignment and routing has to be minimized.

To model the problem, the authors proposed a two-layer network including a time-

space service network and a time-space resource cycle network. In the time-space ser-

vice network, an arc is a service moving between terminals and times. In the time-space

resource cycle network, an arc is defined as a resource cycle, which corresponds to a

path of services from a terminal in time t to the same terminal in time t +T MAX , where

T MAX is the maximum schedule length. There is a design connectivity constraint in the
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problem where each arc (a resource cycle) in the resource layer corresponds to a cycle

of the supported services in the service layer. We illustrate these notions in Figure 4.5,

where cycles r1 and r2 in the resource layer support the sets of services {s1,s2,s3} and

{s4,s5,s6} in the service layer, respectively. Using the explained two-layer network, the

authors proposed a cycle-based model to formulate the problem.

Crainic et al. [31] assumed that there is only one type of resources and that the

assignment of resources to terminals has been determined a priori. Crainic et al. [32]

extended this research in two ways: considering multiple types of resources, as well as

the strategic decision of fleet acquisition and assignment. The problem has two layers

and includes assignment or location decisions in the resource layer.

s3

s4
s5

s6

s2
s1

r2

r1

Resource Layer

Service Layer

1

2

3

1 2 3=TMAX 4 5 6

1 2 3=TMAX 4 5 6
1

2

3

Figure 4.5 – Resource cycles and their supported services in the service network design
problem with resource management

4.4.1.2 MLND Formulation

To formulate the service network design problem with resource management with

the general model presented in Section 4.2.2, we use the problem description in Crainic

et al. [31]. We denote by K the set of commodities (single flow-type) and by dk the

demand for commodity k ∈ K. In this problem, we have a service layer (l = 1) and a

resource layer (l = 2). The connectivity set C is defined as {(2,1)}, meaning that the
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service layer is supported by the resource layer. To open an arc b ∈ A1 in the service

layer, one of the supporting resource arcs in set D2
b1 should be opened in the resource

layer. Let V be a set of terminals, then θv is the set of resource arcs of layer 2 that depart

from terminal v ∈ V during the scheduling length. We also denote by hv the limit on

the number of resources that depart at each terminal v ∈ V . Let fal be the fixed cost of

each arc a ∈ Al, l ∈ L that has to be paid to open the corresponding service or resource

arc. We also denote by ck
a1 the routing cost of commodity k ∈ K on arc a ∈ A1. For the

service layer, the decision variable xk
a1 determines the flow of each commodity k ∈ K on

each arc a ∈ A1. Let ya1 and ya2 be the design variables of service a ∈ A1 and resource

a ∈ A2, respectively. Then, the problem can be formulated as follows:

min ∑
k∈K

∑
a∈A1

ck
a1xk

a1 +∑
l∈L

∑
a∈Al

falyal (4.12)

subject to

∑
a∈A+

1 (n)

xk
a1− ∑

a∈A−1 (n)

xk
a1 = wk

n ∀n ∈ N1, ∀k ∈ K (4.13)

∑
k∈K

dkxk
a1 ≤ ua1ya1 ∀l ∈ L, ∀a ∈ A1 (4.14)

yb1 ≤ ∑
a∈D2

b1

ya2 ∀b ∈ A1 (4.15)

∑
a∈θv

ya2 ≤ hv ∀v ∈V (4.16)

xk
a1 ≥ 0 ∀a ∈ A1, ∀k ∈ K (4.17)

yal ∈ {0,1} ∀l ∈ L, a ∈ Al (4.18)

The objective function, (4.12), is to minimize the summation of the routing costs of

the service layer and the design costs of the service and resource layers. Constraints

(4.13) are the flow conservation equations ensuring the demands are satisfied in the ser-

vice layer. Service flow capacity constraints (4.14) ensure that the total flow on each

service arc is less than or equal to the flow capacity of the service and that the service

must be open in order to route the commodities. Service-resource coupling constraints
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(4.15) show that, to open a service arc, at least one of the resource arcs should be open

in the resource layer. Constraints (4.13), (4.14) and (4.15) are equivalent to constraints

(4.2), (4.3) and (4.9) of the general modeling framework, respectively. Terminal resource

capacity constraints (4.16) are the side constraints that impose a limit on the number of

resources of layer 2 that depart from terminal v ∈V during the scheduling length. Con-

straints (4.17) and (4.18) define the domains of the decision variables.

4.4.2 Telecommunications Applications

In this subsection, we first provide an overview of the multilayer network design

problems in telecommunications and a survey on the related literature. Then, we de-

scribe how a typical telecommunications application can be modeled using the proposed

general modeling framework.

4.4.2.1 Problem Definition and Literature Review

In telecommunications applications, there are generally two layers: a virtual layer

(also called logical layer) and a physical layer (or optical transport network). There is

a set of identical nodes that are duplicated in both layers. These nodes might represent

switch points. The nodes and the links can have several features: design cost, flow

cost, virtual flow capacity, physical design capacity, and node capacity. The virtual

flow capacity limits the flow of commodities on each logical link. The physical design

capacity limits the number of logical links from the logical layer that can be supported

by a physical link. The node capacity limits the number of virtual or physical links that

can originate from, or end to, a particular node.

A set of commodities with specific demand quantities need to be routed in the logical

layer. A network has to be designed in the logical layer to transfer the commodities and

satisfy their demands. Several links have to be opened, or facilities have to be installed,

between different pairs of nodes to design the network. Opening a link in the logical

layer depends on opening a path in the physical layer. A typical example of two-layer

network in telecommunications is an internet backbone network that has to be designed

Lagrangian-Based Methods for Single and Multi-Layer Multicommodity Capacitated Network Design

CIRRELT-2019-07



89

based on a physical fiber network. A chain of links (a path) has to be opened in the

physical layer to establish a connection in the internet network. Figure 4.6 shows a

simple example of a two-layer network in telecommunications applications. Link a1

in the virtual layer corresponds to links b1 and b2 in the physical layer, and link a2

corresponds to links b3, b4, and b5. To open or install facilities on a link in the logical

layer, all corresponding links in the physical layer have to be opened or need to have

appropriate facilities. For example, to open link a2, all arcs b3, b4 and b5 have to be

opened.

Figure 4.6 – A two-layer telecommunications network

In telecommunications applications, the researchers mostly proposed two-layer net-

works. All telecommunications applications also fall into the design connectivity cate-

gory where the design of each link in the virtual layer corresponds to the design of all

corresponding links in the physical layer. To the best of our knowledge, the concept

of layered networks in telecommunications date backs to 1991 which is illustrated in

Balakrishnan et al. [6]. Dahl et al. [33] proposed a two-layer network for a telecommu-

nications application. The problem is known as the PIPE, where the objective is to find a

minimum cost pipe (virtual links) selection and routing while considering the design ca-
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pacity of the physical links. Note that, in this problem, each demand has to be routed on

a single virtual path (demands are not splittable). Therefore, the routing and the design

variables are binary in the proposed formulation.

Capone et al. [12] proposed a model for a two-layer network design problem with

node capacity and multicast traffic demand where instead of point-to-point commodities,

each commodity has an origin and multiple destinations. Therefore, a flow solution for

each commodity is a tree, not a path.

Knippel and Lardeux [61] proposed a two-layer network design formulation, as well

as a model with L arbitrary layers. The problem has fixed costs for the virtual and phys-

ical arcs, while no flow costs are considered. The model minimizes the total design cost

of both layers. Parallel arcs are not used in the virtual layer; instead, the authors as-

sumed each virtual flow capacity could be routed on several physical paths. Therefore,

two types of continuous variables are introduced to determine the amount of each com-

modity on each logical path, and the amount of each installed logical traffic routed on

each physical path. Metric inequalities are developed from the dual of the path-based

formulation to represent the feasible space of capacity vectors.

Koster et al. [62] proposed a formulation for a problem with a predefined set of logi-

cal links. The problem includes the selection of nodes and the survivability requirements

against physical node and link failures. According to survivability requirements, a par-

ticular set of demands should be satisfied even if there is any single physical node or

link failure. In the proposed formulation, the survivability requirements are presented

using survivability constraints, where the demands are doubled, and the flow through an

intermediate node is restricted to half of the demand value.

Mattia [66] proposed a model that is similar to the one proposed in Knippel and

Lardeux [61] where the goal is to install minimum cost integer capacities on the links of

both layers to route the commodities on them. In addition, survivability conditions are

added to ensure that in every failure scenario the routing of the associated commodities

must be guaranteed. Instead of adding the survivability constraints, several failure sce-

narios are defined in each of which just a restricted number of links are available. For

each failure scenario, a two-layer network is defined containing only the available links,
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with variables defined for each scenario.

There are other contributions in the literature on telecommunications applications

that focus mostly on solution methods [8, 38, 67, 73, 75, 79]. We review these papers in

Section 4.8.

4.4.2.2 MLND Formulation

We use the problem description in Dahl et al. [33] as a representative of a telecom-

munications application that can be formulated using the general modeling framework

presented in Section 4.2.2. We denote by L= {1,2} the set of layers including the virtual

layer (l = 1) and the physical layer (l = 2). Let C = {(2,1)} be the set of connectivity

requirements, where the ordered pair (2,1) means that the physical layer is supporting

the design of the virtual layer. We denote by K the set of single flow-type commodities

to be routed on the virtual layer and by dk the demand of each commodity k ∈ K. Let

ck
a1 be the flow cost of routing one unit of commodity k ∈ K on arc a ∈ A1, and fal be the

fixed cost of opening an arc a ∈ Al, l ∈ L. The binary flow variable xk
a1 determines if the

demand of commodity k ∈K flows on the virtual arc a∈ A1. The binary design variables

ya1 and ya2 determine, respectively, if a virtual arc a ∈ A1 and if a physical arc a ∈ A2 is

open. Using the above notation, the problem can be formulated as follows:

min ∑
k∈K

∑
a∈A1

ck
a1xk

a1 +∑
l∈L

∑
a∈Al

falyal (4.19)

subject to

∑
a∈A+

1 (n)

xk
a1− ∑

a∈A−1 (n)

xk
a1 = wk

n ∀n ∈ N1, ∀k ∈ K (4.20)

∑
k∈K

dkxk
a1 ≤ ua1ya1 ∀l ∈ L, ∀a ∈ A1 (4.21)

ya2 ≤ ∑
b∈Ba2

1

yb1 ≤ va2ya2 ∀a ∈ A2 (4.22)

xk
a1 ∈ {0,1} ∀a ∈ A1, ∀k ∈ K (4.23)

yal ∈ {0,1} ∀a ∈ Al (4.24)
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The objective function (4.19) is to minimize the total cost including the total routing

cost of the virtual layer and the summation of the design costs of the virtual and physical

layers. Constraints (4.20) are the flow conservation equations that ensure the demands

are satisfied in the virtual layer. Flow capacity constraints (4.21) are imposed for the

virtual layer. Design capacity constraints (4.22) are coupling constraints ensuring that,

to open an arc in the virtual layer the supporting arcs in the physical layer should be open

and that the maximum number of selected virtual arcs is limited to the design capacity

of the corresponding physical arc. These constraints correspond to the design capacity

constraints of the general modeling framework (4.7). Constraints (4.23) and (4.24) de-

fine the feasible domains of the decision variables. In telecommunications applications,

the flow variables are binary, to ensure that the flow of each commodity follows a single

path from the origin to the destination. Note that, when the links are undirected in a

telecommunications application, the problem can still be modeled using the proposed

formulation by replacing an undirected link with two directed arcs.

4.5 Two-Layer Network Design Problems with Flow Connectivity

The integrated crew scheduling and aircraft routing problem is, to the best of our

knowledge, the only application that falls into the category of two-layer network design

problems with flow connectivity. In Subsection 4.5.1, we provide an overview of the

problem, and we review the literature on this topic. In Subsection 4.5.2, we explain how

the model we propose in Section 4.2.2 can formulate this application.

4.5.1 Integrated Crew Scheduling and Aircraft Routing: Literature Review

The first step in the airline planning process is flight scheduling to define the origin

and the destination, as well as the departure and arrival times, for each flight leg to be

flown during a given period. The next step is to assign an aircraft type to each flight

leg to maximize the profit, which is called the fleet assignment problem. Then, for each

aircraft type, the aircraft routing problem is solved to determine the sequence of flight

legs that have to be covered by each aircraft. In this problem, each flight leg has to be
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covered exactly once while ensuring aircraft maintenance requirements. The next step is

called the crew scheduling problem, which consists in two steps: crew pairings followed

by crew assignment. A crew pairing is a sequence of duty and rest periods starting and

ending at the same location called crew base. A duty period is a sequence of flight legs

separated by short rest periods. The duties are also separated by long (overnight) rest

periods. The crew assignment is to build monthly scheduling out of generated pairings

for each crew member.

Traditionally, most airlines use a sequential procedure to solve these problems. The

sequential procedure reduces the complexity of the problem, but might result in a so-

lution far from the global optimum of the integrated problem. The integrated crew

scheduling and aircraft routing problem is a an attempt to handle this issue. The problem

is defined on a two-layer network including 1) an aircraft routing network, and 2) a crew

scheduling network. In both networks, each node corresponds to a flight leg, and the

arcs represent the connections between two legs. The integrated problem is to find the

minimum total cost of aircraft and crew routing (one path for each aircraft and one path

for each crew), while the two following conditions are satisfied: 1) each flight leg has to

be covered only once by a crew and only once by an aircraft, and 2) if a connection time

for a link is too short (short time links) then the corresponding legs can be covered by the

same crew only if both legs are covered by the same aircraft; otherwise, the connection

time is insufficient for the crew. The second condition corresponds to the second type of

flow connectivity requirements shown in constraints (4.11).

Cordeau et al. [17] proposed a path-based formulation for the integrated crew schedul-

ing and aircraft routing problem. Cohn and Barnhart [16] contributed to the literature on

the integrated aircraft routing and crew scheduling problem by proposing an extended

crew pairing formulation. In the proposed formulation, the aircraft routing variables

represent a complete solution of a routing problem. Mercier et al. [69] improved the

integrated approach of Cordeau et al. [17] by introducing restricted connection arcs in

addition to short time connections. A connection is restricted if the connection time is

larger than a minimum threshold, but it is still smaller than another given threshold. If

the two legs of such a connection are covered by the same crew, a penalty is imposed in
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the objective function if both legs of this connection are not covered by the same aircraft.

Mercier and Soumis [68] extended the integrated approach by adding the flight re-timing

feature, where flight legs have different possible departure times among which the best

one has to be selected to minimize the cost.

Shao et al. [83] integrated the fleet assignment problem to the integrated crew schedul-

ing and aircraft routing problem. This new integration adds the decision of assigning a

proper fleet type to each flight leg (node) of the network.

Salazar-González [81] proposed an arc-based formulation where both aircraft routes

and crew pairs are presented using arc-based variables. The main disadvantage of the

proposed formulation is that a large number of inequalities need to be added to avoid

infeasible crew routes. Two alternative formulations are also proposed in Cacchiani and

Salazar-González [10] including a path-based model as in Cordeau et al. [17] and an

arc-path-based model using arc-based variables and path-based variables to represent

aircraft routes and crew pairings, respectively.

4.5.2 MLND Formulation for Integrated Crew Scheduling and Aircraft Routing

Using the description of Cordeau et al. [17] as a representative of integrated crew

scheduling and aircraft routing problems, we describe how to formulate the problem us-

ing the general modeling framework presented in Section 4.2.2. Let L = {1,2} be the

set of layers including a crew layer (l = 1) and an aircraft layer (l = 2). The nodes in

both layers are the flight legs, while the arcs are the crew and aircraft connections, re-

spectively, in the crew and aircraft layers. A set of crews (K1) and aircrafts (K2) should

be routed on the crew and the aircraft layers, respectively. Note that the flows are non-

bifurcated. We partition the nodes of each layer l ∈ L into NO
l = {n ∈ Nl |∃k ∈ Kl,n =

O(k)}, ND
l = {n ∈ Nl |∃k ∈ Kl,n = D(k)} and NI

l = Nl\NO
l ∪ND

l . Binary decision vari-

able xk
a1 and xk

a2 determine, respectively, if crew k ∈ K1 uses arc a ∈ A1 and if aircraft

k ∈ K2 uses arc a ∈ A2. The set C is defined as {(2,1)} representing the coupling con-

straints which indicates the aircraft layer supports the crew layer. Using the described

notation, the problem can be formulated as:
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min Ψ(x) (4.25)

∑
a∈A+

1 (n)

xk
a1− ∑

a∈A−1 (n)

xk
a1 = wk

n ∀n ∈ N1, ∀k ∈ K1 (4.26)

∑
a∈A+

2 (n)

xk
a2− ∑

a∈A−2 (n)

xk
a2 = wk

n ∀n ∈ N2, ∀k ∈ K2 (4.27)

∑
k∈K1

xk
b1 ≤ ∑

k∈K2

xk
a2 ∀a ∈ A2, ∀b ∈ Ba2

1 (4.28)

∑
a∈A+

l (n)
∑

k∈Kl

xk
al = 1 ∀l ∈ L, ∀n ∈ NO

l ∪NI
l (4.29)

∑
a∈A−l (n)

∑
k∈Kl

xk
al = 1 ∀l ∈ L, ∀n ∈ ND

l ∪NI
l (4.30)

xk
al ∈ {0,1} ∀a ∈ Al, ∀k ∈ K (4.31)

The objective function (4.25) minimizes the total routing costs on both layers. In air-

line applications, since the objective is typically a non-linear function of arc-based flow

variables, researchers usually propose path-based formulations for which the objective

function is linear. Crew flow conservation equations (4.26) and aircraft flow conserva-

tion equations (4.26) guarantee, respectively, the routing of the flows of the crews and

aircrafts on the crew and aircraft layers. Constraints (4.28) ensure that a crew does not

change aircraft when the connection time is too short. These constraints correspond to

the flow connectivity inequalities (4.10) of the general modeling framework. Constraints

(4.29) and (4.30) are the side constraints ensuring that a flight leg is covered by exactly

one crew and one aircraft. Constraints (4.31) define the domain of the decision variables.

4.6 Three-Layer Network Design Problems with One-to-Many Flow Connectivity

To the best of our knowledge, the only paper that considers one-to-many connectivity

requirements is Zeighami and Soumis [87]. In the following subsections, we describe the

integrated crew pairing and assignment problem, and then we explain how the MLND

framework can formulate this problem.
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4.6.1 Integrated Crew Pairing and Assignment: Literature Review

The crew scheduling problem constructs individual schedules for a set of available

crew members. Because of its complexity, this problem is usually solved in two steps:

crew pairing followed by crew assignment. The sequential procedure reduces the com-

plexity of the problem but might result in a solution far from the global optimum of

the integrated problem since the schedule constraints and objectives are not taken into

account during the construction of the pairings.

Zeighami and Soumis [87] proposed an integrated crew pairing and personalized

assignment problem for a given set of pilots and copilots. They considered a set of

vacation requests (VRs) for each pilot and copilot each month. The problem is defined

on a three-layer network including 1) a crew pairing network, 2) a crew pilot assignment

network, and 3) a crew copilot assignment network. In the crew pairing network, each

node corresponds to a departure and an arrival stations of the flights. The arcs represent

the flights and the connections between the flights. In the pilot (copilot) assignment

network, each node corresponds to the start and end of pairings, and the arcs represent

the pairings, the connections between pairings, and the vacations of the pilots (copilots).

The objective function finds a trade-off between maximizing the number of satisfied VRs

and minimizing the total cost of the pairings (one path for each pairing and one path for

each crew pilot (copilot) assignment), while the two main conditions are satisfied: 1)

each flight is covered by exactly one pairing, and 2) each pairing is covered by exactly

one pilot and one copilot.

4.6.2 MLND Formulation for Integrated Crew Pairing and Assignment

To model the problem using the general modeling framework presented in Section

4.2.2, we define the following notation. Let L = {1,2,3} be the set of layers including

the crew pairing (l = 1), pilot assignment (l = 2), and copilot assignment (l = 3) layers.

Gl = (Nl,Al) defines the network of each layer l ∈ L. In the crew pairing layer, we

partition the arcs into the sets of flight arcs A f
1 and connection arcs Ac

1. We assume that

all the potential pairings are exists in the pilot and copilot assignment layers. There
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are a set of pilot K2 and copilots K3 that are need to be routed in the pilot and copilot

assignment layers, respectively. O(k) ∈ Nl and D(k) ∈ Nl are, respectively, the origin

and the destination of each crew k ∈ Kl in layers l ∈ {2,3}.
We denote by C = {(1,2),(1,3)} the set of connectivity requirements, where (1,2)

and (1,3) means that, respectively, the pilot and copilot assignment layers are supported

by the crew pairing layer. To use a pairing arc in the assignment layer, all the corre-

sponding arcs need to be selected in the crew pairing layer. Let Ba1
2 and Ba1

3 be the sets

of arcs (pairings), respectively, in the pilot and copilot layers supported by arc a ∈ A1

in the pairing layer. Binary flow variable ya1 determines whether arc a ∈ A1 is selected

or not. Binary flow variables xk
a2 and xk

a3 determine, respectively, whether or not pilot

k ∈ K2 and copilot k ∈ K3 selects arc a ∈ A2 and a ∈ A3. Using the described notation,

the problem is formulated as follows:

min Ψ(x,y) (4.32)

∑
a∈A+

2 (n)

xk
a2− ∑

a∈A−2 (n)

xk
a2 = wk

n ∀n ∈ N2, ∀k ∈ K2 (4.33)

∑
a∈A+

3 (n)

xk
a3− ∑

a∈A−3 (n)

xk
a3 = wk

n ∀n ∈ N3, ∀k ∈ K3 (4.34)

∑
k∈K2

xk
b2 ≤ ya1 ∀a ∈ A1, ∀b ∈ Ba1

2 (4.35)

∑
k∈K3

xk
b3 ≤ ya1 ∀a ∈ A1, ∀b ∈ Ba1

3 (4.36)

∑
b∈Ba1

2

∑
k∈K2

xk
b2 = 1 ∀a ∈ A f

1 (4.37)

∑
b∈Ba1

3

∑
k∈K3

xk
b3 = 1 ∀a ∈ A f

1 (4.38)

xk
al ∈ {0,1} ∀l ∈ {2,3}, ∀a ∈ Al, ∀k ∈ Kl (4.39)

ya1 ∈ {0,1} ∀a ∈ A1 (4.40)

x ∈ X (4.41)

The objective function (4.32) minimizes the total routing and design costs on the
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three layers. Pilot flow conservation equations (4.33) guarantee the routing of each pilot

k ∈ K2 in the second layer. The same type of flow conservation constraints (4.34) exist

for the copilot layer. In this equations wk
n = 1 if n = O(k), wk

n = −1 if n = D(k), and 0

otherwise. Constraints (4.35) and (4.36) are the coupling constraints ensuring the flow

connectivity between layers. Constraints (4.37) and (4.38) are the covering constraints

which ensure, each flight arc is covered by exactly one pairing. Constraints (4.39) and

(4.40) define the domain of the decision variables. Constraints (4.41) are a set of side

constraints including the constraints which are correspond to VRs.

4.7 Three-Layer Network Design Problems with One-to-One Flow-Design Con-

nectivity

The only paper that applies both flow and design connectivity requirements is Zhu

et al. [88]. In the following subsections, we first describe the problem proposed in Zhu

et al. [88]. Then, in the second subsection, we explain how the MLND framework can

model this problem.

4.7.1 Integrated Rail Freight Service Network Design: Literature Review

Zhu et al. [88] proposed a three-layer network to model a problem in rail freight

transportation planning where typically a double consolidation policy is performed. First,

cars are grouped into so-called blocks, and then the blocks are grouped into services to

make up trains. Cars that are in a terminal at the same time can be sorted and arranged

into a block. This process is called blocking, and its goal is to reduce operations in ter-

minals by moving blocks instead of each car individually. A block is then a unit that

will be transferred between terminals using a sequence of services until it reaches its

destination. At the block destination, the block is broken down, and the cars that arrived

at their destinations are delivered, while the cars that did not reach their destinations are

grouped into other blocks. The process of arranging the blocks into services is known as

train makeup. The next step is to select the services and define their frequencies.

In Zhu et al. [88], both blocking and service selection problems are considered to-
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gether. To do so, a three-layer network including car network, block network, and service

network is used. The network of each layer is a time-space network. The first layer, the

car layer, consists of car-waiting arcs, classification arcs and car-holding arcs. Car-

waiting arcs show the waiting of cars between two time periods in one terminal. Clas-

sification arcs show the classification process of cars between two time periods in one

terminal. Car-holding arcs show waiting process of the classified cars between two time

periods in one terminal. The car-waiting, classification, and car-holding arcs are not re-

lated to any path of the block layer. The second layer, the block layer, includes block

arcs from the origins to the destinations of the blocks to support car movements. The

third layer, the service layer, includes service arcs to support block movements.

In the car layer, the flows of commodities are moved via the car arcs and the projected

block arcs from the block layer. A chain of services has to be opened in the service

layer (design connectivity) to open a block arc. The flow of each service is equal to the

summation of the flows on all its supported blocks (flow connectivity). The problem

is to find a minimum cost blocking and service design, and flow routing of the cars,

while considering flow capacity of the blocks and the services, blocking capacity of

each terminal, and flow and design connectivity requirements between the layers.

4.7.2 MLND Formulation for Integrated Rail Freight Service Network Design

We define the following notation to model the problem using the general modeling

framework presented in Section 4.2.2. Let K be a set of single flow-type commodities.

There are three layers, the car layer (l = 1), the block layer (l = 2) and the service layer

(l = 3). The car layer includes car arcs and block arcs projected from the block layer.

The block layer includes block holding, transfer and moving arcs. The service layer

consists of service waiting and moving arcs. We denote by C = {(3,2),(2,1)} the set

of connectivity requirements, where (2,1) means that the block layer is supporting the

car layer, and (3,2) indicates that the service layer is supporting the block layer. In the

car layer, each projected block arc is supported by a path of block holding, transfer and

moving arcs in the block layer. In the block layer, a block moving arc is supported by

a chain of service moving and waiting arcs of the service layer. For each layer l ∈ L,
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continuous flow variable xk
al determines the flow of commodity k ∈ K on arc a ∈ Al . For

the car layer, the binary design variable ya1 determines the selection of a car arc or a

projected block arc a ∈ A1. In the block (l = 2) and service (l = 3) layers, the binary

design variable yal is 1 if arc a ∈ Al is selected. We denote by T , V and E the set of time

periods, yards, and track segments, respectively. Let H(v, t) be the set of blocks built

simultaneously at yard v ∈V , and let S(e, t) be the set of services moved simultaneously

at track segment e ∈ E. We denote by hv and se, respectively, the maximum number of

blocks and services that can be built simultaneously at each yard v∈V and track segment

e ∈ E. Using the described notation, the problem is formulated as follows:

min ∑
l∈L

∑
k∈K

∑
a∈Al

ck
alx

k
al +∑

l∈L
∑

a∈Al

falyal (4.42)

∑
a∈A+

1 (n)

xk
a1− ∑

a∈A−1 (n)

xk
a1 = wk

n ∀n ∈ N1, ∀k ∈ K (4.43)

xk
al = ∑

b∈Bal
l′

xk
bl′ ∀(l, l′) ∈C, ∀a ∈ Al, ∀k ∈ K. (4.44)

∑
k∈Kl

dkxk
al ≤ ualyal ∀l ∈ L, ∀a ∈ Al (4.45)

ya3 ≤ ∑
b∈Ba3

2

yb2 ≤ va3ya3 ∀a ∈ A3 (4.46)

ybl′ ≤ yal ∀(l, l′) ∈C, ∀a ∈ Al, ∀b ∈ Bal
l′ . (4.47)

∑
a∈H(v,t)

ya2 ≤ hv ∀v ∈V, ∀t ∈ T (4.48)

∑
a∈S(e,t)

ya3 ≤ se ∀e ∈ E, ∀t ∈ T (4.49)

xk
al ≥ 0 ∀l ∈ L, ∀a ∈ Al, ∀k ∈ K (4.50)

yal ∈ {0,1} ∀l ∈ L, ∀a ∈ Al (4.51)

The objective function (4.42) minimizes the total routing and design costs on the

three layers. Constraints (4.43) guarantee that the demands are routed on the car layer,

while constraints (4.44) compute the flow on each arc of the block and service layers
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based on the corresponding arcs of the car layer. Flow capacity constraints (4.45) ensure

that the flow on each arc is less than or equal to the capacity and that the arc should

be opened in order to route the commodities. Constraints (4.47) ensure that, to open an

arc in the car layer, all the corresponding block arcs must be opened in the block layer,

and that, to open an arc in the block layer, all the corresponding arcs must be opened in

the service layer. Design capacity constraints (4.46) limit the number of blocks that can

be moved on the corresponding arc of the service layer. These constraints correspond

to the design capacity constraints (4.7) of the general modeling framework. Constraints

(4.48) and (4.49) are the side constraints that limit, respectively, the number of blocks

and services to be created at each yard and track segment.

4.8 Solution Approaches for Multilayer Network Design Problems

In this section, we summarize the solution methods proposed in the literature for

multilayer network design problems. The solution methods proposed in the literature

can be classified as 1) exact solution methods [10, 17, 33, 38, 61, 62, 66, 67, 69, 79, 83],

and 2) heuristic solution methods [8, 12, 31, 32, 73, 75, 81, 88]. In the two follow-

ing subsections, we review, respectively, the exact and heuristic methods proposed for

solving multilayer network design problems.

4.8.1 Exact Solution Methods

In exact solution methods, researchers mostly focus on either embedding Benders

decomposition and classical network design cuts into branch-and-bound or combining

Benders decomposition and column generation. In the two following subsections, we

review: 1) cutting plane and Benders decomposition methods [33, 38, 61, 62, 66, 67,

73, 75, 79], and 2) combined column generation and Benders decomposition methods

[10, 17, 69, 83].
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4.8.1.1 Cutting Plane and Benders Decomposition Methods

Dahl et al. [33] used a branch-and-cut algorithm for a two-layer telecommunications

network design problem. At each node of the branch-and-bound tree, several valid in-

equalities are added to the linear programming (LP) relaxation. A variable fixing heuris-

tic is called when the branch-and-cut algorithm does not find any violated inequality.

Several instances derived from a real-world application are used to test the algorithm.

The algorithm is able to solve to optimality all instances with no fixed costs, without

making any branching (these instances are solved at the root). For the instances with

positive fixed costs, the algorithm could not solve the problems to optimality but found

solutions within an average optimality gap of 9%.

Knippel and Lardeux [61] proposed a Benders decomposition algorithm for a two-

layer telecommunications network design problem with no flow cost where the master

problem handles the design variables, and two subproblems determine the value of the

flow variables. The algorithm first solves the master problem as an integer program with

no cuts. Then, the algorithm checks the feasibility of the obtained solution by solving

two subproblems, one for the logical layer and the other for the physical layer. If the

solution is infeasible, then the corresponding cuts are added to the master problem. The

solution time of the master problem is larger than that of the subproblems because of

the integrality conditions on the master problem variables. To reduce the solution time,

different approaches for the generation of cuts are proposed.

Fortz and Poss [38] improved the Benders decomposition method proposed in Knip-

pel and Lardeux [61]. The idea is to embed the Benders decomposition into a branch-

and-cut algorithm. In this way, instead of solving the master problem as an integer

program, the algorithm solves the LP relaxation of the master problem at each node of

the branch-and-bound tree. If the solution is integral, it adds the corresponding Benders

cuts by solving the subproblem. If the solution is not integral, it generates branches in

the tree and adds the branching constraints to the master problem. This way, the solution

time is significantly reduced compared to that of the tradiitonal Benders decomposition

approach. To avoid generating too many infeasible nodes, cuts are added a priori to
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the master problem by solving its LP relaxation with the cutting plane algorithm pro-

posed by Knippel and Lardeux [61]. The results are compared with the cutting plane

approaches of Knippel and Lardeux [61], and with CPLEX. The results show that the al-

gorithm outperforms CPLEX, and that the proposed branch-and-cut algorithm is always

faster than the Benders decomposition approaches.

Koster et al. [62] proposed a cutting plane method embedded in a branch-and-bound

framework for the telecommunications application with survivability requirements against

physical node and link failures. In the proposed cutting plane method, the authors used

the cuts that were applied before in the literature on the single layer network design

problem. The algorithm is tested on three different sets of instances. In the case of

unprotected demands (no survivability requirement), the cutting plane algorithm signifi-

cantly improves the LP relaxation lower bounds. In the case of protected demand, where

the size of the problem dramatically increases compared to the unprotected case, the

cutting plane algorithm only slightly improves the LP relaxation lower bounds.

Raack and Koster [79] studied a packing problem derived from a two-layer network

design problem. The authors proved the NP-hardness of the problem and defined two

classes of facet-defining inequalities that generalize the well-known cutset inequalities

to two-layer network design.

Mattia [66] proposed a branch-and-cut scheme using metric inequalities for the same

problem as in Knippel and Lardeux [61], but with survivability requirements. Further

work on the same problem can be found in Mattia [67], where the polyhedron of a two-

layer network design formulation is considered. The results are extended to multilayer

network design models.

4.8.1.2 Combined Column Generation and Benders Decomposition Methods

Orlowski [73] proposed several techniques combining Benders decomposition and

column generation embedded into a branch-and-cut framework for a multilayer network

design problem with survivability requirements. The solution methods are based on the

approaches proposed in Fortz and Poss [38] and Koster et al. [62]. Similar to Fortz and

Poss [38], metric inequalities are used to create a Benders master problem by project-
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ing out the flow variables to a subproblem. The LP relaxation of the Benders master

problem is solved at each node of the branch-and-cut tree. Whenever an integer solution

is found, the algorithm checks the feasibility in a routing subproblem, and adds cuts to

the master problem, if the design is not feasible according to the routing constraints.

The cuts proposed in Koster et al. [62] are generated, along with cuts derived from sur-

vivability constraints. Several primal heuristics are proposed to improve the feasible

integer solutions. A column generation approach is developed to generate flow variables

dynamically in the large-scale routing subproblems. The algorithm could find feasible

solutions and lower bounds for large-scale instances that could not be solved by a com-

mercial solver. However, for large and dense instances, the obtained feasible solutions

are still far from optimality (57% and 28% optimality gap on average for the instances

with and without the survivability conditions, respectively).

Orlowski et al. [75] combined the approaches in Orlowski [73] and Koster et al. [62].

In addition to the cutting plane approach presented in Koster et al. [62], the heuristic

methods presented in Orlowski [73] were also used. The heuristics are called at various

places of the branch-and-cut tree. The algorithm is tested on several real-world industrial

instances.

Cordeau et al. [17] proposed a Benders decomposition approach for the integrated

crew scheduling and aircraft routing problem. The classical solution method is to use

branch-and-bound where, at each node, the LP relaxation is solved using a column gen-

eration method. However, in the computational experiments, the authors observed that

the column generation restricted master problem becomes difficult to solve because it has

too many constraints. Therefore, a Benders decomposition approach is proposed where

the crew scheduling variables are projected out into a subproblem. The Benders decom-

position approach is embedded into a branch-and-bound algorithm. The LP relaxation

at each node is solved by Benders decomposition, and both the Benders master problem

and the Benders subproblem are solved using column generation. The solution method

is tested on instances derived from real data. The proposed solution method is compared

with a pure column generation approach. The results show that the combined Benders

decomposition and column generation approach produces integer solutions faster than
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the pure column generation method. The obtained solutions are compared with the solu-

tions of the traditional sequential planning process. The results show that the integrated

approach produced significant savings in comparison to the traditional sequential one.

Two Benders decomposition methods are proposed and compared in Mercier et al.

[69] for the integrated crew scheduling and aircraft routing problem with restricted con-

nection arcs. The methods are based on the combined Benders decomposition and

column generation method proposed in Cordeau et al. [17]. The first decomposition

considers the aircraft routing problem as the master problem and the crew scheduling

problem as the subproblem, like it is done in Cordeau et al. [17], while in the second

one, the decomposition is reversed. The effect of Pareto-optimal cuts on the conver-

gence of these two Benders decomposition approaches is analyzed. The results show

that Pareto-optimal cuts accelerate the convergence of Benders decomposition. The re-

sults also show that the second decomposition outperforms the one proposed in Cordeau

et al. [17].

Shao et al. [83] proposed a combined Benders decomposition and column genera-

tion approach for the integrated crew scheduling and aircraft routing problem with fleet

assignment. The Benders decomposition approach is enhanced by several acceleration

techniques. In addition, a stabilization technique is used for the column generation pro-

cedure of the crew pairing subproblem. The proposed Benders decomposition approach

is tested on real-world data obtained from a U.S.-based airline carrier. The results show

that the integrated approach yields 8.4% improvement, on average, in comparison with

a traditional sequential decision process.

Cacchiani and Salazar-González [10] proposed two different exact methods for path-

based and arc-based formulations of the integrated crew scheduling and aircraft routing

problem. Both solution methods include three main steps: 1) solving the LP relaxation of

the corresponding model to optimality using column generation on the path-based model

and consequently finding a lower bound; 2) running a primal heuristic to obtain an upper

bound; 3) finding the optimal solution. The third step for the path-based formulation

consists of a branch-and-price algorithm, while for the arc-path-based model, a restricted

mixed-integer program is used. A single bounding cut that significantly accelerates the
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solution process is also presented. The proposed algorithms are tested on real-world

instances. The results show that the proposed method for the arc-path-based model

outperforms not only the one proposed for the path-based model, but also the heuristic

method proposed in Salazar-González [81].

Zeighami and Soumis [87] proposed a solution methodology based on Benders de-

composition and column generation for the integrated crew pairing and assignment prob-

lem. The pairings are generated by the Benders master problem. The monthly schedules

for pilots and copilots are generated by the Benders subproblems. Benders master prob-

lem and Benders subproblems are solved by column generation.

4.8.2 Heuristic Solution Methods

For the heuristic solution methods, researchers mostly focus either on combining

heuristic and mathematical programming approaches to come up with matheuristics [8,

31, 32, 81, 88], or on developing neighborhood-based heuristics [12]. The two following

subsections are dedicated to reviewing these two types of heuristic methods.

4.8.2.1 Matheuristics

Crainic et al. [31] proposed a matheuristic solution method for the service network

design problem with resource management. Their proposed solution method can be de-

scribed in two main phases. The first phase is to solve the LP relaxation of the original

problem, and the second one is an iterative slope scaling procedure. The idea of slope

scaling is to iteratively solve a linear approximation of the formulation, and to use the

resulting flow distribution to adjust the fixed cost approximation at the next iteration.

When the slope scaling stalls, a perturbation procedure changes the initial linearization

factors to start a new phase of the slope scaling procedure (see, e.g., [27, 56]). In the

proposed solution method, the LP relaxation is solved by a column generation approach

that generates cycles dynamically. The linearization factors of the slope scaling proce-

dure are then initialized using the information from the LP relaxation phase. On a set of

small-size instances, the results show that the algorithm produces high-quality solutions
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in comparison with a commercial MIP solver, as it only generates a small fraction of

the possible cycles. The algorithm is also benchmarked on a set of large-scale instances

against a column generation-based heuristic developed by the authors. The results show

that the algorithm again can produce high-quality solutions.

Crainic et al. [32] proposed a matheuristic that extends solution techniques proposes

in Crainic et al. [31]. The matheuristic applies column generation to determine the set of

resource cycles. To produce feasible solutions, the solution method uses both slope scal-

ing and different matheuristics such as Archetti et al. [5], De Franceschi et al. [34], He-

witt et al. [52], Vu et al. [85]. The results show that the proposed approach outperforms

both a commercial MIP solver and the heuristic method in Crainic et al. [31].

Zhu et al. [88] proposed a matheuristic solution method based on slope scaling for the

integrated rail freight service network design problem. Two approaches are proposed:

a basic approach that linearizes all design variables and a dynamic approach, where the

service design variables are linearized and a metaheuristic is used to generate the blocks

dynamically. The approaches are tested on instances based on the setting of the main-line

network of a major North American railroad. The results show that the optimality gap

obtained by CPLEX increased dramatically with instance size, and that CPLEX is unable

to find an optimal solution within 10 hours of CPU time. The basic approach obtained

better solutions than CPLEX for more than 90% of the instances. The dynamic approach

also outperformed CPLEX, but in comparison with the basic one, it performed somewhat

worse on small and medium size instances due to the additional effort required by the

block generation feature. However, it starts outperforming the basic approach when the

instance dimensions grow.

Salazar-González [81] proposed a two-phase matheuristic for the integrated crew

scheduling and aircraft routing problem. The first phase is a greedy search to find the

pairings to cover all the flights, and the second phase creates aircraft routes.

Belotti et al. [8] proposed a Lagrangian relaxation method for a multilayer network

design problem in telecommunications. A Lagrangian relaxation is used to relax the

virtual flow capacity constraints. In this way, there is no relation between the flow vari-

ables and the design variables in the relaxed problem. Therefore, the relaxed problem
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is decomposed into shortest path subproblems for each commodity, plus one capacity

assignment subproblem to determine the design variables. Since the number of virtual

arcs increases exponentially when increasing the problem size, a column generation ap-

proach is used to solve the capacity assignment subproblem. A subgradient method is

applied to find the Lagrangian lower bound. To find feasible solutions for the problem, a

local search heuristic is developed. It starts with an initial solution and tries to improve

it by rerouting the commodities on the virtual links and rerouting the virtual capacities

on the physical links. The proposed Lagrangian relaxation method is able to find both

lower and upper bounds for almost all the tested instances in a reasonable time.

4.8.2.2 Neighborhood-Based Heuristics

Capone et al. [12] proposed a heuristic for a two-layer telecommunications network

design problem with node capacity and multicast traffic. The heuristic constructs an

initial solution using a greedy-based procedure. Then, it improves the solution using two

different neighbourhood structures including 1) changing the routing of the commodities

in the virtual layer, and 2) re-routing the virtual links on the physical links. The results

show that the algorithm performs better with the second neighbourhood structure.

4.9 Conclusions

We have proposed a taxonomy of multilayer network design problems using differ-

ent features including the number of layers as well as the type and degree of connectivity

requirements between layers. We have also presented a state-of-the-art review on multi-

layer network design models and methods found in telecommunications and transporta-

tion applications. The review shows that there is one research contribution in the liter-

ature that considers one-to-many connectivity Zeighami and Soumis [87]. The review

also shows that almost all contributions in the literature considered two-layer network

design problems with design or flow connectivity. The only contribution that consid-

ers both flow and design connectivity requirements is Zhu et al. [88]. Studying new

problems with flow-design connectivity and with more than two layers is a fascinating
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research direction.

From the solution methodology point of view, a first interesting research avenue is to

adapt to multilayer network design the advanced solution methods proposed for single

layer network design problems. In particular, Lagrangian relaxation methods have been

used to solve single layer network design problems (see [53], [82], [27], and [60] for

example), but, as we have seen, they have been very rarely applied to address multilayer

network design problems (the only exception is the work of Belotti et al. [8]). An-

other interesting research avenue is to take advantage of the multilayer network design

structure to derive new valid inequalities to be used in cutting plane methods. Finally,

because of their inherent difficulty, multilayer network design problems can be solved by

exact solution methods only for relatively small instances. Solving large-scale instances

requires a combination of decomposition methods (cutting planes, Benders decomposi-

tion, column generation, Lagrangian relaxation) and metaheuristics. The development

of matheuristics capable of solving multilayer network design problems of increasing

complexity constitutes a major research challenge.

Lagrangian-Based Methods for Single and Multi-Layer Multicommodity Capacitated Network Design

CIRRELT-2019-07



CHAPTER 5

A LAGRANGIAN-BASED MATHEURISTIC FOR MULTILAYER SINGLE

FLOW-TYPE MULTICOMMODITY CAPACITATED FIXED-CHARGE

NETWORK DESIGN

In multilayer network design, there are several networks, each at a given layer. To

route a set of commodities from the origins to the destinations, at each layer, appropriate

capacitated links have to be opened by paying a fixed cost per link. The so-called design

connectivity constraints need to be enforced. They impose the requirement that a link

is opened in a layer only if a chain of supporting links is opened in another layer. The

problem is to find a minimum cost design and routing for all layers that satisfies capacity

and connectivity constraints as well as demands. In this paper, we address the Multilayer

Single flow-type Multicommodity Capacitated Fixed-Charge Network Design problem

(MSMCFND), where commodities are routed only in the first layer. The amount of flow

on each link in a particular layer is equal to the amount of flow on its supported links in

the first layer. We propose a general formulation for the MSMCFND, for which we de-

velop an effective solution method based on Lagrangian relaxation to address large-scale

instances. The resulting Lagrangian-based matheuristic method is enhanced by intensifi-

cation, diversification, and post-optimization procedures using long-term and short-term

memories. The results show that the proposed algorithm is competitive with (and often

significantly better than) a state-of-the-art MIP solver on a large set of randomly gener-

ated instances, not only with respect to the obtained upper bounds, but also in terms of

optimality gaps.

5.1 Introduction

Applications of network design models are extensive in the fields of transportation,

telecommunications, logistics and production planning [64, 70]. In network design,

given a potential network with capacitated links, several commodities such as goods,
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data or people, have to be routed between the different origin and destination points. A

network has to be constructed by opening appropriate links to route the commodities. A

fixed design cost has to be paid to open a link. In addition to the fixed design costs, a per

unit routing cost, or flow variable cost, is associated with each link and must be paid to

route each unit of commodity demand on the link. The problem is to select a set of links

and route the demands from the origins to the destinations on the constructed network

such that the costs are minimized and capacities are respected.

In this paper, we consider multilayer network design models, with applications in the

fields of transportation [17, 31, 88] and telecommunications [33, 61]. Multilayer network

design models differ from a typical single-layer network design model in two main as-

pects. First, instead of a single network, there are several networks, each at a given layer.

Each network has its nodes, potential links with capacities, and possibly commodities.

To route the demands of the commodities from the origins to the destinations, appropri-

ate links have to be opened by paying a fixed cost per link. Second, in multilayer network

design, there are design connectivity and flow connectivity requirements between the lay-

ers. Design connectivity means that opening a link in a layer depends on opening a chain

of supporting links (a path) in another layer, named as supporting layer. Flow connectiv-

ity states that the amount of flow on each link in a particular layer depends on the flow on

its supported links in another layer. It is possible that some layers have no commodities

to route, but these layers also support the routing of other layers through constraints that

connect the layers. In particular, when there is only one layer where commodities are

routed, the problem is a multilayer single flow-type network design.

In this paper, we address the Multilayer Single flow-type Multicommodity Capac-

itated Fixed-Charge Network Design problem (MSMCFND), where commodities are

routed only in layer l = 1, given a set of layers L = {1,2, .., |L|}. The amount of flow

on each link in a particular layer l ≥ 2 is equal to the amount of flow on its supported

links in layer l−1 and consequently to the amount of flow on its supported links in layer

l = 1. A comprehensive review and taxonomy on multilayer network design models and

solution methods for such problems can be found in [1]. The MSMCFND represents a

set of service network design problems with multiple consolidation levels, which arise
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in transportation applications, see Zhu et al. [88] and Crainic et al. [31] for example.

Lagrangian relaxation is among the most effective methods to address the single-

layer multicommodity capacitated fixed-charge network design problem (MCFND), see

[53], [82], [27], and [60] for example. Motivated by these developments, we pro-

pose a Lagrangian-based matheuristic for the MSMCFND. Although there are effec-

tive Lagrangian-based heuristics for the MCFND, these methods cannot be adapted in

a straightforward way to the MSMCFND. Indeed, the challenge in multilayer network

design is how to handle the significant additional complexity incurred by the design con-

nectivity constraints between the layers. On the one hand, these additional constraints

complicate the task of developing Lagrangian relaxations that provide a good trade off

between the quality of the lower bound and the computational effort of solving the La-

grangian subproblem. On the other hand, the derivation of effective feasible solutions

becomes significantly more difficult in the presence of these constraints.

We propose a Lagrangian-based matheuristic solution method based on a slope scal-

ing scheme. The idea of slope scaling is to iteratively solve a linear multicommodity

flow formulation, and to use the flow distribution to adjust the linear approximation at

the next iteration. When the slope scaling method stalls, a perturbation move changes

the initial linear approximation to start a new slope scaling procedure; for more details

on slope scaling, see [27] and [56]. Note that [88] also used a slope scaling procedure

but it was not integrated in a Lagrangian relaxation scheme, as proposed in this paper.

In particular, our Lagrangian relaxation approach provides not only the lower bounds

to assess the quality of the obtained feasible solutions, but also guides the slope scaling

search by providing initial solutions and by defining the perturbation moves.

Our main contribution, apart from presenting a general formulation for the MSM-

CFND, is to propose an effective solution method based on Lagrangian relaxation to

solve large-scale MSMCFND instances. In the proposed algorithm, a subgradient method

is used to find lower bounds. A primal heuristic procedure based on slope scaling is de-

veloped to find upper bounds using the design information derived from the Lagrangian

subproblem. The best upper bound is then used to guide the subgradient method. We are

comparing our results to those obtained by a state-of-the-art mixed-integer programming
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(MIP) solver. We observe that the algorithm produces better results not only in terms of

the upper bounds (for 90% of the instances) but also in terms of the optimality gaps (for

60% of the instances).

The paper is organized as follows. We state the problem and the mathematical for-

mulation in Section 5.2. In Section 5.3, we explain how to compute the lower and upper

bounds through Lagrangian relaxation and slope scaling. Section 5.4 summarizes the

algorithm that combines Lagrangian relaxation and slope scaling. In Section 5.5, we

present the numerical results on randomly generated instances. In Section 5.6, we sum-

marize this work and propose future research directions.

5.2 Problem Statement and Formulation

In this section, we first formally define the problem. We then present a formulation

for the MSMCFND. Finally, we describe a preprocessing procedure that reduces the flow

capacities.

5.2.1 Problem Definition

In the MSMCFND, multiple networks are considered, one per layer. Given a set of

layers L = {1,2, ..., |L|}, each layer l ∈ L consists of nodes and potential links. There

is a fixed design cost to open a link in each layer, while the flow costs are defined only

for the links of layer l = 1, called the base layer, for which there are commodities with

specific demands that have to be routed between their origin and destination nodes. In

the MSMCFND, there are two types of connectivity requirements between the layers:

design connectivity and flow connectivity. The first one, design connectivity, means that

a link opened in the base layer requires a chain of supporting links (a path) to be opened

in layer 2. Similarly, a link opened in a given layer l requires a path to be opened in its

upper layer, i.e., layer l+1. If link a of layer l requires a path (that includes links b and c)

to be opened in layer l+1, then l is said to be a supported by l+1, and l+1 is said to be a

supporting layer of l. In addition, a is supported by b and c, while b and c are supporting

link a. Note that a link in a particular layer might be in more than one path; therefore,
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it might support more than one link in its lower layer, which means that the fixed design

cost of the link has to be paid as soon as one of the potential supported links of the lower

layer is designed. Design connectivity requirements include design capacity constraints,

which, for link b in layer l, limits the number of designed links in layer l−1 supported

by link b. The second type of connectivity constraints, flow connectivity, imposes that

the flow on link b in a given layer l ≥ 2 is equal to the summation of the flows of all the

links in the base layer supported by link b. In summary, in the MSMCFND, the goal is

to determine a minimum cost design and routing in all layers to satisfy demands, while

considering capacity constraints, as well as flow and design connectivity requirements.

One of the applications of the MSMCFND is the integrated rail freight service net-

work design problem described in Zhu et al. [88]. They proposed a three-layer network

to model the problem where a double consolidation policy is performed. First, cars are

grouped into so-called blocks (blocking process). Then, they are grouped into services

to make up trains (train make-up process). The next step is to select the services and

define their schedules. To propose a formulation determining blocking, train make-up,

and service selection decisions simultaneously, Zhu et al. [88] considered a three-layer

network including: 1) a car layer that consists of links on which cars are moved in each

terminal; 2) a block layer that includes block links from the origins to the destinations of

the blocks to support car movements; and 3) a service layer that includes service links

to support block movements. In the car layer, the flows of commodities are moved via

the car links and the projected block links from the block layer. Appropriate block links

have to be designed or opened to route the cars. Each block corresponds to a chain of

services in the service layer that support the movement of the block. To design a block

link, a chain of supporting services has to be opened in the service layer. The flow of

each service is equal to the summation of the flows on all its supported blocks. The prob-

lem is to find a minimum cost blocking and service design, and flow routing of the cars

to satisfy demands, while considering flow capacity of the blocks and services, blocking

capacity of each terminal, and design connectivity of the block and service layers. Zhu

et al. [88] proposed a mixed-integer programming (MIP) formulation for the problem.

We generalize the problem setting and formulation to an arbitrary number of layers.
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Furthermore, since we focus on the interaction between the layers, we do not consider

application-specific requirements such as terminal block-building workload constraints.

5.2.2 Formulation

We are given a set of layers L and a network Gl = (N,Al) for each layer l ∈ L, where

N and Al are the sets of nodes (the same for all layers) and directed arcs for layer l ∈ L,

respectively. The sets A+
l (n) and A−l (n) represent, respectively, the outward and inward

arcs of node n ∈ N in layer l ∈ L. A set K of commodities have to be routed through

the base layer network. The amount of each commodity k ∈ K that must be routed from

its origin O(k) ∈ N to its destination D(k) ∈ N is dk > 0. We define ual > 0 and val ,

a positive integer, as the flow capacity and the design capacity of arc a ∈ Al in layer

l ∈ L, ck
a1 ≥ 0 as the variable flow cost of commodity k ∈ K on arc a ∈ A1, and fal ≥ 0

as the fixed design cost of arc a ∈ Al of layer l ∈ L. We also use the following additional

notation: for each n ∈ N and k ∈ K, wk
n = dk, if n = O(k), wk

n = −dk, if n = D(k), and

wk
n = 0, if n 6= O(k),D(k); for each l ∈ L, a ∈ Al and k ∈ K, hk

al = min{dk,ual}.
To model the connectivity constraints, we introduce the following notation: Bal is

the set of arcs in layer l−1 that are supported by arc a ∈ Al for l ≥ 2 and Bal
1 is the set of

arcs in layer 1 that are supported by arc a ∈ Al , l ∈ L (we assume that Ba1
1 = {a} for arc

a ∈ A1). Two sets of decision variables are introduced to formulate the problem: binary

design variables and continuous flow variables. The design variable yal is 1 if arc a ∈ Al

is selected in layer l ∈ L, and 0 otherwise. The flow variable xk
a1 is the amount of flow of

commodity k ∈ K on arc a ∈ A1. The MSMCFND model takes the following form:

min ∑
a∈A1

∑
k∈K

ck
a1xk

a1 +∑
l∈L

∑
a∈Al

falyal (5.1)
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∑
a∈A+

1 (n)

xk
a1− ∑

a∈A−1 (n)

xk
a1 = wk

n∀n ∈ N, ∀k ∈ K (5.2)

∑
k∈K

∑
b∈Bal

1

xk
b1 ≤ ualyal ∀l ∈ L, ∀a ∈ Al (5.3)

∑
b∈Bal

1

xk
b1 ≤ hk

alyal ∀l ∈ L, ∀a ∈ Al, ∀k ∈ K (5.4)

∑
b∈Bal

yb(l−1) ≤ valyal ∀l ∈ L, l ≥ 2, ∀a ∈ Al (5.5)

yb(l−1) ≤ yal∀l ∈ L, l ≥ 2, ∀a ∈ Al, ∀b ∈ Bal (5.6)

xk
al ≥ 0 ∀a ∈ A, ∀k ∈ K, ∀l ∈ L (5.7)

yal ∈ {0,1} ∀a ∈ A, ∀l ∈ L (5.8)

The objective of the model, (5.1), is to minimize the total routing and design costs.

Constraints (5.2) are the usual flow conservation equations, which ensure that the de-

mands are routed from the origins to the destinations in the base layer. The flow capacity

constraints (5.3) ensure that the total flow on each arc a∈Al in layer l ∈ L, which is equal

to the sum of the flows on the arcs supported by a in the base layer, does not exceed its

flow capacity ual . These constraints also impose that: 1) no commodity can be routed

on a link unless it is opened; and 2) if there is some flow on an arc in a particular layer,

then this flow contributes to the flow of its supporting arcs in the upper layer, and conse-

quently the supporting arcs will be forced to be opened. The strong linking constraints

(5.4) impose that no flow of any commodity can go through a closed arc. Although these

inequalities are redundant for the MIP formulation, our tests show that they improve

the linear programming (LP) and the Lagrangian relaxation lower bounds significantly.

Similar inequalities have also been used in the literature on network design problems to

improve the lower bounds; see [14] for example. The design capacity constraints (5.5)

ensure that, for each arc a ∈ Al , the number of designed arcs that are supported by a in

layer l− 1 does not exceed its design capacity val . Upward design linking constraints

(5.6) ensure that an arc can be opened only if all its supporting arcs in the upper layer are

opened. It is easy to see that these constraints are already satisfied by constraints (5.3) or

by constraints (5.5). Although constraints (5.6) are redundant for the MIP formulation,
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our tests show that they improve the LP and the Lagrangian relaxation lower bounds

significantly. Constraints (5.7) and (5.8) define the domains of the variables.

5.2.3 Preprocessing Procedure

Using the multilayer structure of the MSMCFND, we can reduce the flow capacities

in two ways. First, we know that each arc a in layer l ≤ |L|−1 corresponds to a path in

the upper layer. According to constraints (5.3), the total flow on a (hence, the capacity

ual) has to be less than or equal to the flow capacity of each corresponding arc in the

upper layer:

ual ≤ min
b∈F l+1

a

{ub(l+1)} ∀l ∈ L, l ≤ |L|−1, ∀a ∈ Al, (5.9)

where F l+1
a = {b∈ Al+1|a∈ Bb(l+1)}, i.e., F l+1

a is the set of arcs in layer l+1 supporting

arc a in layer l. Second, we know that any given arc a in layer l ≥ 2 supports several

arcs in the lower layer, and that at most val arcs can be supported by arc a. Therefore,

the total flow on a (hence, its capacity ual) has to be less than or equal to the sum of the

flow capacities of the first val arcs in layer l−1 supported by a, where the arcs are sorted

in non-increasing order of to their flow capacities:

ual ≤ ∑
b∈B̃al

ub(l−1) ∀l ∈ L, l ≥ 2, ∀a ∈ Al, (5.10)

where B̃al is the set containing the first val arcs supported by arc a∈ Al in the lower layer.

Based on the above arguments, we derive a preprocessing procedure that: 1) scans

each layer in descending order (from |L|−1 to 1) and reduces the flow capacities based

on (5.9); 2) scans each layer in ascending order (from 2 to |L|) and reduces the flow

capacities based on (5.10); and 3) if at least one flow capacity is reduced in 2), it goes

back to 1).
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5.3 Bounding Procedures

In this section we describe how to compute the lower and upper bounds through

Lagrangian relaxation and slope scaling, respectively. The algorithm combining these

bounding procedures is presented in the next section.

5.3.1 Computing Lower Bounds through Lagrangian Relaxation

Relaxing constraints (5.3) and (5.4) in a Lagrangian way, we obtain the following

Lagrangian subproblem:

(PL R (α,β )) ZLR (α,β ) = min ∑
a∈A1

∑
k∈K

ck
a1xk

a1 +∑
l∈L

∑
a∈Al

falyal

+∑
l∈L

∑
a∈Al

αal

∑
k∈K

∑
b∈Bal

1

xk
b1−ualyal

+∑
l∈L

∑
a∈Al

∑
k∈K

β
k
al

 ∑
b∈Bal

1

xk
b1−dk

alyal


(5.11)

s.t.(5.2) ,(5.5) , (5.6),(5.7) ,(5.8) ,

where αal ≥ 0 and β k
al ≥ 0 are the Lagrange multipliers corresponding to constraints

(5.3) and (5.4), respectively. The Lagrangian subproblem decomposes into |K|+1 sub-

problems: |K| shortest path subproblems, Pk
SP (α,β ), one for each commodity k ∈ K,

in the base layer, and a subproblem that depends only on the design variables, called the

design subproblem and denoted PD (α,β ). The cost of each arc a ∈ A1 in each shortest

path subproblem Pk
SP (α,β ), k ∈ K, is given by:

ck
a1 +∑

l∈L
∑

b∈F l
a1

(
αbl +β

k
bl

)
≥ 0, (5.12)

where F l
a1 =

{
b ∈ Al|a ∈ Bbl

1
}

. The shortest path subproblems are solved using Dijkstra

algorithm.
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The design subproblem is as follows:

(PD (α,β )) ZPD(α,β ) = min ∑
l∈L

∑
a∈Al

(
fal−αalual− ∑

k∈K
β

k
ald

k
al

)
yal (5.13)

s.t.(5.5) , (5.6),(5.8)

The design subproblem is to find a set of arcs that minimizes objective function

(5.13) while satisfying design connectivity constraints, (5.5) and (5.6), as well as design

integrality constraints (5.8). Before commenting on how we solve the design subprob-

lem, we first ask ourselves whether or not it has the integrality property [46], i.e., if its

LP relaxation always has an integral optimal solution.

Proposition 5.1. The design subproblem does not have the integrality property.

Proof. We define an instance with two layers where all design capacities are equal to 1.

Then, the upward design linking constraints (5.6) are redundant for the LP relaxation of

the design subproblem. Further, we assume that all design costs on layer l = 2 are equal

to 0. As a result, all design variables for layer l = 2 assume value 1 in an optimal solution

of the LP relaxation of the design subproblem. The resulting LP relaxation of the design

subproblem reduces to the LP relaxation of the well-known set packing problem, which

has fractional optimal solutions [76].

Corollary 5.1.

ZLD = max
α,β≥0

ZLR(α,β )≥ ZLP,

where ZLP is the optimal value of the LP relaxation. There are instances where the

inequality is strict.

This result illustrates a significant difference between the single-layer MCFND and

the MSMCFND: when we relax the capacity and the strong linking contraints in the

MCFND, the Lagrangian subproblem has the integrality property and the Lagrangian

dual bound ZLD is equal to the LP relaxation lower bound ZLP [26].

In Section 5.4, where we describe the subgradient method for solving the Lagrangian

dual, we see that the design subproblem is rarely solved to optimality: either we solve
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its LP relaxation or we use a state-of-the-art MIP solver as a heuristic. In both cases, the

design subproblem produces a design solution, which can be fractional when solving the

LP relaxation, but is integral when using a MIP solver in a heuristic fashion. Note that,

this approach allows us to keep the Lagrangian subproblem tractable, but might result in

a lower bound that is inferior to ZLP, even for instances where ZLD > ZLP.

5.3.2 Computing Upper Bounds through Slope Scaling

To obtain upper bounds, we develop a primal heuristic based on a slope scaling pro-

cedure, which is repetitively called during the subgradient method described in Section

5.4. The following multilayer multicommodity capacitated network flow problem (MM-

CNF) is solved at each iteration of the slope scaling procedure:

min ∑
a∈A1

∑
k∈K

ck
a1xk

a1 (5.14)

s.t. (5.2), (5.7) and

∑
k∈K

∑
b∈Bal

1

xk
b1 ≤ ual ∀l ∈ L, ∀a ∈ Al, (5.15)

where the linearized costs c̄ are initialized, as follows, based on an input design solu-

tion ŷ (fractional or integral) of the design subproblem obtained when performing the

subgradient method:

ck
a1 = (ck

a1 +ρ
0
a1)(1+M(1− ŷa1)) ∀a ∈ A1,∀k ∈ K, (5.16)

where ρ0
a1 = ∑l∈L ∑b∈F l

a1
fbl/ubl , and M is a large positive value to avoid routing on

closed arcs. When ŷa1 = 1, a ∈ A1, the costs of the corresponding arcs are equal to

the costs in the LP relaxation of the model obtained from the MSMCFND by removing

constraints (5.4)-(5.6). If ŷa1 = 0, a ∈ A1, then the costs are set to large positive values

to avoid any flow on the corresponding arc. Note that, even if ŷa1 is fractional, formula

(5.16) can still be used: arcs with small fractional values are then assigned large costs.
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After solving the MMCNF, a flow solution x is obtained and the linearized costs are

updated using the following equation to trigger the next iteration:

ck
a1 =

 ck
a1 +ρa1 if xk

a1 > 0

ck
a1 if xk

a1 = 0
∀a ∈ A1,∀k ∈ K, (5.17)

where ρa1 = (∑l∈L ∑b∈F l
a1

fbl)/∑k∈K xk
a1. When xk

a1 is positive, this equation ensures

that, at the next iteration, if the flow solution remains the same, the cost on each arc is

equal to the fixed design cost plus the sum of the flow variable costs. If xk
a1 = 0, we keep

the same cost because it is large enough to avoid any flow. Let zt and zt−1 be the current

and the previous objective values of the MMCNF problem at each iteration t of the slope

scaling procedure. The termination condition of the slope scaling procedure is either to

obtain the same objective value for two successive iterations (zt = zt−1), as suggested in

[56], or to reach a predefined maximum number of slope scaling iterations its
max.

At each slope scaling iteration, a feasible solution might be produced for the MSM-

CFND. Given the flow solution x, a design solution y is obtained using the following

rule:

yal =

 1 if ∑k∈K ∑b∈Bal
1

xk
b1 > 0

0 otherwise
(5.18)

When the obtained design solution is feasible, i.e., it satisfies the design capacity con-

straints (5.5), then an upper bound is found for the original problem.

At the end of the slope scaling procedure, an intensification step is performed using

up to n of the best feasible solutions obtained during the procedure, where n is a param-

eter typically set to a small value (less than 10). For each of these feasible solutions, a

restricted MMCNF is created by: 1) fixing the design variables to their values in the so-

lution, and 2) setting the costs to the original flow variable costs. The resulting MMCNF

is solved in order to obtain an optimal flow distribution when the design variables are

fixed.

If the initial MMCNF yields a feasible solution to the MSMCFND, the slope scaling

procedure proceeds as described above. If, however, this is not the case, we solve the
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following auxiliary design subproblem to obtain a feasible solution:

min ∑
l∈L

∑
a∈Âl

falyal (5.19)

s.t. (5.2), (5.3), (5.5), (5.7), (5.8),

where Âl = {a ∈ A|ŷal = 0}. The solution to this auxiliary design subproblem is used as

input design solution ŷ, and the linearized costs are re-initialized using formula (5.16).

The objective of the auxiliary design subproblem is to select a minimum cost design

among the closed arcs of the initial design solution ŷ in such a way that all the con-

straints that define a feasible solution to the MSMCFND are satisfied. Note that the

redundant constraints (5.4) and (5.6) are removed in the formulation of the auxiliary

design subproblem. Since the resulting model has no commodity-dependent costs and

capacities, we can reduce the number of commodities by aggregating the commodities

with the same origin into a single commodity. This significantly reduces the computa-

tional complexity of solving the auxiliary design subproblem. Besides, we stop solving

the auxiliary design subproblem after finding the very first feasible solution. Note that,

solving the auxiliary design subproblem only guarantees the feasibility at the first itera-

tion of the slope scaling procedure, but not at every iteration.

We provide a pseudo code for the primal heuristic in Algorithm 3. When a new upper

bound is found, the best upper bound found so far (since the beginning of the subgradient

method), UBbest , is updated if it is improved by the current solution. We also define the

set of m best feasible solutions found so far, F , which is updated whenever a new solution

is found, where m is a large value (we use 1000 in our experiments). The set F is a long-

term memory that will be used for further improvements described in details in the next

section.
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Algorithm 3: Primal heuristic
1: Input design solution ŷ
2: Initialize the linearized costs of MMCNF problem using ŷ and formula (5.16)
3: Solve MMCNF problem→ x, y
4: if y is feasible then
5: Compute upper bound
6: Update UBbest and feasible solution set F
7: else
8: Solve auxiliary design subproblem→ ŷ
9: Re-initialize the linearized costs of MMCNF problem using ŷ and formula (5.16)

10: Solve MMCNF problem→ x,y
11: end if
12: repeat
13: Update objective function of MMCNF problem using x and formula (5.17)
14: Solve MMCNF problem→ x,y
15: if y is feasible then
16: Compute upper bound
17: Update UBbest and feasible solution set F
18: end if
19: until the number of iterations is greater than or equal to its

max or zt = zt−1
20: Perform intensification

5.4 The Lagrangian-Based Matheuristic

The proposed algorithm consists of three main phases: 1) initialization, where the

LP relaxation of the original problem, PLP, is solved to initialize the Lagrange multi-

pliers; 2) Lagrangian phase, including a subgradient procedure to find lower bounds

and the primal heuristic enhanced by intensification and diversification procedures to

obtain upper bounds; 3) post-optimization, where a restricted MIP problem, PPO, is

solved to improve the upper bounds. The algorithm is equipped with long and short term

memories storing specific information obtained during the algorithm execution to run the

post-optimization phase as well as the intensification and diversification procedures. In

the following subsections, 5.4.1 to 5.4.3, we describe the three phases of the algorithm.

Subsection 5.4.4 summarizes the algorithm.
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5.4.1 Initialization Phase

The first step in the initialization phase is to solve PLP, the LP relaxation of the

MSMCFND formulation (5.1)-(5.8), by a cutting plane method performed for a limited

time tLP, where the violated strong linking constraints (5.4) are added iteratively to the

model. Solving PLP helps to obtain good initial Lagrange multipliers and lower bound.

The Lagrange multipliers are initialized to the values of the dual variables associated

to constraints (5.3) and (5.4). Note that some of the strong linking constraints will not

appear in the final LP relaxation of the cutting plane procedure. For these constraints,

we initialize the corresponding Lagrange multipliers to zero. Preliminary tests show that

adding the upward design linking constraints (5.6) increases significantly the difficulty

of the LP relaxations. Therefore, taking into account the limited time to perform the

cutting plane method, these constraints are not added to the LP relaxation.

In the next step of the initialization phase, a graph traversal algorithm, presented in

[15], is performed to reduce the size of the shortest path subproblems. Starting from

each node, the algorithm traverses the network twice, forward and backward, to find the

arcs that are reachable for each commodity, i.e., the arcs that belong to at least one path

between the origin and the destination of each commodity. We then restrict the network

of each shortest path subproblem to these reachable arcs, thus significantly reduce the

time to solve the shortest path computations.

At the end of the initialization phase, a slope scaling procedure is called using the

final design solution of PLP as the input design solution ŷ. The goal is to obtain an initial

upper bound to be used in the subgradient method described in the next subsection.

5.4.2 Lagrangian Phase

The Lagrangian dual takes the form of a non-differentiable optimization problem:

ZLD = max
µ≥0

ZLR (µ) , (5.20)
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where µ = (α,β ). We solve the Lagrangian dual with a subgradient method. At each

iteration i of the subgradient method, the current point, µ i, is moved to a new point,

µ i+1, using the formula µ i+1 = µ i + t idi, where di and t i are the direction and the step

size, respectively. The following formula is used to compute the direction:

di = gi +θ
idi−1, (5.21)

where gi is a subgradient and θ i ∈ (0,1) is a parameter adjusted by the following modi-

fied Camerini-Fratta-Maffioli rule [11]:

θ
i =

 ||gi||/||di−1|| if gidi−1 < 0

0 otherwise
(5.22)

This rule is suggested in [26] for a subgradient method when the capacity and strong

linking constraints are relaxed in the MCFND problem. It is also recommended in [26] to

project the direction di in equation (5.21), meaning to set to 0 the negative components

of di. In our preliminary tests, the suggested modified Camerini-Fratta-Maffioli rule

worked well, while the results were not promising when we projected the direction in

equation (5.21). Therefore, in our final implementation, we use the modified Camerini-

Fratta-Maffioli rule without projecting the direction.

The step size is computed using the following formula:

t i = λ
i (Ze

DL−ZLR
(
µ

i))/gidi, (5.23)

where Ze
DL is an estimation of the value of ZDL, and λ i is a scaling factor.

The performance of a subgradient method depends on the values of its parameters,

in particular, λ i and Ze
DL [26]. The parameter λ i is initialized to λ 0 and is divided

by a parameter γ1 (typically, 2), whenever LBbest (the best known lower bound) is not

improved for γ2 consecutive iterations. The minimum value of λ i is restricted to λmin.

In our algorithm, Ze
DL is initially set to the upper bound provided by the slope scaling

step of the initialization phase and is updated to the best upper bound found so far by the

Lagrangian-Based Methods for Single and Multi-Layer Multicommodity Capacitated Network Design

CIRRELT-2019-07



126

primal heuristic, UBbest . The subgradient procedure is limited to a maximum number of

iterations γ3. For more details on the subgradient method see [26].

The subgradient method follows a three-phase approach when handling the design

subproblem. During the first phase, performed for a limited number of subgradient iter-

ations, it ph1
max, the LP relaxation of PD(α,β ) is solved by a cutting-plane method, where

the upward design linking constraints (5.6) are added iteratively. During this phase, at

the beginning of any given iteration of the subgradient method, the design subproblem

contains the current set of added cuts, and only the costs are modified. Therefore, we

run the primal simplex because the initial primal basis is feasible and only the optimality

needs to be achieved. When we enter the cutting-plane procedure, we switch to the dual

simplex, because the basis is optimal or dual feasible and only primal feasibility must be

reached. During the second phase, performed for a limited number of subgradient iter-

ations, it ph2
max, the root node of the branch-and-bound tree of the IP design subproblem is

solved. At the beginning of phase 2, the final LP formulation of the first phase (including

all the cuts added so far) is converted to an IP model. Finally, during the third phase,

performed for a limited number of subgradient iterations, it ph3
max, the IP design subprob-

lem is solved. The solution time of each IP problem is restricted to a time limit, tDes.

Since we care about the quality of the lower bound, we force the branch-and-bound tree

to emphasize the search on finding the best lower bound using the parameters provided

in the solver. After solving the Lagrangian subproblems, a lower bound is computed for

the original problem, and the best lower bound found so far, LBbest , is updated, if a better

lower bound is found.

At each iteration of the subgradient method, when a new design solution is obtained

from the design subproblem, the primal heuristic step is triggered using as input the

solution ŷ of the design subproblem if: 1) the frequency of total number of subgradient

iterations is equal to a predefined number, f rprim, or 2) the lower bound has improved

significantly since the last time the primal heuristic was called. The improvement is

considered to be significant if (LBc−LBl)/LBl > δ d , where δ d is a parameter (set to

1%) and LBc and LBl are, respectively, the lower bound computed at the current iteration

and the lower bound obtained the last time the primal heuristic was triggered.
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At the end of each execution of the primal heuristic procedure, in addition to the

intensification step described in Section 5.3.2, a diversification step is performed if the

algorithm is not able to improve the upper bound for a predefined maximum number of

primal heuristic steps, st p
max, where a primal heuristic step is a complete slope scaling

procedure with intensification. The idea of diversification is to avoid selecting the arcs

that frequently appeared in the obtained feasible solutions. The design solution of the

best upper bound found so far is considered to initialize the linearized cost of formula

(5.16) where a huge linearized cost is assigned not only to the closed arcs but also to a

small set of arcs (set to 10) selected randomly from the most frequently opened ones in

a percentage (set to 90%) of the obtained feasible solutions so far. Then, a new slope

scaling procedure is triggered using the new initial linearized costs. The selected arcs

are marked to avoid choosing them again in the next diversification step. Therefore, at

each diversification step, a new set of the most frequently opened arcs are penalized. We

restrict the total number of slope scaling steps in each diversification procedure and the

total number of diversification steps to itd
max and std

max, respectively.

Three different termination conditions are considered to stop the Lagrangian phase:

1) if the procedure elapsed time reaches a predefined time limit tLag, 2) if the subgradient

norm is less than ε , and 3) if the total number of the subgradient iterations reaches a

predefined number itLag. At the end of the subgradient procedure, a slope scaling step

is called using the design solution of the best obtained lower bound found so far in the

hope of finding a better upper bound.

5.4.3 Post-Optimization Phase

At the end of the algorithm, a post-optimization phase is performed by solving a

restricted MIP problem, PPO, for a limited time tPostOpt . To build the restricted MIP,

we use a number of elite solutions, the feasible solutions selected from the long term

memory, F , with less than δp% gap from the best known feasible solution. The design

variables that are closed in all the elite solutions are fixed to 0. A simple iterative proce-

dure is performed to set δp% in such a way that at least f % of the design variables are

set to 0 in the restricted MIP. At the beginning of the procedure, all the solutions in F are
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selected as elite. If the percentage of fixed variables is more than f %, then the desired

percentage is obtained; otherwise, a new set of elite solutions is built by removing the

worst solution from the elite solutions until the percentage falls into the desired range.

Since there is a huge number of arcs in large-scale MSMCFND instances, in our tests,

we set f to a large number (96%) to make the restricted MIP problem tractable.

5.4.4 Summary

The algorithm is presented in Algorithm 4. It starts with an initialization phase where

PLP is solved, and the Lagrange multipliers are initialized to the obtained dual values. In

this phase, a graph traversal algorithm reduces the size of the shortest-path subproblems.

At the end of initialization phase, a slope scaling procedure is triggered using the final

design solution of the cutting plane PLP as the input design solution ŷ.

In the Lagrangian phase, we use a subgradient method to solve the Lagrangian dual.

At each iteration, Dijkstra algorithm is used to solve the shortest path subproblems. The

subgradient method follows a three-phase approach when handling the design subprob-

lem. The algorithm finds a lower bound at each iteration of the subgradient method.

Using the obtained solution of the design subproblem, the slope scaling heuristic, with

the intensification and diversification procedures, finds feasible solutions. At each sub-

gradient iteration, the best obtained upper bound is used in the subgradient procedure to

define a better search direction.

At the end of the subgradient procedure, another slope scaling step is performed

using the design solution of the best known lower bound. At the end of the algorithm,

the post-optimization phase improves the upper bound using the elite solutions stored in

a long-term memory during the algorithm.

5.5 Experimental Results

In this section, we present the set of randomly generated instances used to test the

performance of our algorithm. Then, we describe how we have adjusted the parameters

of the algorithm. Finally, we analyze the results of the experiments.
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Algorithm 4: Lagrangian-based matheuristic for MSMCFND
1: Solve PLP→ ŷ
2: Initialize Lagrange multipliers
3: Run primal heuristic using ŷ
4: it = 0
5: repeat
6: if it < it ph1

max then
7: solve LP relaxation of PD→ ŷ
8: else if it < it ph2

max then
9: solve root node of IP PD→ ŷ

10: else
11: solve IP PD for a limited time→ ŷ
12: end if
13: Solve Pk

SP for each commodity k ∈ K
14: Compute lower bound
15: Update LBbest → y
16: if ŷ is new and the frequency of the number of iterations is equal to f rprim then
17: Run primal heuristic using ŷ
18: if number of non-improvement iterations in upper bound is greater than st p

max then
19: Perform diversification
20: end if
21: end if
22: Update Lagrange multipliers
23: it = it +1
24: until one of the termination conditions is met
25: Run primal heuristic using y
26: Run post-optimization by solving PPO

5.5.1 Instances

To generate the instances, we use a time-space network structure in which the physi-

cal nodes (terminals) are repeated for each time period to represent the time dependency.

A node in such a network represents a terminal in a specific time period, and each arc

represents a transfer from a terminal in a time period to either the same or a different

terminal in another time period, see [88] for more details.

To generate the instances, let S = {1,2, ..., |S|} and T = {1,2, ..., |T |} be a set of ter-

minals and a set of time periods, respectively. Then, the set of nodes is N = {1,2, ..., |S|× |T |}
where each node i ∈ N corresponds to terminal s = i/|T | and time period t = ((i− 1)

mod |T |)+1. For layer |L|, an arc is generated between each pair of nodes (i∈N, j ∈N)
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if the corresponding time period of i is less than the corresponding time period of j. In

other words, we generate an arc from a terminal in a time period to either the same ter-

minal or another terminal in a future time period. The next layers (layer |L|−1 to 1) are

built by finding at most 50 paths between each pair of nodes of the upper layer. The val-

ues corresponding to flow capacity, design capacity, and costs of the arcs are uniformly

distributed. Different parameters are used to generate instances with different charac-

teristics: tight/loose capacity and with different fixed cost to variable cost ratio values.

The generated instances are tested to be feasible. An infeasible instance is replaced by

a new one to have a final feasible set of instances. The origins, the destinations and the

demands of the commodities are also selected randomly. A random origin-destination

pair (o ∈ N,d ∈ N) is selected as the origin and the destination of a commodity if the

corresponding time period of o is less than the one of d.

Two different sets of instances are generated randomly using the above instance gen-

erator procedure: MLTS1 (MLTS stands for MultiLayer Time-Space) and MLTS2 with

two and three layers, respectively. Table 5.I summarizes the characteristics of the in-

stances where |L|, |A|, |S|, |T |, |N|, and |K| are the number of layers, number of arcs,

number of terminals, number of time periods, number of nodes, and number of com-

modities, respectively. Note that in our instances, the flow variable costs are the same

for all commodities on a particular arc. Therefore, it is possible to aggregate the com-

modities whose origins are the same into a single commodity to accelerate the solution

of the MMCNF problem of the primal heuristic.

5.5.2 Parameter Setting

We use a two-phase parameter setting strategy to calibrate the parameters. In the first

and second phases, we set the subgradient and the primal heuristic parameters, respec-

Table 5.I – Instances
# of Instances |L| |A| |S| |T | |N| |K|

MLTS1 32 2 20612-30664 8,10 7 56,70 100,200
MLTS2 32 3 42768-64162 8,10 7 56,70 100,200
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tively. Tables 5.II and 5.III display the tested values of the parameters for each phase.

We choose 20% of the instances randomly for the parameter setting process.

As mentioned before, the performance of the subgradient method depends on its

parameters, the most critical being λ i, which is adjusted based on the parameters γ1, γ2

and λ 0. To find the best values of the important parameters (Table 5.II), we fix all the

parameters, change one parameter at a time, and select the value that produces better

results on average for all the test instances. In Table 5.II, the selected values are shown

in bold. We set the values of the less-important parameters, as suggested in [26] to:

ε = 10−7 and λmin = 10−3. We set the maximum number of total subgradient iterations

to a large value (γ3 = 3000). The value of it ph3
max is then equal to γ3− (it ph2

max + it ph3
max).

Table 5.II – Values of parameters tested for subgradient method
Name Description Tested Values
tLP time limit for solving cutting plane PLP (minutes) 3, 4, 5, 6, 7, 8, 9
tDes time limit for solving design subproblem (minutes) 0.5, 1, 5, 10
γ1 parameter to change λ i 1.5, 2, 2.5, 3, 3.5
γ2 maximum number of non improvement iterations in lower bound 20, 40, 60, 80, 100, 120
λ 0 initial value of subgradient scaling factor (λ i) 1, 1.5, 2
it ph1

max number of subgradient iterations to solve LP PD 5%, 10%, 20%, 30% of γ3

it ph2
max number of subgradient iterations to solve PD in root node 5%, 10%, 20%, 30% of γ3

Table 5.III shows the values that are tested to set the parameters of the primal heuris-

tic. We use the same strategy as for the subgradient procedure: we fix all the parameters,

change one of them at a time, and select the best value. The table shows the selected val-

ues in bold. Some of the parameters of the primal heuristic can be set initially without

testing different values. tPostOpt is determined based on two previous timing parame-

ters, tLP and tLag. The big M parameter has to be large enough to ensure not to select

the design variables that have value zero in the design subproblem solution, and can be

obtained using the following formula:

M = 10×
maxł∈L,a∈Al { fal}
minł∈L,a∈Al { fal}

(5.24)
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Table 5.III – Values of parameters tested for the primal heuristic
Name Description Tested Values
f rprim primal heuristic frequency 5, 10, 15, 20, 25
tLag time limit on Lagrangian procedure including subgradient and primal heuristic (hours) 5, 6, 7, 8
its

max maximum number of slope scaling iterations in each primal heuristic step 10, 15, 20
n number of intensification iterations 1, 4, 8
st p

max maximum number of primal heuristic steps with no improvement in upper bound 3, 5, 8, 10
itd

max total number of iterations in each diversification procedure 5, 10, 15, 20
std

max total number of diversification steps 1, 3, 4, 5

5.5.3 Upper Bound Analysis

The proposed Lagrangian heuristic is evaluated using MLTS1 and MLTS2 instances.

We compare the results of the proposed algorithm to those obtained by CPLEX 12.6.

with default setting. We add our preprocessing procedure before starting the CPLEX

solver. We also consider different scenarios to determine whether it is suitable to add

the strong linking constraints (5.4) and the upward design linking constraints (5.6) to the

model of CPLEX or not. The tested scenarios includes adding each set of constraints to

the model of CPLEX: 1) a priori, 2) as user cuts, 3) as lazy constraints, and 4) using cut

callback functions of CPLEX. The tests show that the best case for CPLEX is not to add

any of the upward design linking constraints but to add strong linking constraints as user

cuts to the model.

The results are summarized in Tables 5.IV and 5.V for MLTS1 and MLTS2 instances.

We fix the total time limit to 10 hours for CPLEX and for the proposed algorithm. The

second column in these tables shows the characteristics of the instances:

— |Al|: number of arcs in layer l;

— |N|: number of nodes;

— |K|: number of commodities;

— FCTI: Flow Capacity Tightness Index defined as the flow capacity average:

(∑
l∈L

∑
a∈Al

ual)/|A|,

divided by the total demand, ∑k∈K dk, L stands for loose flow capacity (FCTI

≥ 0.05), while T refers to tight flow capacity (FCTI < 0.05);
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Table 5.IV – CPLEX and the proposed algorithm comparison for MLTS1 (2-layer in-
stances)

Optimality Gap % LB/UB Gap %

# (|A1|, |A2|, |N|, |K|, FCTI, DCTI, CDI) T(sec) GapCUB
CLB GapLUB

LLB GapCLB
LLB GapCUB

LUB

1 (19952,660, 56, 100, L, L, F) 13055.5 6.82 17.27 10.79 0.48
2 (19952,660, 56, 100, L, L, V) 26895.6 15.90 18.76 7.57 -4.32
3 (19952,660, 56, 100, L, T, F) 14321.6 13.93 20.84 9.53 -1.64
4 (19952,660, 56, 100, L, T, V) Limit 11.22 15.86 4.67 0.59
5 (19952,660, 56, 100, T, L, F) Limit 16.01 19.32 6.94 -3.12
6 (19952,660, 56, 100, T, L, V) Limit 14.27 16.05 6.30 -4.31
7 (19952,660, 56, 100, T, T, F) Limit 16.40 21.73 9.84 -3.69
8 (19952,660, 56, 100, T, T, V) Limit 16.22 16.36 3.51 -3.35
9 (19952,660, 56, 200, L, L, F) 34545.7 26.55 25.02 9.12 -10.98

10 (19952,660, 56, 200, L, L, V) Limit 75.52 19.70 7.44 -71.78
11 (19952,660, 56, 200, L, T, F) Limit 83.65 32.25 13.78 -79.20
12 (19952,660, 56, 200, L, T, V) Limit 20.32 21.22 6.74 -5.68
13 (19952,660, 56, 200, T, L, F) Limit 22.48 19.34 4.85 -8.55
14 (19952,660, 56, 200, T, L, V) Limit 26.34 18.82 4.91 -13.72
15 (19952,660, 56, 200, T, T, F) Limit 73.67 20.22 3.57 -68.17
16 (19952,660, 56, 200, T, T, V) Limit 76.87 23.52 6.21 -71.63
17 (29794,870, 70, 100, L, L, F) 31989.3 9.83 16.90 9.10 -1.36
18 (29794,870, 70, 100, L, L, V) 32681.7 6.97 12.46 7.35 -1.53
19 (29794,870, 70, 100, L, T, F) Limit 5.94 13.78 8.29 0.05
20 (29794,870, 70, 100, L, T, V) 25351.6 5.97 10.00 5.56 -1.34
21 (29794,870, 70, 100, T, L, F) Limit 8.05 16.22 8.36 0.57
22 (29794,870, 70, 100, T, L, V) Limit 15.59 18.32 7.01 -3.90
23 (29794,870, 70, 100, T, T, F) Limit 10.49 15.45 6.68 -1.21
24 (29794,870, 70, 100, T, T, V) Limit 14.27 17.18 6.91 -3.65
25 (29794,870, 70, 200, L, L, F) Limit 95.63 27.31 13.07 -94.78
26 (29794,870, 70, 200, L, L, V) Limit 94.85 15.23 6.61 -94.33
27 (29794,870, 70, 200, L, T, F) Limit 95.86 21.33 8.04 -95.17
28 (29794,870, 70, 200, L, T, V) Limit 94.59 20.43 5.36 -93.57
29 (29794,870, 70, 200, T, L, F) Limit 29.50 24.91 11.16 -16.59
30 (29794,870, 70, 200, T, L, V) Limit 94.35 14.90 6.15 -93.77
31 (29794,870, 70, 200, T, T, F) Limit 79.41 22.93 8.71 -75.61
32 (29794,870, 70, 200, T, T, V) Limit 68.40 17.30 6.67 -64.34

Average 38.93 19.09 7.52 -30.93
Minimum 5.94 10.00 3.51 -95.17
Maximum 95.86 32.25 13.78 0.59

— DCTI: Design Capacity Tightness Index defined as the design capacity average,

(∑l∈L,l≥2 ∑a∈Al
val)/(|A| − |A1|), divided by Bal

ave = ∑l∈L,l≥2 ∑a∈Al
|Bal|/(|A| −

|A1|), L stands for loose design capacity (DCTI ≥ 0.3), while T refers to tight

design capacity (DCTI < 0.3);
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— CDI: Cost Dominance Index defined as the variable flow cost average:

(∑
k∈K

∑
a∈A1

ck
a1)/|A1|,

divided by the design cost average, (∑l∈L ∑a∈Al
fal)/|A|, F refers to the cases

where the fixed costs are predominant relatively to the variable costs (CDI <

0.01), and V means the reverse (CDI ≥ 0.01).

In Tables 5.IV and 5.V, column T(sec) is the total run time of the proposed algorithm.

CPLEX was not able to converge to optimality on any of the instances in 10 hours (time

limit). Therefore, the run times of CPLEX are not reported in these tables (CPLEX run

time is 10h). Let CUB and CLB be the upper and lower bounds obtained by CPLEX,

respectively. Let also LUB and LLB be the upper and lower bounds obtained by the

proposed algorithm, respectively. Columns GapCUB
CLB = 100× (CUB−CLB)/CUB and

GapLUB
LLB = 100× (LUB−LLB)/LUB are the optimality gaps for CPLEX and the pro-

posed algorithm, respectively. Column GapCLB
LLB = 100× (CLB−LLB)/LLB is the gap

between the lower bound of CPLEX and the lower bound obtained by our algorithm.

Column GapLUB
CUB = 100× (LUB−CUB)/CUB is the gap between the upper bound of

CPLEX and the upper bound obtained by our algorithm. A negative value indicates that

the Lagrangian-based matheuristic method found a better feasible solution than CPLEX.

The results show that the algorithm is better than CPLEX in almost all instances

(90%) in terms of the upper bounds (last column of Tables 5.IV and 5.V). The averages of

the improvements to the upper bounds are 30.93% and 46.08% for MLTS1 and MLTS2,

respectively. The algorithm improves the upper bounds by more than 10% in 57% of the

instances.

The proposed algorithm finds better optimality gaps than CPLEX in 60% of the in-

stances (bold optimality gaps in column GapLUB
LLB ). The goal of the proposed algorithm,

as a matheuristic, is to find high-quality upper bounds. However, one of the advantages

of this algorithm is that it also computes lower bounds. The obtained lower bounds en-

able us to evaluate the quality of the obtained upper bounds, particularly for the instances

where CPLEX ends up with an optimality gap of more than 90%.
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Table 5.VI shows the analysis of the performance of the algorithm depending on the

number of layers, number of arcs and number of commodities. The table shows that

the difficulty of the instances increases with the number of layers, the number of arcs,

the number of nodes and, even more significantly, the number of commodities. The

algorithm improves the upper bound up to 71.66% on average for the instances with 200

commodities, while the average is 5.34% for the instances with 100 commodities.

5.5.4 Lower Bound Analysis

Tables 5.VII and 5.VIII show the lower bound analysis of the proposed Lagrangian

relaxation for MLTS1 and MLTS2, respectively. Column Lag Time shows the computa-

tion time of the bounding procedure including the initialization phase and the subgradi-

ent method without the primal heuristic and the post optimization phase. Column Strong

LP shows 1) the computation time of the strong LP relaxation solved by CPLEX where

the strong linking constraints (5.4) and the upward design linking constraints (5.6) are

added a priori to the model, and 2) the gap between the Lagrangian LB and the strong LP

lower bound. Column Root Node presents 1) the computation time at the root node of a

branch-and-bound algorithm solved by CPLEX, and 2) the gap between the Lagrangian

LB and the root node lower bound.

For the Strong LP case, we also tested a cutting plane approach where inequalities

(5.4) and (5.6) are added iteratively. The computation time of the cutting plane ap-

proach is much worse than the a priori approach. For the Root Node case, we turned

off the heuristic of CPLEX but allowed other possible valid inequalities to be added to

the model. We introduced strong inequalities as user cuts to the root node of CPLEX.

We did not add the upward design linking constraints because it takes a long time (more

than 10 hours) to add them as user cuts. When CPLEX adds some other cuts at the root

note, the results can be better than the strong LP. However, since CPLEX does not add

all the strong inequalities, and neither the upward linking constraints, it is possible that

the root lower bound of CPLEX is worse than the strong LP lower bound.

Although the lower bounds of the subgradient procedure are around 6% away, on

average, from the lower bounds of the strong LP, its average computation time is much
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less. The average computation time of the subgradient process for MLTS2 instances, for

example, is about one hour while it is 10 hours and 2 hours for the strong LP and the root

node, respectively. The standard deviation of the computation time is also much less than

those of the strong LP and the root node. For MLTS2 instances, the computation time

of the subgradient procedure varies from 36 to 120 minutes, with a standard deviation

of 26 minutes, while it varies from 1 hour to 25 hours for CPLEX to solve the strong

LP, with a standard deviation of 7 hours. Although finding high-quality solutions is the

primary goal of this paper, the proposed algorithm efficiently generates effective lower

bounds that allow to evaluate the obtained feasible solutions.

5.6 Conclusions

We have proposed a general formulation for the MSMCFND as well as an effec-

tive algorithm to solve large-scale MSMCFND instances. The algorithm has been en-

hanced by a preprocessing procedure, intensification and diversification steps, and a

post-optimization phase. We can summarize the obtained results as follows:

— The algorithm produces better upper bounds than CPLEX in 90% of the in-

stances.

— The algorithm is better than CPLEX in 60% of the instances in terms of the

optimality gap.

— The algorithm improves the upper bound by more than 10% in 57% of the in-

stances.

— The complexity of the instances increases with the number of layers, the number

of arcs and, even more significantly, the number of commodities.

— The performance of the Lagrangian relaxation is robust on either easy or difficult

instances in terms of computational time, i.e., the standard deviation of the com-

putation time is also much less than those of the strong LP and root node solved

by CPLEX.

Four main interesting research avenues are: 1) improving the algorithm using more

effective non-differentiable optimization approaches such as the bundle method, and

Lagrangian-Based Methods for Single and Multi-Layer Multicommodity Capacitated Network Design

CIRRELT-2019-07



137

embedding the algorithm into a branch-and-bound structure to derive an exact solution

methodology, 2) exploring new solution methods particularly those that have been suc-

cessfully applied before to the MCFND, 3) proposing branch-and-cut approaches by

developing new valid inequalities based on the multilayer structure of the problem, and

4) considering problems where there are commodities to be routed in all layers.
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Table 5.V – CPLEX and the proposed algorithm comparison for MLTS2 (3-layer in-
stances)

Optimality Gap % LB/UB Gap %

# (|A1|, |A2|, |A3|, |N|, |K|, FCTI, DCTI, CDI) T(sec) GapCUB
CLB GapLUB

LLB GapCLB
LLB GapCUB

LUB

33 (22156,19952, 660, 56, 100, L, L, F) Limit 19.57 20.00 6.09 -5.58
34 (22156,19952, 660, 56, 100, L, L, V) Limit 29.57 24.57 7.75 -13.87
35 (22156,19952, 660, 56, 100, L, T, F) Limit 26.84 22.68 5.53 -10.62
36 (22156,19952, 660, 56, 100, L, T, V) Limit 12.53 18.34 6.27 0.40
37 (22156,19952, 660, 56, 100, T, L, F) Limit 21.73 15.95 5.49 -11.98
38 (22156,19952, 660, 56, 100, T, L, V) Limit 20.92 17.17 4.62 -8.94
39 (22156,19952, 660, 56, 100, T, T, F) Limit 23.52 16.76 5.27 -12.96
40 (22156,19952, 660, 56, 100, T, T, V) Limit 21.24 12.87 4.66 -13.81
41 (22156,19952, 660, 56, 200, L, L, F) Limit 98.32 22.76 4.30 -97.91
42 (22156,19952, 660, 56, 200, L, L, V) Limit 97.96 21.03 2.86 -97.49
43 (22156,19952, 660, 56, 200, L, T, F) Limit 98.13 22.12 4.65 -97.71
44 (22156,19952, 660, 56, 200, L, T, V) Limit 97.90 21.92 3.41 -97.41
45 (22156,19952, 660, 56, 200, T, L, F) Limit 97.66 18.15 3.64 -97.24
46 (22156,19952, 660, 56, 200, T, L, V) Limit 72.96 17.85 3.62 -68.28
47 (22156,19952, 660, 56, 200, T, T, F) Limit 97.60 20.17 4.81 -97.13
48 (22156,19952, 660, 56, 200, T, T, V) Limit 66.11 18.94 4.06 -59.88
49 (33498,29794, 870, 70, 100, L, L, F) Limit 22.30 26.30 11.40 -6.59
50 (33498,29794, 870, 70, 100, L, L, V) Limit 15.19 22.67 11.58 -3.02
51 (33498,29794, 870, 70, 100, L, T, F) Limit 21.70 31.26 11.66 0.64
52 (33498,29794, 870, 70, 100, L, T, V) Limit 18.46 20.16 7.89 -5.93
53 (33498,29794, 870, 70, 100, T, L, F) Limit 19.92 20.06 7.61 -7.45
54 (33498,29794, 870, 70, 100, T, L, V) Limit 9.57 13.52 6.00 -1.71
55 (33498,29794, 870, 70, 100, T, T, F) Limit 22.48 17.54 6.44 -12.05
56 (33498,29794, 870, 70, 100, T, T, V) Limit 34.98 18.45 6.72 -25.63
57 (33498,29794, 870, 70, 200, L, L, F) Limit 98.53 36.89 16.18 -98.05
58 (33498,29794, 870, 70, 200, L, L, V) Limit 98.32 27.39 10.97 -97.94
59 (33498,29794, 870, 70, 200, L, T, F) Limit 98.32 28.85 13.06 -97.95
60 (33498,29794, 870, 70, 200, L, T, V) Limit 98.33 29.68 13.99 -97.95
61 (33498,29794, 870, 70, 200, T, L, F) Limit 61.31 22.58 6.87 -53.46
62 (33498,29794, 870, 70, 200, T, L, V) Limit 64.62 20.52 6.36 -58.32
63 (33498,29794, 870, 70, 200, T, T, F) Limit 61.60 24.01 6.28 -52.64
64 (33498,29794, 870, 70, 200, T, T, V) Limit 71.23 23.47 9.51 -65.98

Average 53.73 21.71 7.17 -46.08
Minimum 9.57 12.87 2.86 -98.05
Maximum 98.53 36.89 16.18 0.64

Table 5.VI – Performance analysis of the proposed algorithm in terms of |K|, |L|, |A| and
|N|.

|K| |L| |A| |N|
100 200 2 3 20612 30664 42768 64162 56 70

GapLUB
CUB Average -5.34 -71.66 -30.93 -46.08 -21.82 -40.03 -49.40 -42.75 -35.61 -41.39
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Table 5.VII – Lower bound analysis: comparing proposed Lagrangian to CPLEX root
node and strong LP for MLTS1.

Strong LP Root Node

# (|A1|, |A2|, |N|, |K|, FCTI, DCTI, CDI) Lag Time Lag gap Time Lag gap Time

1 (19952,660, 56, 100, L, L, F) 0h 14m 9.08 0h 35m 8.92 0h 11m
2 (19952,660, 56, 100, L, L, V) 0h 14m 8.38 0h 31m 8.28 0h 30m
3 (19952,660, 56, 100, L, T, F) 0h 14m 8.59 0h 21m 8.53 0h 11m
4 (19952,660, 56, 100, L, T, V) 0h 14m 4.00 0h 20m 3.83 0h 21m
5 (19952,660, 56, 100, T, L, F) 0h 14m 5.12 0h 40m 5.07 0h 7m
6 (19952,660, 56, 100, T, L, V) 0h 14m 5.61 0h 25m 5.62 0h 8m
7 (19952,660, 56, 100, T, T, F) 0h 20m 7.79 0h 28m 7.77 0h 17m
8 (19952,660, 56, 100, T, T, V) 0h 20m 2.82 0h 21m 2.88 0h 11m
9 (19952,660, 56, 200, L, L, F) 0h 32m 6.00 5h 35m 5.91 0h 37m

10 (19952,660, 56, 200, L, L, V) 0h 31m 6.48 3h 38m 6.26 0h 37m
11 (19952,660, 56, 200, L, T, F) 0h 29m 6.99 5h 20m 6.83 1h 46m
12 (19952,660, 56, 200, L, T, V) 0h 19m 5.58 2h 27m 5.51 1h 5m
13 (19952,660, 56, 200, T, L, F) 0h 19m 4.48 3h 49m 4.49 0h 47m
14 (19952,660, 56, 200, T, L, V) 0h 19m 4.50 2h 31m 4.51 0h 43m
15 (19952,660, 56, 200, T, T, F) 0h 30m 3.13 4h 3m 3.19 0h 18m
16 (19952,660, 56, 200, T, T, V) 0h 19m 4.47 2h 13m 4.47 0h 25m
17 (29794,870, 70, 100, L, L, F) 0h 18m 7.91 0h 53m 7.75 0h 40m
18 (29794,870, 70, 100, L, L, V) 0h 29m 6.71 0h 33m 6.63 0h 47m
19 (29794,870, 70, 100, L, T, F) 0h 28m 5.42 0h 27m 5.21 0h 20m
20 (29794,870, 70, 100, L, T, V) 0h 29m 4.65 0h 22m 4.53 1h 24m
21 (29794,870, 70, 100, T, L, F) 0h 19m 7.87 0h 56m 7.81 0h 38m
22 (29794,870, 70, 100, T, L, V) 0h 20m 3.42 0h 31m 3.35 1h 12m
23 (29794,870, 70, 100, T, T, F) 0h 19m 5.41 0h 51m 5.29 0h 29m
24 (29794,870, 70, 100, T, T, V) 0h 19m 3.76 0h 32m 3.66 0h 38m
25 (29794,870, 70, 200, L, L, F) 0h 28m 8.41 3h 23m 8.23 0h 50m
26 (29794,870, 70, 200, L, L, V) 0h 27m 4.78 3h 57m 4.69 0h 48m
27 (29794,870, 70, 200, L, T, F) 0h 28m 5.54 4h 13m 5.40 1h 6m
28 (29794,870, 70, 200, L, T, V) 0h 28m 3.14 2h 47m 3.02 0h 59m
29 (29794,870, 70, 200, T, L, F) 0h 29m 8.64 7h 57m 8.62 1h 15m
30 (29794,870, 70, 200, T, L, V) 0h 26m 4.96 1h 33m 4.92 0h 56m
31 (29794,870, 70, 200, T, T, F) 0h 26m 7.53 3h 35m 7.54 0h 44m
32 (29794,870, 70, 200, T, T, V) 0h 27m 5.30 2h 13m 5.31 0h 57m

Average 0h 23m 5.83 2h 7m 5.75 0h 41m
Minimum 0h 14m 2.82 0h 20m 2.88 0h 7m
Maximum 0h 32m 9.08 7h 57m 8.92 1h 46m

Standard Deviation 0h 6m 1h 57m 0h 24m
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Table 5.VIII – Lower bound analysis: comparing proposed Lagrangian to CPLEX root
node and strong LP for MLTS2.

Strong LP Root Node

# (|A1|, |A2|, |N|, |K|, FCTI, DCTI, CDI) Lag Time Lag gap Time Lag gap Time

33 (19952,660, 56, 100, L, L, F) 0h 36m 5.23 6h 27m 5.64 0h 32m
34 (19952,660, 56, 100, L, L, V) 0h 37m 7.24 6h 43m 7.35 0h 52m
35 (19952,660, 56, 100, L, T, F) 0h 40m 4.69 3h 25m 5.06 0h 58m
36 (19952,660, 56, 100, L, T, V) 0h 37m 7.15 1h 0m 7.50 0h 56m
37 (19952,660, 56, 100, T, L, F) 0h 36m 4.65 3h 35m 5.29 1h 30m
38 (19952,660, 56, 100, T, L, V) 0h 38m 3.59 4h 26m 4.31 1h 3m
39 (19952,660, 56, 100, T, T, F) 0h 43m 3.57 2h 41m 4.62 0h 26m
40 (19952,660, 56, 100, T, T, V) 0h 39m 3.52 2h 3m 4.22 0h 34m
41 (19952,660, 56, 200, L, L, F) 0h 48m 3.96 21h 38m 4.28 1h 19m
42 (19952,660, 56, 200, L, L, V) 0h 46m 2.25 12h 31m 2.53 2h 11m
43 (19952,660, 56, 200, L, T, F) 0h 56m 3.41 15h 37m 3.62 1h 34m
44 (19952,660, 56, 200, L, T, V) 0h 45m 2.86 15h 13m 3.15 1h 24m
45 (19952,660, 56, 200, T, L, F) 0h 43m 2.56 16h 33m 3.43 1h 18m
46 (19952,660, 56, 200, T, L, V) 0h 43m 2.43 9h 57m 3.26 1h 11m
47 (19952,660, 56, 200, T, T, F) 1h 1m 3.42 21h 40m 3.96 2h 8m
48 (19952,660, 56, 200, T, T, V) 0h 45m 3.04 15h 11m 3.88 0h 52m
49 (29794,870, 70, 100, L, L, F) 0h 57m 6.90 8h 20m 7.17 3h 15m
50 (29794,870, 70, 100, L, L, V) 0h 58m 4.47 2h 42m 4.45 3h 6m
51 (29794,870, 70, 100, L, T, F) 1h 34m 3.89 6h 17m 3.98 2h 52m
52 (29794,870, 70, 100, L, T, V) 1h 35m 4.79 3h 25m 4.85 2h 36m
53 (29794,870, 70, 100, T, L, F) 0h 50m 6.49 2h 42m 7.19 1h 55m
54 (29794,870, 70, 100, T, L, V) 0h 47m 4.22 2h 30m 4.94 1h 13m
55 (29794,870, 70, 100, T, T, F) 1h 34m 4.49 1h 30m 5.14 1h 59m
56 (29794,870, 70, 100, T, T, V) 1h 29m 5.20 3h 35m 6.04 2h 49m
57 (29794,870, 70, 200, L, L, F) 1h 57m 4.91 15h 55m 5.13 2h 38m
58 (29794,870, 70, 200, L, L, V) 1h 9m 4.22 17h 4m 4.57 2h 42m
59 (29794,870, 70, 200, L, T, F) 1h 7m 5.21 25h 1m 5.55 3h 37m
60 (29794,870, 70, 200, L, T, V) 1h 59m 3.10 21h 55m 3.40 5h 24m
61 (29794,870, 70, 200, T, L, F) 1h 5m 3.04 18h 10m 3.79 6h 40m
62 (29794,870, 70, 200, T, L, V) 1h 12m 3.15 18h 37m 4.52 4h 9m
63 (29794,870, 70, 200, T, T, F) 2h 0m 3.15 19h 35m 4.15 3h 3m
64 (29794,870, 70, 200, T, T, V) 1h 9m 4.00 8h 58m 4.58 1h 59m

Average 1h 2m 4.21 10h 28m 4.74 2h 9m
Minimum 0h 36m 2.24 1h 0m 2.53 0h 26m
Maximum 2h 0m 7.24 25h 1m 7.50 6h 40m

Standard Deviation 0h 26m 7h 32m 1h 25m

Lagrangian-Based Methods for Single and Multi-Layer Multicommodity Capacitated Network Design

CIRRELT-2019-07



CHAPTER 6

CONCLUSION

Lagrangian-based algorithms are one of the most effective solution methods to solve

network design problems, in particular the single-layer MCFND. The usual Lagrangian

relaxations for the formulation are the so-called shortest path (commodity-based) and

knapsack (arc-based) relaxations. For the first one, the resulting Lagrangian subproblem

decomposes into a collection of shortest path subproblems, one for each commodity,

while the second one allows solving the Lagrangian subproblem as a series of contin-

uous knapsack subproblems, one for each arc. The nodes of a network are the other

entities that can be considered as decomposition components. We have proposed three

new node-based Lagrangian relaxation-reformulations for the multicommodity capaci-

tated fixed-charge network design problem. A Lagrangian-based matheuristic has also

been proposed to find upper bounds. We have conducted significant computational ex-

periments on the benchmark instances. The Lagrangian dual bound of the new node-

based Lagrangian relaxations improve significantly upon the so-called strong LP bound

(known to be equal to the Lagrangian dual bounds of the flow and knapsack relaxations).

The node-based proposed Lagrangian heuristic based on the Location relaxation outper-

forms traditional flow and knapsack based heuristics. The proposed node-based La-

grangian heuristic algorithm outperforms almost all the previously proposed heuristics

in the literature in average.

The applications of network design models and their solution techniques have been

surveyed in the literature. However, in recent years, interesting applications of multilayer

network design have appeared, that are not covered in these surveys. We have presented

a state-of-the-art review on multilayer network design modeling and methodological ap-

proaches in telecommunications and transportation applications. The proposed review

sheds lights on different models, solution method challenges, and identifies several im-

portant research avenues. Moreover, we proposed a general formulation for the multi-

layer network design problem. This model can formulate most of the applications in
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telecommunications and transportation.

Motivated by the success of Lagrangian-based heuristics for the single-layer MCFND,

we have proposed a general formulation for the MSMCFND, as well as an effective algo-

rithm to solve large-scale MSMCFND instances. The algorithm has been enhanced by a

preprocessing procedure, intensification and diversification steps, and a post-optimization

phase. The proposed algorithm produces better upper bounds than CPLEX in 92% of

the instances. It is also better than CPLEX in 68% of the instances in terms of the opti-

mality gap. It improves the upper bound by more than 10% in 56% of the instances. The

performance of the proposed algorithm for the MSMCFND is robust in either the easy

or the difficult instances.

The first future research avenue is to develop exact solution methods by embed-

ding the proposed Lagrangian relaxation into a branch-and-bound procedure or other

MIP schemes. To do so, we are developing a new algorithm called Relax-Fix-and-Cut

(RF&C) for the MCFND. RF&C performs three main steps at each node of a branch-

and-bound procedure: 1) relax, where a relaxation of the formulation is solved, 2) fix,

where the design variables are fixed based on the solution of the relaxation to produce a

restricted MIP, and 3) cut, where a pseudo cut is added to the formulation to remove the

explored fixed solution space and produce new relaxation node. The restricted MIP is

addressed by a state-of-the-art MIP solver. The RF&C algorithm is in the final stages of

implementation and test. For the MCFND, the second future research avenue is to im-

prove the solution time of the node-based subproblems by using specialized algorithms.

For the MSMCFND, future research avenues include: 1) considering new problems

with flow-design connectivity and with even more layers; 2) improving the proposed

algorithm for the MSMCFND by using more efficient non-differentiable optimization

approaches such as the bundle method; 3) proposing new solution methods particularly

those that have been successfully applied before to the MCFND and can be used for the

MSMCFND; 4) proposing branch-and-cut approaches by developing new valid inequal-

ities based on the multilayer structure of the problem; 5) considering a more complex

problem where commodities must be routed in all layers.
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