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Abstract. In this paper we propose and assess the accuracy of new fuel consumption 
estimation models for vehicle routing. Based on real-world data of instantaneous fuel 
consumption, time-varying speeds observations, and high-frequency traffic data related to 
a large set of shipping operations we propose effective methods to estimate fuel 
consumption and greenhouse gas emissions. By carrying out nonlinear regression analysis 
using supervised learning methods, namely Neural Networks, Support Vector Machines, 
Conditional Inference Trees, and Gradient Boosting Machines, we develop new models that 
provide better prediction accuracy than classical ones. We correctly estimate consumption 
for time-dependent point-to-point routing under realistic conditions taking into account 
freight transportation operations during peak hour traffic congestion, stop-and-go driving 
patterns, idle vehicle states, and the variation of vehicle loads. Extensive computational 
experiments on real datasets show the effectiveness of the proposed machine learning 
emissions models, clearly outperforming the Comprehensive Modal Emissions Model 
(CMEM) and the Methodology for Estimating air pollutant Emissions from Transport 
(MEET). Advanced econometric analysis using Monte Carlo simulation are used to 
calibrate CMEM parameters, significantly improving its quality. Based on sensitivity 
analysis we show that MEET underestimates real-world consumption by 24.94% 
and CMEM leads to an overestimation of consumption by 7.57% (13.18% before 
calibration) according to observed data, while our best machine learning model (Gradient 
Boosting Machines) exhibited superior estimation accuracy and is off by only 1.70% 
considering real-world driving conditions. A detailed analysis of the relative importance of 
input variables confirms the efficiency of our models.  

Keywords: Consumption models, time-dependent routing, traffic congestion, machine 
learning, Monte Carlo simulation. 
 
Acknowledgements. This research was partly supported by grants 2014-05764 and 
0172633 from the Natural Sciences and Engineering Research Council of Canada (NSERC) 
and by the Centre d'Innovation en Logistique et Chaîne d'Approvisionnement Durable 
(CILCAD). The CILCAD receives financial support from the Green Fund under Priority 15.2 
of the 2013-2020 Action Plan on Climate Change, a priority implemented by Transition 
Énergétique Québec (TEQ). We also thank Mr. Jean-Philippe Gagliardi, President of Logix 
Operations Inc., for providing us with real data from an important wholesaler partner in 
Québec City. This support is highly appreciated. 
 
*Revised version of CIRRELT-2018-15 

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily 
reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 
** Corresponding author: hamza.heni@cirrelt.ca 
Dépôt légal – Bibliothèque et Archives nationales du Québec 

Bibliothèque et Archives Canada, 2019 

© Heni, Diop, Coelho, Renaud and CIRRELT, 2019 



1 Introduction

Freight transportation is known to be an important source of greenhouse gas (GHG)
emissions [46]. GHG emissions are proportional to the fuel consumption which in turn,
depends on several factors including speed, acceleration, distance, weight of the vehicle,
backhauls and roadway slope [9].

Accurate emissions estimation is a valuable information for transportation experts
in making effective decisions that improve routing operations. The current literature
on GHG emissions for road freight transportation offers different models for estimating
emission and fuel consumption, the more well-known being the Comprehensive Modal
Emissions Model (CMEM) [2] and the Methodology for Estimating air pollutant Emis-
sions from Transport (MEET) [25]. Over the past few years, CMEM and MEET have
been integrated into various routing models, with a focus on environmental impacts in
addition to economic implications.

The CMEM is designed for light, medium and heavy duty vehicles. It computes fuel
consumption of route plans considering the traveled distance, vehicle speed, carried load
and roadway gradient. Relevant studies on green vehicle routing calculating the amount
of GHG emissions following CMEM are those of Bektaş and Laporte [4], Demir et al.
[8], Franceschetti et al. [14], and Heni et al. [23] in which the objective is to minimize a
function comprising fuel consumption and driver costs. Pathak et al. [38] used CMEM
to estimate fuel consumption under real-world driving patterns. Androutsopoulos and
Zografos [1] and Huang et al. [29] integrated path selection decision on the vehicle
routing problems considering a multigraph representation [19, 43] for the road network
that incorporates the set of candidates paths between all pairs of key-destinations.

Figliozzi [13], Jabali et al. [30], Qian and Eglese [39], and Ehmke et al. [12] de-
rived emissions from the MEET model, which allows the conversion of speeds into
emissions based on fuel consumption rates that have been derived from engine test-
bed measurements. MEET considers the impact of load and roadway gradient through
error-corrective parameters.

Real-time traffic congestion information, the behavior of drivers, timely fuel con-
sumption, and GHG emissions data collected by various sensors, and Global Positioning
System (GPS) devices are becoming more present in commercial operations [24]. With
such rich amount of traffic-related data much attention is now accorded to the computa-
tion of emission-minimizing paths on very large road networks based on time-dependent
speed observations provided by logistics companies using Intelligent Transportation Sys-
tem (ITS) technology [5]. However, different fuel consumption models exist and they
are based on very distinct assumptions and yield contrasting results. Making an accu-
rate estimation of fuel consumption is an important aspect of a firm’s decision-making
process as realized emissions and fuel price affect the profitability [10].

Demir et al. [7] elaborated a comparative analysis of several fuel consumption mod-
els that have been developed to compute fuel consumption associated with road freight
transportation. Fuel consumption models vary in their performance according to numer-
ous factors such as speed, acceleration, and vehicle types. Turkensteen [47] evaluated
the accuracy of CMEM, indicating that fuel consumption computations assuming fixed
speed are not accurate in time-dependent routing. The author observed that fixed
average speed computations are likely to underestimate fuel consumption. Through
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sensitivity analysis he showed that much fuel is consumed when speed fluctuates and
vehicle load increases. It should be noted that the CMEM was elaborated based on
a bottom-up and analytical approach according to the operated vehicle type, engine
efficiency, weather and route conditions [2]. Consequently, it requires the calibration of
many parameters using statistical techniques.

Jaikumar et al. [31] performed a modal analysis of vehicular emissions under real-
world driving conditions. They found out that short term events such as acceleration and
braking significantly affect emissions. Despite their findings that CMEM underestimates
emissions they have only used average speed and acceleration for distances ranging from
1 to 10 km based on field data obtained from an on-board diagnostic tool.

It follows from previous studies that approaches based on aggregated speeds can un-
derestimate GHG emissions and fuel consumption. Greater estimation accuracy relies
on data reflecting real-world operations. The last decade has seen substantial advances
in building prediction models using machine learning methods, which capture complex
nonlinear relationships in the systems under study and produce accurate estimations by
learning from the available data [36, 6, 32, 34]. There have been a few studies on the
application of machine learning methods for establishing practical fuel consumption or
emissions models that can be used in routing problems with both environmental and
operational considerations. Inspired by the need of emissions estimation, Zeng et al. [50]
proposed a new emission model derived from the theory of vehicle dynamics. The pa-
rameters of their model were computed with the maximum likelihood estimation (MLE),
and its accuracy was validated using GPS data collected for a light duty passenger car
through a comparative analysis with the Virginia Tech Microscopic Energy and Emission
Model (VT-Micro) [40], Support Vector Machines (SVM) model and Neural Networks
(NNET) model. Liu et al. [35] proposed an effective emissions estimation model of a
diesel engine using SVM that can be used by diesel engine manufacturers to measure
emissions.

Due the growing interest of accurate fuel consumption estimations, the current study
follows previous streams of literature by applying Gradient Boosting Machines (GBM)
in addition to NNET, SVM and Conditional Inference Trees (CIT) machine learning
methods to predict consumption considering relevant variables derived from in-field
consumption data considering real-world driving conditions. We also perform a detailed
calibration of CMEM parameters to improve its accuracy.

From a machine learning point of view, a number of opportunities may exist with the
availability of speeds observations, instantaneous fuel consumption, roadway gradient,
vehicle load, and stop-and-go traffic data. GPS and on-board real-time fuel consumption
measurement devices provide real-world observations of consumption of micro scale
events under real-world traffic conditions. In this work, we used field data collected
across the entire road network of Québec City, which contains up to 50,000 road links.
The obtained GPS dataset contains 58,215 instantaneous fuel consumption and speed
observations monitored over 97 days between November 2016 and March 2017. In
terms of prediction accuracy, families of supervised learning algorithms are shown to
be effective in fitting artificial outputs to the real one. Therefore, using supervised
learning methods we build nonlinear fuel consumption models considering speeds, vehicle
load fluctuations, stop-and-go driving patterns, acceleration, and breaking events. The
contributions of this paper are fivefold:
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(i) we propose an effective approach for the computation of fuel consumption;

(ii) we provide several insights concerning fuel consumption through the analysis of
real-world consumption data considering shipping operations under a large road
network with fluctuating traffic congestion;

(iii) we calibrate the CMEM parameters using the in-field fuel consumption data and
large-scale Monte Carlo simulation;

(iv) we develop efficient nonlinear fuel consumption models using NNET, SVM, CIT,
and GBM supervised learning methods, which are trained by applying the k -fold
cross validation method on real-life fuel consumption data;

(v) we demonstrate the effectiveness of the proposed supervised learning models at
micro scale events compared to MEET and the calibrated CMEM model that
incorrectly predicted fuel consumption.

The remainder of this paper is organized as follows. In the following section we review
the literature on fuel consumption models for road freight transportation. Section 3
describes the data collection procedure and provides some initial analysis of the available
data. Section 4 presents the calibration of the CMEM with Monte Carlo method. In
Section 5 we describe our proposed approach for modeling consumption using supervised
learning methods. In Section 6, we present the results of our extensive computational
experiments and sensitivity analysis of several existing and newly introduced models.
Conclusions and directions for future research are stated in Section 7.

2 Existing estimation models

Motivated by the need to account for traffic congestion, this section describes the existing
methods to compute emissions in time-dependent networks (multigraphs) using CMEM
and MEET. We present the models in their original context, thus CMEM estimates fuel
consumption and MEET estimates emissions. To do so, any path p from an origin o to
a destination d follows an ordered sequence of nodes on the road network (see Figure
1):

pod = (o = v0, v1, ..., vk−1, vk = d ), (1)

where vk are road nodes, and k represents the number of nodes of the path.
For any road segment (u, v) ∈ A let luv denote the distance between nodes u and v.

Let τuv and Fuv be the time-dependent travel time and the amount of fuel consumed, re-
spectively, related to traveling across (u, v). With each road segment (u, v) is associated
a time-dependent travel speed suv.

2.1 Time-dependent fuel consumption using CMEM

The CMEM is one of the most used fuel consumption models in green vehicle routing. It
was designed by Barth and Boriboonsomsin [2] for a wide variety of vehicles. According
to this model, vehicle fuel consumption depends on many environmental and traffic-
related parameters, namely load, speed, roadway gradient, among others. Considering
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Figure 1: Illustration of a portion of the road network in Québec City

vehicle speed s (m/s), total vehicle weight M and roadway gradient θ, for a given path
p the corresponding fuel consumption (in liters) can be computed using CMEM based
on equation (2):

Fp =
∑

(u,v)∈p

F1
uv + F2

uv. (2)

The term F1 describes the fuel consumption related to the vehicle weight and F2

represents the fuel consumption incurred by the speed:

F1
uv = τuv

αME0

E2

suv =
αME0

E2

luv, (3)

and

F2
uv = τuvE0

(
E1 +

β

E2

(suv)
3

)
= E0E1τuv +

βE0

E2

luv(suv)
2, (4)

where E0 = ζ
$ψ

, E1 = kNeV , E2 = 1
ε1000ηtf

, M = ω + q, α = a + g sin θ + gCr cos θ,

and β = 0.5CdAρ are constant parameters related to the vehicle and its engine such as
inertia force, rolling resistance, and other vehicle characteristics. All parameter values
used are shown in Table 1. Note that the values of CMEM parameters are determined
either by manufacturer measurements or calibration process. On one hand, those related
to the vehicle specifications are provided by the manufacturer. On the other hand, a
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set of values of the parameters allowing calibration can be determined through Monte
Carlo Simulation (see Section 4) using measured consumption data.

Table 1: Parameters used by CMEM for the computation of fuel consumption

Notation Description Typical values
w Curb-weight (kg) 4500
q Carried load (kg) 0-4350
ζ Fuel-to-air mass ratio 1
k Engine friction factor (kJ/rev/liter) 0.25
Ne Engine speed (rev/s) 40
V Engine displacement (liter) 5.12
g Gravitational constant (m/s2) 9.81
ρ Air density (k/m3) 1.2041
Cd Coefficient of aerodynamic drag 0.7
A Frontal surface area (m2) 4.6
Cr Coefficient of rolling resistance 0.01
ηtf Vehicle drivetrain efficiency 0.4
η Efficiency parameter for diesel engines 0.9
cf Fuel and GHG emissions cost per liter ($CAD/liter) 1.15
$ Heating value of a typical diesel fuel (kJ/g) 44
ψ Conversion factor (g/s to liter/s) 737
sl Lower speed limit (m/s) 5.555
su Upper speed limit (m/s) 22.222
s Average speed at a portion of segment (m/s)
a Acceleration (m/s2) [−3, 1]
θ Roadway gradient (degree) 0

2.2 Time-dependent emission using MEET

The MEET emission model was developed by Hickman et al. [25] for estimating vehicle
emissions using a variety of polynomial functions of speed and acceleration levels. It
computes GHG emissions produced by a vehicle of weights ranging from 3.5 to 32 tons
according to travel speed and a wide range of input parameters related to the type of
vehicle. Given an unloaded vehicle traveling at speed s (km/h) on a flat surface the
MEET calculates the rate of emissions (g/km) using the following function:

ηr = K + as+ bs2 + cs3 + d
1

s
+ e

1

s2
+ f

1

s3
. (5)

The coefficients (K , a, b, c, d , e, f ) are defined based on the vehicle type and weights.
For example, if we consider the case of a vehicle weighing 3.5-7.5 tons the coefficients
for the GHG emissions function for this specific vehicle category are (K , a, b, c, d , e, f ) =
(110, 0, 0, 0.000375, 8702, 0, 0).

To consider the effect of road gradient for each vehicle category, pollutant and gra-
dient class, MEET proposes the following road gradient correction factor:

ηg = A0 + A1s+ A2s
2 + A3s

3 + A4s
4 + A5 s

5 + A6s
6, (6)

where (A0 ..A6 ) are coefficients for CO2 pollutant that vary according to the vehicle
category and gradient class. Moreover, to consider the load, MEET applies the following
load correction factor:

ηl = κ+ nθ + ρθ2 + qθ3 + rs+ ys2 + zs3 +
%

s
, (7)
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where θ is the roadway gradient and (κ, n , ρ, q , r , y , z, %) are coefficients of the load
correction function.

Based on MEET the amount of GHG emissions Ep in grams produced by traversing
path p (with time-varying speeds taken into account) is given by:

Ep =
∑

(u,v)∈p

ηrηgηl luv. (8)

As GHG emissions are directly proportional to fuel consumption, the amount of
fuel consumed can be derived from the amount of emissions using standard conversion
factors.

3 Data collection and analysis of fuel consumption

In collaboration with an important furniture, appliances and electronics retailer from
Québec City, on-road fuel consumption data collection was conducted with Toyota HINO
SERIES 195 light duty vehicles [26, 27] across different time periods of each workday
during shipping operations, which also covers rush hours times. The vehicles were mon-
itored with a GPS and data logging device, which can measure the instantaneous fuel
consumption between GPS points. The device incorporates a fuel analyzer sensor, an
engine scanning tool, and a communication port for obtaining accurate measurements.

During 97 days between November 2016 and March 2017 up to 58,215 instantaneous
speed and fuel consumption observations were collected. Real-time information includes
fuel consumption, travel speed, acceleration, deceleration, GPS coordinates, and vehicle
load. The average travel time between two consecutive measurements is 14.54 seconds.

We now present the characteristics and analysis of real-world, on-road vehicle fuel
consumption. The main goal is to quantify and characterize the fuel consumption in a
real-world road freight distribution environment regarding relevant input variables. For
data validation the daily observed fuel consumption was compared to fuel invoices show-
ing that the consumption device yields perfect accuracy. Yet, outliers analysis of fuel
consumption data was done to ensure that there is no time lag between instantaneous
consumption observations. Hence, this section describes how data analysis were offset
to cleanup any lags in the fuel consumption sample that will be used by our machine
learning algorithms.

For each observed workday the vehicles travel on average through 14 paths corre-
sponding to shipping trips. Translating journeys into trips involves three main steps:

• geomatics and geospacial manipulations by geomatic specialists allow us to match
GPS coordinates of each trip to the road segments of Québec City. It is therefore
essential to combine road segments that form part of a single trip but which have
been divided into individual paths according to service time at customers, refueling
stops, and/or driver breaks.

• identification of whether a pause is a refueling stop or driver break, or service
time at a customer where goods are picked up or dropped off, by grouping the
observations according to when the vehicle ignition is turned on or off. For the
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purpose of this study, a trip is defined as a combination of paths traveled across
a given workday where the ends are the real location of a pickup or delivery, thus
grouping subsequent journeys that include breaks at fuel stations or truck-stops.

• matching the information of GPS points, starting time and idle time with orders
details from another database to identify the vehicle load at each GPS point, which
is constant throughout the path connecting two customers.

A cleanup process is applied on the prepared data to remove GPS observations
corresponding to engine off during breaks or delivery operations. Then, based on the
obtained consumption sample composed of 46,476 observations we define five explana-
tory variables: travel speed, acceleration, vehicle load, stop-and-go driving pattern, and
traveled distance, while the output variable is the amount of fuel consumed between
two GPS points.

The frequency of link-based fuel consumption observations is displayed in Figure 2.
We see that the number of observations is high for low fuel volumes. As shown in Figure
2 the mean of fuel consumption considering all observations is 0.035 liter per road link.

Figure 2: Fuel consumption histogram of real-world shipping trips in Québec City

A subset of data composed by observations corresponding to intervals of 11 seconds is
presented in Figure 3. We see a high level of fuel consumption variability based on speed
and acceleration levels. It also illustrates the nonlinear behavior of fuel consumption as
a function of travel speed and acceleration. When acceleration and speed levels increase,
consumption tends to increase. In deceleration, consumption values are generally low.
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Figure 3: Fuel consumption as a function of instantaneous speed and acceleration

Figure 4 shows the trade-off between fuel consumption and travel speed over different
times of a typical shipping workday. It is clear that the fluctuation of fuel consumption
is directly impacted by the vehicle speed. The shape of curves has two distinct phases
(or its increase). In a first stage, we observe that fuel consumption increases with speed.
This phase is characterized by a regular form of speed (ascending or descending). The
second phase, marked by erratic fluctuations of speed, gives a very accidental relation-
ship between speed and fuel consumption. This situation corresponds to the different
phases of acceleration and deceleration. We can see that vehicular consumption during
idling and cruising are generally low compared to consumption during acceleration. We
also observe that fuel consumption depends on very short term events such as rapid
acceleration and braking (stop-and-go). The majority of microscopic fuel consumption
models assume a constant consumption rate when a vehicle is decelerating.

To summarize, there is a clear need to perform an effective predictive modeling
taking into account the specificity of fuel consumption data structures. Therefore, in
this study we used model-based machine learning to estimate it.

4 Calibration of CMEM using Monte Carlo simula-

tion

A key challenge when dealing with CMEM is the parameter setting which may impact
the accuracy of the estimation of fuel consumption. In fact, even with same vehicle
models, the efficiency of engines vary according to the traffic and weather conditions
that differ from one place to another (Québec City in this study vs Arizona/California
where the CMEM was designed) [42, 2, 31]. Therefore, upon making the comparison
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Figure 4: Instantaneous variation in fuel consumption and speed
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against machine learning models, the application of statistical and simulation techniques
to calibrate and optimize the default parameter setting of CMEM is crucial. To this
end, we have addressed the issue of the parameterization and calibration of the CMEM
model using Monte Carlo simulation (MCS), which is often used to generate effective
simulations. Widely used in the sciences [20, 17] and operations research [18, 37], MCS
allows the estimation of functions through stochastic search and approximation methods
[41].

Vehicle and operation variables (e.g., frontal surface area, speed, acceleration, road-
way gradient) and physical parameters (e.g., cold start coefficients, fuel to air mass
ratio) are fixed inputs to the CMEM model and not included in the calibration process.
Hence, to conduct MCS we first consider the set of calibration parameters, namely the
engine friction factor, the coefficient of aerodynamic drag, the coefficient of rolling re-
sistance, the vehicle drive train efficiency, the efficiency parameter for diesel engines,
the heating value of a typical diesel fuel, and the conversion factor. Then, when run-
ning MCS we calibrate the selected CMEM parameters to minimize the modeled and
measured differences through the evaluation of the average prediction error measures.
Note that the values of the set of parameters requiring calibration are randomly selected
with respect to search intervals and probability distributions that allow to realistically
represent the uncertainty of the variables. More specifically, any candidate CMEM pa-
rameter that needs to be calibrated is optimized according to the prediction accuracy
on the same training sample used to generate machine learning models (see Section 5).
The composition of the training and testing samples is presented in Section 6.

Moreover, using MCS we execute a repeated sampling of data from a set of pop-
ulations and a randomization process to produce a large set of combinations. MCS
combines a huge set of possibilities (more than 1.5 million combinations in our study),
ranging the values of the calibration parameters at the same time. Datasets are selected
from this population and fed into the MCS procedure, thus providing an efficient way
of producing a sufficiently large number of assessments to enable a statistically valid
appraisal of the calibration process. The simulation process is repeated many times
to enhance the accuracy of fuel consumption estimations. More specifically, the MCS
calculates the model outcome thousands of times, each time using different randomly
selected samples.

Table 2 provides the retained values of the different parameters after running the
calibration with MCS.

Table 2: Calibrated parameters of CMEM obtained with Monte Carlo simulation

Notation Description Typical values Calibrated values
k Engine friction factor (kJ/rev/liter) 0.25 0.17
Cd Coefficient of aerodynamic drag 0.70 0.90
Cr Coefficient of rolling resistance 0.01 0.046
ηtf Vehicle drivetrain efficiency 0.40 0.66
η Efficiency parameter for diesel engines 0.90 1.00
$ Heating value of a typical diesel fuel (kJ/g) 44.00 45.03
ψ Conversion factor (g/s to liter/s) 737.00 741.46

Measuring Fuel Consumptionin Vehicle Routing: New Estimation Models Using Supervised Learning

10 CIRRELT-2019-08



5 Fuel consumption modeling with supervised learn-

ing methods

This section shows the development of multiple nonlinear fuel consumption models using
supervised learning based on the applied econometric approach of Mullainathan and
Spiess [36] guiding our design choices to:

1. pick a variety of machine learning methods according to prediction function classes,
namely nonparametric predictors (e.g., Conditional Inference Trees), mixed pre-
dictors (e.g., Neural Networks), and combined predictors (e.g., Gradient Boosting
Machines);

2. perform regularization based on the prediction function class;

3. and empirical tuning through cross-validation.

In this study four supervised learning methods were selected: Neural Networks
(NNET), Support Vector Machines (SVM), Conditional Inference Trees (CIT) and Gra-
dient Boosting Machines (GBM). Each model-based machine learning uses a set of reg-
ularization parameters. These determine the performance profile of each model. To
choose the appropriate combination of parameters values while avoiding over-fitting we
used grid search method for SVM and CIT and trial-and-error approach for NNET and
GBM. For each model we define a set of candidate values for the appropriate regular-
ization parameters according to the relevant literature, sample size and computational
resources. We then perform empirical tuning to fit each model with each candidate
set using the training dataset on which we apply the k -fold cross validation method
[21, 49] for estimating prediction error. The k -fold cross validation works by splitting
the training dataset into k roughly equal-sized subsamples or folds. Each supervised
learning method performs k iterations and at each time it excludes one held-out fold in
turn to evaluate their prediction accuracy once the model is estimated using the remain-
ing k − 1 folds. There is no formal rule of defining the value of k, and we used k=10.
The prediction accuracy of each model is given by the average of k obtained prediction
error measures. For each candidate machine learning model, the optimal settings of
tuning parameters is determined according to the obtained performance metrics. Then,
we evaluate the performance of their accuracy prediction using a testing dataset (see
Section 6).

5.1 Neural Networks

NNET learning methods allow the extraction of linear combinations of the inputs to
produce a nonlinear fuel consumption model. NNET is composed of a set of neurons
connected together [11] and uses massive interconnections to fit nonlinear models to
multidimensional data [22]. Figure 5 shows a schematic diagram of the proposed NNET
used to model fuel consumption. In this diagram the nodes are the neurons and the
arcs are the connections. NNET is a multi-layer network composed of three layers:
input layer, hidden layer and output layer. The input layer incorporates five input
variables x1, ..., x5 defined based on the chosen parameters affecting emissions, namely
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speed, acceleration, vehicle load, stop-and-go driving patterns, and distance. Note that
the driving pattern was defined as a binary variable indicating whether the vehicle is
moving or not (e.g., vehicle is stopped at red light or after breaking or when waiting
at customer, etc.) while the engine is running. The hidden layer incorporates a set of
hidden units or unobserved variables used to model the outcome [33]. These hidden units
perform intermediate computations using linear combinations of the input variables.
The output layer is the combination of obtained hidden units to perform the estimation
of fuel consumption.

Input
layer

Hidden
layer

Output
layer

Speed

Acceleration

Load

Driving pattern

Distance

Fuel consumption

Figure 5: Schematic diagram of the NNET fuel consumption model

In this study, several NNET tasks were performed to accurately predict consump-
tion by studying field data. We applied the quasi-Newton back propagation learning
algorithm [3]. The linear combinations of the predictors are transformed by a nonlinear
activation function (sigmoidal). To reduce over-fitting our NNET algorithm minimizes
the following function [33]:

G =

N∑
i=1

(yi − fi(x))2 + η

(
H∑
k=1

P∑
j=0

β2
jk +

H∑
k=0

γ2k

)
, (9)

where N is the total number of observations, P is the number of predictors, H represents
the number of hidden units, η is the weight decay, and yi is the outcome. The coefficient
βjk represents the effect of the jth predictor on the kth hidden unit. The function f
defines a linear combination that connects the hidden units to the outcome:

f (x) = γ0 +
H∑
k=1

γkhk, (10)
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where γk are the regression coefficients of hidden layers.
Several combinations of NNET parameter values were investigated by trial-and-error

to identify the best learning performance. Four different weight decay η ∈ {15−4, 15−3, 15−2, 15−1}
were evaluated along with one hidden layer including between one and 10 hidden units.
The convergence to the best NNET model is achieved with a maximum number of it-
erations equal to 2000. The optimal NNET model used η = 15−3 and H = 9 hidden
units.

5.2 Support Vector Machines

SVMs is a supervised learning method applied for classification and nonlinear regression
[48]. SVM algorithms use a kernel function allowing this model to transform input data
to the required form of relationships. There are multiple kinds of kernel functions, such
as linear, polynomial, radial basis function, and sigmoid. After several trials, we used a
linear kernel function defined as a simple sum of cross products, which have shown to
be effective for the current study.

The SVM regression minimizes the following regularized function:

W = C
N∑
i=1

L(yi,F (xi)) +
P∑
j=1

β2
j , (11)

where xi is the input space-vector, L(.) is the loss function, β are coefficients used by
the regularization term considering P predictors, and constant C is the error penalty
factor for adjusting the complexity of the model [33]. F is a prediction function defined
as follows:

F (x) =

N∑
i=1

αiϕ(x) + β0, (12)

where ϕ(x) is the linear kernel function.
The tuning of regularization parameter C through grid search method produced a

constant with a value of 1.

5.3 Conditional Inference Trees

CIT is a machine learning method that uses unbiased tree-based models for regression
and classification [28]. CIT algorithm’s estimates regression relationship using a binary
recursive partitioning method, which efficiently performs the exhaustive search across
the predictors according to split points. A simplified description of this method is
provided by the following steps:

1. perform the null hypothesis test of independence between each input variable and
the outcome one. The algorithm continues until the hypothesis cannot be rejected;

2. apply a binary split to the selected input variable;

3. recursively repeat steps 1 and 2.
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The p-value statistical test is applied for candidate splits by evaluating the difference
between the means of two groups. On our tests with the training dataset we found that
the optimal CIT model is obtained with a value of 1− p equal to 0.821.

5.4 Gradient Boosting Machines

GBM is gaining considerable interest on a wide range of data driven applications such
as travel time prediction [51] and the modeling of the energy consumption [44]. It is
a highly adaptable supervised learning method encompassing both classification and
regression in order to find an additive model that minimizes the loss function [15].
GBM iteratively investigates decision trees (basic learner) to reduce the loss function
and improve prediction accuracy. The GBM model is defined as follows [15].

Let R̂ (x) be the regression function that minimizes the expectation of loss function
S(y,R ) over the joint distribution:

R̂ (x) = arg min
R (x)

Ex,y[S(y,R (x))], (13)

where R (x) can be formulated as a function with a finite number of parameters β
estimated by selecting those values that minimize the loss function S using the training
sample as shown in equation 14:

R̂ (x) = arg min
β

N∑
i=1

S(yi, β)). (14)

To optimize the GBM model we have performed the tuning of several regularization
parameters:

• d : the depth of decision trees that controls the maximum interaction order of the
model;

• I : the number of boosting iterations, which also corresponds to the numbers of
decision trees;

• α: the learning rate that controls the contribution of each base model or decision
trees by shrinking its contribution by a factor between 0 and 1;

• δ: the subsampling rate or fraction of the training set observations, which is
randomly selected to propose the next tree in the expansion.

After the training of the model, the depth of the decision trees d was selected in
the set {2, 5, 7, 9}, the learning rate α was chosen from 0.01 to 0.5 with a granularity
of 0.02. The number of iterations I was selected within a set spanning from 50 to 250
iterations with a granularity of 50 iterations. The minimum number of observations in
trees terminal nodes ϕ was defined between 5 and 10. The subsampling rate δ was fixed
to 0.5. The final combination of values used for the GBM model were d = 9, I = 250,
and α = 0.07.
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6 Numerical experiments

It is not recommended to use the same set of observations for both training and testing
[36, 32]. Hence, in this work the assessment of predictive performance has been carried
out on an independent sample of field data in order to avoid over-fitting, which is
the tendency of the models to fit the training sample too well, at the expense of the
predictive accuracy. The preprocessed field dataset composed of 46,476 fuel consumption
observations (1406 paths) was randomly split in two subsets using days as the splitting
criterion:

• training sample: composed by 80% of days corresponding to 38,004 observations
(1263 paths);

• testing sample: composed by 20% of days including 8,472 observations (143 paths).

Each model was trained with the same training dataset with R version 3.4.3 through
R-Studio 1.0.153 using a ThinkCenter professional workstation with Intel i7 vPro (8
cores) and 32-gigabyte RAM, running Ubuntu Linux 16.04 LTS x86 operating system.
The following R machine learning packages were used to generate nonlinear emission
models: nnet, e1071, party, gbm, caret, and h2o. The Monte Carlo simulation (MCS)
was executed using a SparkR cluster and sparklyr R package to enable distributed
computations. The evaluation process was initiated by comparing the models fuel con-
sumption prediction outcomes on in-field observations. Note that the outcome of the
studied models (machine learning, CMEM and CMEM calibrated with MCS) is an esti-
mate of the fuel consumption, while the MEET computes emissions requiring the use of
a conversion coefficient (2.757 Kg of CO2/liter for the case of Toyota HINO SERIES 195
light duty according to Transition Énergetique Québec [45]). The obtained models were
then evaluated on the testing sample. Their effectiveness was validated by computing
and analyzing the following accuracy measures:

• Root Mean Squared Error (RMSE): interpreted as the average distance between
the observed values and the model predictions. The RMSE is then computed by
taking the square root of the Mean Squared Error (MSE). The smaller the values
of RMSE, the closer the predicted values are to the observed ones. The RMSE is
computed by squaring the residuals, summing them up and dividing by the number
of observations, and taking the square root of the result, as 1

n

∑n
i (yi− ŷi)2, where

yi is the observed value, ŷ is the predicted output, and n is the total number of
observations;

• Mean Absolute Error (MAE): is the average magnitude of the errors in a set of
predictions. It is computed as 1

n

∑n
i | yi − ŷi |.

• Mean: is the average of the corresponding predicted outcomes. It is calculated as
µ = 1

n

∑n
i ŷi.

• Std Error: is the standard error of the mean. It is computed as σ√
n
, where σ =√∑n

i (yi−µ)2
n−1 is the standard deviation of the mean µ.
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• Gap (%): reports how close the corresponding predicted outcome is to the observed
value. The percentage gap values are calculated as 100(yi − ŷi)/yi.

6.1 Experimental results and analysis

In this section we provide the experimental results and analysis. Table 3 shows the ac-
curacy metrics of CMEM, CMEM calibrated with MCS (CMEM-MCS), MEET, NNET,
SVM, CIT and GBM predictions. In this table, successive columns give for each con-
sumption model the RMSE, the MAE, the Std Error, the mean value, the Gap (%)
aggregated across all paths (trips) in the testing dataset, and the computational time
(CPU) of training or simulation (minutes). Doing so, we estimate the fuel consumption
for each road segment, then we aggregate the obtained values for each path. The results
obtained for the RMSE metric show that the proposed nonlinear models, namely GBM,
NNET, CIT and SVM outperform CMEM and MEET and appear to be more accurate
in estimating instantaneous vehicle fuel consumption across paths. In fact, we see that
the average RMSE ranges from 0.258 to 0.315 for the machine learning models, which
are lower than those of the CMEM and MEET models (0.501 and 0.850), and calibrated
CMEM (0.419). More specifically, it can be clearly seen that GBM model exhibited the
best estimation accuracy as the fuel consumption predictions are very consistent with
in-field observations, with the lowest RMSE of 0.258. As can be seen, the machine
learning models clearly outperform the CMEM even when calibrated with MCS.

Table 3: Comparative performance of the proposed machine learning models against MEET,
CMEM and CMEM-MCS regarding fuel consumption estimations aggregated by paths

Consumption models RMSE MAE Std Error Mean Gap (%) CPU∗ (min)
Real-world 0 0 0 1.539 0 −
CMEM 0.501 0.305 0.459 1.742 −13.184 −
CMEM-MCS 0.419 0.239 0.403 1.656 −7.566 11520
MEET 0.850 0.404 0.760 1.155 24.942 −
SVM 0.315 0.170 0.301 1.444 6.173 9.05
CIT 0.264 0.151 0.263 1.561 −1.453 6.74
NNET 0.271 0.155 0.270 1.569 −1.930 0.53
GBM 0.258 0.150 0.257 1.565 −1.709 0.28

∗using a cluster of machines in parallel for the MCS procedure.

Table 3 shows that GBM outperforms MEET, CMEM and CMEM-MCS that were
found to under- and over-predict fuel consumption. Regarding the obtained percent-
age gap values, we observe that the machine learning models give the best prediction
results with a gap ranging from −1.930% to 6.173% when compared against MEET
underestimating fuel consumption on average by 24.942%, CMEM overestimating fuel
consumption by 13.184%, and CMEM-MCS overestimating fuel consumption by 7.566%.
We also see that GBM and CIT yield the lowest underestimation with a gap of −1.709%
and −1.453%, respectively.
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We observe that the estimation accuracy of CMEM can be enhanced with the MCS
reducing the RMSE from 0.501 to 0.419, and the gap from −13.184% to −7.566%. We
conclude from these results that the calibrated CMEM is more effective at estimating
consumption. Note that the trade-off between computation time and prediction accu-
racy is a key aspect when calibrating the CMEM model with MCS. It is important to
highlight that the MCS is computationally demanding as it took over 8 days of execution
time to calibrate CMEM which is not the case of machine learning methods that are
computationally faster taking only few seconds or minutes to generate fuel consumption
estimation models. Clearly, the machine learning models are more effective for real-
time forecasting and decision-making considering high-frequency data and large-scale
transport applications, as an efficient supervised learning achieve a better prediction
accuracy.

Additional experiments are conducted to study the performance of the developed
machine learning models. Figure 6 shows scatter plots that graphically illustrate the
prediction accuracy of the studied models superimposed on the field data. On the
vertical scale, the observed value of fuel consumption is displayed, whereas the predicted
values are presented on the horizontal scale. We observe that NNET, GBM, SVM and
CIT models fit similarly as their prediction outcomes are more concentrated and closer
to the identity lines represented by a solid line indicating that the observed and predicted
emission values are very close. This implies that the machine learning models yield more
effective prediction of fuel consumption than those produced by the classical CMEM and
MEET. As expected, machine learning models provide good fitting regarding observed
fuel consumption as they are able to better reflect differences that result from traveling
on congested areas with frequent stop-and-go events impacting the speed.

Figure 6 also illustrates the difference observed between the identity solid line and
the dotted regression line, which shows the variation in prediction between each model
results compared to observed data. Notably, this graphical trend was validated by the
goodness of fit test. The null hypothesis of this test is performed with a slope=1 and
intercept=0. This test leads to the rejection of the null hypothesis with very low p-
value (<2.2e-16), lower than the threshold 0.05. Hence, the three classical models are
not preferred candidates for predicting fuel consumption. More specifically, the best
prediction accuracy belongs to the GBM model yielding the lowest p-value of 0.314,
which is larger than the threshold 0.05. Therefore, the null hypothesis is not rejected
which indicates that the prediction of the GBM model is statistically the same as the
observed values.

In order to make further analysis on the prediction accuracy of the proposed mod-
els, the boxplots presented in Figure 7 illustrate numerical outcomes of the studied
consumption models through their quartiles. When looking at the boxplots of CMEM,
CMEM-MCS and MEET, we can see a difference between the medians represented by
the lines in the middle of the boxes, indicating that these models tend to incorrectly
predict fuel consumption. Clearly, the median of GBM, CIT and NNET models seem
to be very close to the observed fuel consumption one, exhibiting superior accuracy
regarding fuel consumption. Also, when looking at Figure 8 we observe that even with
the calibrated econometric structure, the CMEM-MCS (dashed line) overestimates the
real world fuel consumption, which is not the case of GBM and NNET that perform
much better.
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Figure 6: Scatter plots of predicted outcomes by CMEM, MEET and machine learning models
against observed fuel consumption
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Figure 7: Boxplots of fuel consumption models estimation performance against observed fuel
consumption aggregated by days

Figure 8: Sample of the consumptions produced by CMEM-MCS, NNET and GBM models
against real-world observations.
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To further evaluate the performance of the proposed consumption models, a sensitiv-
ity analysis is performed to compare their prediction accuracy under multiple criteria:
congested (low speeds) and free flow (high speeds) situations, empty and loaded ve-
hicle, stop-and-go driving patterns corresponding to acceleration/deceleration events,
and different periods. In Table 4 the performance of the consumption estimation of
CMEM, CMEM-MCS and MEET is compared against the proposed models with in-
field measurements considering each criterion, which includes corresponding mean and
gap for the best machine learning model, CMEM, CMEM-MCS, and MEET according
to the selected subset of observations. Clearly, the degree of estimation varies for all
criteria according to real-world driving conditions. We have noticed that the estimation
of CMEM, CMEM-MCS and MEET are deteriorated in the case of low speeds with an
overestimation of 107.032%, 56.790% and 11.800%, respectively. We see that the pre-
diction of MEET, CMEM and CMEM-MCS are negatively affected in the case of low
speed. However, GBM provides a low overestimation of only 3.776%. More specifically,
it is remarkable that GBM and NNET produce accurate estimations under fluctuating
speeds according to the variations of acceleration.

Regarding the driving pattern criterion, as expected machine learning models ade-
quately handle acceleration variability as NNET has the smallest gap (−1.564%). Re-
garding loads, GBM gives the lowest gaps −1.666% for empty vehicles and −1.716%
for loaded ones. Interestingly, the NNET model shows its performance under different
periods providing a gap ranging from 1.107% to 2.783%.

Based on the results presented in Table 4 it can be argued that GBM and NNET
models give the best results and are the most accurate for all aspects, exhibiting a small
gap just ranging from −3.776% to 2.783%. Further, we can see that the overall perfor-
mance of both models is very good not only in normal or moderate traffic conditions, but
also during traffic congestion. Compared to MEET, CMEM and CMEM-MCS, machine
learning models are less sensitive to these conditions and maintain superior prediction
accuracy.

Predictor variables have very different influences on the output of the machine learn-
ing models. By investigating the influence of each input variable on the response, we
can gain better insight. Doing so, one way to explain the outcomes of machine learning
models is to compute variable importance in the fitted functions [33, 49, 36]. Figure
9 shows the partial least squares variable importance scores for the studied fuel con-
sumption input variables considering each machine learning model. Following Kuhn and
Johnson [33] we compute variable importance scores based on the difference between the
class centroids to the overall centroid. Then, the relative importance measure for each
variable is scaled so that that they sum to 1. A larger variable importance score implies
a higher influence of the input variable to the model. Note that variable importance
for GBM is determined according to the reduction in squared error. Specifically, an
improvement value is calculated for each pair of predictor and tree. Hence, the overall
importance value is computed by averaging the improvement values for each predictor
across the entire ensemble [15, 16].

It is worth noting that the variable importance scores for the set of models show that
they tend to rely more on continuous predictors (speed and acceleration) rather than on
discrete ones (distance and load). As shown in Figure 9 for all machine learning models
the speed stands out to the top in terms of importance score followed by distance and
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acceleration. However, the importance orders are much different between the machine
learning models. Contrasting SVM importance results to CIT (Figure 9) we see that
importance order are the same for all predictors (speed, distance, acceleration, driving-
patterns, and load). However, we observe a different pattern for GBM and NNET
(speed, distance, acceleration, load, and driving-patterns).

Figure 9: A comparison of partial least squares variable importance scores for the studied fuel
consumption input variables for each supervised learning methods

We also see from Figure 9 that for the case of GBM and NNET the load variable has a
higher influence on the model output compared to SVM and CIT, which ends up ranked
5th. Clearly, the load variable under GBM and NNET has a much steeper importance
slope than under SVM and CIT. Further, the variable importance scores for the GBM
show that it tends to rely more on speed and acceleration than the driving patterns. We
also see that NNET captures effectively driving patterns leading to a significant increase
in prediction performance. This suggests that there is significant value of considering
stop-and-go events. In fact, the NNET model is able to capture this sudden change. The
GBM model also adequately captures the instantaneous variations of speed. Therefore,
the GBM model is able to model nonlinear characteristics of dynamic traffic systems
leading to superior estimation accuracy.

To summarize, even if fuel consumption estimation is complex and challenging, it
is clearly shown that machine learning models enhance fuel consumption estimation
accuracy by taking into account the interactions among different combinations of input
variables. In all experiments presented in this section, we conclude that the proposed
machine learning models significantly outperform MEET, CMEM and CMEM-MCS.
In fact, machine learning-based fuel consumption models, and in particular GBM and
NNET models are able to fit complex nonlinear relationship leading to superior fuel
consumption estimation accuracy.
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7 Conclusions and future research

In this paper we have proposed nonlinear fuel consumption estimation models using
supervised learning methods. The estimation accuracy was compared to the classical
MEET and CMEM methods as well as CMEM calibrated with Monte Carlo simula-
tion (CMEM-MCS). We used a very large database of real-world information from a
logistic provider, which is shown to be very detailed and precise. In our numerical
experiments, we have observed that MEET and CMEM incorrectly predicted consump-
tion by 24.942% and −13.18%, respectively. Results revealed that the proposed NNET,
SVM, CIT and GBM models outperform MEET, and CMEM as they clearly improve
prediction accuracy. We have shown that GBM produces the best predictability which
is off by only 1.70% according to real-world data. This indicates that we cannot take
for granted that existing fuel consumption models are sufficiently accurate, requiring
machine learning models that update them by applying supervised learning methods on
collected real-time traffic data and on-road vehicular exhaust fuel consumption. Even
with very large-scale MCS the calibrated CMEM still underestimates fuel consumption
by 7.57%, performing worse than any of our machine learning models.

The results of this work show that using machine learning models and more specifi-
cally the GBM and NNET models enhance the prediction accuracy of fuel consumption
estimations. A direction of future research is to evolve machine learning fuel consump-
tion models by investigating the effects of weather, driver profiles and road-wide factors
such as temperature, rain, snow, road maintenance events, etc. Another area of future
work will be the integration of machine learning emission models in routing problems
and practical road freight transportation applications.
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