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1 Introduction

In the multicommodity capacitated fixed-charge network design problem (MCND), a sub-

set of the arcs must be selected in order to route several commodities, each with a given

origin-destination pair. The selection of an arc incurs a fixed cost that provides a pre-

defined capacity available to all commodities. In addition, a variable cost is imposed to

route each unit of commodity demand on each arc. The problem is to find a minimum

cost solution (including decisions about design and routing) such that the demand for

each commodity is met and the capacity on each arc is not exceeded.

The problem is typically formulated as a mixed-integer programming (MIP) model

that includes two main sets of constraints: flow conservation equations, ensuring that

the demand for each commodity is satisfied, and capacity constraints, ensuring that the

flow of all commodities on each arc does not exceed its capacity. The usual Lagrangian

relaxations for this formulation are the so-called flow (or shortest path) and knapsack

relaxations, which are obtained, respectively, by relaxing capacity constraints and flow

conservation equations (see Section 2 for an account of the relevant literature). For the

flow relaxation, the resulting Lagrangian subproblem decomposes into a series of shortest

path problems, one for each commodity. The Lagrangian subproblem for the knapsack

relaxation is separable by arcs, reducing to a continuous knapsack problem for each arc.

The flow and knapsack relaxations can therefore be seen, respectively, as commodity-based

and arc-based decomposition approaches.

In this paper, we introduce three node-based Lagrangian relaxations, where the sub-

problem decomposes by nodes. We show that the Lagrangian dual bound of each of

these relaxations improves upon the linear programming (LP) relaxation bound. As a

result, the node-based relaxation bounds also improve upon the Lagrangian dual bounds

of the flow and knapsack relaxations, since the latter are both equal to the LP relaxation

bound. We compare theoretically the three node-based relaxations, establishing a hierar-

chy of lower bounds between them. We also compare them experimentally by solving the

Dantzig-Wolfe (DW) reformulation of their Lagrangian duals by column generation. Our

computational results on a set of benchmark instances show that the improvement pro-

vided by the strongest node-based relaxation over the LP relaxation is 1.8% on average,

with a maximum of 20.5%.

We embed the proposed node-based relaxations within a Lagrangian matheuristic

framework, where feasible solutions to the MCND are derived from the information ob-

tained when solving the Lagrangian dual, as in a classical Lagrangian heuristic. The

Lagrangian matheuristic also involves solving a large number of mathematical program-

ming models, typically defined through intensification and diversification mechanisms

similar to those found in the literature on metaheuristics. On the same set of bench-

mark instances, we show that the resulting Lagrangian matheuristic outperforms most

heuristics proposed in the literature and is competitive with the best ones. For instance,
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compared with a state-of-the-art heuristic [23], our Lagrangian matheuristic improves

the upper bound for 13 out of 25 hard instances, showing an improvement of 0.34% on

average, with a maximum of 3.37%. An advantage of the Lagrangian matheuristic over

several heuristic methods is that it also provides an effective lower bound on the optimal

value and therefore a guarantee on the quality of the feasible solution.

The paper is organized as follows. Section 2 provides the background material: the

classical MIP model, along with a short review of the relevant literature, are presented.

In Section 3, we present the node-based Lagrangian relaxations and theoretically com-

pare the strength of their Lagrangian dual bounds. Section 4 describes the Lagrangian

matheuristic. In Section 5, we present the computational results, including the evaluation

of the node-based relaxations and Lagrangian matheuristic. In Section 6, we summarize

this work and we propose future research directions.

2 Background

The MCND is defined on a directed graph G = (N,A), where N is the set of nodes and

A is the set of arcs. For each node i ∈ N , we define the sets of forward and backward

neighbours, N+
i and N−i , respectively. Each commodity k ∈ K corresponds to an origin-

destination pair such that dk > 0 units of flow must travel between the origin O(k) and

the destination D(k). The objective function to be minimized includes a cost ckij ≥ 0 for

routing one unit of commodity k ∈ K through arc (i, j) ∈ A and a fixed cost fij ≥ 0 for

using arc (i, j) ∈ A, thus providing a capacity uij ∈ (0,
∑

k∈K d
k] on the arc. A classical

model for the MCND introduces two sets of variables: xkij is the flow of commodity k ∈ K
on arc (i, j) ∈ A (flow variables), while yij is 1, if arc (i, j) ∈ A is used, and 0, otherwise

(design variables). The model is written as follows:

ZND = min
∑

(i,j)∈A

∑
k∈K

ckijx
k
ij +

∑
(i,j)∈A

fijyij (1)

∑
j∈N+

i

xkij −
∑
j∈N−

i

xkji = bki , ∀i ∈ N,∀k ∈ K, (2)

∑
k∈K

xkij ≤ uijyij, ∀(i, j) ∈ A, (3)

xkij ≤ dkyij, ∀(i, j) ∈ A, ∀k ∈ K, (4)

xkij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K, (5)

yij ∈ {0, 1}, ∀(i, j) ∈ A. (6)

The objective, (1), is to minimize total routing and design costs. Constraints (2) are

the usual flow conservation equations ensuring that the demand for each commodity is
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routed from the origin to the destination, where:

bki =


+dk, if i = O(k),

−dk, if i = D(k),

0, otherwise,

∀i ∈ N,∀k ∈ K.

Capacity constraints (3) ensure that the sum of the flows on each arc (i, j) ∈ A does

not exceed its capacity uij. These are also known as linking constraints because they

ensure that no flow is allowed on arc (i, j) ∈ A, unless it is used and its fixed cost is

paid. Constraints (4) are strong linking constraints. Although they are redundant for

the MIP model, adding these inequalities significantly improves the LP relaxation lower

bound [20].

As mentioned in the Introduction, two Lagrangian relaxations have been used to de-

velop solution methods for the MCND: the flow and knapsack relaxations. The flow

relaxation is obtained by relaxing (3)-(4) in a Lagrangian way. The Lagrangian subprob-

lem separates into two components, one in y variables, trivially solvable by inspection,

and the other in x variables that decomposes by commodities and can be solved as a

shortest path problem (with nonnegative arc lengths) for each commodity k ∈ K. The

knapsack relaxation is derived by relaxing equations (2) in a Lagrangian way. The La-

grangian subproblem decomposes by arcs, reducing to the computation of a continuous

knapsack problem for each arc (i, j) ∈ A. We now review the literature on the MCND

with a focus on Lagrangian-based algorithms.

An early line of research looked at the theoretical and experimental comparison of the

two Lagrangian relaxations [20, 21]. In particular, it was shown that the Lagrangian dual

bounds for both relaxations are equal to the LP relaxation bound (this result was recently

generalized to a wide class of network design models [19]). To optimize the Lagrangian

dual, subgradient methods were used, but their limitations in terms of numerical stability

and speed of convergence were soon identified. Their comparison with bundle methods

[9], for both flow and knapsack relaxations, show the advantages of the latter, as they

converge in fewer iterations and are more robust relative to the parameter values, problem

specifications, and different relaxation types. Nevertheless, subgradient methods are still

being used, because they are easy to implement and relatively fast, so they can serve

to initialize column generation and bundle methods. For the two classical relaxations of

the MCND, state-of-the-art subgradient methods have been recently implemented and

compared [17].

Lagrangian-based branch-and-bound (B&B) algorithms have been developed, based

mostly on the knapsack relaxation, which was shown to be more effective than the flow

relaxation in such a framework [37]. Both exact and heuristic variants of B&B were

developed and tested, using subgradient algorithms [30, 37], but also bundle methods

[33]. These early contributions show how to exploit Lagrangian relaxation to derive
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variable fixing and simple valid inequalities that preserve the structure of the Lagrangian

subproblem.

Bundle methods for both the flow and the knapsack relaxations were also used as part

of a slope scaling heuristic for the MCND [13]. The idea of slope scaling is to iteratively

solve a linear multicommodity minimum cost network flow problem (MMCF) and to use

the flow distribution to adjust the linear approximation at the next iteration. In that

work, a bundle method was periodically launched to find new Lagrange multipliers, which

were then used to reinitialize the linearized costs and start another slope scaling process.

We also use a slope scaling procedure in our Lagrangian matheuristic (see Section 4.2),

but it interacts with the Lagrangian dual optimization through primal solutions, rather

than through Lagrange multipliers. A similar approach has been recently applied to

another network design problem [22].

While most of the contributions on the MCND essentially consider the bundle method

as a black-box non-differentiable optimization algorithm, it is well-known that it is tightly

linked to DW decomposition, i.e., column generation approaches for solving DW refor-

mulations [1]. This connection has been used to derive master problem formulations for

the flow relaxation of the MCND that exploit its structure, in particular the presence

of a so-called “easy component” in the Lagrangian subproblem, i.e., the component in y

variables that is solvable by inspection [18].

In spite of the tight relationships between Lagrangian relaxation and column genera-

tion, there have been very few works on column generation and branch-and-price (B&P)

for the MCND (although column generation has been used to solve MMCF subproblems

in some heuristic methods for the MCND [31, 32, 38]). Apart from the paper just cited

on column generation based on the flow relaxation [18], a B&P(-and-cut) algorithm was

developed and interpreted in terms of a Lagrangian relaxation of constraints (2) and

(3) [24], which can be seen as a variant of the knapsack relaxation. It is interesting to

note that the master problem used in this B&P algorithm is the MIP model (1)-(6), the

generated columns corresponding to the multicommodity flow variables.

Besides the Lagrangian-based solution methods, other exact and heuristic algorithms

for the MCND have been proposed in the literature. Exact solution methods include

Benders decomposition [7, 8] and branch-and-cut [5, 6], while heuristics include tabu

search [10, 12, 14, 26], path relinking [27], scatter search [11], simulated annealing [35, 38],

capacity scaling [31, 32], local branching [36], and matheuristics [4, 23, 29].

In summary, the Lagrangian relaxations proposed so far in the literature for the

MCND, to the best of our knowledge, are the traditional commodity-based (flow) and

arc-based (knapsack) relaxations. Lagrangian-based algorithms, consequently, also use

these two relaxations. A major contribution of this paper is to develop node-based

Lagrangian relaxations, and to compare them theoretically and experimentally with the

flow and knapsack relaxations, and also with one another.
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3 Node-based Lagrangian relaxations

The model has to be slightly reformulated to derive the node-based relaxations. For this

purpose, we introduce the following notation for each node i ∈ N :

KO
i = {k ∈ K | i = O(k)}, the commodities for which i is the origin;

KD
i = {k ∈ K | i = D(k)}, the commodities for which i is the destination;

KT
i = {k ∈ K | i 6= O(k), D(k)}, the commodities for which i is a transshipment node.

We also consider the following basic properties: 1) for each commodity k ∈ K, it is

well-known that the flow conservation equation at i = D(k) (or at i = O(k)) is redundant,

and 2) because the costs are nonnegative, for each arc (i, j) ∈ A, xkij = 0 if k ∈ KO
j (or

k ∈ KD
i ). We then rewrite the flow conservation equations (2) as follows:∑

j∈N+
i

xkij −
∑
j∈N−

i

xkji = 0, ∀i ∈ N, ∀k ∈ KT
i , (7)

∑
j∈N+

i

xkij = dk, ∀i ∈ N, ∀k ∈ KO
i , (8)

xkij = 0, ∀(i, j) ∈ A,∀k ∈ KO
j ∪KD

i . (9)

In order to derive a compact notation when comparing the different relaxations, we

define the following sets: Sx is the set of flow vectors x that satisfy (7), while T xy is the

set of solutions that satisfy the other constraints, (3)-(6) and (8)-(9). Using this notation,

we can rewrite the MIP model for the MCND in a compact form as follows:

ZND = min {cx+ fy |x ∈ Sx, (x, y) ∈ T xy} .

In addition, for any set S, we denote by conv(S) its convex hull and by S the polyhedron

obtained by relaxing the integrality constraints in the definition of S. Using this notation,

we can write the LP relaxation as:

ZLP = min
{
cx+ fy |x ∈ Sx, (x, y) ∈ T xy

}
.

3.1 Facility location relaxation

We relax constraints (7) in a Lagrangian way by introducing πki , ∀i ∈ N, ∀k ∈ KT
i , as

the Lagrange multipliers for each of these constraints. The following valid inequalities

are also added to improve the relaxation:∑
j∈N+

i

xkij ≤ gki , ∀i ∈ N, ∀k ∈ KT
i , (10)

where gki = min{dk,
∑

j∈N−
i
uji},∀i ∈ N, ∀k ∈ KT

i . The resulting Lagrangian subproblem

decomposes by nodes. The subproblem for each node i ∈ N is then:

Zxy
i (π) = min

∑
j∈N+

i

(∑
k∈K

ckij(π)xkij + fijyij

)
(11)
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∑
j∈N+

i

xkij = dk, ∀k ∈ KO
i , (12)

∑
j∈N+

i

xkij ≤ gki , ∀k ∈ KT
i , (13)

xkij = 0, ∀j ∈ N+
i ,∀k ∈ KD

i ∪KO
j , (14)∑

k∈K

xkij ≤ uijyij, ∀j ∈ N+
i , (15)

xkij ≤ dkyij, ∀j ∈ N+
i ,∀k ∈ K, (16)

xkij ≥ 0, ∀j ∈ N+
i ,∀k ∈ K, (17)

yij ∈ {0, 1}, ∀j ∈ N+
i , (18)

where

ckij(π) =


ckij + πki − πkj , if k ∈ KT

i ∩KT
j ,

ckij + πki , if k ∈ KT
i \KT

j ,

ckij − πkj , if k ∈ KT
j \KT

i ,

ckij, if k ∈ KO
i ∩KD

j ,

∀j ∈ N+
i , ∀k ∈ K.

This node-based relaxation is called the facility location relaxation because the re-

sulting subproblem for each node i ∈ N reduces to a capacitated facility location problem

(CFLP), where KO
i ∪ KT

i and N+
i are the sets of customers and facilities, respectively.

Indeed, the following transformations can be done to derive from (11)-(18) the classical

MIP model for the CFLP:

1. Eliminate xkij variables such that ckij(π) ≥ 0, ∀j ∈ N+
i ,∀k ∈ K;

2. Strengthen constraints (16) for k ∈ KT
i by replacing dk with gki ;

3. Add an artificial facility with a (very large) fixed cost of M and connected to each

k ∈ KT
i by an arc with 0 variable flow cost;

4. Replace the xkij variables by Xk
ij variables assuming values in the interval [0,1], i.e.,

∀j ∈ N+
i , xkij = dkXk

ij, ∀k ∈ KO
i , xkij = gkiX

k
ij, ∀k ∈ KT

i .

5. Add M to all costs associated with X variables.

The optimal solution to this CFLP instance is also optimal for (11)-(18), and the optimal

value Zxy
i (π) is obtained by subtracting M × (|KO

i | + |KT
i | + δ) from the optimal value

of this CFLP instance, where δ = 1, if the artificial facility is used, and 0, otherwise.

A lower bound on ZND is computed as follows: ZFL(π) =
∑

i∈N Z
xy
i (π). The best

lower bound is obtained by solving the Lagrangian dual: ZFL = maxπ Z
FL(π). We

denote by T xyi the set of solutions that satisfies constraints (12)-(18), for each node i ∈

6
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N . Because the Lagrangian subproblem decomposes by nodes, we have, by Lagrangian

duality theory [25]:

ZND = min {cx+ fy |x ∈ Sx, (x, y) ∈ T xy}

= min

{
cx+ fy |x ∈ Sx, (x, y) ∈

(
×
i∈N

T xyi

)}

≥ min

{
cx+ fy |x ∈ Sx, (x, y) ∈

(
×
i∈N

conv(T xyi )

)}
=ZFL.

This last expression of ZFL allows us to write down the DW reformulation of the

Lagrangian dual associated with the facility location relaxation. To obtain this refor-

mulation, we let Qi be the index set of the extreme points of conv(T xyi ) for i ∈ N , i.e.,

(x(q), y(q))q∈Qi
, i ∈ N , are these extreme points. We also denote by θ(q) the variable

representing the weight associated with the extreme point indexed by q ∈ Qi, i ∈ N . The

DW reformulation of the Lagrangian dual is then written as:

ZFL = min
∑
i∈N

∑
q∈Qi

θ(q)

∑
j∈N+

i

∑
k∈K

ckijx
k
ij(q) +

∑
j∈N+

i

fijyij(q)

 (19)

∑
j∈N+

i

∑
q∈Qi

θ(q)xkij(q)−
∑
j∈N−

i

∑
q∈Qj

θ(q)xkji(q) = 0, ∀i ∈ N,∀k ∈ KT
i , (πki ) (20)

∑
q∈Qi

θ(q) = 1, ∀i ∈ N, (21)

θ(q) ≥ 0, ∀i ∈ N, q ∈ Qi. (22)

We propose to solve this large-scale LP model by column generation, the pricing problem

in this case corresponding to the Lagrangian subproblem. At any column generation

iteration, the solution to the Lagrangian subproblem provides a candidate design solution

ỹ, corresponding to the 0-1 values of the design variables in that solution. In addition, the

DW master problem solution θ at any iteration also provides a candidate design solution

(possibly fractional) defined as yij =
∑

q∈Qi
θ(q)yij(q), ∀(i, j) ∈ A. These candidate

design solutions are used as input to the slope scaling heuristic presented in Section 4.2.

Using Lagrangian duality theory, we can easily show the following property:

Proposition 1 ZFL ≥ ZLP and the inequality can be strict.
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Proof. Since conv(T xyi ) ⊆ T xyi for each i ∈ N , we have:

ZFL = min

{
cx+ fy |x ∈ Sx, (x, y) ∈

(
×
i∈N

conv(T xyi )

)}

≥ min

{
cx+ fy |x ∈ Sx, (x, y) ∈

(
×
i∈N

T xyi

)}
= min

{
cx+ fy |x ∈ Sx, (x, y) ∈ T xy

}
=ZLP

Since there are instances of the CFLP (even when capacities are arbitrarily large) for

which all optimal LP relaxation solutions are fractional, the Lagrangian subproblem

does not have the integrality property, i.e., the polyhedron T xy is not integral, which

implies that there are MCND instances where the inequality is strict.

3.2 Forward-backward facility location relaxation

The reformulation used to derive the facility location relaxation is obtained by replacing

(2) with (7)-(9). In addition to this replacement, we use the Lagrangian decomposition

technique [28] by introducing copies of design and flow variables, respectively denoted z

and v, defined by the following copy constraints:

zij − yij = 0, ∀(i, j) ∈ A, (23)

vkij − xkij = 0, ∀(i, j) ∈ A, ∀k ∈ K. (24)

The following redundant constraints are also added:∑
j∈N−

i

vkji = dk, ∀i ∈ N,∀k ∈ KD
i , (25)

vkji = 0, ∀(j, i) ∈ A,∀k ∈ KO
i ∪KD

j , (26)∑
k∈K

vkji ≤ ujizji, ∀(j, i) ∈ A, (27)

vkji ≤ dkzji, ∀(j, i) ∈ A,∀k ∈ K, (28)

vkji ≥ 0, ∀(j, i) ∈ A,∀k ∈ K, (29)

zji ∈ {0, 1}, ∀(j, i) ∈ A (30)

Then, the copy constraints (23) and (24), as well as the flow conservation equations

(7) are relaxed in a Lagrangian way. Similar to (10), the following valid inequalities are

also added to improve the relaxation:∑
j∈N−

i

vkji ≤ hki , ∀i ∈ N, ∀k ∈ KT
i , (31)
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where hki = min{dk,
∑

j∈N+
i
uij}, ∀i ∈ N,∀k ∈ KT

i . As before, we denote by πki , ∀i ∈
N,∀k ∈ KT

i , the Lagrange multipliers associated with the flow conservation equations

(7). We also denote by γij, ∀(i, j) ∈ A, and ωkij, ∀(i, j) ∈ A, ∀k ∈ K, the Lagrange

multipliers associated with (23) and (24), respectively.

The resulting Lagrangian subproblem decomposes not only by nodes, but further, for

each node, into two independent subproblems, one in variables (x, y) only, the other in

variables (v, z) only. The first subproblem, in variables (x, y), can be written as follows,

for each node i ∈ N :

Zxy
i (γ, ω, π) = min

∑
j∈N+

i

(∑
k∈K

ckij(ω, π)xkij + fij(γ)yij

)
(32)

subject to (12)-(18), where fij(γ) = fij − γij, ∀j ∈ N+
i , and

ckij(ω, π) =


ckij − ωkij + πki − πkj , if k ∈ KT

i ∩KT
j ,

ckij − ωkij + πki , if k ∈ KT
i \KT

j ,

ckij − ωkij − πkj , if k ∈ KT
j \KT

i ,

ckij − ωkij, if k ∈ KO
i ∩KD

j ,

∀j ∈ N+
i ,∀k ∈ K.

The second subproblem, in variables (v, z), can be written as follows, for each node i ∈ N :

Zvz
i (γ, ω) = min

∑
j∈N−

i

(∑
k∈K

ckji(ω)vkji + fji(γ)zji

)
(33)

∑
j∈N−

i

vkji = dk, ∀k ∈ KD
i , (34)

∑
j∈N−

i

vkji ≤ hki , ∀k ∈ KT
i , (35)

vkji = 0 ∀j ∈ N−i ,∀k ∈ KO
i ∪KD

j , (36)∑
k∈K

vkji ≤ ujizji, ∀j ∈ N−i , (37)

vkji ≤ dkzji, ∀j ∈ N−i ,∀k ∈ K, (38)

vkji ≥ 0, ∀j ∈ N−i ,∀k ∈ K, (39)

zji ∈ {0, 1}, ∀j ∈ N−i , (40)

where fji(γ) = γji, ∀j ∈ N−i and ckji = ωkji, ∀j ∈ N−i , ∀k ∈ K. We denote by U vz
i the set

of solutions that satisfy constraints (34)-(40).

The two subproblems for each node i ∈ N reduce to CFLPs. In the first subproblem,

in variables (x, y), the set of customers is KO
i ∪KT

i , while the set of facilities is N+
i (for-

ward neighbours set). In the second subproblem, in variables (v, z), the set of customers
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is KD
i ∪KT

i , while the set of facilities is N−i (backward neighbours set). This node-based

relaxation is thus called the forward-backward facility location relaxation.

A lower bound on ZND is computed as follows: ZFB(γ, ω, π) =
∑

i∈N(Zxy
i (γ, ω, π) +

Zvz
i (γ, ω)). To obtain the best possible lower bound, we have to solve the Lagrangian

dual: ZFB = maxγ,ω,π Z
FB(γ, ω, π). By Lagrangian duality theory, we have:

ZFB = min
x∈Sx

z=y
v=x

{
cx+ fy | (x, y) ∈

(
×
i∈N

conv(T xyi )

)
, (v, z) ∈

(
×
i∈N

conv(U vz
i )

)}
.

We can model this Lagrangian dual with a DW reformulation. To this aim, we denote

by Ri the index set of the extreme points of conv(T xyi )× conv(U vz
i ) for i ∈ N , i.e.,

(x(r), y(r), v(r), z(r))r∈Ri
, i ∈ N , are these extreme points. We also denote by θ(r) the

variable representing the weight associated with extreme point indexed by r ∈ Ri, i ∈ N .

The DW reformulation of the Lagrangian dual is then:

ZFB = min
∑
i∈N

∑
r∈Ri

θ(r)

∑
j∈N+

i

∑
k∈K

ckijx
k
ij(r) +

∑
j∈N+

i

fijyij(r)

 (41)

∑
r∈Rj

θ(r)zij(r)−
∑
r∈Ri

θ(r)yij(r) = 0, ∀(i, j) ∈ A, (γij) (42)

∑
r∈Rj

θ(r)vkij(r)−
∑
r∈Ri

θ(r)xkij(r) = 0, ∀(i, j) ∈ A, ∀k ∈ K, (ωkij) (43)

∑
j∈N+

i

∑
q∈Ri

θ(r)xkij(r)−
∑
j∈N−

i

∑
r∈Rj

θ(r)xkji(r) = 0, ∀i ∈ N,∀k ∈ KT
i , (πki ) (44)

∑
r∈Ri

θ(r) = 1, ∀i ∈ N, (45)

θ(r) ≥ 0, ∀i ∈ N, r ∈ Ri. (46)

Again, we propose to solve this LP model by column generation. At any column genera-

tion iteration, we can now derive three candidate design solutions: ỹ and z̃, corresponding

to the 0-1 values of the design variables y and their copies z, respectively, in the opti-

mal solution of the Lagrangian subproblem; y, obtained from the DW master problem

solution θ and defined as yij =
∑

r∈Ri
θ(r)yij(r), ∀(i, j) ∈ A.

By Lagrangian duality theory, we can show the following result:

Proposition 2 ZFB ≥ ZFL and the inequality can be strict.
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Proof.

ZFB = min
x∈Sx

z=y
v=x

{
cx+ fy | (x, y) ∈

(
×
i∈N

conv(T xyi )

)
, (v, z) ∈

(
×
i∈N

conv(U vz
i )

)}

≥ min
x∈Sx

z=y
v=x

{
cx+ fy | (x, y) ∈

(
×
i∈N

conv(T xyi )

)
, (v, z) ∈

(
×
i∈N

U vz
i

)}

= min
x∈Sx

{
cx+ fy | (x, y) ∈

(
×
i∈N

(conv(T xyi ) ∩ Uxy
i )

)}

= min
x∈Sx

{
cx+ fy | (x, y) ∈

(
×
i∈N

conv(T xyi )

)}
=ZFL

Here, Uxy
i is the set of solutions that satisfy (34)-(40) with v replaced by x and z replaced

by y. Because the CFLP does not have the integrality property, the polyhedron U vz
i is

not integral, i.e., we might have conv(U vz
i ) ⊂ U vz

i for some i ∈ N , which implies that

there are MCND instances where the inequality is strict.

Proposition 2 states that, in comparison with the facility location relaxation, the

forward-backward facility location relaxation produces better lower bounds. There is a

computational price to pay for such an improvement, since twice the number of CFLPs

have to be solved at each column generation iteration (2×|N | compared to |N |) and the

number of Lagrange multipliers is increased from
∑

i∈N |KT
i | to |A|+|A||K|+

∑
i∈N |KT

i |.

3.3 Multicommodity single-node flow relaxation

The forward-backward facility location relaxation is based on the reformulation obtained

by replacing (2) with (7)-(9) and by adding (23)-(30). To define the third node-based

relaxation, we use the same reformulation, except that the flow conservation equations

(7) are replaced by: ∑
j∈N+

i

xkij −
∑
j∈N−

i

vkji = 0, ∀i ∈ N, ∀k ∈ KT
i . (47)

After applying Lagrangian relaxation on the copy constraints (23) and (24), the La-

grangian subproblem decomposes by nodes, using the fact that A can be partitioned into

forward sets, A = ∪i∈NN+
i , or into backward sets, A = ∪i∈NN−i . If we denote by γij,

(i, j) ∈ A, and ωkij, (i, j) ∈ A, k ∈ K, the Lagrange multipliers associated with con-

straints (23) and (24), respectively, the Lagrangian subproblem for each node i ∈ N can
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be written as:

Zxyvz
i (γ, ω) = min

∑
j∈N+

i

(∑
k∈K

ckij(ω)xkij + fij(γ)yij

)
+
∑
j∈N−

i

(∑
k∈K

ckji(ω)vkji + fji(γ)zji

)
(48)

subject to (12)-(18), (34)-(40) and∑
j∈N+

i

xkij −
∑
j∈N−

i

vkji = 0, ∀k ∈ KT
i , (49)

where fij(γ) = fij − γij, j ∈ N+
i , fji(γ) = γji, j ∈ N−i , ckij(ω) = ckij − ωkij, j ∈ N+

i , k ∈ K
and ckji(ω) = ωkji, j ∈ N−i , k ∈ K. This subproblem is a multicommodity single-node

fixed-charge network flow problem (MSNF). To the best of our knowledge, this problem

has not been studied before, although its single-commodity variant has been the object of

abundant work, both for characterizing its convex hull (see [2] and the references therein)

and for deriving efficient algorithms (at least for the special case with no transshipment,

see [34] and the references therein). We call this relaxation the multicommodity single-

node flow relaxation. We denote by V xyvz
i the set of solutions that satisfy constraints

(12)-(18), (34)-(40), and by and W xv
i the set of solutions to equations (49). The set of

feasible solutions to the Lagrangian subproblem is thus V xyvz
i ∩W xv

i .

A lower bound on ZND is computed as follows: ZSN(γ, ω) =
∑

i∈N Z
xyvz
i (γ, ω).

The best possible lower bound is obtained by solving the Lagrangian dual: ZSN =

maxγ,ω Z
SN(γ, ω). By Lagrangian duality theory, we have:

ZSN = min

{
cx+ fy | z = y, v = x, (x, y, v, z) ∈

(
×
i∈N

conv(V xyvz
i ∩W xv

i )

)}
.

To derive the DW reformulation of the Lagrangian dual, we denote by Pi the index set of

the extreme points of conv(V xyvz
i ∩W xv

i ) for i ∈ N , i.e., (x(p), y(p), v(p), z(p))p∈Pi
, i ∈ N ,

are these extreme points. We also denote by θ(p) the variable representing the weight

associated with extreme point indexed by p ∈ Pi, i ∈ N . The DW reformulation of the

Lagrangian dual is then written as:

ZSN = min
∑
i∈N

∑
p∈Pi

θ(p)

∑
j∈N+

i

∑
k∈K

ckijx
k
ij(p) +

∑
j∈N+

i

fijyij(p)

 (50)
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∑
p∈Pj

θ(p)zij(p)−
∑
p∈Pi

θ(p)yij(p) = 0, ∀(i, j) ∈ A, (γij) (51)

∑
p∈Pj

θ(p)vkij(p)−
∑
p∈Pi

θ(p)xkij(p) = 0, ∀(i, j) ∈ A,∀k ∈ K, (ωkij) (52)

∑
p∈Pi

θ(p) = 1, ∀i ∈ N, (53)

θ(p) ≥ 0, ∀i ∈ N,∀p ∈ Pi. (54)

When solving this LP model by column generation, we can derive at any iteration three

candidate design solutions: ỹ and z̃, corresponding to the 0-1 values of the design variables

y and their copies z, respectively, in the optimal solution of the Lagrangian subproblem;

y, obtained from the DW master problem solution θ and defined as yij =
∑

p∈Pi
θ(p)yij(p),

∀(i, j) ∈ A.

Proposition 3 ZSN ≥ ZFB and the inequality can be strict.

Proof.

ZSN = min

{
cx+ fy | z = y, v = x, (x, y, v, z) ∈

(
×
i∈N

conv(V xyvz
i ∩W xv

i )

)}

≥ min

{
cx+ fy | z = y, v = x, (x, y, v, z) ∈

(
×
i∈N

(conv(V xyvz
i ) ∩ conv(W xv

i ))

)}

= min

{
cx+ fy | z = y, v = x, (x, y, v, z) ∈

(
×
i∈N

(conv(V xyvz
i ) ∩W xv

i )

)}

= min

{
cx+ fy | z = y, v = x, (x, y, v, z) ∈

(
×
i∈N

W xv
i

)
∩

(
×
i∈N

conv(V xyvz
i )

)}

= min

{
cx+ fy |x ∈ Sx, z = y, v = x, (x, y, v, z) ∈

(
×
i∈N

conv(V xyvz
i )

)}

= min
x∈Sx

z=y
v=x

{
cx+ fy | (x, y) ∈

(
×
i∈N

conv(T xyi )

)
, (v, z) ∈

(
×
i∈N

conv(U vz
i )

)}

=ZFB

Since solving independently the two CFLPs for each i ∈ N (one over the set T xyi , the

other over the set U vz
i ) does not guarantee that constraints (49) are satisfied, there are

instances for which conv(V xyvz
i ∩W xv

i ) ⊂ (conv(V xyvz
i )∩ conv(W xv

i )), which implies that

there are MCND instances for which ZSN > ZFB.
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Proposition 3 states that, in comparison with the forward-backward location relax-

ation, the multicommodity single-node flow relaxation produces better lower bounds.

However, the Lagrangian subproblem of the multicommodity single-node flow relaxation

is more difficult to solve, as it does not decompose into 2× |N | independent CFLPs.

4 Lagrangian matheuristic

Traditional Lagrangian heuristics alternate between solving series of Lagrangian sub-

problems, each providing a partial solution that is given as input to a primal heuristic

that restores the feasibility of this partial solution, often through a simple local search

procedure. Our Lagrangian matheuristic does not differ fundamentally from this clas-

sical approach, but instead of simple local search, it uses state-of-the-art mathemati-

cal programming methods to restore feasibility, while also exploiting concepts from the

metaheuristics literature, such as intensification and diversification. An advantage of this

approach over many heuristics is that it works simultaneously on the dual and the primal

sides to produce feasible solutions with a measurable quality.

On the dual side, the Lagrangian matheuristic solves by column generation the DW

reformulation associated with one of the three node-based Lagrangian relaxations pre-

sented in Section 3. The choice of which of the three relaxations to select depends on

the tradeoff between the quality of the lower bound and the time needed to compute

that bound. In our computational results presented in Section 5, we compare the results

obtained with the three relaxations on a set of benchmark instances. In addition to mea-

suring the performance of the three relaxations, we also compare them to the classical

flow and knapsack relaxations.

On the primal side, the Lagrangian matheuristic receives candidate design solutions

derived from the column generation method, either from the Lagrangian subproblem

solutions (as in a classical Lagrangian heuristic) or from the restricted master problem. In

this last case, the candidate design solution can assume fractional values, as it is a convex

combination of candidate design solutions derived from the Lagrangian subproblems.

These candidate design solutions are used as input to a slope scaling procedure that

derives feasible solutions to the MCND, as explained in Section 4.2.

In what follows, we assume the availability of a state-of-the-art LP code to solve the

DW master problem at each column generation iteration. In addition, we assume the

availability of algorithms for the following problems:

• CFLP. An efficient algorithm for the CFLP is needed to solve the Lagrangian sub-

problems arising from the facility location and forward-backward facility location

relaxations. For the column generation method to converge, an exact algorithm

should be used, but it could be stopped before optimality is achieved provided it

delivers at least one feasible solution (see Section 4.1). Several algorithms for the
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CFLP have been proposed in the literature (see [16] and the references therein).

Given the relatively small size of the instances we have to solve (there are O(10)

facilities and O(100) customers for each CFLP when the decomposition by nodes is

applied on an MCND instance with O(100) arcs and O(100) commodities), a viable

alternative is to use a state-of-the-art MIP solver. In our experiments, we choose

this option and use CPLEX.

• MSNF. An exact algorithm for the MSNF is required to ensure convergence of

the column generation method applied to the multicommodity single-node flow

relaxation. We are not aware of any existing specialized algorithms for this problem,

hence we use the state-of-the-art MIP solver CPLEX, which could be stopped before

optimality is achieved (see Section 4.1).

• MMCF. The slope scaling heuristic described in Section 4.2 solves a linear MMCF

at each iteration. Although there are several specialized decomposition methods

for this problem (see [3] and the references therein), the MMCF instances derived

from our benchmark are relatively easy to solve for general-purpose state-of-the-art

LP solvers, so we use CPLEX in our experiments.

• MCND. We assume the availability of an algorithm to solve small- to medium-

scale instances of the MCND derived from any large-scale instance by fixing the

values of some design variables. Such an algorithm is typically used as a heuristic

by limiting the computational effort. We assume it is easy to provide as input

to this algorithm a feasible solution, along with upper and lower bounds on the

optimal value of the original, large-scale, instance. In our experiments, we give the

MIP model to CPLEX to ease the implementation. Other viable alternatives would

be the exact methods described in Section 2.

The Lagrangian matheuristic consists of four main steps:

1. Solving the unrestricted MCND. The original problem is solved for a limited

time (using CPLEX for 30 minutes in our experiments) in order to find an initial

feasible solution and to put aside the instances for which the optimal solutions are

already found at this step.

2. Solving the Lagrangian dual. During this step, the column generation method

is used to find lower bounds, while the slope scaling procedure is called on a regu-

lar basis to compute upper bounds (see Section 4.3 for details). The slope scaling

heuristic receives as input the candidate design solutions computed by the column

generation procedure. The slope scaling heuristic is also enhanced with intensifica-

tion and diversification procedures (see Section 4.4).
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3. Solving restricted MCNDs. Several restricted restricted MCNDs are solved

to improve the upper bound. A long-term memory of elite solutions, constantly

updated during the calls to the slope scaling procedure, is used during this step,

which can be seen as a form of intensification (see Section 4.4).

4. Solving the bounded unrestricted MCND. The original problem is solved

again for a limited time, by providing as input the best feasible solution identified

so far, as well as the best upper and lower bounds on the objective value (in our

experiments, we use CPLEX for a maximum of 4,200 seconds, but not exceeding 3

hours for all four steps).

4.1 Lagrangian dual optimization

We use column generation to solve the Lagrangian dual. The column generation method

is stopped when it has converged or when a maximum number of iterations is achieved

or when a time limit is reached (including the time spent in the slope scaling heuristic).

These parameters were calibrated in our experiments (see Section 5.1). Following this

calibration, we set the maximum number of iterations to 1,000 and the time limit to 4,200

seconds. At each iteration, the Lagrangian subproblem of the corresponding node-based

relaxation has to be solved in order to obtain a lower bound and new columns to add to

the DW master problem.

When solving the Lagrangian subproblems, we add the following knapsack inequalities

to the CFLPs or the MSNFs associated to a given node i ∈ N , since these inequalities

generally improve the performance of algorithms to solve these problems:∑
j∈N+

i

uijyij ≥
∑
k∈KO

i

dk,

∑
j∈N−

i

ujizji ≥
∑
k∈KD

i

dk.

Even with these enhancements, solving the subproblems might be costly in terms of

computational time. To accelerate the solution of the subproblems, we use the following

approach. Assuming that each node-based subproblem (either a CFLP or an MSNF) is

solved by B&B, we stop the B&B algorithm either when an optimality gap ε is attained

or when a limited number of nodes L is reached. During the course of the column

generation method, the values of the two parameters are gradually modified, so that

early termination of the B&B is favored during the first iterations, while the B&B is

almost exact near the end. The parameters are initially set to ε = 10−2 and L = 10.

Subsequently, every 5 column generation iterations, ε is decreased by multiplying it by

0.95, down to a limit of ε = 10−6, while L is multiplied by 10.
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4.2 Slope scaling heuristic

To obtain feasible solutions to the MCND, we use a slope scaling procedure, where the

following linear MMCF is solved at each iteration:

min
∑

(i,j)∈A

∑
k∈K

ckijx
k
ij (55)

subject to (2), (5) and ∑
k∈K

xkij ≤ uij, ∀(i, j) ∈ A. (56)

Given an optimal solution x to this MMCF, a feasible solution (x, y) to the MCND is

immediately derived:

yij =

⌈∑
k∈K x

k
ij

uij

⌉
, (i, j) ∈ A.

Provided by the column generation method with a candidate design solution ŷ, the slope

scaling procedure starts with the following initial linearized costs, where M is a large

positive value:

ckij = (ckij + fij/uij)(1 +M(1− ŷij)), ∀(i, j) ∈ A, ∀k ∈ K. (57)

When ŷij = 1, for some arc (i, j) ∈ A, the corresponding costs are linearized in such a

way that, if the arc is used at its full capacity in the optimal solution x to the MMCF,

then the exact costs, variable and fixed, would be accounted for in the feasible solution

(x, y) to the MCND. If ŷij = 0, for some arc (i, j) ∈ A, then the linearized costs are set

to large positive values to “discourage” any commmodity to be routed on arc (i, j). Note

that, even if ŷ has fractional components, formula (57) can be used and has a similar

interpretation: the commodities are “discouraged” (respectively, “encouraged”) to be

routed on the arcs with ŷ values close to 0 (respectively, close to 1).

After solving the MMCF at each iteration, a flow solution x is obtained and the

linearized costs are updated using the following formula to trigger the next iteration:

ckij =

{
ckij + fij/

∑
k∈K x

k
ij, if xkij > 0,

ckij, if xkij = 0,
∀(i, j) ∈ A, ∀k ∈ K. (58)

If xkij = 0, the linear cost at the previous iteration is kept as is, since this cost was

already large enough to incur no flow. When xkij > 0, this formula ensures that, at the

next iteration, if the solution remains the same, the linear costs of x reflect the exact

costs, variable and fixed, of (x, y), the corresponding feasible solution to the MCND, i.e.,∑
k∈K

∑
(i,j)∈A c

k
ijx

k
ij =

∑
k∈K

∑
(i,j)∈A c

k
ijx

k
ij +

∑
(i,j)∈A fijyij. The slope scaling procedure

is stopped either when the same objective value is obtained for two successive iterations

or when a predefined maximum number of iterations is attained (25 in our experiments).
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4.3 Combining slope scaling and Lagrangian dual optimization

At each iteration of the column generation method, several candidate design solutions

are generated. For the facility location relaxation, the Lagrangian subproblem produces

one candidate design solution ỹ, while for the forward-backward facility location and

multicommodity single-node flow relaxations, two candidate design solutions, ỹ and z̃, are

generated. In addition, the solution of the DW master problem for all three relaxations

provide a (fractional) candidate design solution y. These candidate design solutions are

given as input to the slope scaling procedure (each such candidate design solution is

stored in a memory in order to avoid calling the procedure twice with the same input).

We use the following rules to decide when to call the slope scaling procedure in

conjunction with the column generation method:

• Call the slope scaling procedure using the candidate design solutions that cor-

respond to the best lower bound obtained at the end of the column generation

method.

• Call the slope scaling procedure if the lower bound has improved “significantly”

since the last time the upper bound was computed. The improvement is considered

“significant” if (Zc − Zl)/Zl > δ, where δ is a parameter and Zc and Zl are, re-

spectively, the lower bound computed at the current iteration and the lower bound

obtained the last time the slope scaling procedure was called.

• Call the slope scaling procedure every nth iteration of the column generation method

(to avoid too early “freezing” of the upper bound in case δ is too large).

The parameters δ and n were calibrated for each Lagrangian relaxation and the values

used in our experiments are given in Section 5.1.

4.4 Intensification and diversification

At the end of the slope scaling procedure, two intensification steps are performed. The

first intensification selects the κ best feasible solutions obtained during this call to the

procedure (in our experiments, we use κ = 4). For each such solution (x, y), a linear

MMCF is defined by setting the costs to the following values, where M is a large positive

value:

ckij =

{
ckij, if yij > 0,
M, if yij = 0,

∀(i, j) ∈ A,∀k ∈ K.

Note that x is feasible for this MMCF, but not necessarily optimal. This MMCF is

solved in the hope of obtaining a better flow distribution for the same assignment of the

design variables. The second intensification consists in solving a restricted MCND (for

a limited time, set to 200 seconds in our experiments) using as guides the best solution
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obtained after the first intensification and the best solution found so far. This restricted

MCND is obtained by fixing to 0 the design variables that assume value 0 in both of

these solutions.

The remaining intensification and diversification mechanisms make use of a long-term

memory of the best feasible solutions found so far, denoted P . We limit the number of

solutions (1,000 in our experiments) kept in this memory and update it all along the

algorithm.

In the case where several successive calls (5 in our experiments) to the slope scaling

procedure (including the two intensifications) could not improve the upper bound, a di-

versification step is performed. The idea of this diversification step is to “discourage” the

selection of arcs that are frequently used in the solutions stored in P . This diversification

step consists of a small number (at most 10) of calls to the slope scaling procedure, each

time using as input a candidate design solution ŷ corresponding to the best solution in

P , slightly modified by closing 10 arcs, randomly selected from the most frequently used

arcs (in at least 90% of) the solutions stored in P . The selected arcs are tagged to avoid

choosing them again in a subsequent slope scaling call during the same diversification

step.

After solving the Lagrangian dual, including the calls to the slope scaling procedure

and the intensification/diversification steps just described, we enter an intensification

phase where several restricted MCNDs are solved, each one being stopped when a pre-

defined optimality gap is reached (0.3% in our experiments). To define the tth, t ≥ 1

restricted MCND, we select the t + 1 best solutions from P . The design variables that

assume value 0 in all these solutions are fixed to 0. Each restricted MCND is enhanced

by providing as input the best feasible solution. We also add a constraint that bounds

from below the objective value, using the best lower bound computed by the column

generation method. This intensification phase stops when it reaches a time limit (4,200

seconds in our experiments) or when the tth best solution, to be used to define the next

restricted MCND, is “too far” (in quality) from the overall best solution, i.e., when the

gap between the two solutions is “too large” (we use 20% in our experiments).

5 Computational results

Our computational experiments have been performed on a computer with Intel Xeon-

X5675 CPU 3.07GHz. To implement the column generation method, we use BTT, version

3.44, a publicly available code that enables to implement subgradient, bundle and column

generation methods for solving Lagrangian duals. In particular, the code solves the DW

master problems either with quadratic or linear solvers, and it can construct aggregated

(i.e., each Lagrangian subproblem provides a single subgradient) or disaggregated (i.e.,

the Lagrangian subproblem decomposes into several subproblems, each providing its part
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of a subgradient) DW master problems. For the three node-based relaxations, we solve

disaggregated DW master problems, as described in Section 3, using CPLEX version

12.6.3, which is called by BTT. We also use the same version of CPLEX to solve the

different MIP models, i.e., CFLP, MSNF and MCND. We use the default parameters of

CPLEX, except when solving the restricted MCNDs, where we deactivated cut generation

to focus on the fast computation of feasible solutions.

We compare the three node-based relaxation with one another, as well as with the clas-

sical flow and knapsack relaxations. For the flow relaxation, we solve the (disaggregated)

DW reformulation with “easy components” using BTT [18], which can be considered as

state-of-the-art. For the knapsack relaxation, we use the bundle method implemented in

BTT (with a limit of 10,000 iterations) that solves the (aggregated) DW reformulation

with a “stabilizing” quadratic objective function (this variant was shown to be the most

effective in preliminary tests). We denote by ZFW and ZKN the Lagrangian dual bound

for the flow and knapsack relaxations, respectively. For both relaxations, we adapted in

a straightforward way the Lagrangian matheuristic presented in Section 4.

We tested our algorithms on 43 of the most difficult C and C+ instances widely

used in the literature.[9]. These instances consist of general transshipment networks

with one commodity per origin-destination pair and no parallel arcs. Each test instance

is characterized by the number of nodes |N |, the number of arcs |A|, the number of

commodities |K|, the degree of capacity tightness, with regard to the total demand, and

the importance of the fixed costs, with respect to the variable costs. For this subset of

instances, the number of nodes is between 20 and 100, the number of arcs varies from

100 to 700, while the number of commodities ranges from 10 to 400. Each instance is

identified with five entries of the form |N |,|A|,|K|, “F” or “V”,“T” or “L”, where the first

three represent the dimensions, while the last two indicate if fixed (“F”) or variable (“V”)

costs are dominant and whether the instance is tightly (“T”) or loosely (“L”) capacitated.

Both these instances and the BTT code can be found at www.di.unipi.it/~frangio.

5.1 Lower bound computations

Table 1 presents a comparison of the lower bounds obtained by solving the Lagrangian du-

als of the different relaxations. The LP relaxation bound is also computed with CPLEX.

In these experiments, the time limit is set to 2 hours and only the column generation

(or bundle) method is performed (there is no call to the slope scaling heuristic). The

first column shows the characteristics of the instances. Column ZLP is the LP relaxation

bound, while the next columns show the gaps between the lower bound of the different

relaxations and LP relaxation bound, i.e., 100 × (ZLP − ZLR)/ZLP where ZLR is the

lower bound of any one of the five Lagrangian relaxations (a negative value indicates a

better lower bound than ZLP ).

Theoretically, the lower bounds obtained by the flow and knapsack relaxations are
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equal to the LP relaxation bound. Therefore, positive values in columns ZFW and ZKN

indicate that the computations were stopped due to either the numerical accuracy to

declare convergence, or the time and iteration limits. It is noteworthy that the facility

location relaxation always produces a better lower bound than ZLP . It is not the case,

however, for the forward-backward facility location and multicommodity single-node re-

laxations, for which the lower bounds are worse for 3 and 8 instances, respectively. For

these large-scale instances with 400 commodities, the computations were stopped pre-

maturely because of the time limit. Overall, the improvements over ZLP obtained by

ZFL, ZFB and ZSN are significant: on average, 0.5%, 0.9%, and 1.8%, respectively, with

maximum values of 4.8%, 7.7%, and 20.5%, respectively.

Table 2 shows the gaps between the Lagrangian relaxation lower bounds and the best

known upper bounds reported in the literature, shown in column ZND
U . The remain-

ing columns display the gaps, computed as 100× (ZND
U − ZLR)/ZND

U , where ZLR is the

lower bound obtained by any of the five Lagrangian relaxations, respectively. The re-

sults show that, in comparison with the flow and knapsack relaxations, the node-based

relaxations improve the gaps significantly, in particular the multicommodity single-node

flow relaxation, with the exception of the instances with 400 commodities.

Table 3 shows statistics on the computational performance of the different relaxation

methods. The first row presents the total computational times, on average over all in-

stances. The fastest method by far is the flow relaxation. It is worth noting that both the

flow and the knapsack relaxations are faster than CPLEX to compute the LP relaxation

bound. Although the times are significant for the facility location relaxation, they are still

reasonable (about four times slower than the LP relaxation computed by CPLEX). The

results show, however, a very significant computational effort for the forward-backward

and single-node flow relaxations, as they are both one order of magnitude slower than

the facility location relaxation. The second row shows the number of master problem

iterations for the different relaxations. The third and fourth rows present the fractions

of the times dedicated to the solution of the Lagrangian subproblems and to the master

problems, respectively. The table shows that a large proportion of the time is devoted

to the solution of the master problems for all relaxations, except for the multicommod-

ity single-node flow relaxation for which most of the time (65%) is spent in solving the

Lagrangian subproblems.

5.2 Upper bound computations

We use a two-phase parameter calibration process to find suitable values for the param-

eters. In the first phase, we tune the parameters associated with a particular relaxation

and the column generation method. In the second phase, we calibrate the slope scaling

heuristic parameters in two steps. The first step is to calibrate n and δ, the parameters

used to initiate a call to the slope scaling procedure (see Section 4.3). Since the total
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Instance ZLP ZFW ZKN ZFL ZFB ZSN

25,100,10VL 14610.0 0.000 0.000 -0.074 -0.133 -0.224
25,100,10FL 13017.5 0.000 0.000 -1.459 -3.595 -6.794
25,100,10FT 43454.7 0.001 0.000 -2.402 -3.647 -10.332
25,100,30VT 364390.0 0.000 0.000 -0.044 -0.074 -0.145
25,100,30FL 33543.5 0.010 0.000 -0.842 -4.291 -6.815
25,100,30FT 82418.5 0.000 0.000 -0.555 -0.605 -2.168
20,230,40VL 422853.0 0.000 0.000 -0.011 -0.201 -0.207
20,230,40VT 368819.0 0.000 0.000 -0.186 -0.400 -0.613
20,230,40FT 633466.0 0.000 0.000 -0.302 -0.619 -0.878
20,300,40VL 427947.0 0.000 0.000 0.000 -0.256 -0.338
20,300,40FL 575255.0 0.000 0.001 -0.004 -0.011 -1.047
20,300,40VT 460930.0 0.000 0.000 -0.175 -0.312 -0.501
20,300,40FT 596839.0 0.000 0.000 -0.143 -0.269 -0.792
20,230,200VL 91300.6 0.000 0.022 -0.213 -0.189 -0.079
20,230,200FL 132036.0 0.000 0.025 -0.326 -0.273 -0.358
20,230,200VT 95669.3 0.008 0.019 -0.113 -0.098 -0.134
20,230,200FT 131544.0 0.002 0.023 -0.160 -0.125 -0.138
20,300,200VL 73126.9 0.006 0.016 -0.094 -0.091 -0.133
20,300,200FL 110926.0 0.000 0.012 -0.105 -0.075 -0.303
20,300,200VT 74002.7 0.008 0.005 -0.050 -0.045 -0.199
20,300,200FT 103633.0 0.005 0.009 -0.327 -0.315 -0.185
100,400,10VL 27465.3 0.000 0.007 -0.063 -0.598 -1.890
100,400,10FL 19748.1 0.002 0.000 -3.871 -6.351 -11.112
100,400,10FT 48375.4 0.000 0.000 -4.767 -7.713 -20.518
100,400,30VT 380858.0 0.001 0.000 -0.068 -0.135 -0.521
100,400,30FL 45332.4 0.000 0.002 -1.412 -2.299 -5.048
100,400,30FT 117196.0 0.002 0.000 -1.974 -4.790 -10.023
30,520,100VL 53022.9 0.007 0.002 -0.291 -0.309 -0.732
30,520,100FL 90174.2 0.009 0.045 -0.097 -0.067 -0.282
30,520,100VT 51325.6 0.002 0.005 -0.090 -0.397 -0.632
30,520,100FT 94010.8 0.003 0.021 -0.273 -0.301 -0.398
30,700,100VL 47308.1 0.000 0.001 -0.052 -0.061 -0.302
30,700,100FL 58207.2 0.003 0.018 -0.089 -0.094 -0.360
30,700,100VT 45077.7 0.000 0.006 -0.301 -0.388 -0.568
30,700,100FT 53660.9 0.005 0.015 -0.226 -0.307 -0.407
30,520,400VL 111763.0 0.007 0.011 -0.106 -0.070 0.278
30,520,400FL 146680.0 0.005 0.011 -0.085 -0.030 0.647
30,520,400VT 114061.0 0.007 0.012 -0.071 -0.053 0.309
30,520,400FT 149751.0 0.003 0.017 -0.083 -0.031 0.399
30,700,400VL 96605.0 0.000 0.015 -0.080 0.035 1.517
30,700,400FL 130724.0 0.004 0.017 -0.099 0.082 2.454
30,700,400VT 94011.9 0.006 0.010 -0.097 -0.018 1.581
30,700,400FT 127572.0 0.008 0.011 -0.056 0.023 1.397

Average: 0.003 0.008 -0.508 -0.919 -1.781
Maximum: 0.010 0.045 0.000 0.082 2.454
Minimum: 0.000 0.000 -4.767 -7.713 -20.518

Table 1: Comparison between lower bounds
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Instance ZND
U ZFW ZKN ZFL ZFB ZSN

25,100,10VL 14712.0 0.69 0.69 0.62 0.56 0.47
25,100,10FL 14941.0 12.87 12.87 11.60 9.74 6.95
25,100,10FT 49899.0 12.92 12.91 10.82 9.74 3.92
25,100,30VT 365272.0 0.24 0.24 0.20 0.17 0.10
25,100,30FL 37060.0 9.50 9.49 8.73 5.60 3.32
25,100,30FT 85530.0 3.64 3.64 3.10 3.06 1.55
20,230,40VL 423848.0 0.23 0.23 0.22 0.03 0.03
20,230,40VT 371475.0 0.71 0.72 0.53 0.32 0.11
20,230,40FT 643036.0 1.49 1.49 1.19 0.88 0.62
20,300,40VL 429398.0 0.34 0.34 0.34 0.08 0.00
20,300,40FL 586077.0 1.85 1.85 1.84 1.84 0.82
20,300,40VT 464509.0 0.77 0.77 0.60 0.46 0.27
20,300,40FT 604198.0 1.22 1.22 1.08 0.95 0.44
20,230,200VL 94213.0 3.09 3.11 2.88 2.91 3.01
20,230,200FL 137642.0 4.07 4.10 3.76 3.81 3.73
20,230,200VT 97914.0 2.30 2.31 2.18 2.20 2.16
20,230,200FT 135866.0 3.18 3.20 3.03 3.06 3.05
20,300,200VL 74811.0 2.26 2.27 2.16 2.16 2.12
20,300,200FL 115539.0 3.99 4.00 3.89 3.92 3.70
20,300,200VT 74991.0 1.33 1.32 1.27 1.27 1.12
20,300,200FT 107102.0 3.24 3.25 2.92 2.93 3.06
100,400,10VL 28423.0 3.37 3.38 3.31 2.79 1.54
100,400,10FL 23949.0 17.54 17.54 14.35 12.30 8.38
100,400,10FT 63753.0 24.12 24.12 20.50 18.27 8.55
100,400,30VT 384802.0 1.03 1.02 0.96 0.89 0.51
100,400,30FL 49018.0 7.52 7.52 6.21 5.39 2.85
100,400,30FT 136250.0 13.99 13.98 12.29 9.86 5.36
30,520,100VL 53958.0 1.74 1.74 1.45 1.43 1.01
30,520,100FL 93967.0 4.04 4.08 3.94 3.97 3.77
30,520,100VT 52046.0 1.39 1.39 1.30 0.99 0.76
30,520,100FT 97107.0 3.19 3.21 2.92 2.90 2.80
30,700,100VL 47603.0 0.62 0.62 0.57 0.56 0.32
30,700,100FL 59958.0 2.92 2.94 2.83 2.83 2.57
30,700,100VT 45871.5 1.73 1.74 1.44 1.35 1.17
30,700,100FT 54904.0 2.27 2.28 2.04 1.96 1.87
30,520,400VL 112774.4 0.90 0.91 0.79 0.83 1.17
30,520,400FL 149335.4 1.78 1.79 1.69 1.75 2.41
30,520,400VT 114640.0 0.51 0.52 0.43 0.45 0.81
30,520,400FT 152510.0 1.81 1.83 1.73 1.78 2.20
30,700,400VL 97875.0 1.30 1.31 1.22 1.33 2.80
30,700,400FL 134589.8 2.88 2.89 2.78 2.95 5.26
30,700,400VT 95249.6 1.31 1.31 1.20 1.28 2.86
30,700,400FT 129909.6 1.81 1.81 1.74 1.82 3.17

Average: 3.90 3.91 3.46 3.10 2.39
Maximum: 24.12 24.12 20.50 18.27 8.55
Minimum: 0.23 0.23 0.20 0.03 0.00

Table 2: Comparison between lower bounds and best known upper bound

23

Node-Based Lagrangian Relaxations for Multicommodity Capacitated Fixed-Charge Network Design

CIRRELT-2019-21



ZLP ZFW ZKN ZFL ZFB ZSN

Total time (sec.) 170.25 7.40 125.56 699.74 4073.34 4677.71
Number of iterations — 20 5866 284 373 316
Lagrangian subproblem time (%) — 5 18 28 10 65
Master problem time (%) — 95 82 72 90 35

Table 3: Computational performance of Lagrangian relaxations

Parameter ZFW ZKN ZFL ZFB ZSN

n 1 5 10 5 20
δ - 3 0.5 0.5 2

Table 4: Values of parameters to call slope scaling heuristic

number of column generation iterations varies significantly for different relaxations, these

two parameters are tuned for each relaxation separately. The values used in our exper-

iments are shown in Table 4. The second step is to calibrate the other parameters, for

which the same value is calibrated for all the relaxations. For both calibration phases, we

select 30% of the instances randomly. To find the best values of the parameters, we fix

all the parameters, change one parameter at each time, and select the best value. We do

not provide further details, as the parameter values selected after the calibration phase

were already given in Section 4.

Table 5 compares the upper bounds computed by the Lagrangian matheuristic for

each of the five different relaxations. Note that the instances for which CPLEX finds an

optimal solution in less than 30 minutes are not presented in the table. This leaves 25

instances out of the 43 original ones. The results of the ILP heuristic [23] (that can be

considered as state-of-the-art) are used as a basis of comparison. Column ZILP presents

the upper bounds obtained with this method. The other columns show the gaps between

ZR
LMH , the upper bound obtained by the Lagrangian matheuristic used with relaxation

R, and ZILP , computed as 100×(ZR
LMH−ZILP )/ZILP . The results show that all variants

of the Lagrangian matheuristic are competitive with ILP, producing better upper bounds

on average. Among the different Lagrangian relaxations, the facility location relaxation

obtains slightly better upper bounds on average than the others.

Table 6 displays the proportion of the time spent in each step of the Lagrangian

matheuristic for the different relaxations. We divide the time spent by the column gen-

eration method into three parts: Lagrangian subproblems, master problems and slope

scaling heuristic. The other phases are the ones described at the beginning of Section 4:

solving the unrestricted MCND; solving restricted MCNDs; solving the bounded unre-

stricted MCND.

Table 7 presents a comparison between the Lagrangian matheuristic based on the
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Instance ZILP ZFW
LMH ZKN

LMH ZFL
LMH ZFB

LMH ZSN
LMH

20,230,200VL 94213.0 0.044 0.000 0.087 0.044 0.014
20,230,200FL 138169.0 -0.293 -0.037 -0.037 -0.037 -0.037
20,230,200VT 97914.0 0.000 0.000 0.000 0.000 0.000
20,230,200FT 136513.0 -0.097 -0.023 -0.476 0.234 0.232
20,300,200VL 74971.0 -0.213 -0.188 0.167 -0.011 0.000
20,300,200FL 116375.0 -0.570 -0.077 -0.605 -0.611 -0.414
20,300,200VT 74991.0 0.000 0.000 0.000 0.000 0.000
20,300,200FT 107298.0 0.256 -0.183 0.431 0.501 0.429
100,400,10FT 65247.0 -2.273 -2.273 -2.273 -2.290 -2.290
100,400,30FL 49018.0 0.000 0.000 0.198 0.000 0.000
100,400,30FT 139177.0 -1.093 -1.206 -1.390 -0.669 -0.421
30,520,100VL 53958.0 0.000 0.000 0.000 0.000 0.000
30,520,100FL 94066.0 0.327 -0.035 -0.086 0.453 0.934
30,520,100VT 52046.0 0.004 0.004 0.000 0.000 0.000
30,520,100FT 97404.0 -0.314 -0.314 0.355 0.538 0.633
30,700,100FL 60049.0 0.050 0.008 0.012 0.078 0.150
30,700,100VT 45908.0 -0.080 -0.080 -0.039 -0.072 -0.072
30,520,400VL 112974.0 -0.112 -0.102 0.201 0.321 -0.081
30,520,400FL 149945.0 0.476 0.524 -0.001 0.022 -0.148
30,520,400VT 114798.0 -0.097 0.097 -0.050 -0.129 -0.138
30,520,400FT 153856.0 -0.308 0.074 -0.572 -0.445 0.036
30,700,400VL 98385.0 -0.299 -0.299 -0.394 -0.421 -0.171
30,700,400FL 139663.0 -2.691 -2.184 -3.264 -3.185 -3.097
30,700,400VT 95733.0 -0.237 -0.167 -0.288 -0.295 -0.270
30,700,400FT 131141.0 -0.494 -0.357 -0.253 -0.377 -0.042

Average: -0.321 -0.273 -0.331 -0.254 -0.190

Table 5: Comparison of upper bounds for different variants of Lagrangian matheuristic

Unrestricted MCND Subproblem Master problem Slope scaling Restricted MCNDs Bounded unrestricted MCND

ZFW
LMH 16.893 0.006 0.091 23.343 37.524 22.144

ZKN
LMH 16.363 0.003 0.003 40.240 36.488 6.903

ZFL
LMH 16.401 0.195 0.043 41.320 34.560 7.481

ZFB
LMH 14.742 0.280 0.713 44.300 34.057 5.907

ZSN
LMH 15.048 2.551 1.231 42.789 31.832 6.550

Table 6: Time analysis for different variants of Lagrangian matheuristic
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facility location relaxation and the state-of-the-art heuristics proposed in the literature.

Column LMH presents the upper bounds computed by the Lagrangian matheuristic. The

other columns correspond to the gaps (in %) between the upper bound ZLMH in column

LMH and the upper bound ZH reported in the literature (computed as 100 × (ZLMH −
ZH)/ZLMH) for the following methods:

• CTS: Cycle-based Tabu Search (2003) [26];

• PR: Path Relinking (2004) [27];

• MCA: Multilevel Cooperative Tabu Search (2006) [14];

• CSH: Capacity Scaling Heuristic (2009) [32];

• IPS: IP Search (2010) [29];

• LocalB: Local Branching (2010) [36];

• SACG: Simulated Annealing/Column Generation (2013) [38] tested with time limits

of 600 seconds (SACG1) and 18000 seconds (SACG2);

• CEA: Cycle-Based Evolutionary Algorithm (2016) [35];

• CCL: Combined Capacity Scaling/Local Branching (2015) [31] tested with two differ-

ent parameter settings (CCL) and (CCL2), which correspond, respectively, to columns

“10-1000” and “20-2000” in Table 2 [31];

• ILP: Iterative Linear Programming (2018) [23].

The results show that the Lagrangian matheuristic provides better upper bounds on

average than all the heuristics previously proposed in the literature, except CCL and

CCL2. However, the Lagrangian matheuristic produces almost the same upper bounds

(with an average gap of 0.24% and a maximum gap of 0.72%) in much less computational

times, as we see in Table 8, which reports the CPU time spent by each method to reach

its best feasible solution. The times are normalized based on the CPU type and the

number of cores, using data from www.cpubenchmark.net. For any heuristic H that

required a CPU time TH on a computer CH with UH cores, the normalized CPU times

TH are computed with the formula

TH = TH × (P (CH)/P (CLMH))× UH ,

where P (CH) and P (CLMH) are the Passmark CPU scores of the computers used to run

heuristic H and our LMH algorithm [15]. Note that the Passmark CPU scores are not

available for CTS and PR methods, and the CPU times of MCA are not reported in [14].
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Instance LMH CTS PR MCA CSH IPS LocalB SACG SACG2 CEA CCL CCL2 ILP

20,230,200VL 94295.0 -4.98 -6.48 -4.55 0.05 -0.85 -1.06 -1.06 0.01 -0.18 0.09 0.09 0.09
20,230,200FL 138118.0 -6.09 -7.15 -3.64 0.34 -2.27 -3.86 -1.19 0.20 -0.61 0.34 0.34 -0.04
20,230,200VT 97914.0 -6.98 -6.92 -4.20 -0.06 -1.53 -0.12 -0.07 0.00 -0.30 0.00 0.00 0.00
20,230,200FT 135863.0 -8.48 -8.60 -3.92 -0.20 -3.25 -3.88 -3.61 -0.89 -0.93 -0.12 0.00 -0.48
20,300,200VL 75096.5 -7.62 -4.11 -4.15 0.24 -0.30 -1.70 -1.21 0.26 -0.24 0.38 0.38 0.17
20,300,200FL 115671.0 -6.64 -6.75 -5.43 -0.10 -1.62 -3.00 -1.96 -0.66 -0.98 -0.07 0.11 -0.61
20,300,200VT 74991.0 -6.17 -5.17 -3.01 -0.41 -1.61 -1.57 -0.57 0.00 -0.60 0.00 0.00 0.00
20,300,200FT 107760.0 -6.24 -5.40 -3.17 -0.09 -2.40 -1.90 -1.81 -0.81 0.20 0.41 0.61 0.43
100,400,10FT 63764.0 -5.10 -2.37 -3.95 -15.37 -3.33 -5.63 -2.21 -2.21 -2.82 -0.69 0.02 -2.33
100,400,30FL 49115.0 -4.96 -4.50 -2.73 -5.78 -1.17 -1.54 -1.07 -0.27 -0.71 0.20 0.20 0.20
100,400,30FT 137243.0 -5.76 -3.00 -6.18 -5.15 -3.00 -3.20 -3.13 -2.75 -1.67 -0.66 0.72 -1.41
30,520,100VL 53958.0 -1.85 -1.75 -3.33 -0.24 -0.29 -0.13 -0.05 -0.05 -0.26 0.00 0.00 0.00
30,520,100FL 93985.0 -5.96 -8.59 -6.21 -0.87 -0.43 -2.42 -0.34 -0.09 -0.68 0.02 0.02 -0.09
30,520,100VT 52046.0 -1.80 -1.87 -2.82 -0.45 -0.25 -0.16 -0.66 -0.39 -0.26 0.00 0.00 0.00
30,520,100FT 97750.0 -7.95 -8.57 -4.84 -1.11 -1.16 -3.43 -2.49 -0.81 -0.11 0.37 0.66 0.35
30,700,100FL 60056.0 -4.02 -5.05 -6.16 -0.23 -1.07 -0.36 -0.87 -0.56 -0.80 0.16 0.16 0.01
30,700,100VT 45890.0 -2.47 -2.87 -3.41 -0.61 -0.34 -0.03 -0.56 -0.14 -0.42 0.04 0.04 -0.04
30,520,400VL 113201.0 -6.58 -5.49 -2.18 0.31 -0.74 -1.03 -0.88 -0.46 0.01 0.38 0.38 0.20
30,520,400FL 149943.0 -7.44 -8.78 -4.44 0.33 -2.85 -5.19 -3.93 -0.71 -0.80 0.35 0.41 0.00
30,520,400VT 114741.0 -5.97 -4.73 -5.44 0.09 -0.16 -0.43 -0.76 -0.73 -0.83 0.09 0.09 -0.05
30,520,400FT 152976.0 -9.78 -6.99 -4.73 0.15 -1.07 -10.19 -4.58 NA -0.95 0.26 0.30 -0.58
30,700,400VL 97997.0 -8.96 -7.26 -4.73 0.03 -0.74 -4.73 -3.81 -1.35 -0.75 0.12 0.12 -0.40
30,700,400FL 135104.0 -10.25 -7.34 -6.58 0.03 -12.93 -6.58 -18.81 0.83 -1.49 0.36 0.38 -3.37
30,700,400VT 95457.4 -6.51 -6.03 -3.92 0.16 -0.74 -3.92 -1.66 -0.08 -0.70 0.22 0.22 -0.29
30,700,400FT 130809.0 -9.15 -7.80 -5.70 0.51 -0.63 -5.70 -8.17 -0.51 -1.24 0.69 0.69 -0.25

Average: -6.31 -5.74 -4.38 -1.14 -1.79 -2.87 -2.62 -0.51 -0.73 0.12 0.24 -0.34
Maximum: -1.80 -1.75 -2.18 0.51 -0.16 -0.03 -0.05 0.83 0.20 0.69 0.72 0.43
Minimum: -10.25 -8.78 -6.58 -15.37 -12.93 -10.19 -18.81 -2.75 -2.82 -0.69 0.00 -3.37

# of improvements / 25: 25 25 25 14 25 25 25 18 23 4 0 13
# of draws / 25: 0 0 0 0 0 0 0 2 0 4 5 5

# of non-improvements / 25: 0 0 0 11 0 0 0 4 2 17 20 7

Table 7: Comparison between Lagrangian matheuristic and state-of-the-art heuristics

Therefore, the computational times for these methods are not presented in Table 8. The

results show that the Lagrangian matheuristic is competitive with the heuristics in the

literature. For instance, it requires about 6 times the effort of ILP, but it produces

solutions that are 0.34% better on average. Also, it is 5.4 times faster than CCL2 to

generate solutions that are only 0.24% away on average.

6 Conclusion

We have introduced three node-based Lagrangian relaxations for the MCND. We have

shown through theoretical and experimental results that these relaxations provide bet-

ter lower bounds than the classical flow and knapsack relaxations. The three relaxations

define a hierarchy of lower bounds: the multicommodity single-node flow relaxation domi-

nates the forward-backward facility location relaxation, which itself dominates the facility

location relaxation. This last relaxation, in spite of being the weakest of the three, pro-

vides a good tradeoff between the quality of the lower bound and the computational

efficiency of the column generation method to solve the Lagrangian dual. We have de-
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LMH CSH IPS LocalB SACG SACG2 CEA CCL CCL2 ILP

CPU

Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel
Xeon Pentium Xeon Core2 Duo Core2 Duo Core2 Duo Xeon Core i7 Core i7 Core i7
X5675 D 940 X3350 E4600 E6850 E6850 E5507 4770 4770 4900MQ

@ 3.07GHz @ 3.20GHz @ 2.66GHz @ 2.40GHz @ 3.00GHz @ 3.00GHz @ 2.27GHz @ 3.40GHz @ 3.40GHz @ 2.80GHz
Passmark CPU 8507 710 3876 1383.00 1951 1951 3144 9792 9792 9060

Cores 1 2 8 2 2 2 1 4 4 1
Instance

20,230,200VL 7663.46 73.80 2996.19 195.09 275.21 1128.36 1391.54 14090.26 30106.00 2569.34
20,230,200FL 9843.41 276.76 2518.69 195.09 275.21 504.55 1498.34 20299.49 40973.31 333.19
20,230,200VT 1135.54 87.38 2992.54 195.09 275.21 1078.36 1219.72 9948.77 13328.26 255.11
20,230,200FT 10248.30 324.46 568.62 195.09 275.21 572.89 1156.48 20893.44 52461.27 1009.01
20,300,200VL 7728.23 58.04 2923.29 195.09 275.21 1359.53 1199.58 23241.12 42161.20 340.70
20,300,200FL 10800.00 215.31 2500.47 195.09 275.21 479.78 1519.56 35769.17 39517.46 2728.90
20,300,200VT 7836.48 71.56 1414.26 195.09 275.21 1844.82 1318.36 9935.42 11787.69 150.37
20,300,200FT 4210.58 287.39 1443.42 195.09 275.21 1140.28 2891.25 17487.70 37935.45 1337.67
100,400,10FT 8387.01 9.28 2963.38 195.09 77.52 77.52 1397.78 12594.81 59757.56 1148.93
100,400,30FL 1547.10 103.74 3229.47 195.09 275.21 429.78 1479.49 3975.73 12169.84 783.01
100,400,30FT 10743.70 25.69 3236.76 195.09 275.21 553.63 4717.18 50774.29 112500.15 649.49
30,520,100VL 1151.77 4.49 794.61 195.09 275.21 629.31 1967.45 3096.33 7684.88 1933.90
30,520,100FL 8343.49 67.85 823.77 195.09 275.21 425.66 2304.02 15039.19 30308.58 1289.21
30,520,100VT 505.40 6.26 1658.47 195.09 275.21 4186.38 4759.50 9226.83 18713.34 2934.08
30,520,100FT 10794.70 33.33 2970.67 195.09 275.21 462.35 1359.34 22107.11 83229.81 1675.25
30,700,100FL 10259.90 6.26 1658.47 195.09 275.21 4186.38 4759.50 9226.83 18713.34 1650.13
30,700,100VT 9576.96 33.33 2970.67 195.09 275.21 462.35 1359.34 22107.11 83229.81 872.87
30,520,400VL 10143.10 19.11 2700.94 195.09 275.21 1831.05 4562.51 13298.33 32047.59 842.29
30,520,400FL 10800.00 7.73 1352.29 195.09 275.21 1926.92 1774.42 25595.25 37311.12 462.49
30,520,400VT 8531.79 16.16 1410.61 195.09 275.21 3139.21 4225.09 20515.89 36425.73 2561.76
30,520,400FT 10760.40 94.81 1436.13 195.09 275.21 5918.82 5664.97 27242.18 48228.16 1637.73
30,700,400VL 9651.91 435.73 2733.75 195.09 275.21 4463.43 4558.08 15593.07 83088.00 2890.34
30,700,400FL 10009.70 38.39 2263.54 195.09 275.21 8256.26 1564.90 17154.36 41117.42 1135.52
30,700,400VT 10800.00 279.41 1698.57 195.09 275.21 4286.83 2385.07 23705.69 69290.57 941.52
30,700,400FT 9972.70 79.25 809.19 195.09 275.21 8256.26 2345.23 21763.63 46253.42 1567.50

Average: 8058 106 2083 195 267 2304 2535 18587 43534 1348

Table 8: Normalized times for Lagrangian matheuristic and state-of-the-art heuristics
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veloped and tested a Lagrangian matheuristic to compute effective upper bounds. Our

computational experiments on a set of benchmark instances show that the Lagrangian

matheuristic based on the facility location relaxation is competitive with the state-of-

the-art heuristics for the MCND.

The hierarchical nature of the three node-based Lagrangian relaxations paves the way

to a dual-ascent method that would perform them sequentially, the optimal Lagrange

multipliers of one relaxation being provided as input to the stronger relaxation. Such

a method could serve as a basis for an exact algorithm, the development of which is a

challenging research avenue. In particular, an exact algorithm could integrate specialized

algorithms for the CFLP and the MSNF, to solve the Lagrangian subproblems, as well

as for the MMCF and for restricted MCNDs of small- to medium-scale, to derive feasible

solutions in an efficient way.
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