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1 Introduction

The Multicommodity Capacitated Fixed-charge Network Design (MCFND) formulation
represents a generic model that can be used to formulate problems in a variety of appli-
cations such as transportation, logistics and telecommunications (Magnanti and Wong,
1984; Minoux, 1989; Crainic, 2000). In these applications, it is required to design a capac-
itated network to be used to route a given set of commodities in order to satisfy known
demands between origin-destination pairs. In doing so, one pays not only a routing cost
proportional to the number of distributed units of each commodity moved over a network
arc, but also the fixed cost whenever an arc is used. The main goal of MCFND problems
is to find the optimal design (i.e., selected arcs to be included in the final network) that
minimizes the total cost, computed as the sum of the fixed and routing costs.

Stochastic MCFND (SMCFND) under demand uncertainty has received increasing
attention in recent years. In this paper, we address the SMCFND as a two-stage stochas-
tic program in which design decisions are made in the first stage before demands are
observed. Once demands are observed, second-stage (routing) decisions are made to
adapt the first stage solution to the observed demands. We represent the demand un-
certainty using the well-known scenario-based approach where the uncertain demand is
modeled via a finite number of discrete scenarios together with their associated proba-
bilities. The SMCFND problem then becomes a mixed integer program of generally very
large dimensions, that is extremely hard to solve using state-of-the-art solvers in all but
trivial cases.

Stochastic network design problems are notoriously complex and difficult to address.
Not surprisingly, researchers investigated how the solution to the deterministic model
relates to its stochastic counterpart. It has been shown that, despite the fact that the
solution to the deterministic model behaves badly in stochastic settings (Wallace, 2000;
Higle and Wallace, 2003), there are situations in which the deterministic solution shares
some properties with the corresponding stochastic solution (Lium et al., 2009; Thapalia
et al., 2011, 2012a,b). These authors conclude that the deterministic solution carries
useful information (i.e., some structural patterns) that can be leveraged to solve the
stochastic case. Specifically, Crainic et al. (2017) investigated how the reduced cost as-
sociated with non-basic variables in deterministic solutions can be used to guide the
selection of variables to exclude from the stochastic formulation. The authors did not,
however, study network design formulations.

Inspired by these insights, our first goal is to investigate how to efficiently use reduced
cost information extracted from the solution obtained by the deterministic (expected
value) problem, as a means of guiding variable fixing, to define a good restriction that
reduces the complexity of solving the SMCFND. Furthermore, we study how to improve
the variable fixation performance by proposing a number of strategies in which reduced
cost information are extracted from different solutions obtained by upgrading the ex-
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pected value solution. Our final purpose is then to incorporate the hints derived from
the analysis of the proposed variable fixation strategies, exploiting reduced cost informa-
tion, into an iterative matheuristic approach, to efficiently deal with difficult stochastic
instances.

The contributions of this paper is threefold. First, we propose a number of different
strategies to investigate how to use the deterministic (expected value) solution and ef-
ficiently extract reduced cost information to define an appropriate restriction, without
sacrifying the quality of the solution obtained. Second, we propose a new matheuris-
tic approach which jointly makes use of a state-of-the-art commercial solver and the
insights derived from the analysis of the proposed variable fixing strategies. The pro-
posed matheuristic iteratively defines and explores restricted regions of global solution
space that have a high potential of containing good (hopefully, optimal) solutions. The
restricted problem, at each iteration, is defined by exploiting reduced costs information
extracted from multiple solutions. Third, we carry out extensive computational experi-
ments on large number of benchmark instances in the stochastic network design problem
literature. The results show that the proposed algorithm is highly efficient in finding
good-quality solutions for very difficult available instances in the literature.

The rest of the paper is organized as follows. We recall the two-stage formulation
of the stochastic network design problem in Section 2, and briefly review some relevant
literature in Section 3. Section 4 introduces the proposed matheuristic. Finally, we
present and analyze the experimental results in Section 5 and provide concluding remarks
in Section 6.

2 Problem description

The two-stage stochastic formulation, or the a priori optimization model (Birge and
Louveaux, 2011), is a stochastic modeling approach in which decision variables are divided
into two groups; namely, first stage and second stage variables. Traditionally, in the case
of two-stage stochastic network design problems with uncertain demands, the first stage
involves decisions on the configuration of the network (i.e., design decisions), and the
second-stage consists of determining the commodity flow distribution of the observed
demands in an optimal fashion based on the configuration imposed by the first stage.

Let us describe the two-stage stochastic formulation for the SMCFND problem (Crainic
et al., 2011). Let G = (N ,A) be a directed network with N representing a finite set of
nodes and A a finite set of potential arcs. The set of commodities is represented by K
where each is recognized by a unique pair of origin-destination nodes (o(k), s(k)). For
each design arc (i, j) ∈ A, we define the fixed cost fij incurred if the arc is included in
the final design and the capacity uij limiting the total commodity flow that may use the
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arc (i, j). We also define the unit routing cost cij arc (i, j) ∈ A.

We assume the finite scenario set S with the strictly positive corresponding probabil-
ities of p1, . . . , p|S|. For a given scenario s ∈ S, assuming that dks is the demand volume
of commodity k under the scenario s, the demand of costumer i for commodity k under
the scenario s, i.e., dksi , is either set to dks if node i is the origin of commodity k, −dks if
node i is the destination of commodity k, or 0 otherwise.

Let the design variable yij be a binary variable, which indicates if arc (i, j) is included
in the network, in the first stage. Once demands are realized, in the second-stage, xksij is
the amount of commodity k’s demand in the resulting solution for scenario s that flows
on arc (i, j). The so-called extensive form of the two-stage stochastic program may be
written as follows:

minimize
∑

(i,j)∈A

fijyij +
∑
s∈S

ps
∑
k∈K

∑
(i,j)∈A

cijx
ks
ij (1)

subject to
∑

j∈N+(i)

xksij −
∑

j∈N−(i)

xksji = dksi , ∀i ∈ N , ∀k ∈ K, ∀s ∈ S (2)

∑
k∈K

xksij ≤ uijyij, ∀(i, j) ∈ A, ∀s ∈ S (3)

yij ∈ {0, 1}, ∀(i, j) ∈ A (4)

xksij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K, ∀s ∈ S (5)

The objective function (1) minimizes the total system cost, consisting of the sum of
the fixed cost for the included arcs and the expectation of routing costs taken over all
the demand scenarios. Constraints (2) represent the flow conservation equations in each
scenario, requiring that demand of commodity k ∈ K is routed from its origin node to
its destination. Constraints (3) ensure that the same design is used in each scenario,
and that arc capacity uij is never violated. Constraint (4) and (5) impose integrality
and non-negativity restrictions on decision variables. We refer to this problem as the
MCFND(S).

3 Literature review

The existing methodologies for stochastic network design problems are mostly based on
decomposition strategies. There are two major groups of decomposition methods for
stochastic integer programs: by stage and by scenario. The L-shape method is a stage-
wise decomposition method, introduced by Van Slyke and Wets (1969), which has been
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used to develop various solution methods for stochastic problems. For completeness,
detailed review on this type of decomposition approach for SMCFND may be found in
Crainic et al. (2016) and Rahmaniani et al. (2017). The progressive hedging (PH) method
for addressing stochastic linear programs is a scenario-wise decomposition technique that
was originally proposed in Rockafellar and Wets (1991). The PH algorithm is the founda-
tion of a number of heuristic methods for SMCFND problems (e.g., Crainic et al., 2011,
2014).

The other approach in the literature to deal with the difficulty of stochastic programs
relies on considering the deterministic version and studying its solution structure to
investigate its relationship with its stochastic counterpart. It is well known that solutions
to deterministic formulations tend to behave badly in stochastic settings. Despite this, a
number of research studies have shown that there are problems where the deterministic
solution shares some properties with the corresponding stochastic solution, irrespective of
their quality in terms of objective function. For example, Thapalia et al. (2011, 2012a,b)
have shown that for the single-commodity network design problem, certain structural
patterns from the deterministic solution reemerge in the stochastic solution, despite the
fact that the value of stochastic solution (VSS) is high. (The VSS is a standard metric
proposed in Birge and Louveaux (2011) which measures the expected gain from solving
a stochastic model rather than its deterministic counterpart). Similar observations were
made by Wang et al. (2018) for scheduled network design problems. Maggioni and
Wallace (2012) analyzed the quality of the deterministic solution in terms of its structure
and upgradeability to the stochastic solution in a set of stochastic programs of different
types. In follow-up work to analyze the quality of the deterministic solution, Crainic et al.
(2017) studied how reduced costs can be used as a measure to identify which variables
should be excluded from the stochastic problem. This study concluded that reduced costs
can indeed be used to efficiently identify properties from deterministic solutions that
should be included in stochastic solutions. Following these insights, in the context of the
SMCFND problem, we aim to exploit reduced cost information extracted from different
solutions to be used as a measure to identify sets of 0 and 1 design variables to be fixed
in the stochastic problem, leading to reduced-size restricted problems. This would help
in algorithmic developments providing means to efficiently address large instances.

In recent years, increasing attention has been devoted to the integration, or hy-
bridization, of metaheuristics with mathematical programming as a efficient algorithmic
approach. This approach, referred to as matheuristics, appears very promising exploit-
ing the synergies of mathematical programming and metaheuristics (see, Raidl (2006);
Puchinger and Raidl (2005) for a survey and a taxonomy). With the expansion of general-
purpose MIP solvers over the last decade, various hybridization of heuristic methods (e.g.,
variable fixing techniques) with commercial MIP solvers have become increasingly pop-
ular. Several matheuristic approaches to complex combinatorial problems use the idea
of fixing the value for some variables as a “problem reduction” technique in order to
reduce the analysis of a whole solution space to a promising region. Examples of such
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approaches can be found for Knapsack Problems (e.g., the core algorithm proposed by
Balas and Zemel (1980) and the kernel search proposed by Angelelli et al. (2010)) and
in the context of routing problems (e.g., Archetti et al. (2008) and De Franceschi et al.
(2006)), where mixed integer linear programming models are solved to thoroughly explore
promising regions of the solution space.

Such effective problem reduction techniques in an iterative matheuristic appear useful
for stochastic problems because of their complexity and size. However, little effort has
been devoted in the stochastic literature to designing such matheuristic methods. For
example, Sarayloo et al. (2018) proposed an iterative matheuristic based on the problem
reduction technique, in which learning techniques were used to generate a series of MIP
subproblems as restricted regions. It should be noted that in Sarayloo et al. (2018), the
restriction consists of fixing variables only to 1. The main question, therefore, is how
to further develop the idea of fixing variables to define more restricted regions at each
iteration by identifying sets of 0 and 1 design variables.

Our aim in this paper is to design a matheuristic approach by applying a problem
reduction technique, fixing variables to 0 and 1 (i.e., inclusion and exclusion of variables),
to further reduce the size of sub-problems and take advantage of the strong search ca-
pabilities of CPLEX as a black-box solver. We propose such a methodology in the next
section.

4 The proposed matheuristic

The basic idea of our proposed method is to solve in an iterative fashion a series of re-
stricted problems which are constructed by exploiting reduced cost information extracted
from different solutions. At each iteration, we identify two distinct subset of design vari-
ables to be fixed to either 1 or 0, leading to a reduced-size model. The resulting restricted
problems are then solved by a MIP solver. We believe that using a refined approach to set
the fixed variables is crucial to the algorithm’s success. Therefore, we study how reduced
cost information extracted from the solution obtained by the LP relaxation of the EV
problem can be leveraged so as to guide variable fixation within MCFND(S) formulation.

In the following section 4.1, we present a number of strategies to examine how we
can identify the desired set of variables to fixed based on reduced cost information. The
detailed algorithm will then be explained in Section 4.2.
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4.1 Reduced cost-based variable fixing strategies

In this section, we propose several strategies to study how to efficiently exploit reduced
cost information extracted from the solution obtained for the deterministic (expected
value) problem as a means of guiding variable fixing in the context of stochastic network
design. We consider two main factors within each strategy, namely the choice of solution
for which we extract the reduced cost, and the choice of variables (i.e. design variables or
flow variables). By considering these factors, we design and examine different strategies
to efficiently determine the desirable set of fixed variables. In the following, we describe
our proposed strategies.

Strategy 1. We first follow the variable fixing method proposed in Crainic et al.
(2017). Let s̄ = (ȳ, x̄) be the optimal solution of the LP relaxation of the expected
value (EV) problem. We recall that the EV solution is obtained by considering the
expected values of the random demand variables (i.e., dki = d̄ki ) and solving the following
deterministic (single-scenario) program (DSSP):

minimize
∑

(i,j)∈A

fijyij +
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (6)

subject to
∑

j∈N+(i)

xkij −
∑

j∈N−(i)

xkji = dki , ∀i ∈ N , ∀k ∈ K (7)

∑
k∈K

xkij ≤ uijyij, ∀(i, j) ∈ A (8)

yij ∈ {0, 1}, ∀(i, j) ∈ A (9)

xkij ≥ 0 ∀(i, j) ∈ A, ∀k ∈ K (10)

Thus, in this strategy, the considered solution is s̄ which is derived from DSSP (6)-(10),
where the integrality constraints are relaxed, and the choice of variable is the design
variables. Let J s̄

0 = {1, 2, . . . , a, . . . , amax} represent the index set of zero design variables
( i.e., ȳa = 0, a ∈ J s̄

0 in the solution s̄) and Rs̄,0
y = {r1, . . . , ra, . . . , ramax} be the set of

reduced costs with respect to the components ȳa, a ∈ Js
0 . The set Rs̄,0

y is then sorted in
non-decreasing order. Let rmax = maxa∈J s̄

0
{ra : ra ∈ Rs̄,0

y } and rmin = mina∈J s̄
0
{ra : ra ∈

Rs̄,0
y } be respectively the maximum and the minimum of the reduced costs of the set Rs̄,0

y .
Following this strategy, to determine the groups of variables to be fixed, the difference
rmax − rmin is divided into N0 classes of constant size of rmax−rmin

N0
. We then solve the

model (1)-(5) by fixing to 0 the variables belonging to the classes from p0 to N0 where,
1 ≤ p0 ≤ N0.

Strategy 2. To evaluate the effect of using an improved solution in producing a
good set of fixed variables, we try to upgrade the solution of the EV problem (in which
the integrality constraints are imposed), thus obtaining sEV = (yEV ,xEV ). To do so,
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we use the expected value solution as an input to the MCFND(S) model (1)-(5) by
adding the constraints y ≥ yEV and then solve its LP relaxation, yielding the solution
s′ = (y′,x′s1 , . . . ,x′s|S|). Thus, in this strategy, the considered solution is s′ and the
choice of variable is the design variables y′. Let Js′

0 represents the index set of zero
design variables, i.e., y′a = 0, in the solution s′, and Rs′,0

y be the set of reduced costs with

respect to the components y′a a ∈ Js′
0 . The same approach, as in Strategy 1, is then

applied here to obtain the restricted model.

Strategy 3. In this strategy, we try to upgrade the solution of EV problem,
sEV = (yEV ,xEV ), to improve it even further than Strategy 2. To evaluate the ef-
fect of improving the solution obtained by the EV problem on producing a good set of
fixed variables, we produce a feasible solution to the MCFND(S) model (1)-(5). To do
so, we use the solution obtained by the EV problem as a input to the model (1)-(5)
by adding the constraints y ≥ yEV and then solve the problem to obtain the upgraded
solution s′′ = (y′′,x′′s1 , . . . ,x′′s|S|). Thus, in this strategy, the considered solution is s′′

and the choice of variables is the design variables y′′. Let Js′′
0 represent the index set

of zero design variables, i.e., y′′a = 0, in the solution s′′, and Rs′′,0
y be the set of reduced

costs with respect to the components y′′a , a ∈ Js′′
0 . It should be noted that, given the fact

that we are solving the MCFND(S) model (1)-(5) with the integrality requirements, we
need to perform one additional step to obtain the reduced cost values. Once the problem
(1)-(5) is solved and its optimal (integer) solution, s′′, is obtained, we will then need to
solve the LP relaxation of the problem (1)-(5) while the design variables are fixed to the
values of the obtained optimal solution. In this way, one can obtain the set of reduced
cost values associated to the design variables. Using the set of reduced costs Rs′′,0

y , the
same approach, as in Strategy 1, is applied to obtain the restricted model.

The potential to exclude (or include) a specific arc from the desired network can also
be assessed through the reduced cost associated with the flow variables that report the
amount of each commodity transported through the arc. By evaluating the opportunity
cost of having excluded (or included) an arc using the specific reduced costs associated
with all flow variables associated to that arc, one may hopefully obtain a good measure
to determine the variables to fix. We thus propose two more strategies, as follows.

Strategy 4. In this strategy, as in Strategy 3, the considered solution is s′′ =
(y′′,x′′s1 , . . . ,x′′s|S|). However, we investigate the benefit of using reduced costs associated
with the flow variables to identify the set of fixing variables. Let Js′′

0 represents the index
set of zero design variables in the solution s′′ and rksa be the reduced costs with respect to
the flow variables of commodity k in scenario s on arc index a (i.e., x′′ksa ). We define the
value r̄a =

∑
s∈S p

s
∑

k∈K(1/|K|)rksa to aggregate all reduced costs associated with the

flow variables assigned to arc index a. Let Rs′′,0
x represents the set of aggregated reduced

costs corresponding to index set J s̄′′
0 using the flow variables. The same approach, as in

Strategy 1, is then applied here to obtain the restricted model.
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Strategy 5. In this strategy, the considered solution is again s′′ = (y′′,x′′s1 , . . . , x̄′′s|S|).
However, we consider the reduced costs corresponding to both the design and the flow
variables used in the previous strategies. We thus define the composite reduced cost ;
r+
a = ra+r̄a. Let Js′′

0 represents the index set of zero design variables, i.e., y′′a = 0, a ∈ Js′′
0 ,

in the solution s′′, and Rs′′,0
x,y represents the set of composite reduced costs corresponding

to index set Js′′
0 using both the design and flow variables. The same approach, as in

Strategy 1, is then applied here to obtain the restricted model.

To determine the desirable variables to be fixed to 1 (i.e., open arcs), one may use
the same strategies described above; however, we need to consider the reduced cost
associated with the variables at their upper bound (i.e., the design variables that are 1 in
the solutions considered in Strategies 1-5). Thus, instead of fixing the last classes ranging
from p0 to N0 (with the largest values of reduced cost), we fix the variables belonging to
the classes ranging from 1 to p1, where 1 ≤ p1 ≤ N1, which have the smallest values of
reduced costs.

4.2 Description of the algorithm

As described previously, the proposed matheuristic solves a sequence of restricted prob-
lems. That is, at each iteration, two distinct subsets of design variables defined and
guided by reduced cost information are used to construct the restricted problem. The
constructed restricted problem, defined by fixing the identified design variables to 0 or 1,
is then solved by an MIP solver, at each iteration. Algorithm 1 sums up the entire proce-
dure. We refer to the P problem as the MCFND(S) problem (1)-(5) including all binary
design variables. While, the restricted problem P̃ represents the MCFND(S) problem
restricted to the subsets of the design variables that are fixed to 0 or 1. In the following
subsections, each component of the Algorithm 1 is described in details.
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Algorithm 1 Reduced cost-based restriction and refinement matheuristic

1: Initialization: . Section 4.2.1
2: k := 0; construct initial solution yIni; set ybest := yIni; let J best

1 be the index set of
design variables which are 1 in ybest;

3: k := 1;
4: repeat
5: Constructing the restricted problem: . Section 4.2.2
6: phase 1:
7: Construct AP k by fixing J best

1 in the problem P as AP k := P |Jbest
1

;

8: Generate solution pool Pk = {s1, s2, . . . , sN} for AP k considering parameter α;
9: phase 2:
10: Perform Algorithm 2 to establish two subsets JP

k

0 and JP
k

1 using reduced cost
information associated with Pk;

11: Solving the restricted problem: . Section 4.2.2
12: Solve P̃ k which is constructed by fixing JP

k

0 ∪ JPk

1 in the problem P as P̃ k :=
P |

JP
k

0 ∪JPk
1

yielding to the solution y∗
P̃k with objective value z∗

P̃k ;

13: Improvement check and Diversification: . Section 4.2.3
14: if z∗

P̃k < zbest then

15: ybest := y∗
P̃k and update J best

1 ;
16: zbest := z∗

P̃k ;
17: Go to line 26;
18: end if
19: if time limit is not exceeded then
20: if ybest has not been improved in the last successive q attempts then
21: Let α← α + ∆(α) and go to line 8;
22: else
23: Enlarge the search space of P̃ k by reducing the size of JP

k

0 and JP
k

1 and
go to line 12;

24: end if
25: end if
26: k := k + 1;
27: until stopping criteria
28: return ybest.

4.2.1 Initialization

At the beginning of the Algorithm 1, we construct an initial solution yIni using the
procedure described in Strategy 3. To do so, we use the expected value solution as a
input to the model (1)-(5) and then solve the problem to obtain the solution yIni. Let
yIni be the current best solution (i.e., ybest := yIni), and J best

1 be the index set of design
variables which are 1 in the solution ybest.
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4.2.2 Constructing and solving the restricted problem - based on primal-
dual information

At each iteration of Algorithm 1, a restricted problem is constructed by determining
two distinct sets of fixed variables. The restricted problems are defined by exploring
attributes originating from multiple solutions. The exploration is performed by examining
the information obtained through a two-phase procedure. In the first phase, the primal
information (i.e., solutions) are generated and, in the second phase, a learning procedure
is applied on their dual information. In the following, we describe the proposed two
phases leading to the restricted problem P̃ k at each iteration k.

Phase 1: Generating the pool of solutions - primal information The first step
to construct the restricted problem involves creating multiple solutions. We believe the
solutions obtained by MCFND(S) model would provide better information as compared
to solution obtained by DSSP (6)-(10). Therefore, to generate multiple good quality
solutions, we aim to create solutions obtained by MCFND(S) model and store them as
a pool of solutions at each iteration of Algorithm 1. To generate these solutions, we
first construct a reduced size auxiliary problem at each iteration k, denoted by AP k.
To construct AP k, we use the current best solution (i.e., ybest) and fix design variables
associated with indexes j ∈ J best

1 in the problem P (i.e., AP k := P|Jbest
1

) in order to reduce

the size of problem. We note that feasible solutions for AP k are feasible for MCFND(S)
problem as well.

As stated in Algorithm 1, line 8, we generate multiple solutions for AP k and store
them in the solution pool Pk. The solution pool Pk, for AP k, contains N different solu-
tions s1, s2, . . . , si, . . . , sN whose objective functions z(si) are within α% of the optimum,
i.e., such that z(si) ≤ z(sk,best) +αz(sk,best)/100, ∀i = 1, . . . , N where sk,best and z(sk,best)
are the optimal solution to the AP k and its objective function value, respectively .

We note that the approach we use to generate Pk is to use the solution pool func-
tionality of the CPLEX solver. These solutions are generated during the global MIP
tree exploration performed by CPLEX, where the generated solutions in pool Pk are
distinguishable by the values of their (binary) design variables only.

Phase 2: Reduce cost based learning - dual information The main purpose
of this phase is to identify two index sets of desirable arcs to be fixed to closed JP

k

0 or
opened JP

k

1 in P̃ k according to information learned from the reduced costs associated
with the solutions in pool Pk = {s1, s2, . . . , si, . . . , sN}.

The steps of this phase are stated in Algorithm 2. For each generated solution si ∈ Pk,
we represent the index set of design variables, which are 0 by Jsi

0 ; the index set of design
variables, which are 1 by Jsi

1 ; the value of objective function by z(si); and the weight by
w(si) = 1

z(si)−minsi∈Pz(si)
, indicating a relative quality of si. The index sets of desirable
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variables JP
k

0 and JP
k

1 are created according to the desirability factor la associated to
each arc a measured using all of the solutions in Pk. We first define the desirability
factor lia associate with each arc j obtained by the solution i. To do so, we consider
three alternative variants (in lines 3-5) to extract the reduced cost information according
to different choices of variables: 1) if the choice of variable is y, it means we consider
the reduced cost values associate with design variables, i.e., ra, as the desirability factor,
lia := ra. 2) if the choice of variable is x, it means we consider r̄a as the desirability factor,
lia := r̄a. Recall that r̄a =

∑
s∈S p

s
∑

k∈K(1/|K|)rksa , where rksa is the reduced costs with
respect to the flow variables of commodity k in scenario s on arc index a (i.e., x′′ksa ). 3) if
the choice of variable is both of x and y, it means we consider the composite reduced cost,
r+ = ra + r̄a, as the desirability factor, i.e., lia := r+

a . Once, the values of lia associated
with each solution i are computed, we aggregate the desirability factors over all solutions

(in line 7) as follows: la,0 =
∑
si∈P

w(si) ∗ lia for a ∈
⋂

si∈Pk
Jsi

0 and la,1 =
∑
si∈P

w(si) ∗ lia for

a ∈
⋂

si∈Pk
Jsi

1 . Let Lk
0 = {(a, la,0)|a ∈

⋂
si∈Pk

Jsi

0 } and Lk
1 = {(a, la,1)|a ∈

⋂
si∈Pk

Jsi

1 }.
We then sort Lk

0 according to la,0 in non-decreasing order. Let lmax
0 and lmax

0 the maximum
and minimum values in Lk

0. To determine the cluster of desirable variable to be fixed

to zero, we divide the difference lmax
0 − lmin

0 in N0 classes of constant size of
lmax
0 −lmin

0

N0

and store the index of variables belonging to the classes p0 to N0 (1 ≤ p0 ≤ N0) in JP
k

0 .
We perform the same sorting procedure for Lk

1 according to la,1. Let lmax
1 and lmin

1 be
the maximum and minimum values in Lk

1, respectively. We then divide the difference

lmax
1 − lmin

1 in N1 classes of constant size of
lmax
1 −lmin

1

N1
and store the index of variables

belonging to the classes 1 to p1 ( 1 ≤ p1 ≤ N1) in JP
k

1 . The two sets JP
k

0 and JP
k

1 are
returned as the index sets of the most desirable arcs, at iteration k, to be fixed to be
closed and opened, respectively.

Solving the restricted problem Once the index sets of desirable closed and open
arcs (i.e., JP

k

0 and JP
k

1 ) are established, we then construct the restricted problem P̃ k

by fixing the design variables belonging to the two sets JP
k

0 and JP
k

1 to 0 and 1, in the
problem P , respectively ( i.e., P̃ k := P|

JP
k

0 ∪JPk
1

). We then solve P̃ k to obtain solution

y∗
P̃k with objective value z∗

P̃k (line 12).

4.2.3 Improvement check and Diversification

In this part of algorithm, we check the improvement and, if needed, perform the diversi-
fication step (line 14 to 25). Once the restricted problem is solved (line 12), the following
steps depend on the solution found by the solver. If a better solution is found, it becomes
a new incumbent (ybest := y∗

P̃k), and the search continues from its solution in the next it-
eration (lines 14 to 18). However, if the new found solution is not better than the current
best solution and the time limit is not exceeded, we attempt to improve the solution by
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Algorithm 2 Reduced cost-based learning procedure

1: Initialization State the sets Jsi

0 and Jsi

1 for si ∈ Pk, let w(si) be the weight of solution
si;

2: for all si ∈ Pk do
3: if the choice of variable is y, then let lia := ra where a ∈ Jsi

0 or a ∈ Jsi

1 ;
4: if the choice of variable is x, then let lia := r̄a where a ∈ Jsi

0 or a ∈ Jsi

1 ;
5: if the choice of variable is both of x and y, then let lia := r+

a where a ∈ Jsi

0 or
a ∈ Jsi

1 ;
6: end for
7: Aggregate the desirability factor lia over all solutions as follows:

la,0 =
∑
si∈P

w(si) ∗ lia where a ∈
⋂

si∈Pk
Jsi

0 ;

la,1 =
∑
si∈P

w(si) ∗ lia where a ∈
⋂

si∈Pk
Jsi

1 ;

8: Let Lk
0 = {(a, la,0)|a ∈

⋂
si∈Pk

Jsi

0 }. Sort Lk
0 in non-decreasing order according to la,0

and then create the set JP
k

0 according to Section 4.2.2;

9: Let Lk
1 = {(a, la,1)|a ∈

⋂
si∈Pk

Jsi

1 }. Sort Lk
1 in non-decreasing order according to la,0

and then create the set JP
k

1 according to Section 4.2.2;
10: return JP

k

0 and JP
k

1 .

performing the diversification step (line 19-25) as follows. If ybest has not been improved
in the last q attempts, we go to line 8 and generate a different solution pool by increasing
parameter α (line 21). Otherwise, we attempt to improve the solution by enlarging the
search space with freeing more variables in the current restricted problem P̃ k. To do so,
we remove ν0 ( ν1) percent of variables with the largest (smallest) values of la,0 (la,1) from

JP
k

0 (JP
k

1 ) to reduce the number of variables that are fixed in P̃ k and then go to line
12 to find a better solution. The stopping criteria is the maximum computational time
denoted as tmax.

5 Experimental results

This section presents the results of extensive computational experiments performed to
assess the performance of the proposed matheuristic. We first describe the test instances
and experimental settings in Section 5.1 and then provide a comparative analysis of the
different proposed strategies in Section 5.2. We then detail the numerical results of the
proposed matheuristic (denoted by RCHeur) by analyzing 1) in Section 5.3.1, the impact
of the various internal features of the proposed RCHeur, and 2) in Section 5.3.2, the
power of the proposed RCHeur in dealing with difficult instances through a compara-
tive analysis of its performance versus the following alternative algorithms: IBM-ILOG
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CPLEX 12.7 set to its default settings (CPLEX in the following), the Benders algorithm
implemented in CPLEX 12.7 (Benders in the following) and the Learn&Optimize (de-
noted by L&Opt) procedure proposed in Sarayloo et al. (2018). By proceeding in this
way, RCHeur is compared to both 1) exact solution methods: one that solves the problem
directly (i.e., CPLEX) and one that solves the problem via the application of a specialized
decomposition strategy for stochastic models (Benders); and 2) a matheuristic method
that currently defines the state-of-the-art heuristic algorithm for the considered problem
(i.e., L&Opt ).

5.1 Data and experimental settings

We used 11 problem classes (R5-R15) from the set of R instances of the stochastic
FCMND problem introduced in Crainic et al. (2011). Each class is characterized by a
number of nodes |N |, number of arcs |A|, and number of commodities |K|, specified in
Table 1. Each of these classes contains five networks with different “ratio” index valued 1,
3, 5, 7, and 9, which indicate continuously increasing ratios of fixed to variable costs and
total demand to total network capacity Crainic et al. (2011). For each of these networks,
there are instances with 16, 32, and 64 scenarios. Demands were assumed to be linearly
correlated, and three different levels of correlations (0, 0.2, and 0.8) were considered to
create different instances.

Table 1: Characteristics of instances
Problem |N | |A| |K| Problem |N | |A| |K|

R04 10 60 10 R10 20 120 40
R05 10 60 25 R11 20 120 100
R06 10 60 50 R12 20 120 200
R07 10 82 10 R13 20 220 40
R08 10 83 25 R14 20 220 100
R09 10 83 50 R15 20 220 200

Algorithms were implemented in C++. The numerical experiments were performed on
a Sun Fire X4100 cluster of 16 computers, each has two 2.6 GHz Dual-Core AMD Opteron
processors and 8192 Megabytes of RAM, operating under Solaris 2.10. We used CPLEX
12.7 to solve the MIP problems. For the Benders method, we used automated Benders’
feature implemented in CPLEX 12.7, where CPLEX includes all integer variables in the
master and the continuous variables into subproblems to solve the overall problem using
the decomposition strategy. The time limit is set to 500 minutes, when calling CPLEX
in the following experiments.

13

A Reduced Cost-based Restriction and Refinement Matheuristic for  Stochastic Network Design

CIRRELT-2019-15



5.2 Analyzing different strategies in using reduced cost infor-
mation

In this section, we analyze and compare different strategies proposed in Section 4.1. In
this part of experiment, we focus on relatively easy instances (R5-R10 with ratios 1, 3, 5,
7, and 9 and correlations 0 and 0.8). By doing so, we aim to be able to qualify the quality
of solutions obtained by different strategies, as the optimal solution of the majority of
these instances can be obtained by CPLEX.

5.2.1 Comparing the strategies for fixing variables to 0

In this section, we focus on investigating the reduced cost of the non-basic variables
which are at their lower bound (i.e., 0). We first present the results obtained by applying
Strategy 1 where the optimal solution of the LP relaxation of the EV problem is used
(i.e., s̄). Strategy 1 is denoted by Str1(p0, N0) where the set of reduced cost values Rs̄,0

y

is divided into N0 equivalent sized classes, and then the variables belonging to the classes
p0 to N0 are fixed to 0.

We perform the experimental analysis exploring the behaviour of Strategy 1 while
varying the values p0 and N0 to determine the compromised values of p0

? and N0
? for dif-

ferent instances. We present the comparative results according to the following measures:
feasibility, solution quality, and computational efforts. We note that the compromised
values (p0

?, N0
?) are then used for the rest of strategies to compare their performance.

Given the fact that fixing design variables to 0 may result in infeasibility issues, we report
in Table 2 the number of instances which are infeasible by performing Strategy 1 with
the following (p0, N0) values: Str1(p0, 3), p0 = 2, 3 and Str1(p0, 9), p0 = 3, 4, 5, 6, 7, 8, 9.
Moreover, to qualify the results obtained by performing Strategy 1 in terms of solution
quality and computational time, we provide the comparative analysis versus CPLEX in
Table 3. The Gap and Time values reported for CPLEX refer, respectively, to the op-
timal gap and the computational time in seconds. As for the “Str1”, Gap and Time
represent the corresponding optimality gap relative to the lower bound of CPLEX and
the total computational time, respectively.

Table 2 shows that the total number of infeasible instances is increased from 3 in-
stances (in the case of Str(9, 9)) to 19 instances (in the case of Str(4, 9)). However, the
sharp increase in the the number of infeasible instances happens in the case of Str(3, 9)).
It means that fixing the variables belonging to the first three classes of variables (i.e.,
Str(p0, N0) p0 =1,2, and 3 ) results in many infeasibility issues.

As shown in Table 3, the results in the case of Str1(3, 3), i.e., fixing one out of 3 classes
of variables ((p0, N0) = (3, 3)), are as follows. The number of infeasible instances is 9,
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Table 2: The number of infeasible instances (INF)
Str1(p0, 3) Str1(p0, 9)

Ratio Ins 2 3 3 4 5 6 7 8 9

1 36 0 0 4 0 0 0 0 0 0
3 36 0 0 4 0 0 0 0 0 0
5 36 7 0 15 7 7 7 0 0 0
7 36 12 9 21 12 12 9 9 9 3
9 36 0 0 10 0 0 0 0 0 0

Total 180 19 9 54 19 19 16 9 9 3

the average optimality gap is 2.12% which is better than CPLEX with the average gap of
2.57% and the average computational time is reduced almost 10% compared to CPLEX.
Considering that Str(3, 3) provides a little reduction in time (almost 10%), fixing fewer
number of variables occured in Str(p0, 9), p0 = 8, 9 don’t seem reasonable since they can’t
provide much fixed variables. However, in the case of Str1(2, 3), i.e., fixing two out of 3
classes of variables ((p0, N0) = (2, 3)), the number of infeasible instances is 19, the average
optimality gap is 1.59% which is better than CPLEX with the average of 2.49%, and the
computational time is reduced almost 50% relative to CPLEX. We note that fixing higher
numbers of variables occurred in Str(p0, 9), p0 = 1, 2, 3 results in a significant increase in
the number of infeasible instances (more than 54 out of 180 instances) as shown in Table
2. Therefore, it seems that Str1(2, 3) is able to provide a good performance in terms of
improvement in solution quality and reduction in computational time, both compared to
CPLEX, and is a good compromise between the considered instances. In the following,
our goal is to examine if it is possible to improve the obtained results of Strategy 1,
i.e., Str1(2, 3), by upgrading the expected value solution and using a different choice of
variables, as explained earlier in Strategies 2 to 5. To do so, we present the results of
other strategies proposed in Section 4.1 and compare them with the values obtained by
Str1(2, 3).

Table 4 displays the comparative results of performing Strategies 1 to 5 considering
(p?0, N

?
0 ) = (2, 3), i.e, fixing to 0 about 66% of non-basic variables with the highest reduced

costs relative to Rs̄,0
y ,Rs′,0

y , Rs′′,0
y Rs′′,0

x , and Rs′′,0
x,y in Strategies 1 to 5, respectively. As

previously described, the Gap and Time values reported for CPLEX refer, respectively, to
the optimal gap and the total computational time in seconds represented in parenthesis.
As for the different strategies “Str1” to “Str5”, Gap and Time represent the correspond-
ing optimality gaps relative to the lower bound of CPLEX and the total computational
time expressed in seconds, respectively. Column “INF” indicates the number of infeasible
instances. It should be noted that we consider a gap of 100% for infeasible instances to
make the results comparable over all strategies. The results clearly show that there are no
more infeasibility issues in Strategies 2 to 5, indicating the noticeable effect of upgrading
the EV solution. In terms of solution quality, the performance of using reduced cost is
enhanced by providing an improvement of at least 10.35% in optimality gap, when we
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Table 3: The performance comparisons of Str1(p0, N0) vs. CPLEX for fixing to 0
Ratio Ins CPLEX Str1(2, 3) CPLEX Str1(3, 3)

Gap(%) Gap(%) INF Gap(%) Gap(%) INF

(Time) (Time) (Time) (Time)

1 36 0.00 0.00 0 0.00 0.00 0
(154) (52) (154) (204)

3 36 6.7 2.75 0 6.7 5.09 0
(14081) (8604) (14081) (12241)

5 36 2.46 2.10 7 2.82 2.36 0
(14081) (10203) (15453) (12445)

7 36 0.24 0.4 12 0.32 0.45 9
(7010) (1670) (7390) (4182)

9 36 3.05 2.70 0 3.05 2.74 0
(11622) (6229) (14461) (11880)

Avg 180 2.49 1.59 2.57 2.12
(10388) (5351) (9017) (8192)

upgrade the solutions in Strategies 2 to 5 (with the average optimality gap of at most
1.7% ), compared to Strategy 1 (with the average optimality gap of 12.05%) which uses
the solution of the LP relaxation of the EV problem. Furthermore, using the reduced
costs associated with flow variables (i.e., Rs′′,0

x ), as defined in Strategy 4, provides the
least computational time compared to the other strategies.

Table 4: Performance comparisons Strategies 1 to 5 for fixing to 0
Pro Ins CPLEX Str1 Str2 Str3 Str4 Str5

Gap(%) Gap(%) INF Gap(%) INF Gap(%) INF Gap(%) INF Gap(%) INF

(Time) (Time) (Time) (Time) (Time) (Time)

R05 30 0.00 26.66 8 0.33 0 0.13 0 0.05 0 0.13 0
(1437) (1408) (135) (92.9) (91.3) (83.4)

R06 30 1.61 1.05 0 1.00 0 1.30 0 1.26 0 1.25 0
(11401) (4670) (4969) (3630) (2274) (2319)

R07 30 0.10 6.68 2 0.38 0 0.31 0 0.47 0 0.31 0
(1745) (2037) (179) (219) (232) (192)

R08 30 0.98 21.33 6 1.99 0 1.25 0 1.7 0 1.25 0
(7217) (6334) (663) (2724) (1037) (1402)

R09 30 4.51 2.32 0 2.03 0 1.48 0 1.98 0 1.48 0
(16353) (11036) (8243) (7173) (3087) (4636)

R10 30 8.17 14.28 3 4.47 0 4.43 0 4.61 0 4.34 0
(23243) (15953) (13959) (17994) (9300) (12117)

Avg 180 2.56 12.05 1.7 1.48 1.67 1.46
(10229) (6906) (4601) (5305) (2665) (3458)

5.2.2 Comparing the strategies for fixing variables to 1

To study the possibility of using reduced cost information for fixing variables to 1, we
present the results of applying the same strategies presented in Section 4.1 on the non-
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basic variables at their upper bound (i.e., 1). We first examine the performance of
Strategy 1. Following this strategy, denoted by Str(p1, N1), we use the optimal solution
of LP relaxation of the EV problem, i.e., s̄. The set of reduced cost values Rs̄,1

y is then
divided into N1 classes, and the variables belonging to the classes 1 to p1 are fixed to
1. Given the fact that there are no feasibility issues in these strategies by fixing to
1, we only present the comparison results on optimality gaps and computational times
versus CPLEX in Table 5 to qualify the results obtained by Strategy 1. As shown in
Table 5, in the case of fixing only one out of 3 classes (i.e., (p1, N1) = (1, 3)), Startegy
1 perform as well as CPLEX in terms of both optimality gaps and computational time.
Moreover, in the case of fixing two out of 3 classes (i.e., (p1, N1) = (2, 3)), Strategy
1 performs slightly better than CPLEX by providing optimality gaps of 2.53% (within
9538 seconds) versus 2.56% (within 10229 seconds). The results show that Strategy 1
is not as effective in identifying fixed variables at their upper bound as it is at their
lower bound. This means that the LP relaxation of the EV problem (i.e., s̄) does not
provide many variable fixing choices, since there are too few design variables that are 1
in the solution ȳ (there are a maximum of 3 design variables that are 1 in the ȳ for the
instances with ratios 1,3, and 5). This indicates the need to upgrade the EV solution,
as explained in the proposed Strategies 2 to 5, in order to provide a good set of fixed
variables. Nevertheless, we observed that fixing variables to 1 in Strategy 1, with the
values (p1, N1) = (2, 3) (i.e., 2 out of 3 classes), is again an acceptable compromise to
produce relatively good performance over all instances. We then examined whether we
could improve the performance of Strategy 1 by upgrading the solution and using different
choices of variables in Strategies 2 to 5.

Table 5: The performance comparisons of Str1(p1, N1) vs. CPLEX for fixing to 1
Ratio Ins CPLEX Str1(1, 3) Str1(2, 3)

Gap(%) Gap(%) Gap(%)

(Time) (Time) (Time)

1 36 0.00 0.00 0.00
(353) (315) (292)

3 36 6.70 6.75 6.70
(14081) (13790) (13270)

5 36 2.82 2.83 2.80
(15453) (14972) (14372)

7 36 0.24 0.26 0.27
(6823) (6465) (6185)

9 36 3.05 2.96 2.99
(14461) (14215) (13572)

Avg 180 2.56 2.56 2.53
(10229) (9951) (9538)

Table 6 shows the comparative results of performing Strategies 1 to 5 considering
(p1, N1) = (2, 3), i.e, fixing to 1 about 66% of non-basic variables with the smallest
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reduced costs relative to Rs̄,1
y ,Rs′,1

y , Rs′′,1
y Rs′′,1

x , and Rs′′,1
x,y in Strategies 1 to 5, respectively.

The table reports the same information as Table 4. The results show that, in terms
of solution quality and computational time, the performance of using reduced cost is
enhanced when we upgrade the solution in Strategies 2 to 5 comparing to strategy 1 which
uses the solution of LP relaxation of the EV problem. Furthermore, using the reduced cost
associated with flow variables (i.e., Rs′′,1

x ) in strategy 4 provides the least computational
time compared to the other strategies. However, when assessing the optimality gaps
obtained, we observed that all strategies 2 to 5 seem to be equivalent (i.e., the difference
is at most 0.07%).

Table 6: Performance comparisons of Strategies 1 to 5 for fixing to 1
Pro Ins CPLEX Str1 Str2 Str3 Str4 Str5

Gap Gap(%) INF Gap(%) INF Gap(%) INF Gap(%) INF Gap(%) INF

(Time) (Time) (Time) (Time) (Time) (Time)

R05 30 0.00 0.00 0 0.09 0 0.23 0 0.28 0 0.23 0
(1437) (1468) (328) (490) (81.11) (313)

R06 30 1.61 1.55 0 1.09 0 1.09 0 1.44 0 1.08 0
(11401) (11248) (7688) (7815) (2499) (6668)

R07 30 0.10 0.08 0 0.47 0 0.46 0 0.60 0 0.46 0
(1745) (1603) (749) (450) (266) (322)

R08 30 0.98 1.01 0 1.59 0 1.55 0 1.93 0 1.55 0
(7217) (6354) (5874) (5970) (1886) (4324)

R09 30 4.51 4.39 0 1.96 0 1.94 0 1.98 0 1.90 0
(16353) (15121) (9442) (10372) (4401) (8957)

R10 30 8.17 8.14 0 6.12 0 5.65 0 4.81 0 5.65 0
(23243) (21430) (26270) (25396) (10751) (23444)

Avg 180 2.56 2.53 0 1.88 0 1.82 0 1.84 0 1.81 0
(10229) (9538) (8391) (8333) (3314) (7338)

5.3 Numerical results of proposed matheuristic

In this section we present the results of the proposed matheuristic by evaluating 1) the
effects of various internal components of the algorithm, in Section 5.3.1, and 2) its power
to deal with very difficult instances cited in the literature, in Section 5.3.2. We note that,
according to the analysis carried out in the previous section, the parameters (p0, N0) and
(p1, N1) are set to (2,3), in both cases. Also, the choice of variables in Algorithm 2 is the
flow variables. A preliminary analysis was conducted to fine tune the ν0, ν1, α, q and N
parameters, which produced the following values .05, .05, .02, 3 and 3, respectively.

5.3.1 Internal analysis

The purpose of this section is to evaluate the effects of two features of the proposed
matheuristic, which are using solutions obtained by MCFND(S) model and also multiple
solutions. To do this, we designed two experiments to assess the effect of using stochastic
versus deterministic solutions and multiple versus single solutions to generate the pool
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of solutions. The “Gap” and “Time” represent the optimality gap with respect to the
lower bound of CPLEX and computational time in seconds, respectively.

Impact of using solutions obtained by MCFND(S) model. To evaluate the
impact of using feasible solutions obtained by the MCFND(S) model rather than those
obtained by DSSP on the performance of the proposed matheuristic, we show in Table
7 the performance comparison of both versions. In version “Deter-sols”, to generate the
solution pool Pk in Algorithm 1, we first choose randomlyN scenarios and then solve their
corresponding DSSP (6)-(10). However, in the version “Stoch-sol”, we used the solutions
obtained by MCFND(S) problem, as explained in Section 4.2.2. We observed that using
solutions obtained by MCFND(S) in the proposed matheuristic produces better results,
with an average gap of 1.29% (compared with using the solution obtained by DSSP with
the average of 1.73% ) in almost half the time, which highlights the importance of using
good quality solutions to produce the set of fixed variables.

Table 7: Performance comparison on using the DSSP solution vs MCFND(S) solutions
Pro Ins CPLEX Det-Sols Stoch-Sol

Gap(%) Time Gap(%) Time Gap(%) Time

R05 30 0.00 1437 0.1 722 0.06 399
R06 30 1.61 11401 1.11 8415 0.94 5607
R07 30 0.10 1745 0.55 673 0.11 558
R08 30 0.98 7217 1.68 4949 1.24 3391
R09 30 4.51 16353 2.44 11818 1.41 7137
R10 30 8.17 23243 4.82 19350 4.03 10131
Avg 180 2.56 10229 1.73 9125 1.29 4725

Impact of using multiple solutions. Is there any value in using multiple solutions
versus single solutions ? To answer this question and evaluate the impact of using multiple
solutions (here [N = 3] in the Algorithm 1) versus a single solution on the performance
of the proposed matheuristic, we show in Table 8 the performance comparison of both
versions in columns “SingleSol” and “MultipleSol”. The results show that using multiple
solutions in the proposed matheuristic leads to better results, with an average gap of
1.29% (versus 1.55% in the case of using a single solution) in less computational time.
That using multiple solutions rather than a single solution results in reduced computation
time is a surprising observation. This may be explained by the fact that, while generating
multiple solutions requires more computational effort at each iteration, the results show
that the more refined information provided by multiple solutions leads to identifying
better solutions faster. These results strengthen the idea of generating multiple solutions
at each iteration of the algorithm.
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Table 8: Performance comparison of using single solution vs. multiple solutions
Pro Ins CPLEX SingleSol MultipleSol

Gap(%) Time Gap(%) Time Gap(%) Time

R05 30 0.00 1437 0.06 430 0.06 399
R06 30 1.61 11401 0.94 6201 0.94 5607
R07 30 0.10 1745 0.32 673 0.11 558
R08 30 0.98 7217 1.26 4706 1.24 3391
R09 30 4.51 16353 1.85 8218 1.41 7137
R10 30 8.17 23243 4.92 13850 4.03 10131
Avg 180 2.56 10229 1.55 5673 1.29 4725

5.3.2 Performance comparisons on difficult instances

To evaluate the quality and power of the proposed matheuristic, and to assess its perfor-
mance when solving the challenging instances from the literature, we applied RCHeur to
solve a set of large large R instances (i.e., R11-R15 instances described in Table 1). We
focus on 180 instances that CPLEX was not able to solve to optimality after 500 min of
computational time. We compared the best results (upper bound) of Benders, L&Opt
and RCHeur versus that of CPLEX after 500 minutes CPU time. Table 9 displays these
results. Each line reports, for each problem class, the number of instances (Column
“Ins”) in the class and the percentage of these instances where the associated solution
method failed to find a feasible solution (Column “F(%)”). In addition, the average
optimality gap obtained by CPLEX on those instances for which a feasible solution was
found (Column “Gap(%)”) is provided.

Columns “Diff” report the relative difference, in %, between the best solution (up-
per bound) obtained by each considered method and that of CPLEX computed as
100 ∗ Z−CPLEX

Z
, where “Z” represent the best solution (upper bound) provided by the

considered method (i.e., Benders, L&Opt and RCHeur) and that of CPLEX (for the
instances where they are available). Overall, CPLEX failed to provide feasible solutions
after 500 minutes for 31 instances, and so we report the average optimality gaps and
improvements over the remaining 149 instances.

Overall, we note that, L&Opt, RCHeur provided the best solutions with the relative
improvements being 13.67% and 19.95% , on average over the solution found by CPLEX
(for which the average optimality gap is 29.15%), respectively. However, the best solution
provided by Benders is 5.94% (on average) worse than that of CPLEX. The performance
of the RCHeur is even more impressive when the most difficult instances are solved:
i.e., an average relative difference of 27.97% is observed for the R15 instances. We also
observed that RCHeur and L&Opt are able to provide a feasible solution for all considered
instances, while CPLEX and Benders fail to provide any feasible solution on 15.14% and
15.60% of the instances, respectively. These analysis show the robustness of the proposed
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RCHeur in providing good solutions in all considered instances. We observed that, on
average, RCHeur outperforms L&Opt on more than 90% of the instances, with an average
relative improvement of 6.07%, indicating the clear superiority of RCHeur over all other
considered methods.

Table 9: Performance comparison- L&OPT, Benders and PHS versus CPLEX
Pro Ins CPLEX Benders L&Opt RCHeur

Gap(%) F(%) Diff(%) F(%) Diff(%) F(%) Diff(%) F(%)

R11 27 26.49 0 -9.22 0 -9.23 0 -18.42 0
R12 27 15.71 18 -1.91 18 -6.58 0 -9.79 0
R13 36 34.67 0 -13.71 0 -18.58 0 -22.23 0
R14 45 33.88 13.3 -8.23 0 -14.24 0 -21.38 0
R15 45 35.48 44.4 3.15 60 -19.79 0 -27.97 0
Avg 29.15 15.14 5.94 15.60 -13.67 0 -19.95 0

To analyze more thoroughly the behaviour of the proposed algorithm, we present
the results aggregated according to the cost and capacity ratios used to generate the
instances. Ghamlouche et al. (2003) defined two ratios where we briefly recall them
here. The fixed cost ratio is computed as |K|

∑
(i,j)∈A fij/

∑
k∈K ω

k
∑

(i,j)∈A c
k
ij, where ωk

is the demand volume of commodity k in the deterministic instances originally proposed
in Ghamlouche et al. (2003). Instances were then randomly generated for three values
for this ratio: F01= 0.01, F05 = 0.05, and F10 = 0.10, which correspond to increasing
levels of the fixed costs compared to the routing costs. As for the Capacity ratio, it
is computed as |A|

∑
k∈K ω

k/
∑

(i,j)∈A uij. Again, three values of this ratio were used
to randomly generate instances: C1 = 1, C2 = 2, and C8 = 8, which indicate that
the total capacity available becomes increasingly tighter relative to the total demand.
The aggregated “ratio” index, 1,3, 5, 7, and 9, captures these two measures, indicating
continuously increasing the ratios of fixed-to-variable-cost and total-demand-to-total-
network-capacity.

Each line of Table 10 displays the aggregated results over 15 different instances, for a
given combination of “ratio” and number of scenarios. The column “Gap” represents the
average optimality gap obtained by CPLEX after 500 minutes of CPU time. It should
be noted that, for those instances that CPLEX failed to find a feasible solution within
the 500 minutes of allotted time (reported in the column “Failure”), a gap of 100the
relative difference (in %) between the best solution (upper bound) found by RCHeur and
Benders versus that of CPLEX, computed as 100∗RCHeur−CPLEX

RCHeur
and 100∗Benders−CPLEX

Benders
,

respectively. We consider that the relative difference is -100% for those cases where the
considered method provides a solution but CPLEX fails to do so, and 0% for those cases
where both the considered method and CPLEX fail to provide any solution. Table 11
presents the results aggregated according to different levels of fixed cost and capacity
ratios.
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A first conclusion that emerges from the analysis of Table 10 is that the instances
that are the most difficult to address are those with intermediate ratios (e.g., 3 and 5).
These results are consistent with the results obtained in previous studies (e.g., Crainic
et al. (2011) and Sarayloo et al. (2018)), where similar observations were made. As
originally explained in Crainic et al. (2011), this behaviour may be caused by the higher
number of alternative optimal designs that may exist for the deterministic variants of
these instances when compared to the instances with either higher or lower ratios. In the
case where demand are stochastic, there may be broader differences among the scenarios,
thus requiring more effort to identify an overall satisfactory, hopefully optimal, solution.
Despite the difficulties of solving these instances, the proposed RCHeur is able to improve
the solutions of CPLEX by 41.74% (on average). On these instances CPLEX obtains
an average optimality gap of 52.84 %. Another conclusion from Table 10 is that the
proposed RCHeur significantly outperforms CPLEX independently of ratios and instance
characteristics.

We report in Table 11 the average relative difference of solutions (upper bounds)
obtained by RCHeur and Benders compared to CPLEX by varying the fixed cost and
the capacity ratios. It appears that, as expected, the instances that are the most difficult
to address are those with medium levels of fixed cost and capacity ratios (i.e., F5 and
C2). It is interesting to note that there is significant improvement achieved by RCHeur
when the fixed costs and the capacity levels are set at their mid levels: the average
optimality gap of CPLEX for these problems is around 40.66%, while both RCHeur and
Benders improve the solutions of CPLEX by about 38.30% and 11.57%, respectively.
The results also support the hypothesis that our algorithm provides a more consistent
behaviour and appears significantly more robust with respect to these two characteristics
overall instances (i.e., improvements are observed for all problem characteristics). In
comparison, the performance of the Benders method is weaker when assessed against
CPLEX on the C1 and F1 instances.

Finally, Table 12 reports the average results obtained on the instances grouped by
correlation levels: Corr= 0.8, 0.2 and 0, and by the different sizes of the scenario set
(each group totalling 25 instances). We observe that the demand correlation has little
impact on how difficult the associated problems are to solve. RCHeur performs signif-
icantly better when compared to CPLEX, regardless of the correlation level considered
(the average relative improvement in the quality of the solutions obtained being 24.36%
overall instances). Lastly, as expected, increasing the number of scenarios makes the
problem more difficult to solve for both RCHeur and CPLEX. Nonetheless, overall in-
stances with 64 scenarios, RCHeur obtains an average improvement of 28.72% in terms
of the best found solutions when compared with CPLEX, where the average optimality
gap is 31.81%.
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Table 10: Aggregated results according to ratios
Instance # CPLEX RCHeur/CPLEX Benders/CPLEX

Ratios |S| Inst. Failure Gap(%) Diff(%) Diff(%)

1 16 15 0 5.41 -5.92 9.55
1 32 15 0 10.49 -9.04 21.58
1 64 15 2 16.42 -12.42 38.80
3 16 15 0 44.40 -24.61 -21.39
3 32 15 3 57.67 -46.52 -29.66
3 64 15 9 66.32 -49.70 -13.26
5 16 15 0 23.61 -15.62 -2.02
5 32 15 3 43.10 -36.95 -10.13
5 64 15 7 56.70 -58.90 -22.56
7 16 15 0 2.31 -0.22 19.09
7 32 15 0 6.80 -2.08 15.14
7 64 15 3 21.61 -19.20 -0.83
9 16 15 0 7.34 -0.84 3.74
9 32 15 1 17.81 -10.63 -3.63
9 64 15 3 31.90 -25.47 -16.26

Table 11: Relative improvement according to fixed costs and capacity levels
CPLEX RCHeur/CPLEX Benders/CPLEX

Gap Diff(%) Diff(%)

F1 10.44 -11.65 7.22
F5 40.66 -38.30 -11.57
F10 37.16 -28.61 -13.63

C1 32.83 -25.27 0.93
C2 40.66 -38.30 -11.57
C8 14.45 -12.02 -2.65

6 Conclusions

In this paper, we investigated how to efficiently use reduced cost information extracted
from the solution obtained by the LP relaxation of the EV problem to define good
restriction in the context of stochastic network design. We specifically proposed different
strategies to improve the EV solution and then extract associated reduced costs. The
purpose of each strategy was to identify an appropriate subset of design variables (using
reduced cost information) to be fixed in the stochastic problem and obtain a good quality
solution. We subsequently proposed a matheuristic approach that iteratively defines
restricted problems constructed by exploiting reduced cost information extracted from
multiple solutions. The results of extensive computational experiment showed that the
proposed algorithm is highly effective in finding good-quality solutions for very large
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Table 12: Relative improvement according to scenario correlation
Scen Corr=0.8 Corr=0.2 Corr=0

CPLEX RCHeur/CPLEX CPLEX RCHeur/CPLEX CPLEX RCHeur/CPLEX

Gap(%) Diff(%) Gap(%) Diff(%) Gap(%) Diff(%)

16 13.85 -9.53 13.73 -9.42 13.31 -9.28
32 22.64 -19.02 22.40 -18.51 22.15 -18.12
64 32.15 -29.25 31.28 -28.73 31.15 -28.29

instances in stochastic network design problems, while reducing the computational effort
to obtain them.

We conclude this section with a few possible directions for future research. One pos-
sible direction is the adaption of the proposed approach to be applied on more practical
variants of the classical network design model like service network design models. The
other possible direction is based on the fact that most of solution methods for stochastic
network design problems in the literature are based on exact methods. Thus, due to
the NP-hardness nature of SND problems, this research area still needs more studies
based on heuristic approaches. It would be worthwhile to develop various metaheuris-
tic and matheuristic approaches which incorporate different learning and memorizing
mechanisms to handle such large-scale problems.
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