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Abstract. In this paper we introduce the time-dependent shortest path and vehicle routing 
problem. In this problem, a set of homogeneous vehicles is used to visit a set of customer 
locations dispersed over a very large network, such that the travel times between any two 
customers must be computed as a time-dependent shortest path problem. The travel time 
of each arc is time-dependent and therefore the shortest path between two locations 
changes over time. The aim of the problem is to simultaneously determine the sequence in 
which the customer locations are visited and the arcs traveled on the paths between each 
pair of consecutively visited customers, such that the sum of the arrival times of the vehicles 
back at the depot is minimized. We are the first to formally define and solve this fully 
integrated problem, giving bounds to it. We then propose a dynamic time-dependent 
shortest path algorithm embedded within a simulated annealing metaheuristic to solve the 
problem. We test our formulations and algorithms on a set of real-life instances generated 
from a dataset of the road network in Québec City, Canada. Our results indicate that 
neglecting the real traffic can impose substantial delays for the visits, which would require 
more trucks and more mileage to perform the same deliveries. Moreover, the results show 
that one must consider the whole underlying road network in order to truly obtain the fastest 
paths between two points. Our work adds new research avenues to city logistics and 
congestion/emission studies.  
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1 Introduction

Distribution companies performing several deliveries per day across a city have to deal with
congestion and delays when planning their routes. Therefore, they need to incorporate time-
dependent travel times in their routing tools. Time-dependent travel times imply that the
time it takes to traverse an arc depends on the departure time at the starting node of the
arc. As a result, the shortest path between two delivery locations can change depending on the
departure time at the origin. Consider the road network as presented in Figure 1, consisting of
six different road intersections: A, B, C, D, E, and F . Suppose a vehicle consecutively visits
delivery locations A and F in this multigraph [Ticha et al., 2019]. Then, there exist three paths
from location A to location F , namely (A,B,D, F ), (A,B,E, F ) and (A,C,E, F ). The travel
time of the arcs between the intersections is time-dependent and therefore the shortest path
between locations A and F can change between these three paths throughout the day. Hence,
planning the vehicle routes includes not only assigning customers to vehicles and deciding upon
the sequence in which the customer locations are visited, but also determining the arcs which
are traveled between two consecutive delivery locations. Obviously, on large networks there are
much more than three ways to travel between two customers, and also the number of customers
to visit and their sequence can be very large. For a detailed analysis of time-dependent minimum
cost paths we refer the reader to Heni et al. [2019].
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(Path 1) B DA F

(Path 2) B EA F

(Path 3) C EA F

Figure 1: On the left, the graphical representation of a part of a road network with one-way
streets and six intersections. On the right, the three possible paths from location A to location
F .

In this paper, we introduce the time-dependent shortest path and vehicle routing problem
(TDSPVRP). In the TDSPVRP, a homogeneous fleet of capacitated vehicles based at the depot
is used to visit a set of customer locations. In this problem, we simultaneously determine the
sequence in which the customer locations are visited by the vehicles and the arcs traveled on the
paths between two consecutively visited customers. The travel time of each arc is time-dependent
and therefore the shortest path between two locations, with respect to travel time, is dependent
on the departure time at the first location. The goal of the problem is to find feasible routes that
specify the sequence in which the customers are visited and the paths between those customers,
such that each customer is served exactly once. Note that a customer node can be visited
more than once because its node is on the path leading to another customer. The objective
is to minimize the sum of the arrival times of the vehicles back at the depot. Hence, instead
of minimizing driving costs, we focus on avoiding congestion and traffic resulting in running
at more reasonable speeds, which in turn results in less fuel consumption and less emissions.
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This objective is in line with recent research on routing in a city logistics context. For example,
Bruglieri et al. [2019] proposes computing several different paths to solve a green vehicle routing
problem. Moreover, Koç et al. [2016] consider depot location, fleet composition and routing
in a city logistics context and define the routing cost in terms of fuel consumption and CO2

emissions, and Bektaş and Laporte [2011], Franceschetti et al. [2013] and Koç et al. [2014] that
each consider a specific pollution-routing problem. The pollution-routing problem is a variant
of the vehicle routing problem with an objective that includes not only travel distance, but also
accounts for the amount of greenhouse gas emissions, fuel, travel times and their costs. Also
from a practical point of view this objective is of interest, since it aims at avoiding congestion
for all vehicles. By considering a finite time horizon, we prevent that too much of the workload
is assigned to only a small set of the vehicles.

The time-dependent vehicle routing problem (TDVRP) is a distribution problem with time-
dependent travel times but considering only one path linking any two customers. Hence, solving
the TDVRP does not require the time-dependent shortest path aspect to be present. Therefore,
the travel times between two nodes, i.e., customer or depot nodes, are supposedly known and
are input to the problem. As a result, the graphs for the TDVRP are very dense, i.e., a complete
graph where all nodes need to be visited and the only arcs that are present are those connecting
each pair of customers and each customer node with the depot node. This is in contrast with
a TDSPVRP instance that requires the complete road network as input. As a consequence,
TDSPVRP graphs are relatively sparse, with many nodes and relatively few of them requiring
a visit, i.e., the customer nodes. Figure 2 illustrates two TDSPVRP instances, containing 10
and 50 customers. We observe that the number of customers in the instance has no impact on
the size of the graph. Note that the TDSPVRP can be converted into a TDVRP by solving all
pairs of shortest paths for each starting time. This procedure is, however, very time consuming
and prohibitive. For this reason, we formally and explicitly define the TDSPVRP.

Figure 2: Instances with 10 customers (left) and 50 customers (right); the depot and customers
locations are marked with stars.

The TDSPVRP is a combination of the time-dependent shortest path problem (TDSPP)
and the TDVRP. The TDSPP is a shortest path problem with time-dependent travel times and
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was introduced by Cooke and Halsey [1966]. Their algorithm was quickly improved by Dreyfus
[1969]. Other algorithms for the TDSPP are developed by, e.g., Chabini [1998], Ding et al. [2008],
Orda and Rom [1990] and Ziliaskopoulos and Mahmassani [1993]. The TDVRP was introduced
by Malandraki and Daskin [1992] who proposed a mixed integer formulation for the problem.
Many have formulated the problem exactly, e.g., Chen et al. [2006] and Soler et al. [2009] who
have proposed a conversion of the TDVRP into a larger graph defining a simple capacitated
vehicle routing problem. Several heuristics are proposed for the problem, e.g., Donati et al.
[2008] who proposed a multi-ant colony system and Hashimoto et al. [2008] who developed an
iterated local search heuristic.

Closely related to our research are the papers reviewed next. Kok et al. [2012] consider
the combination of time-dependent shortest path problems and time-dependent vehicle routing
problems. They use a restricted dynamic programming heuristic to solve four different combina-
tions of problems and show significant improvements when considering time-dependent shortest
paths in the TDVRP. Huang et al. [2017] consider the time-dependent vehicle routing problem
with path flexibility (TDVRP-PF). In the TDVRP-PF, path selection is explicitly considered
and integrated in the TDVRP. This means that each arc between two customer nodes has mul-
tiple corresponding paths in the underlying road network. The path selection decision is based
on the departure time at the customer node and the level of congestion. For each pair of cus-
tomers a small set of candidate paths are preprocessed, based on the knowledge of the network.
The authors formulate the deterministic version of the TDVRP-PF as a mixed integer program
and the stochastic version as a two-stage stochastic mixed integer program. Results show that
path flexibility provides significant savings. In the formulations of Huang et al. [2017] only the
candidate paths can be selected. The advantage of our approach is that all paths between two
customers can be used and therefore a better solution might be found. Moreover, our approach
is applicable to general networks, for which no usage information is known or available. Finally,
embedding the decision on the arcs traveled between two consecutive delivery locations in the
mixed integer program ensures that the shortest paths do not have to be preprocessed. Angelelli
et al. [2018] also uses a subset of possible paths to generate paths for proactive route guidance
avoiding congestion. Unlike us, Nasri et al. [2018] controls the speed along fixed paths, not
trying to avoid congestion but aiming to minimize emissions, fuels and driver costs.

In this paper we develop an exact method, with the aim of providing and improving dual
bounds for the problem. Given the size and difficulty of the problem, a dynamic time-dependent
algorithm to determine the shortest path linking two nodes in the graph and a heuristic based
on local search and simulated annealing are proposed providing much better primal bounds than
our exact method. The goal of this paper is to provide the first set of benchmark instances for
the TDSPVRP and to give bounds to the problem, opening a research avenue for others.

The remainder of this paper is as follows. In Section 2 we give the mathematical formulation
for the TDSPVRP and we develop inequalities to strengthen this formulation and to improve the
lower bounds. In Section 3 we describe the heuristic algorithm. Section 4 reports the results from
the experiments performed on real-life instances from a dataset of the road network in Québec
City, discusses the impact of the valid inequalities, the performance of the heuristic algorithm,
and provides insights on time-dependent optimization. Conclusions are given in Section 5.
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2 Problem statement and mathematical formulation

The TDSPVRP is defined on a directed time-dependent graph G = (N ,A,H), where N is the
set of nodes, A is the set of arcs and H is the set of time periods. Let N = N ′ ∪ Np, where
we refer to N ′ as the set of location nodes and Np as the set of intermediate nodes. Let the
set of location nodes N ′ = Nc ∪ No ∪ Nd, where Nc is the set of customer nodes, No is the set
of origin depot nodes and Nd is the set of destination depot nodes. The origin and destination
depot nodes are duplicated such that there is a unique origin and destination depot node for
each vehicle from the homogeneous set K = {1, . . . ,K}. For modeling purposes, we created for
each vehicle an arc between its origin and destination depot node. We set the travel times of
these K arcs equal to zero for each time period. Traveling along this arc represents not using
this vehicle, but satisfying other constraints such as the ones imposing that every vehicle must
leave the origin depot and arrive at the destination depot. Let Np be the set of nodes that can
be visited on a path between two location nodes, including nodes i ∈ N ′. The location nodes N ′
need to be visited exactly once, whereas the intermediate nodes do not necessarily have to be
visited, but can be visited once or multiple times. Note that visiting an intermediate node j ∈ Np

that is a copy of a location node i ∈ N ′, corresponds to driving by this location without serving
it. Let H = {1, . . . ,H} define H time periods, with each time period representing a time slot of
length T . We assume that the travel time of arc (i, j) ∈ A starting in time period h is known
and is equal to tijh. The service time of a node i ∈ N ′ is given by si, where si = 0 ∀i ∈ No ∪Nd

and si > 0 ∀i ∈ Nc. Waiting time is allowed at each node, which might be beneficial if the
FIFO property does not hold, i.e., if it may occur that when traveling arc (i, j), postponing the
departure time at node i results in an earlier arrival time at node j. The demand at a node
is given by di ∀i ∈ N ′, where di = 0 ∀i ∈ No ∪ Nd and di > 0 ∀i ∈ Nc. The capacity of each
vehicle k ∈ K is equal to Q. The goal of the problem is to determine vehicle routes satisfying
the demands of all customers, creating proper paths between two consecutive customer visits,
such that the total of the arrival time of the vehicles back to the depot is minimized.

In the definition of our variables, we use the term shortest path towards a node. If i ∈ N ′
is the last location node visited before the visit to location node j ∈ N ′, then the nodes on the
shortest path towards node j are nodes i, j, and all intermediate nodes visited between nodes i
and j, and the arcs on the shortest path towards node j are all arcs that are traversed between
nodes i and j. An example is given in Figure 3, which depicts a partial route R = (1, 2, 3, 4, 5, 6),
where the location nodes are given by N ′ = {1, 3, 6} and the intermediate nodes are in the set
Np = {2, 4, 5}. The nodes and arcs on the shortest path towards node 3 are given by {1, 2, 3}
and {(1, 2), (2, 3)}, respectively. The nodes and arcs on the shortest path towards node 6 are
given by {3, 4, 5, 6} and {(3, 4), (4, 5), (5, 6)}, respectively.

2 4 51 3 6

Figure 3: Partial route with N ′ = {1, 3, 6} and Np = {2, 4, 5}.

Our mathematical model is defined as follows. Let xij be a binary variable equal to one if
and only if node i ∈ N ′ is the last location node visited before location node j ∈ N ′ and yijl be a
binary variable equal to one if and only if arc (i, j) ∈ A is traversed on the shortest path towards
node l ∈ N ′. Hence, in Figure 3, we have x13 = x36 = 1, xij = 0 otherwise, and y123 = y233 =
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y346 = y456 = y566 = 1, yijl = 0 otherwise. Let Til ∈ Z be the time at which the vehicle departs
from node i ∈ N on the shortest path towards node l ∈ N ′, and qi ∈ Z reflects the cumulated
load carried by the vehicle departing from node i ∈ N ′. The binary variable δplh is equal to one
if and only if a vehicle leaves node p on the shortest path towards node l ∈ N ′ in time period
h ∈ H. Let δ2

pml ∈ Z, p ∈ N , m ∈ Np ∪ l : (p,m) ∈ A, l ∈ N ′ be the time at which a vehicle
leaves node p on the shortest path towards node l if arc (p,m) is traversed on the shortest path
towards node l, zero otherwise. Let δ3

pmlh ∈ Z, p ∈ N , m ∈ Np ∪ l : (p,m) ∈ A, l ∈ N ′, h ∈ H
be the travel time of arc (p,m) in time period h if arc (p,m) is traversed on the shortest path
towards node l in time period h, zero otherwise.

The model can then be defined as follows:

min
∑
i∈Nd

Tii (1)

s.t.
∑
i∈N ′

xij = 1 ∀j ∈ N ′\No (2)∑
j∈N ′

xij = 1 ∀i ∈ N ′\Nd (3)

∑
j:(i,j)∈A

yijl −
∑

j:(j,i)∈A

yjil =


0 if i /∈ N ′

−1 if i = l

xil if i ∈ N ′\l
∀i ∈ N , l ∈ N ′\No (4)

xij −
∑

p:(i,p)∈A

yipj = 0 ∀i, j ∈ N ′ (5)

qj = 0 ∀j ∈ No (6)

qi − qj +Qxij + (Q− di − dj)xji ≤ Q− di ∀i, j ∈ Nc : i 6= j (7)

qj ≤ Q ∀j ∈ Nd (8)

Tml ≥ Tmm −HT (1− xml) ∀l ∈ N ′, m ∈ N ′\{No ∪ l} (9)

Tml ≥
∑

p:(p,m)∈A

(
δ2
pml +

∑
h∈H

δ3
pmlh

)
∀l ∈ N ′, m ∈ Np (10)

Tml ≥
∑

p:(p,m)∈A

(
δ2
pml +

∑
h∈H

δ3
pmlh

)
+ sl ∀l ∈ N ′, m = l (11)

∑
h∈H

δllh = 1 ∀l ∈ N ′ (12)∑
h∈H

δilh =
∑

j:(i,j)∈A

yijl ∀i ∈ N , l ∈ N ′\i (13)

Tpl ≥ (h− 1)Tδplh ∀p ∈ N , l ∈ N ′, h ∈ H (14)

Tpl + 1 ≤ HT (1− δplh) + hT ∀p ∈ N , l ∈ N ′, h ∈ H (15)

δ2
pml ≥ Tpl − (1− ypml)HT ∀p ∈ N , m ∈ Np ∪ l : (p,m) ∈ A, l ∈ N ′

(16)

The Time-Dependent Shortest Path and Vehicle Routing Problem
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δ3
pmlh ≥ tpmh (ypml + δplh)− tpmh

∀p ∈ N , m ∈ Np ∪ l : (p,m) ∈ A, l ∈ N ′,
h ∈ H

(17)

xij ∈ {0, 1} ∀i, j ∈ N ′ (18)

yijl ∈ {0, 1} ∀(i, j) ∈ A, l ∈ N ′ (19)

Til ∈ Z ∀i ∈ N , l ∈ N ′ (20)

qi ∈ Z ∀i ∈ N ′ (21)

δplh ∈ {0, 1} ∀p ∈ N , l ∈ N ′, h ∈ H (22)

δ2
pml ∈ Z ∀p ∈ N , m ∈ Np ∪ l : (p,m) ∈ A, l ∈ N ′

(23)

δ3
pmlh ∈ Z

∀p ∈ N , m ∈ Np ∪ l : (p,m) ∈ A, l ∈ N ′,
h ∈ H.

(24)

The objective (1) is to minimize the sum of the arrival times of the vehicles at the depot.
Constraints (2) and (3) are standard degree constraints. Constraints (4) and (5) ensure that
yijl = 1 if arc (i, j) is on the shortest path towards node l, and 0 otherwise. Constraints (6)–
(8) are the load constraints. The explanation is based on customers that require items to be
picked, but the constraints can also be applied when dealing with customers that need items to
be delivered. The formulation can be easily adapted to account for both pickup and delivery
customers. Constraints (6) ensure that the vehicles leave the depot empty, constraints (7) update
the load variables at the location nodes, and constraints (8) ensure that the vehicle capacity
is never exceeded. Constraints (9)–(11) update the timing variable Tml, where there are three
possibilities: (i) if m is the first node on the shortest path towards node l, then due to constraints
(9) Tml is at least the departure time at node m on the shortest path towards node m; (ii) if m
is an intermediate node on the shortest path towards node l, then due to constraints (10) Tml

is at least the departure time at the node visited before node m on the shortest path towards
node l added to the time-dependent travel time between these nodes; and (iii) if m is the last
node on the shortest path towards node l, i.e., m = l, then due to constraints (11) Tml is at
least the departure time at the node visited before node m on the shortest path towards node
l added to the time-dependent travel time between these nodes added to the service time of
node l. Note that the greater than or equal to signs in constraints (9)–(11) ensure that waiting
time is allowed. Constraints (12)–(15) link paths and times via variable δ. More specifically,
constraints (12) ensure that there is only one time interval associated with the departure time at
a location node. Constraints (13) ensure that there is only one time period associated with the
departure time at a node i 6= l on the shortest path towards node l, and δilh = 0 ∀h ∈ H if node
i is not on the shortest path towards node l. Constraints (14)–(15) ensure that the departure
time at node i on the shortest path towards node l is within the bounds of the time interval h
for which δilh = 1. Constraints (16) define the variable δ2

pml, which equals the time at which a
vehicle leaves node p on the shortest path towards node l if arc (p,m) is used on the shortest
path towards node l, and zero otherwise. Constraints (17) ensure that the variable δ3

pmlh equals
the travel time on arc (p,m) in time period h if the arc is traversed on the shortest path towards
node l and a vehicle departs from node p on the shortest path towards node l in time period h,
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and zero otherwise. Constraints (18)–(24) set the range and nature of the variables.
The following valid inequalities can be imposed to strengthen the formulation.

yijl = 0 ∀(i, j) ∈ A, l ∈ No (25)

HT
∑

j:(i,j)∈A

yijl ≥ Til ∀i ∈ N , l ∈ N ′\i (26)

HTyijl ≥ δ2
ijl ∀(i, j) ∈ A, l ∈ N ′ (27)

δ3
ijlh ≤ tijh ∀(i, j) ∈ A, l ∈ N ′, h ∈ H (28)∑

j∈Nd
m∈N\No:(m,j)∈A

ymjj ≥

⌈∑
i∈N ′

di/Q

⌉
(29)

Tll ≥ Til + sl ∀l ∈ N ′, i ∈ N\l (30)

qi ≤ Q−
(
Q− max

j∈Nc:j 6=:i
{dj} − di

) ∑
k∈No

xki −
∑
j∈Nc

djxij ∀i ∈ Nc. (31)

Constraints (25) ensure that there are no arcs on the shortest paths towards the origin
nodes. Due to constraints (26), if node i is not on the shortest path towards location node l,
then Til = 0. Constraints (27) and (28) ensure that if arc (i, j) ∈ A is not used on the shortest
path towards location node l, then δ2

ijl = 0 and
∑

h∈H δ
3
ijlh = 0, respectively. Constraint (29)

states that the number of vehicles used is at least the total demand divided by the capacity of
a vehicle. Constraints (30) ensure that the departure time at a location node l on the shortest
path towards node l, is at least the departure time of each of the other nodes on the shortest
path towards node l added to the service time of node l. Constraints (31) are valid inequalities,
as proven in Kara et al. [2004].

To better improve the bound and create other valid inequalities, let Sij be the shortest
path from node i ∈ N ′ to node j ∈ N ′ based on the smallest travel time min

h∈H
tklh for each arc

(k, l) ∈ A. Then we can add the following constraints to improve the lower bounds:∑
i∈Nd

Tii ≥
∑

i,j∈N ′

xijSij +
∑
i∈Nc

si, (32)∑
i∈Nd

Tii ≥ Tjj + min
d∈Nd

Sjd ∀j ∈ Nc, (33)

Tii ≥
∑

p∈N\No:(p,i)∈A

ypii ·

 min
k∈Nc
l∈No
m∈Nd

{sk + Slk + Skm}

 ∀i ∈ Nd. (34)

Constraint (32) ensures that the total of the arrival time of the vehicles back to the depot is at
least the sum of all pairs of shortest paths Sij , i, j ∈ N ′, that are visited consecutively added
to the total service time of the customers. Constraints (33) ensure that the total of the arrival
time of the vehicles back to the depot is at least the departure time at customer node j ∈ Nc

added to the shortest path from node j to the depot. Constraints (34) ensure that if a vehicle
is used to visit customers, then its arrival time at the depot is at least the smallest sum over
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k ∈ Nc of the service time of customer k added to the shortest path from the depot to customer
k and the shortest path from customer k to the depot.

We can improve shortest paths Sij and end up with shortest paths Pij , which are computed
as follows. The shortest path Pij from the depot i ∈ Nd to customer j ∈ Nc can be computed
as Pij = Sij . Let e1

i be the earliest departure time at customer node i ∈ Nc computed as
e1
i = si + minj∈No Pji and let ẽ1

i be the time period corresponding to e1
i . Then, the shortest

path Pij from customer node i ∈ Nc to depot node j ∈ Nd can be computed as the shortest
path based on the smallest travel time min

h∈H:h≥ẽ1i
tklh for each arc (k, l) ∈ A. Let e2

i be the latest

arrival time at customer node i ∈ Nc computed as e2
i = HT − si − minj∈Nd

Pij and let ẽ2
i be

the time period corresponding to e2
i . Then, the shortest path Pij between two customers nodes

i ∈ Nc and j ∈ Nc can be computed based on the smallest travel time min
h∈H:ẽ1i≤h≤ẽ2j

tklh for each

arc (k, l) ∈ A.
We can then add the following valid inequalities to improve the lower bounds:

∑
i∈Nd

Tii ≥
∑

i,j∈N ′

xijPij +
∑
i∈Nc

si, (35)∑
i∈Nd

Tii ≥ Tjj + min
d∈Nd

Pjd ∀j ∈ Nc, (36)

Tii ≥
∑

p∈N\No:(p,i)∈A

ypii ·

 min
k∈Nc
l∈No
m∈Nd

{sk + Plk + Pkm}

 ∀i ∈ Nd, (37)

δllh = 0 ∀h < ẽ1
l , l ∈ Nc, (38)

δ3
ljkh = 0 ∀l ∈ Nc, h < ẽ1

l , j ∈ N : (l, j) ∈ A, k ∈ N ′,
(39)

Tll ≥ e1
l ∀l ∈ Nc, (40)

δilh = 0 ∀l ∈ Nc, i ∈ N\{l}, h > ẽ2
l , (41)

δ3
ijlh = 0 ∀l ∈ Nc, h > ẽ2

l , i, j ∈ N : (i, j) ∈ A,
(42)

Til ≤ e2
l ∀l ∈ Nc, i ∈ N\{l}, (43)

δ2
pml ≤ e2

l ∀l ∈ Nc, (p,m) ∈ A : m 6= l. (44)

Constraints (35)–(37) are stronger versions of (32)–(34), by considering the shortest paths
Pij instead of Sij . Constraints (38)–(40) arise from the fact that a vehicle cannot depart from
customer node l ∈ Nc earlier than e1

l , whereas constraints (41)–(44) arise from the fact that a
vehicle cannot arrive at customer node l ∈ Nc later than e2

l .
We will run our experiments on three different models. The basic model, which we call Model

1, corresponds to (1)–(31). It consists of the set of constraints that define the problem, i.e., (1)–
(24), and the first set of valid inequalities that are imposed to strengthen the formulation, i.e.,
(25)–(31). The second model, which we call Model 2, is an extension of Model 1 by adding a new
set of valid inequalities that are imposed to improve the lower bound, i.e., (32)–(34). Hence,
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Model 2 is composed of (1)–(34). The third model, which is called Model 3, is an extension
of the basic model by adding another set of valid inequalities to improve the lower bound, i.e.,
(35)–(44). Thus, Model 3 is determined by (1)–(24) and (35)–(44).

3 Simulated annealing for the TDSPVRP

The problem introduced in this paper is significantly more difficult than the traditional VRP.
Therefore, heuristic algorithms are required to solve it efficiently. Simulated annealing (SA) is a
local search-based algorithm that implements a search mechanism to escape from local optima,
first introduced by Kirkpatrick et al. [1983]. SA is one of the commonly used metaheuristics,
and has been successfully applied to solve several variants of the VRP [Kuo, 2010, Liu et al.,
2019, Guimarães et al., 2019], including one with a multigraph similar to ours [Ticha et al.,
2019]. In this section we first present the general outline of the SA followed by the description
of its components, namely a time-dependent shortest path algorithm, an insertion algorithm,
and the neighborhood search operators.

3.1 The SA algorithm

SA uses a stochastic approach to search for new solutions, also called neighborhood solutions.
Starting from the current solution X, if a better neighborhing solution X ′ is found, then the
solution is accepted and the current solution X is replaced by X ′. In order to escape from
a local optimum, a worse solution is accepted with probability e−∆/T . Parameter T is called
the temperature, which gradually decreases during the search process, and ∆ is calculated as
Fitness(X ′) − Fitness(X), where Fitness(X) is the objective value of solution X. In the
beginning of the search, the temperature is high, thus the probability of accepting worse solutions
is also high. Over the course of several iterations, the temperature is reduced and as T gets lower,
the probability of moving to a worse solution becomes smaller. At the end of the execution, the
parameter T reaches the final temperature Tf . If ∆ is high, it means that solution X ′ is much
worse than the current solution X, meaning that the probability of accepting X ′ is smaller. The
parameters of the algorithm are its initial temperature T0, the cooling rate α, and the maximum
number of iterations itermax. The parameter Tf is a function of T0, α, and itermax and is
calculated as Tf = T0α

itermax

Our SA algorithm, summarized in Algorithm 1, starts with the creation of the initial solution
(Section 3.3) using an insertion procedure (IP), then all the parameters are initialized (lines 3–
4). At each iteration the current solution X undergoes a removal procedure (line 6) in which
one of the five removal operators is applied to it. The choice of the operator is done randomly.
A repair mechanism is applied on X ′ (line 7) to transform the partial solution into a feasible
one by using the insertion operator (Section 3.4).

If the fitness of the new solution X ′ is better than that of the current solution X, the
new solution is unconditionally accepted. If it is higher than that of the current solution, the
probability of acceptance of X ′ is e−∆/T (line 11). When the solution is accepted, the value
of X will be set to X ′. If the objective value of the current solution X is better than that of
the current best solution, we update Xbest to be X as shown in line 14. After each iteration,
the cooling function is applied to reduce the temperature T . We use a simple factor α to T to
reduce the temperature as indicated in line 17.
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Result: Xbest: the best solution found so far by the algorithm
1 X ← BestInsertion(∅)
2 Xbest ← X
3 T ← T0

4 iter ← 0
5 while iter ≤ itermax do
6 X ′ ← Removal(X)
7 X ′ ← Repair(X ′)
8 ∆← Fitness(X ′)− Fitness(X)
9 iter = iter + 1

10 r ← random(0, 1)

11 if (∆ < 0)||(r < e−∆/T ) then
12 X ← X ′

13 if Fitness(X) < Fitness(Xbest) then
14 Xbest ← X
15 end

16 end
17 T = αT

18 end

Algorithm 1: Simulated annealing algorithm

3.2 Dynamic time-dependent shortest path algorithm

When the graph is time-dependent, the cost (time, emissions, etc) of arc (i, j) depends on the
arrival time at node i. This means that even a small change in the solution can imply that the
shortest path between any two customer nodes may change over time. For example, removing
customer k from route (0, i, j, k, l, m, 0) impacts the visiting time of customers l, m and the
returning time to the depot 0. If we want the new sequence (j, l, m, 0) to be performed in an
optimal way, we need to update the time-dependent shortest paths between customers (j, l), (l,
m) and (m, 0), considering the exact arrival time at each node.

As the classical Dijkstra algorithm for computing shortest paths cannot be used, we devel-
oped an exact dynamic time-dependent shortest path algorithm (DTDSPA) which identifies for
each node the time it takes to reach it from one of its antecessors. Note that, FIFO property
is necessary to prove that Dijkstra’s algorithm terminates with a correct shortest paths tree on
time-dependent networks [Nannicini et al., 2012].

The DTDSPA is used each time a customer is moved from a route to re-optimize the relevant
section of the route. Let C be the set of non-visited nodes, which initially contains all the nodes
of the problem, and tijh be the cost (time) of traversing arc (i, j) starting at time h. tijh depends
on the arrival time at node i. Let Parent[v] be the immediate predecessor of node v, and Cost[v]
the cost (time) of the shortest path to arrive at v. The pseudocode of the DTDSPA is presented
in Algorithm 2.
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1 Input: Graph G, start node s, start time h = 0
2 C ← all nodes
3 for each node v do
4 Cost[v] =∞
5 Parent[v] = 0

6 end
7 Cost[s] = 0
8 while C 6= ∅ do
9 find v ∈ C with min Cost[v]

10 C ← C\{v}
11 for each node w adjacent to v do
12 if Cost[v] + tvw(Cost[v]) < Cost[w] then

13 Cost[w] = tvw(Cost[v]) + Cost[v]

14 Parent[w] = v

15 end

16 end

17 end

Algorithm 2: Dynamic Time-dependent Shortest Path algorithm

3.3 Initial solution

The initial solution provided to the SA metaheuristic is based on a sequential insertion algorithm.
At each iteration, the first unserved customer is selected. The insertion of this customer is
evaluated in all positions over all the routes without violating the maximum travel time or
capacity constraints. We also consider the creation of a new route if the number of vehicles
allows it. The insertion yielding the smallest time increase is selected. The procedure stops
when all the customers have been inserted. During this procedure, we use the DTDSPA to
evaluate each insertion which requires to rebuild the solution (the shortest path between each
pair of customers) starting from the predecessor of the inserted customer to the depot.

3.4 Neighborhood search operators

As commonly used when solving many vehicle routing problems, the neighborhood search part
of the SA is based on some removal operators and on a repair operator. In a time-dependent
context, we need to update all the shortest paths between all customer pairs following the
position of the inserted or deleted customers. Thus, the impact of each modification is analyzed
and the required paths updated by applying the DTDSPA.

3.4.1 Removal operators

In this section, we propose five removal operators for the problem at hand:

• Random removal: this operator selects n customers to remove from the current solution,
where n is a random number between 1 and 4. The idea of randomly selecting customers
helps diversify the search mechanism.
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• Random route removal: this operator randomly selects a route and removes all its
customers.

• Minimum travel time route removal: this operator selects the route which has the
minimum total travel time and removes all its customers. The idea is to try to re-insert
these customers into other routes aiming to minimize the total duration of the solution.

• Minimum customer demands route removal: this operator is similar to the Minimum
travel time route removal but it selects the route with the minimum total demand.

• Cluster removal: this operator initially selects a random customer c and then removes it
from the solution. Then the operator looks for the two closest customers to c and removes
them. Three customers are removed in total. The closest customers are determined using
the DTDSPA starting at t = 0. Note that up to three routes may be impacted.

3.4.2 Insertion operator

We propose the best insertion operator to repair the partial solutions:

• Best insertion: the best insertion operator works with the list of removed customers.
For each customer, its best insertion position between two consecutive nodes among all
the routes is found by using the DTDSPA to update the optimal shortest paths linking
the customers of the routes.

4 Computational experiments

All experiments were performed on a desktop computer equipped with an Intel i7 processor and
64 GB of RAM, using CPLEX 12.8. The heuristic algorithm was implemented in the Apple Swift
programming language. In Section 4.1 the generation and the characteristics of the instances
are described. In Section 4.2 we highlight the importance of implicitly considering all shortest
paths between two consecutive nodes. Section 4.3 describes the tuning of the SA parameters.
The performance of the models compared to the SA and the impact of the different sets of valid
inequalities are discussed in Section 4.4. A sensitivity analysis on the impact of travel times is
presented in Section 4.5.

4.1 Data set generation

Instances were generated from real data obtained from Québec City, Canada, and were created
as follows. Hundred of thousands GPS points were obtained from industrial partners operating
in the Québec area. To each data point is associated the exact location of the truck, its speed,
and the time of the measurement. Measurements were taken at around every 15 seconds, such
that one is able to track its path as well the speed in each segment. By aggregating several obser-
vations for each street segment, we were able to estimate the average speed (and traveling time)
for each street in any period of the day. The complete methodology can be found in Belhassine
et al. [2018] where the authors present the procedure to transform geolocation observations of
thousands of home delivery trips into congestion data on segments of a road network.
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From this database, we selected representative areas of the city, discarded some small streets,
and considered the travel time information that corresponds to business hours, between 7 AM
and 8 PM. Following this procedure, we have generated 15 instances divided into three groups.
Within each group, five instances range from 10 to 50 customers. Each group is characterized
by its number of nodes, arcs and time periods as presented in Table 1. For groups S and M
we divided traffic information into 15 minutes interval, thus for each arc we have 52 speed
information from 7:00 AM to 8:00 PM. Group T is defined only from 7:00 AM to 2:00 PM.
The largest instance has 50 customers on a graph containing 1612 nodes, with 2810 arcs over
52 time periods. Note that each arc has a travel time associated to each time period. We
have preprocessed the graph, modifying some travel times in order to guarantee that the FIFO
property holds. The complete set of instances and detailed results can be found at https:

//www.leandro-coelho.com/instances/time-dependent-vrp/.

Table 1: Summary of the instances.

Group # instances # customers # nodes # arcs # time periods

T 5 10 – 50 357 616 28
S 5 10 – 50 696 1226 52
M 5 10 – 50 1612 2810 52

4.2 Importance of considering the underlying street network

In this section we illustrate that not only the travel time between an origin and a destina-
tion should be time-dependent, but we also need to consider the complete street network as
a multigraph. For a given pair of origin and destination nodes, Figure 4 shows four different
shortest travel time paths obtained at various departure times of the day respectively 9:00 AM
for solution (a), 9:15 AM for solution (b), 9:45 AM for solution (c), and 1:00 PM for solution
(d). We used the DTDSPA to determine the optimal path starting from the origin towards the
destination.

Detailed results are given in Table 2, where we report Solution (the solution name), Departure
time as the time of the departure from the origin, Arrival time as the arrival time at the
destination, Travel time in seconds, and Number of segments in the path of the solution. These
results show that not only the travel time varies significantly (from 1621 to 2280 seconds), the
number of segments traveled also changes (from 103 to 115). If we look at solutions (b) and (c)
which have almost the same travel time, we observe a very different route. Comparing (a) and
(c), the three minutes difference lead to very different paths, with mostly unique segments. Also,
the difference in departure times between solution (a) and solution (c) is less than one hour, yet
the path of the solution differs dramatically. In fact solution (a) shares only 20% of the path
with solution (c). Thus throughout the day, not only the travel times of the segments change,
but also the related paths. Neglecting the whole underlying network may lead to important
missed opportunities to optimize time spent in traffic. More important, a driver not aware of
the changing paths may loose time if he travels on the wrong path.

The Time-Dependent Shortest Path and Vehicle Routing Problem

CIRRELT-2019-12 13

https://www.leandro-coelho.com/instances/time-dependent-vrp/
https://www.leandro-coelho.com/instances/time-dependent-vrp/


(a) Travel time: 1621s, number of segments: 115 (b) Travel time: 1821s, number of segments: 103

(c) Travel time: 1802s, number of segments: 108 (d) Travel time: 2280s, number of segments: 115

Figure 4: Optimal time-dependent travel times and number of segments for the same origin-

destination, across different starting times (see Table 2)
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Table 2: Optimal time-dependent travel times for the same origin-destination, across different

starting times (see Figure 4)

Solution Departure time Arrival time Travel time (s) Number of segments

a 09:00 AM 09:27 AM 1621 115

b 09:15 AM 09:35 AM 1821 103

c 09:45 AM 10:15 AM 1802 108

d 01:00 PM 01:38 PM 2280 115

4.3 Parameter tuning for the simulated annealing algorithm

The proposed SA algorithm works with three parameters: T0, itermax and α. Parameter
itermax defines the maximum number of iterations during the execution of the algorithm,
and T0 represents the initial temperature. At the end of the algorithm, we expect the final
temperature to be Tf=0.1. Finally, α is the coefficient controlling the cooling rate. A proper
parameter tuning is required to reach a good compromise between computing time and solution
quality.

First, using an ad-hoc trial-and-error strategy and during the developments of the algorithm,
we found four good settings for itermax (1000, 3000, 6000 and 10000) and three for T0 (500,
1000, 10000). Then we fixed α in such a way that starting at temperature T0, we reach Tf after

itermax iterations. Thus we have Tf = T0α
itermax and α = itermax

√(
Tf

T0

)
. The resulting 12

combinations of parameters (C1–C12) are presented in Table 3, where we also present the result
of configuration CO which simply returns the initial solution (itermax = 0) value provided to
the SA algorithm as explained in Algorithm 1. For each configuration of parameters we apply
the SA heuristic on our set of 15 instances.

Table 3: Parameters configuration

Parameters C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

itermax 0 1000 1000 1000 3000 3000 3000 6000 6000 6000 10000 10000 10000

T0 – 500 1000 10000 500 1000 10000 500 1000 10000 500 1000 10000

α – 0.9915 0.9908 0.9886 0.9972 0.9969 0.9962 0.9986 0.9985 0.9981 0.9991 0.9991 0.9988

For each configuration we note the average solution value, the average computing time in
seconds, the average deviation with respect to the best solution found by any of the 13 configu-
rations for each instance, and the number of best solutions found by each heuristic configuration.
Results of Table 4 show that configurations C9 and C12 are the best with respective deviations
of only 0.08% and 0.07%, however, configuration C9 requires only 373 seconds as opposed to the
812 seconds required by C12. In the following, heuristics results are presented for the SA with
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parameter configuration C9. Note that if running time is critical, configuration C5 is a good
compromise with an average deviation of 0.16% in only 95 seconds. Configuration C0 shows
that the creation of the initial feasible solution is quick, with an average computing time under
1s. Configuration C9 improves the C0 results by 3.2%.

Table 4: Heuristic configuration results

Configuration Avg value Avg time (s) Avg dev (%) # Best sol

C0 71633 0.68 3.35 0

C1 69467 23.0 0.22 6

C2 69468 31.0 0.21 5

C3 69563 48.2 0.32 5

C4 69475 65.4 0.24 6

C5 69413 94.5 0.16 9

C6 69396 155.9 0.14 6

C7 69402 128.6 0.15 6

C8 69373 193.6 0.12 8

C9 69360 373.3 0.08 8

C10 69385 253.0 0.13 7

C11 69370 379.7 0.10 6

C12 69335 812.5 0.07 8

4.4 Mathematical model evaluation

In this section we evaluate the performance of the three proposed models. Table 5 shows the
average number of constraints and variables for Model 1. Clearly, even for the smallest instances
the resulting models are very large with on average 1 300 000 constraints and 946 000 variables.
For Model 2 and Model 3 we present the difference in percentage with respect to Model 1
for the number of constraints (∆C) and variables (∆V ). Model 2 differs from Model 1 only
by constraints (32)–(34) representing only Nc + Nd + 1 extra constraints, which is negligible
among the more than a million of constraints. Compared to Model 1, the size of the problem
significantly decreases for Model 3, namely the average number of constraints and variables is
decreased by 5.45% and 5.01%, respectively. An explanation of the reduction in the number of
constraints and variables in Model 3 is the introduction of constraints (38)–(44). Comparing
Models 2 and 3, constraints (35)–(37) in Model 3 are stronger versions of (32)–(34) from Model
2 using the shortest paths Pij instead of Sij . Moreover, in Model 3 we have added constraints
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(38)–(44) that are derived from the generation of the shortest paths Pij . Thus, while Model 3
uses stronger versions of the shortest paths, it also introduces completely new constraints that
can be seen as by-products from the generation of the shortest paths Pij , which help reduce the
problem size. As the models are clearly too large to be solved, we analyse their performance
under different initialization procedures.

Table 5: Impact of the different models on the problem size

Model 1 Model 2 Model 3
Group Constraints Variables ∆C ∆V ∆C ∆V

T 1,331,382 946,945 0.00 0.00 –6.70 –6.14
S 4,414,168 3,146,947 0.00 0.00 –4.35 –4.00
M 5,167,447 3,645,341 0.00 0.00 –4.49 –4.13

Total 3,255,220 2,313,345 0.00 0.00 –5.45 –5.01

Table 6 presents the results when the models were run for two hours with no initial solution.
As we can see, no model was able to find any feasible solution. Model 1 provides a lower bound
equal to zero for 13 instances, while 2 instances could not have their models built (due to time or
memory limitations). The valid inequalities used for Model 2 have an important impact helping
provide lower bounds for every instance. Valid inequalities in Model 3 are even stronger, as
the lower bounds obtained by Model 3 are on average 0.47% higher than those of Model 2.
Obviously, all instances were executed up to the 2h limit.

In order to better evaluate the behavior of the model, we provide a warm start to CPLEX.
This is achieved by using the solutions provided by configuration C0 of the simulated annealing.
Table 7 presents these results. We report Inst, the name of the instance, and the solution value
(z) from the C0 configuration. Models 1–3 were run for two hours and we present the value of
the solution z, the value of the lower bound z, and Gap reported by CPLEX. Model M1 provides
a lower bound equal to zero for 14 instances, while for instance T10, the lower bound provided
by M1 is equal to 3.8 with a gap of 99.99%. Providing an initial feasible solution had positive
effect on the lower bounds, as Model 2 now obtains five better lower bounds and Model 3 yields
13 better lower bounds.

Finally, we initialize the models with the solutions obtained by the complete SA algorithm
with parameter configuration C9. Detailed computational results are given in Table 8.

Even with a good quality initial solution, the results show that Model 1 provides poor lower
bounds. For this model, the gaps are between 99.99% and 100.00% and for 14 instances the
lower bounds remain at 0.00. For Model 2, in which a set of valid inequalities are added to
the basic model, the gaps have significantly improved, ranging between 4.82% and 8.34%. The
average gap is now improved from 9.22% to 6.22%.

The valid inequalities of Model 3 are even stronger. The lower bounds obtained by Model
3 are on average 0.48% higher than those obtained by Model 2. Under Model 3 the gaps
are between 4.42% and 7.44%, with an average of only 5.68%. This means that the solutions
obtained by configuration C9 of our SA algorithm are not worse than 5.68% of the optimal
solutions.
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Table 6: Models performance with no initial solution

Model 1 Model 2 Model 3

Inst. z z z z z z

T10 – 0.00 – 26990.00 – 27401.76

T20 – 0.00 – 45400.66 – 45603.62

T30 – 0.00 – 76645.19 – 76860.36

T40 – 0.00 – 70866.25 – 70996.42

T50 – 0.00 – 81453.35 – 81646.80

S10 – 0.00 – 28739.73 – 29049.05

S20 – 0.00 – 52108.65 – 52375.00

S30 – 0.00 – 83234.00 – 83588.10

S40 – 0.00 – 71778.50 – 72016.16

S50 – 0.00 – 99413.03 – 99623.60

M10 – 0.00 – 29389.00 – 29678.04

M20 – 0.00 – 52778.69 – 53221.86

M30 – 0.00 – 84191.70 – 84717.67

M40 – – – – – –

M50 – – – – – –

Average – 0.00 – 61768.37 – 62059.88
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Table 7: Models performance with C0 configuration

C0 Model 1 Model 2 Model 3

Inst. z z z Gap (%) z z Gap (%) z z Gap (%)

T10 30139 30139 3.80 99.99 30139 26990.00 10.45 30139 27405.18 9.07

T20 50886 50886 0.00 100.00 50886 45376.70 10.83 50886 45606.17 10.38

T30 82804 82804 0.00 100.00 82804 76614.01 7.48 82804 76869.56 7.17

T40 77522 77522 0.00 100.00 77522 70862.74 8.59 77522 71064.64 8.33

T50 90264 90264 0.00 100.00 90264 81453.35 9.76 90264 81647.09 9.55

S10 31728 31728 0.00 100.00 31728 28747.70 9.39 31728 29028.90 8.51

S20 57462 57462 0.00 100.00 57462 52104.42 9.32 57462 52375.00 8.85

S30 89884 89884 0.00 100.00 89884 83234.00 7.40 89884 83588.36 7.00

S40 78774 78774 0.00 100.00 78774 71809.93 8.84 78774 72018.23 8.58

S50 106984 106984 0.00 100.00 106984 99449.73 7.04 106984 99650.16 6.86

M10 31645 31645 0.00 100.00 31645 29389.00 7.13 31645 29685.02 6.19

M20 60090 60090 0.00 100.00 60090 52778.85 12.17 60090 53232.71 11.41

M30 92198 92198 0.00 100.00 92198 84201.62 8.67 92198 84729.48 8.10

M40 82572 82572 0.00 100.00 82572 73042.43 11.54 82572 73487.15 11.00

M50 111546 111546 0.00 100.00 111546 100771.85 9.66 111546 101195.41 9.28

Average 71633 71633 0.25 100.00 71633 65121.76 9.22 71633 65438.87 8.68
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Table 8: Models performance with C9 configuration

SA Model 1 Model 2 Model 3

Inst. z z z Gap (%) z z Gap (%) z z Gap (%)

T10 28927 28927 3.99 99.99 28927 26990.00 6.70 28927 27401.75 5.27

T20 48346 48346 0.00 100.00 48346 45377.45 6.14 48346 45594.50 5.69

T30 80513 80513 0.00 100.00 80513 76616.48 4.84 80513 76865.16 4.53

T40 74850 74850 0.00 100.00 74850 70866.24 5.32 74850 71063.50 5.06

T50 85793 85793 0.00 100.00 85793 81453.35 5.06 85793 81647.09 4.83

S10 31362 31362 0.00 100.00 31362 28747.70 8.34 31362 29028.90 7.44

S20 55146 55146 0.00 100.00 55146 52105.76 5.51 55146 52375.00 5.02

S30 87450 87450 0.00 100.00 87450 83234.00 4.82 87450 83588.36 4.42

S40 76477 76477 0.00 100.00 76477 71809.21 6.10 76477 72018.23 5.83

S50 105174 105174 0.00 100.00 105174 99450.13 5.44 105174 99652.22 5.25

M10 31308 31308 0.00 100.00 31308 29396.00 6.11 31308 29698.83 5.14

M20 56963 56963 0.00 100.00 56963 52778.85 7.35 56963 53221.87 6.57

M30 90093 90093 0.00 100.00 90093 84191.70 6.55 90093 84729.48 5.95

M40 78975 78975 0.00 100.00 78975 73042.43 7.51 78975 73487.15 6.95

M50 109024 109024 0.00 100.00 109024 100771.85 7.57 109024 101195.41 7.18

Average 69360 69360 0.27 100.00 69360 65122.08 6.22 69360 65437.83 5.68
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4.5 Impact of time-dependent traveling times

In Table 9 we give some insights on the impact of using accurate travel time information. Column
SA reports previous heuristics results. We then run the SA algorithm with different values for
the travel time on each segment. The results under columns Min. travel time, Avg. travel time
and Max. travel time are obtained by taking, respectively, the minimum, the average and the
longest travel time observed through the day for each street segment. The percentage gaps
between Obj and SA are computed as 100(Obj−SA)/SA. Solutions are marked with an asterisk
when at least one vehicle returns too late to the depot.

Table 9: Impact of traffic

SA Min. travel time Avg. travel time Max. travel time

Inst. z Obj Gap (%) Obj Gap (%) Obj Gap (%)

T10 28927 27345 -5.47 31748 9.75 36270 25.38

T20 48346 46079 -4.69 50727 4.92 55914 15.65

T30 80513 77820 -3.34 83870 4.17 90604* 12.53

T40 74850 71967 -3.85 78249 4.54 85098* 13.69

T50 85793 82704 -3.60 90338 5.30 99022* 15.42

S10 31362 28925 -7.77 34600 10.32 39882 27.17

S20 55146 52461 -4.87 59397 7.71 65670 19.08

S30 87450 84116 -3.81 92825* 6.15 101839* 16.45

S40 76477 72366 -5.38 81741 6.88 90860 18.81

S50 105174 100466 -4.48 111796* 6.30 123097* 17.04

M10 31308 29905 -4.48 35766 14.24 42574 35.98

M20 56963 54139 -4.96 63152 10.86 73278 28.64

M30 90093 85622 -4.96 95033* 5.48 106153* 17.83

M40 78975 74681 -5.44 86953 10.10 100512 27.27

M50 109024 102473 -6.01 115084 5.56 129476* 18.76

Average 69360 66071 -4.87 74085 7.49 82683 20.65

Results of Table 9 show that neglecting time-dependent travel times leads to underestimate
the average arrival times back at the depot by 4.87% when minimum traversal times are used.
Note that companies that do not take any information on traffic into account will perform even
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worse, as we did consider some real information by using the minimum traversal time as observed
from the database, which can be slower than estimating the travelling time with the maximum
allowed speed.

Surprisingly, running the SA algorithm with the average travel time did not provide a better
estimation, with the duration of the solutions being overestimated on average by 7.49%. At the
other extreme, the solutions under the maximum (worse) travel time column indicate just how
bad solutions can get if one is trapped in traffic. Our experiments show that vehicles would
arrive back to the depot on average 20.78% later than when the routes are optimized based on
real traffic data, and many trucks exceed their driving duration constraint.

These results clearly show that neglecting traffic may result in substantial delays at the
locations that need to be visited, which in turn would require more vehicles and more mileage
to perform the deliveries. To conclude, these results show that the impact of traffic is large and
it is important to incorporate it into practical routing models.

5 Conclusions

In this paper, we have introduced the time-dependent shortest path and vehicle routing prob-
lem. We provided different mathematical formulations for the problem and we developed valid
inequalities to strengthen them and to improve the lower bounds. We have developed three
models, differing by a set of valid inequalities developed to improve the lower bounds, based
on different and more intricate shortest paths. A heuristic based on local search with a SA
acceptance criteria is also developed. We have created a set of 15 instances generated from real
traffic data on the road network in Québec City, Canada. The instances range from 357 nodes,
616 arcs, 28 time periods, and 10 customers up to 1612 nodes, 2810 arcs, 52 time periods, and
50 customers. These instances can serve as benchmark instances for the TDSPVRP. We have
provided heuristic solutions based on the SA algorithm. Results have shown that the size of the
instances under Models 1 and 2 are almost the same, whereas the number of constraints and
variables is on average reduced by 5.45% and 5.01%, respectively, under Model 3. Providing the
solutions of the SA algorithm as initial solutions, helped CPLEX find better lower bounds, but
it could never improve the solutions we provided. The standard formulation of Model 1 pro-
vides very weak lower bounds, where the gap with the best found solutions is between 99.99%
and 100.00%. The valid inequalities that are imposed to improve the lower bounds are strong
and significantly improve the gaps, i.e., they are between 4.82% and 8.34% for Model 2, and
between 4.42% and 7.44% for Model 3. The use of a stronger set of valid inequalities to improve
the lower bounds, based on different shortest paths, provides lower bounds that are on average
0.48% higher. The SA heuristic provides high quality solutions, as confirmed by an average gap
of only 5.68%.

We have also provided a sensitivity analysis that supports the importance of including time-
dependent travel times in routing models, by showing that ignoring it can impose substantial
delays. To find good upper bounds for the TDSPVRP, state-of-the-art heuristics and more
elaborated exact methods should be developed in future research. The benchmark instances
generated and the lower bounds provided in this research can be used to test the results of those
heuristics.

The Time-Dependent Shortest Path and Vehicle Routing Problem

22 CIRRELT-2019-12



References

E. Angelelli, V. Morandi, and M. G. Speranza. Congestion avoiding heuristic path generation
for the proactive route guidance. Computers & Operations Research, 99:234–248, 2018.
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