Node-Based Lagrangian Relaxations for Multicommodity Capacitated Fixed-Charge Network Design

Mohammad Rahim Akhavan Kazemzadeh
Tolga Bektaş
Teodor Gabriel Crainic
Antonio Frangioni
Bernard Gendron
Enrico Gorgone

June 2019

CIRRELT-2019-21
Node-Based Lagrangian Relaxations for Multicommodity Capacitated Fixed-Charge Network Design

Mohammad Rahim Akhavan Kazemzadeh1,2, Tolga Bektaş3, Teodor Gabriel Crainic1,4, Antonio Frangioni5, Bernard Gendron1,2,*, Enrico Gorgone6

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)
2 Department of Computer Science and Operations Research, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Canada H3C 3J7
3 University of Liverpool Management School, University of Liverpool, Liverpool, L69 7ZH, United Kingdom
4 Department of Management and Technology, Université du Québec à Montréal, P.O. Box 8888, Station Centre-Ville, Montréal, Canada H3C 3P8
5 Dipartimento di informatica, Università di Pisa
6 Dipartimento di elettronica, informatica e sistemistica, Università della Calabria

Abstract. Classical Lagrangian relaxations for the multicommodity capacitated fixed-charge network design problem are the so-called ow and knapsack relaxations, where the resulting Lagrangian subproblems decompose by commodities and by arcs, respectively. We introduce node-based Lagrangian relaxations, where the resulting Lagrangian subproblem decomposes by nodes. We show that the Lagrangian dual bounds of these relaxations improve upon the linear programming relaxation bound, known to be equal to the Lagrangian dual bounds for the ow and knapsack relaxations. We also develop a Lagrangian matheuristic to compute upper bounds. The computational results on a set of benchmark instances show that the Lagrangian matheuristic is competitive with the state-of-the-art heuristics from the literature.

Keywords. Networks design, Lagrangian relaxation, column generation, matheuristic.

Acknowledgements. While working on this project, the third author was Adjunct Professor with the Département d’informatique et de recherche opérationnelle (DIRO), Université de Montréal. The first author gratefully acknowledges the support of the Université de Montréal, through its end of doctoral studies scholarship and the excellence scholarship of the DIRO, as well as the support of CIRRELT through its doctoral excellence scholarship. Partial funding for this project has also been provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), through its Discovery Grant program. We also gratefully acknowledge the support of Fonds de recherche du Québec through their infrastructure grants.

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du CIRRELT et n’engagent pas sa responsabilité.

* Corresponding author: Bernard.Gendron@cirrelt.ca
1 Introduction

In the multicommodity capacitated fixed-charge network design problem (MCND), a subset of the arcs must be selected in order to route several commodities, each with a given origin-destination pair. The selection of an arc incurs a fixed cost that provides a predefined capacity available to all commodities. In addition, a variable cost is imposed to route each unit of commodity demand on each arc. The problem is to find a minimum cost solution (including decisions about design and routing) such that the demand for each commodity is met and the capacity on each arc is not exceeded.

The problem is typically formulated as a mixed-integer programming (MIP) model that includes two main sets of constraints: flow conservation equations, ensuring that the demand for each commodity is satisfied, and capacity constraints, ensuring that the flow of all commodities on each arc does not exceed its capacity. The usual Lagrangian relaxations for this formulation are the so-called flow (or shortest path) and knapsack relaxations, which are obtained, respectively, by relaxing capacity constraints and flow conservation equations (see Section for an account of the relevant literature). For the flow relaxation, the resulting Lagrangian subproblem decomposes into a series of shortest path problems, one for each commodity. The Lagrangian subproblem for the knapsack relaxation is separable by arcs, reducing to a continuous knapsack problem for each arc. The flow and knapsack relaxations can therefore be seen, respectively, as commodity-based and arc-based decomposition approaches.

In this paper, we introduce three node-based Lagrangian relaxations, where the subproblem decomposes by nodes. We show that the Lagrangian dual bound of each of these relaxations improves upon the linear programming (LP) relaxation bound. As a result, the node-based relaxation bounds also improve upon the Lagrangian dual bounds of the flow and knapsack relaxations, since the latter are both equal to the LP relaxation bound. We compare theoretically the three node-based relaxations, establishing a hierarchy of lower bounds between them. We also compare them experimentally by solving the Dantzig-Wolfe (DW) reformulation of their Lagrangian duals by column generation. Our computational results on a set of benchmark instances show that the improvement provided by the strongest node-based relaxation over the LP relaxation is 1.8% on average, with a maximum of 20.5%.

We embed the proposed node-based relaxations within a Lagrangian matheuristic framework, where feasible solutions to the MCND are derived from the information obtained when solving the Lagrangian dual, as in a classical Lagrangian heuristic. The Lagrangian matheuristic also involves solving a large number of mathematical programming models, typically defined through intensification and diversification mechanisms similar to those found in the literature on metaheuristics. On the same set of benchmark instances, we show that the resulting Lagrangian matheuristic outperforms most heuristics proposed in the literature and is competitive with the best ones. For instance,
compared with a state-of-the-art heuristic [23], our Lagrangian matheuristic improves
the upper bound for 13 out of 25 hard instances, showing an improvement of 0.34% on
average, with a maximum of 3.37%. An advantage of the Lagrangian matheuristic over
several heuristic methods is that it also provides an effective lower bound on the optimal
value and therefore a guarantee on the quality of the feasible solution.

The paper is organized as follows. Section 2 provides the background material: the
classical MIP model, along with a short review of the relevant literature, are presented.
In Section 3, we present the node-based Lagrangian relaxations and theoretically com-
pare the strength of their Lagrangian dual bounds. Section 4 describes the Lagrangian
matheuristic. In Section 5, we present the computational results, including the evaluation
of the node-based relaxations and Lagrangian matheuristic. In Section 6, we summarize
this work and we propose future research directions.

2 Background

The MCND is defined on a directed graph \(G = (N, A) \), where \(N \) is the set of nodes and
\(A \) is the set of arcs. For each node \(i \in N \), we define the sets of forward and backward
neighbours, \(N_i^+ \) and \(N_i^- \), respectively. Each commodity \(k \in K \) corresponds to an origin-
destination pair such that \(d^k > 0 \) units of flow must travel between the origin \(O(k) \) and
the destination \(D(k) \). The objective function to be minimized includes a cost \(c_{ij}^k \geq 0 \) for
routing one unit of commodity \(k \in K \) through arc \((i, j) \in A\) and a fixed cost \(f_{ij} \geq 0 \) for
using arc \((i, j) \in A\), thus providing a capacity \(u_{ij} \in (0, \sum_{k \in K} d^k] \) on the arc. A classical
model for the MCND introduces two sets of variables: \(x_{ij}^k \) is the flow of commodity \(k \in K \)
on arc \((i, j) \in A\) (flow variables), while \(y_{ij} \) is 1, if arc \((i, j) \in A\) is used, and 0, otherwise
/design variables\). The model is written as follows:

\[
Z^{ND} = \min \sum_{(i,j) \in A} \sum_{k \in K} c_{ij}^k x_{ij}^k + \sum_{(i,j) \in A} f_{ij} y_{ij} \tag{1}
\]

\[
\sum_{j \in N_i^+} x_{ij}^k - \sum_{j \in N_i^-} x_{ji}^k = b_i^k, \quad \forall i \in N, \forall k \in K, \tag{2}
\]

\[
\sum_{k \in K} x_{ij}^k \leq u_{ij} y_{ij}, \quad \forall (i, j) \in A, \tag{3}
\]

\[
x_{ij}^k \leq d^k y_{ij}, \quad \forall (i, j) \in A, \forall k \in K, \tag{4}
\]

\[
x_{ij}^k \geq 0, \quad \forall (i, j) \in A, \forall k \in K, \tag{5}
\]

\[
y_{ij} \in \{0, 1\}, \quad \forall (i, j) \in A. \tag{6}
\]

The objective, (1), is to minimize total routing and design costs. Constraints (2) are
the usual flow conservation equations ensuring that the demand for each commodity is
routed from the origin to the destination, where:

\[b_i^k = \begin{cases}
 +d_k, & \text{if } i = O(k), \\
 -d_k, & \text{if } i = D(k), \\
 0, & \text{otherwise,}
\end{cases} \forall i \in N, \forall k \in K. \]

Capacity constraints (3) ensure that the sum of the flows on each arc \((i, j) \in A\) does not exceed its capacity \(u_{ij}\). These are also known as linking constraints because they ensure that no flow is allowed on arc \((i, j) \in A\), unless it is used and its fixed cost is paid. Constraints (4) are strong linking constraints. Although they are redundant for the MIP model, adding these inequalities significantly improves the LP relaxation lower bound [20].

As mentioned in the Introduction, two Lagrangian relaxations have been used to develop solution methods for the MCND: the flow and knapsack relaxations. The flow relaxation is obtained by relaxing (3)-(4) in a Lagrangian way. The Lagrangian subproblem separates into two components, one in \(y\) variables, trivially solvable by inspection, and the other in \(x\) variables that decomposes by commodities and can be solved as a shortest path problem (with nonnegative arc lengths) for each commodity \(k \in K\). The knapsack relaxation is derived by relaxing equations (2) in a Lagrangian way. The Lagrangian subproblem decomposes by arcs, reducing to the computation of a continuous knapsack problem for each arc \((i, j) \in A\). We now review the literature on the MCND with a focus on Lagrangian-based algorithms.

An early line of research looked at the theoretical and experimental comparison of the two Lagrangian relaxations [20, 21]. In particular, it was shown that the Lagrangian dual bounds for both relaxations are equal to the LP relaxation bound (this result was recently generalized to a wide class of network design models [19]). To optimize the Lagrangian dual, subgradient methods were used, but their limitations in terms of numerical stability and speed of convergence were soon identified. Their comparison with bundle methods [9], for both flow and knapsack relaxations, show the advantages of the latter, as they converge in fewer iterations and are more robust relative to the parameter values, problem specifications, and different relaxation types. Nevertheless, subgradient methods are still being used, because they are easy to implement and relatively fast, so they can serve to initialize column generation and bundle methods. For the two classical relaxations of the MCND, state-of-the-art subgradient methods have been recently implemented and compared [17].

Lagrangian-based branch-and-bound (B&B) algorithms have been developed, based mostly on the knapsack relaxation, which was shown to be more effective than the flow relaxation in such a framework [37]. Both exact and heuristic variants of B&B were developed and tested, using subgradient algorithms [30, 37], but also bundle methods [33]. These early contributions show how to exploit Lagrangian relaxation to derive
variable fixing and simple valid inequalities that preserve the structure of the Lagrangian subproblem.

Bundle methods for both the flow and the knapsack relaxations were also used as part of a slope scaling heuristic for the MCND [13]. The idea of slope scaling is to iteratively solve a linear \textit{multicommodity minimum cost network flow problem (MMCF)} and to use the flow distribution to adjust the linear approximation at the next iteration. In that work, a bundle method was periodically launched to find new Lagrange multipliers, which were then used to reinitialize the linearized costs and start another slope scaling process. We also use a slope scaling procedure in our Lagrangian matheuristic (see Section 4.2), but it interacts with the Lagrangian dual optimization through primal solutions, rather than through Lagrange multipliers. A similar approach has been recently applied to another network design problem [22].

While most of the contributions on the MCND essentially consider the bundle method as a black-box non-differentiable optimization algorithm, it is well-known that it is tightly linked to DW decomposition, i.e., \textit{column generation} approaches for solving DW reformulations [1]. This connection has been used to derive master problem formulations for the flow relaxation of the MCND that exploit its structure, in particular the presence of a so-called “easy component” in the Lagrangian subproblem, i.e., the component in \(y \) variables that is solvable by inspection [18].

In spite of the tight relationships between Lagrangian relaxation and column generation, there have been very few works on column generation and branch-and-price (B&P) for the MCND (although column generation has been used to solve MMCF subproblems in some heuristic methods for the MCND [31, 32, 38]). Apart from the paper just cited on column generation based on the flow relaxation [18], a B&P(-and-cut) algorithm was developed and interpreted in terms of a Lagrangian relaxation of constraints (2) and (3), which can be seen as a variant of the knapsack relaxation. It is interesting to note that the master problem used in this B&P algorithm is the MIP model (1)-(6), the generated columns corresponding to the multicommodity flow variables.

Besides the Lagrangian-based solution methods, other exact and heuristic algorithms for the MCND have been proposed in the literature. Exact solution methods include Benders decomposition [7, 8] and branch-and-cut [5, 6], while heuristics include tabu search [10, 12, 14, 26], path relinking [27], scatter search [11], simulated annealing [35, 38], capacity scaling [31, 32], local branching [36], and matheuristics [4, 23, 29].

In summary, the Lagrangian relaxations proposed so far in the literature for the MCND, to the best of our knowledge, are the traditional commodity-based (flow) and arc-based (knapsack) relaxations. Lagrangian-based algorithms, consequently, also use these two relaxations. A major contribution of this paper is to develop node-based Lagrangian relaxations, and to compare them theoretically and experimentally with the flow and knapsack relaxations, and also with one another.

Node-Based Lagrangian Relaxations for Multicommodity Capacitated Fixed-Charge Network Design

CIRRELT-2019-21

4
3 Node-based Lagrangian relaxations

The model has to be slightly reformulated to derive the node-based relaxations. For this purpose, we introduce the following notation for each node $i \in N$:

- $K_i^O = \{ k \in K | i = O(k) \}$, the commodities for which i is the origin;
- $K_i^D = \{ k \in K | i = D(k) \}$, the commodities for which i is the destination;
- $K_i^T = \{ k \in K | i \neq O(k), D(k) \}$, the commodities for which i is a transshipment node.

We also consider the following basic properties: 1) for each commodity $k \in K$, it is well-known that the flow conservation equation at $i = D(k)$ (or at $i = O(k)$) is redundant, and 2) because the costs are nonnegative, for each arc $(i, j) \in A$, $x_{ij}^k = 0$ if $k \in K_i^O$ (or $k \in K_i^D$). We then rewrite the flow conservation equations (2) as follows:

$$\sum_{j \in N^+ i} x_{ij}^k - \sum_{j \in N^- i} x_{ji}^k = 0, \; \forall i \in N, \forall k \in K_i^T,$$

$$\sum_{j \in N^+ i} x_{ij}^k = d^k, \; \forall i \in N, \forall k \in K_i^O,$$

$$x_{ij}^k = 0, \; \forall (i, j) \in A, \forall k \in K_i^O \cup K_i^D.$$

In order to derive a compact notation when comparing the different relaxations, we define the following sets: S_x is the set of flow vectors x that satisfy (7), while T_{xy} is the set of solutions that satisfy the other constraints, (3)-(6) and (8)-(9). Using this notation, we can rewrite the MIP model for the MCND in a compact form as follows:

$$Z_{ND} = \min \{ c x + f y \mid x \in S_x, (x, y) \in T_{xy} \}.$$

In addition, for any set S, we denote by conv(S) its convex hull and by \overline{S} the polyhedron obtained by relaxing the integrality constraints in the definition of S. Using this notation, we can write the LP relaxation as:

$$Z_{LP} = \min \{ c x + f y \mid x \in S_x, (x, y) \in \overline{T}_{xy} \}.$$

3.1 Facility location relaxation

We relax constraints (7) in a Lagrangian way by introducing $\pi_i^k, \forall i \in N, \forall k \in K_i^T$, as the Lagrange multipliers for each of these constraints. The following valid inequalities are also added to improve the relaxation:

$$\sum_{j \in N^+ i} x_{ij}^k \leq g_i^k, \; \forall i \in N, \forall k \in K_i^T,$$

where $g_i^k = \min\{d^k, \sum_{j \in N^- i} u_{ji}\}, \forall i \in N, \forall k \in K_i^T$. The resulting Lagrangian subproblem decomposes by nodes. The subproblem for each node $i \in N$ is then:

$$Z_{xy}^i(\pi) = \min \sum_{j \in N^+_i} \left(\sum_{k \in K} c_{ij}^k(\pi) x_{ij}^k + f_{ij} y_{ij} \right)$$
\[
\sum_{j \in N_i^+} x_{ij}^k = d_i^k, \quad \forall k \in K_i^O, \tag{12}
\]
\[
\sum_{j \in N_i^+} x_{ij}^k \leq g_i^k, \quad \forall k \in K_i^T, \tag{13}
\]
\[
x_{ij}^k = 0, \quad \forall j \in N_i^+, \forall k \in K_i^D \cup K_i^O, \tag{14}
\]
\[
\sum_{k \in K} x_{ij}^k \leq u_{ij} y_{ij}, \quad \forall j \in N_i^+, \tag{15}
\]
\[
x_{ij}^k \leq d_i^k y_{ij}, \quad \forall j \in N_i^+, \forall k \in K, \tag{16}
\]
\[
x_{ij}^k \geq 0, \quad \forall j \in N_i^+, \forall k \in K, \tag{17}
\]
\[
y_{ij} \in \{0, 1\}, \quad \forall j \in N_i^+, \tag{18}
\]

where
\[
c_{ij}^k(\pi) = \begin{cases}
 c_{ij}^k + \pi_i^k - \pi_j^k, & \text{if } k \in K_i^T \cap K_j^T, \\
 c_{ij}^k + \pi_i^k, & \text{if } k \in K_i^T \setminus K_j^T, \\
 c_{ij}^k - \pi_j^k, & \text{if } k \in K_j^T \setminus K_i^T, \\
 c_{ij}^k, & \text{if } k \in K_i^O \cap K_j^D,
\end{cases} \quad \forall j \in N_i^+, \forall k \in K.
\]

This node-based relaxation is called the facility location relaxation because the resulting subproblem for each node \(i \in N\) reduces to a capacitated facility location problem (CFLP), where \(K_i^O \cup K_i^T\) and \(N_i^+\) are the sets of customers and facilities, respectively. Indeed, the following transformations can be done to derive from (11)-(18) the classical MIP model for the CFLP:

1. Eliminate \(x_{ij}^k\) variables such that \(c_{ij}^k(\pi) \geq 0, \forall j \in N_i^+, \forall k \in K\);
2. Strengthen constraints (16) for \(k \in K_i^T\) by replacing \(d_i^k\) with \(g_i^k\);
3. Add an artificial facility with a (very large) fixed cost of \(M\) and connected to each \(k \in K_i^T\) by an arc with 0 variable flow cost;
4. Replace the \(x_{ij}^k\) variables by \(X_{ij}^k\) variables assuming values in the interval \([0,1]\), i.e., \(\forall j \in N_i^+, x_{ij}^k = d_i^k X_{ij}^k, \forall k \in K_i^O, x_{ij}^k = g_i^k X_{ij}^k, \forall k \in K_i^T\).
5. Add \(M\) to all costs associated with \(X\) variables.

The optimal solution to this CFLP instance is also optimal for (11)-(18), and the optimal value \(Z_i^{xy}(\pi)\) is obtained by subtracting \(M \times (|K_i^O| + |K_i^T| + \delta)\) from the optimal value of this CFLP instance, where \(\delta = 1\), if the artificial facility is used, and 0, otherwise.

A lower bound on \(Z^{ND}\) is computed as follows: \(Z^{FL}(\pi) = \sum_{i \in N} Z_i^{xy}(\pi)\). The best lower bound is obtained by solving the Lagrangian dual: \(Z^{FL} = \max_{\pi} Z^{FL}(\pi)\). We denote by \(T_i^{xy}\) the set of solutions that satisfies constraints (12)-(18), for each node \(i \in N\).
Because the Lagrangian subproblem decomposes by nodes, we have, by Lagrangian duality theory [25]:

\[
Z_{ND} = \min \left\{ cx + fy \mid x \in S^x, (x, y) \in T^{xy} \right\}
\]

\[
= \min \left\{ cx + fy \mid x \in S^x, (x, y) \in \left(\times_{i \in N} T_i^{xy} \right) \right\}
\]

\[
\geq \min \left\{ cx + fy \mid x \in S^x, (x, y) \in \left(\times_{i \in N} \text{conv}(T_i^{xy}) \right) \right\}
\]

\[
= Z_{FL}.
\]

This last expression of Z_{FL} allows us to write down the DW reformulation of the Lagrangian dual associated with the facility location relaxation. To obtain this reformulation, we let Q_i be the index set of the extreme points of conv(T_i^{xy}) for $i \in N$, i.e., $(x(q), y(q))_{q \in Q_i}, i \in N$, are these extreme points. We also denote by $\theta(q)$ the variable representing the weight associated with the extreme point indexed by $q \in Q_i, i \in N$. The DW reformulation of the Lagrangian dual is then written as:

\[
Z_{FL} = \min \sum_{i \in N} \sum_{q \in Q_i} \left(\sum_{j \in N_i^+} \theta(q) \left(\sum_{k \in K} c_{ij}^k x_{ij}^k(q) + \sum_{j \in N_i^+} f_{ij} y_{ij}(q) \right) \right)
\]

\[
\sum_{j \in N_i^+} \sum_{q \in Q_i} \theta(q) x_{ij}^k(q) - \sum_{j \in N_i^+} \sum_{q \in Q_j} \theta(q) x_{ji}^k(q) = 0, \quad \forall i \in N, \forall k \in K_i^T, (\pi_i^k)
\]

\[
\sum_{q \in Q_i} \theta(q) = 1, \quad \forall i \in N,
\]

\[
\theta(q) \geq 0, \quad \forall i \in N, q \in Q_i.
\]

We propose to solve this large-scale LP model by column generation, the pricing problem in this case corresponding to the Lagrangian subproblem. At any column generation iteration, the solution to the Lagrangian subproblem provides a candidate design solution \tilde{y}, corresponding to the 0-1 values of the design variables in that solution. In addition, the DW master problem solution $\bar{\theta}$ at any iteration also provides a candidate design solution (possibly fractional) defined as $\bar{y}_{ij} = \sum_{q \in Q_i} \bar{\theta}(q) y_{ij}(q), \forall (i, j) \in A$. These candidate design solutions are used as input to the slope scaling heuristic presented in Section 4.2.

Using Lagrangian duality theory, we can easily show the following property:

Proposition 1 $Z_{FL} \geq Z_{LP}$ and the inequality can be strict.
Proof. Since \(\text{conv}(T^x_i) \subseteq T^x_i \) for each \(i \in N \), we have:

\[
Z^{FL} = \min \left\{ cx + fy \mid x \in S^x, (x, y) \in \left(\times_{i \in N} \text{conv}(T^x_i) \right) \right\}
\geq \min \left\{ cx + fy \mid x \in S^x, (x, y) \in \left(\times_{i \in N} T^x_i \right) \right\}
= \min \left\{ cx + fy \mid x \in S^x, (x, y) \in T^x \right\}
= Z^{LP}
\]

Since there are instances of the CFLP (even when capacities are arbitrarily large) for which all optimal LP relaxation solutions are fractional, the Lagrangian subproblem does not have the integrality property, i.e., the polyhedron \(T^x \) is not integral, which implies that there are MCND instances where the inequality is strict.

3.2 Forward-backward facility location relaxation

The reformulation used to derive the facility location relaxation is obtained by replacing (2) with (7)-(9). In addition to this replacement, we use the Lagrangian decomposition technique [28] by introducing copies of design and flow variables, respectively denoted \(z \) and \(v \), defined by the following copy constraints:

\[
z_{ij} - y_{ij} = 0, \quad \forall (i, j) \in A, \tag{23}
\]

\[
v^k_{ij} - x^k_{ij} = 0, \quad \forall (i, j) \in A, \forall k \in K. \tag{24}
\]

The following redundant constraints are also added:

\[
\sum_{j \in N_i^-} v^k_{ji} = d^k, \quad \forall i \in N, \forall k \in K^D_i, \tag{25}
\]

\[
v^k_{ji} = 0, \quad \forall (j, i) \in A, \forall k \in K^O_i \cup K^D_i, \tag{26}
\]

\[
\sum_{k \in K} v^k_{ji} \leq u_{ji}z_{ji}, \quad \forall (j, i) \in A, \tag{27}
\]

\[
v^k_{ji} \leq d^k z_{ji}, \quad \forall (j, i) \in A, \forall k \in K, \tag{28}
\]

\[
v^k_{ji} \geq 0, \quad \forall (j, i) \in A, \forall k \in K, \tag{29}
\]

\[
z_{ji} \in \{0, 1\}, \quad \forall (j, i) \in A \tag{30}
\]

Then, the copy constraints (23) and (24), as well as the flow conservation equations (7) are relaxed in a Lagrangian way. Similar to (10), the following valid inequalities are also added to improve the relaxation:

\[
\sum_{j \in N_i^-} v^k_{ji} \leq h^k_i, \quad \forall i \in N, \forall k \in K^T_i, \tag{31}
\]
where \(h^k_i = \min\{d^k, \sum_{j \in N^+} u_{ij}\} \), \(\forall i \in N, \forall k \in K_i^T \). As before, we denote by \(\pi^k_i, \forall i \in N, \forall k \in K_i^T \), the Lagrange multipliers associated with the flow conservation equations \([7] \). We also denote by \(\gamma_{ij}, \forall(i, j) \in A \), and \(\omega^k_{ij}, \forall(i, j) \in A, \forall k \in K \), the Lagrange multipliers associated with \([23] \) and \([24] \), respectively.

The resulting Lagrangian subproblem decomposes not only by nodes, but further, for each node, into two independent subproblems, one in variables \((x, y)\) only, the other in variables \((v, z)\) only. The first subproblem, in variables \((x, y)\), can be written as follows, for each node \(i \in N \):

\[
Z^x_i(\gamma, \omega, \pi) = \min \sum_{j \in N^+_i} \left(\sum_{k \in K} c^k_{ij}(\omega, \pi)x^k_{ij} + f_{ij}(\gamma)y_{ij} \right) \tag{32}
\]

subject to \((12)-(18)\), where \(f_{ij}(\gamma) = f_{ij} - \gamma_{ij}, \forall j \in N^+_i \), and

\[
c^k_{ij}(\omega, \pi) = \begin{cases}
 c^k_{ij} - \omega^k_{ij} + \pi^k_i - \pi^k_j, & \text{if } k \in K_i^T \cap K_j^T, \\
 c^k_{ij} - \omega^k_{ij} + \pi^k_i, & \text{if } k \in K_i^T \setminus K_j^T, \\
 c^k_{ij} - \omega^k_{ij} - \pi^k_j, & \text{if } k \in K_j^T \setminus K_i^T, \\
 c^k_{ij} - \omega^k_{ij}, & \text{if } k \in K_i^O \cap K_j^D,
\end{cases} \quad \forall j \in N^+_i, \forall k \in K.
\]

The second subproblem, in variables \((v, z)\), can be written as follows, for each node \(i \in N \):

\[
Z^v_i(\gamma, \omega) = \min \sum_{j \in N^-_i} \left(\sum_{k \in K} c^k_{ji}(\omega)v^k_{ji} + f_{ji}(\gamma)z_{ji} \right) \tag{33}
\]

\[
\sum_{j \in N^-_i} v^k_{ji} = d^k, \quad \forall k \in K_i^D, \tag{34}
\]

\[
\sum_{j \in N^-_i} v^k_{ji} \leq h^k_i, \quad \forall k \in K_i^T, \tag{35}
\]

\[
v^k_{ji} = 0, \quad \forall j \in N^-_i, \forall k \in K_i^O \cup K_j^D, \tag{36}
\]

\[
\sum_{k \in K} v^k_{ji} \leq u_{ji}z_{ji}, \quad \forall j \in N^-_i, \tag{37}
\]

\[
v^k_{ji} \leq d^kz_{ji}, \quad \forall j \in N^-_i, \forall k \in K, \tag{38}
\]

\[
v^k_{ji} \geq 0, \quad \forall j \in N^-_i, \forall k \in K, \tag{39}
\]

\[
z_{ji} \in \{0, 1\}, \quad \forall j \in N^-_i, \tag{40}
\]

where \(f_{ji}(\gamma) = \gamma_{ji}, \forall j \in N^-_i \) and \(c^k_{ji} = \omega^k_{ji}, \forall j \in N^-_i, \forall k \in K \). We denote by \(U^v_i \) the set of solutions that satisfy constraints \((34)-(40)\).

The two subproblems for each node \(i \in N \) reduce to CFLPs. In the first subproblem, in variables \((x, y)\), the set of customers is \(K_i^O \cup K_i^T \), while the set of facilities is \(N^+_i \) (forward neighbours set). In the second subproblem, in variables \((v, z)\), the set of customers
is $K^D_i \cup K^T_i$, while the set of facilities is N^+_i (backward neighbours set). This node-based relaxation is thus called the forward-backward facility location relaxation.

A lower bound on Z^{ND} is computed as follows: $Z^{FB}(\gamma, \omega, \pi) = \sum_{i \in N}(Z^y_i(\gamma, \omega, \pi) + Z^{\nu z}_i(\gamma, \omega))$. To obtain the best possible lower bound, we have to solve the Lagrangian dual: $Z^{FB} = \max_{\gamma, \omega, \pi} Z^{FB}(\gamma, \omega, \pi)$. By Lagrangian duality theory, we have:

$$Z^{FB} = \min_{c, f, y} \left\{ cx + fy \mid (x, y) \in \left(\bigotimes_{i \in N} \text{conv}(T^y_i) \right), (v, z) \in \left(\bigotimes_{i \in N} \text{conv}(U^{\nu z}_i) \right) \right\}.$$

We can model this Lagrangian dual with a DW reformulation. To this aim, we denote by R_i the index set of the extreme points of $\text{conv}(T^y_i) \times \text{conv}(U^{\nu z}_i)$ for $i \in N$, i.e., $(x(r), y(r), v(r), z(r))_{r \in R_i}, i \in N$, are these extreme points. We also denote by $\theta(r)$ the variable representing the weight associated with extreme point indexed by $r \in R_i, i \in N$. The DW reformulation of the Lagrangian dual is then:

$$Z^{FB} = \min_{c, f, y} \left\{ \sum_{i \in N} \sum_{r \in R_i} \theta(r) \left(\sum_{j \in N^+_i} \sum_{k \in K} c_{ij}^k x_{ij}^k(r) + \sum_{j \in N^-_i} f_{ij} y_{ij}(r) \right) \right\}.$$

Again, we propose to solve this LP model by column generation. At any column generation iteration, we can now derive three candidate design solutions: \bar{y} and \tilde{z}, corresponding to the 0-1 values of the design variables y and their copies z, respectively, in the optimal solution of the Lagrangian subproblem; \bar{y}, obtained from the DW master problem solution $\bar{\theta}$ and defined as $y_{ij} = \sum_{r \in R_i} \bar{\theta}(r) y_{ij}(r), (i, j) \in A$.

By Lagrangian duality theory, we can show the following result:

Proposition 2 $Z^{FB} \geq Z^{FL}$ and the inequality can be strict.
Proof.

\[
Z^{FB} = \min_{x \in S^x} \left\{ cx + fy \mid (x, y) \in \bigtimes_{i \in N} \text{conv}(T_{xy}^i), (v, z) \in \bigtimes_{i \in N} \text{conv}(U_{vz}^i) \right\}
\]

\[
= \min_{x \in S^x} \left\{ cx + fy \mid (x, y) \in \bigtimes_{i \in N} \left(\text{conv}(T_{xy}^i) \cap \overline{U_{vz}^i} \right) \right\}
\]

\[
= \min_{x \in S^x} \left\{ cx + fy \mid (x, y) \in \bigtimes_{i \in N} \text{conv}(T_{xy}^i) \right\}
\]

\[
= Z^{FL}
\]

Here, \(U_{vz}^i \) is the set of solutions that satisfy (34)-(40) with \(v \) replaced by \(x \) and \(z \) replaced by \(y \). Because the CFLP does not have the integrality property, the polyhedron \(U_{vz}^i \) is not integral, i.e., we might have \(\text{conv}(U_{vz}^i) \subset \overline{U_{vz}^i} \) for some \(i \in N \), which implies that there are MCND instances where the inequality is strict.

Proposition 2 states that, in comparison with the facility location relaxation, the forward-backward facility location relaxation produces better lower bounds. There is a computational price to pay for such an improvement, since twice the number of CFLPs have to be solved at each column generation iteration (\(2 \times |N| \) compared to \(|N| \)) and the number of Lagrange multipliers is increased from \(\sum_{i \in N} |K_i| \) to \(|A| + |A||K| + \sum_{i \in N} |K_i| \).

3.3 Multicommodity single-node flow relaxation

The forward-backward facility location relaxation is based on the reformulation obtained by replacing (2) with (7)-(9) and by adding (23)-(30). To define the third node-based relaxation, we use the same reformulation, except that the flow conservation equations (7) are replaced by:

\[
\sum_{j \in N_i^+} x_{ij}^k - \sum_{j \in N_i^-} v_{ji}^k = 0, \quad \forall i \in N, \forall k \in K_i^T, \quad (47)
\]

After applying Lagrangian relaxation on the copy constraints (23) and (24), the Lagrangian subproblem decomposes by nodes, using the fact that \(A \) can be partitioned into forward sets, \(A = \bigcup_{i \in N} N_i^+ \), or into backward sets, \(A = \bigcup_{i \in N} N_i^- \). If we denote by \(\gamma_{ij} \), \((i, j) \in A \), and \(\omega_{ij}^k \), \((i, j) \in A, k \in K \), the Lagrange multipliers associated with constraints (23) and (24), respectively, the Lagrangian subproblem for each node \(i \in N \) can
be written as:

\[
Z_i^{xyvz}(\gamma, \omega) = \min_{j \in N_i^+, k \in K} \left(\sum_{k \in K} c_{ij}^k(\omega) x_{ij}^k + f_{ij}(\gamma) y_{ij} \right) + \sum_{j \in N_i^-} \left(\sum_{k \in K} c_{ji}^k(\omega) v_{ji}^k + f_{ji}(\gamma) z_{ji} \right)
\]

subject to (12)-(18), (34)-(40) and

\[
\sum_{j \in N_i^+} x_{ij}^k - \sum_{j \in N_i^-} v_{ji}^k = 0, \quad \forall k \in K_i^T,
\]

where \(f_{ij}(\gamma) = f_{ij} - \gamma_{ij}, j \in N_i^+, f_{ji}(\gamma) = \gamma_{ji}, j \in N_i^-, c_{ij}^k(\omega) = c_{ij}^k - \omega_{ij}, j \in N_i^+, k \in K\) and \(c_{ji}^k(\omega) = \omega_{ji}, j \in N_i^-, k \in K\). This subproblem is a multicommodity single-node fixed-charge network flow problem (MSNF). To the best of our knowledge, this problem has not been studied before, although its single-commodity variant has been the object of abundant work, both for characterizing its convex hull (see \cite{2} and the references therein) and for deriving efficient algorithms (at least for the special case with no transshipment, see \cite{34} and the references therein). We call this relaxation the multicommodity single-node flow relaxation. We denote by \(V_i^{xyvz}\) the set of solutions that satisfy constraints (12)-(18), (34)-(40), and by and \(W_i^{xy}v\) the set of solutions to equations (49). The set of feasible solutions to the Lagrangian subproblem is thus \(V_i^{xyvz} \cap W_i^{xyv}\).

A lower bound on \(Z^{ND}\) is computed as follows: \(Z^{SN}(\gamma, \omega) = \sum_{i \in N} Z_i^{xyvz}(\gamma, \omega)\). The best possible lower bound is obtained by solving the Lagrangian dual: \(Z^{SN} = \max_{\gamma,\omega} Z^{SN}(\gamma, \omega)\). By Lagrangian duality theory, we have:

\[
Z^{SN} = \min \left\{ cx + fy \mid z = y, v = x, (x, y, v, z) \in \bigcap_{i \in N} \text{conv}(V_i^{xyvz} \cap W_i^{xyv}) \right\}.
\]

To derive the DW reformulation of the Lagrangian dual, we denote by \(P_i\) the index set of the extreme points of \(\text{conv}(V_i^{xyvz} \cap W_i^{xyv})\) for \(i \in N\), i.e., \((x(p), y(p), v(p), z(p))_{p \in P_i}, i \in N\), are these extreme points. We also denote by \(\theta(p)\) the variable representing the weight associated with extreme point indexed by \(p \in P_i, i \in N\). The DW reformulation of the Lagrangian dual is then written as:

\[
Z^{SN} = \min \sum_{i \in N} \sum_{p \in P_i} \theta(p) \left(\sum_{j \in N_i^+, k \in K} c_{ij}^k x_{ij}^k(p) + \sum_{j \in N_i^+} f_{ij} y_{ij}(p) \right)
\]
When solving this LP model by column generation, we can derive at any iteration three candidate design solutions: \(\widetilde{y} \) and \(\widetilde{z} \), corresponding to the 0-1 values of the design variables \(y \) and their copies \(z \), respectively, in the optimal solution of the Lagrangian subproblem; \(\overline{y} \), obtained from the DW master problem solution \(\overline{\theta} \) and defined as
\[
y_{ij} = \sum_{p \in P_i} \theta(p) y_{ij}(p), \quad \forall (i, j) \in A.
\]

Proposition 3 \(Z^{SN} \geq Z^{FB} \) and the inequality can be strict.

Proof.

\[
Z^{SN} = \min \left\{ cx + fy \mid z = y, v = x, (x, y, v, z) \in \bigotimes_{i \in N} \left(\text{conv} (V_i^{xyvz} \cap W_i^{zxv}) \right) \right\}
\]

\[
\geq \min \left\{ cx + fy \mid z = y, v = x, (x, y, v, z) \in \bigotimes_{i \in N} \left(\text{conv} (V_i^{xyvz}) \cap \text{conv} (W_i^{zxv}) \right) \right\}
\]

\[
= \min \left\{ cx + fy \mid z = y, v = x, (x, y, v, z) \in \bigotimes_{i \in N} \left(\text{conv} (V_i^{xyvz} \cap W_i^{zxv}) \right) \right\}
\]

\[
= \min \left\{ cx + fy \mid z = y, v = x, (x, y, v, z) \in \bigotimes_{i \in N} W_i^{zxv} \right\} \cap \left(\bigotimes_{i \in N} \text{conv} (V_i^{xyvz}) \right)
\]

\[
= \min_{x \in S^x, z = y, v = x} \left\{ cx + fy \mid (x, y) \in \left(\bigotimes_{i \in N} \text{conv} (T_i^{xy}) \right) \right\}
\]

\[
= Z^{FB}
\]

Since solving independently the two CFLPs for each \(i \in N \) (one over the set \(T_i^{xy} \), the other over the set \(U_i^{yz} \)) does not guarantee that constraints \((49) \) are satisfied, there are instances for which \(\text{conv} (V_i^{xyvz} \cap W_i^{zxv}) \subset \left(\text{conv} (V_i^{xyvz}) \cap \text{conv} (W_i^{zxv}) \right) \), which implies that there are MCND instances for which \(Z^{SN} > Z^{FB} \).
Proposition 3 states that, in comparison with the forward-backward location relaxation, the multicommodity single-node flow relaxation produces better lower bounds. However, the Lagrangian subproblem of the multicommodity single-node flow relaxation is more difficult to solve, as it does not decompose into $2 \times |N|$ independent CFLPs.

4 Lagrangian matheuristic

Traditional Lagrangian heuristics alternate between solving series of Lagrangian subproblems, each providing a partial solution that is given as input to a primal heuristic that restores the feasibility of this partial solution, often through a simple local search procedure. Our Lagrangian matheuristic does not differ fundamentally from this classical approach, but instead of simple local search, it uses state-of-the-art mathematical programming methods to restore feasibility, while also exploiting concepts from the metaheuristics literature, such as intensification and diversification. An advantage of this approach over many heuristics is that it works simultaneously on the dual and the primal sides to produce feasible solutions with a measurable quality.

On the dual side, the Lagrangian matheuristic solves by column generation the DW reformulation associated with one of the three node-based Lagrangian relaxations presented in Section 3. The choice of which of the three relaxations to select depends on the tradeoff between the quality of the lower bound and the time needed to compute that bound. In our computational results presented in Section 5, we compare the results obtained with the three relaxations on a set of benchmark instances. In addition to measuring the performance of the three relaxations, we also compare them to the classical flow and knapsack relaxations.

On the primal side, the Lagrangian matheuristic receives candidate design solutions derived from the column generation method, either from the Lagrangian subproblem solutions (as in a classical Lagrangian heuristic) or from the restricted master problem. In this last case, the candidate design solution can assume fractional values, as it is a convex combination of candidate design solutions derived from the Lagrangian subproblems. These candidate design solutions are used as input to a slope scaling procedure that derives feasible solutions to the MCND, as explained in Section 4.2.

In what follows, we assume the availability of a state-of-the-art LP code to solve the DW master problem at each column generation iteration. In addition, we assume the availability of algorithms for the following problems:

- **CFLP.** An efficient algorithm for the CFLP is needed to solve the Lagrangian subproblems arising from the facility location and forward-backward facility location relaxations. For the column generation method to converge, an exact algorithm should be used, but it could be stopped before optimality is achieved provided it delivers at least one feasible solution (see Section 4.1). Several algorithms for the
CFLP have been proposed in the literature (see [16] and the references therein). Given the relatively small size of the instances we have to solve (there are $O(10)$ facilities and $O(100)$ customers for each CFLP when the decomposition by nodes is applied on an MCND instance with $O(100)$ arcs and $O(100)$ commodities), a viable alternative is to use a state-of-the-art MIP solver. In our experiments, we choose this option and use CPLEX.

- **MSNF.** An exact algorithm for the MSNF is required to ensure convergence of the column generation method applied to the multicommodity single-node flow relaxation. We are not aware of any existing specialized algorithms for this problem, hence we use the state-of-the-art MIP solver CPLEX, which could be stopped before optimality is achieved (see Section 4.1).

- **MMCF.** The slope scaling heuristic described in Section 4.2 solves a linear MMCF at each iteration. Although there are several specialized decomposition methods for this problem (see [3] and the references therein), the MMCF instances derived from our benchmark are relatively easy to solve for general-purpose state-of-the-art LP solvers, so we use CPLEX in our experiments.

- **MCND.** We assume the availability of an algorithm to solve small- to medium-scale instances of the MCND derived from any large-scale instance by fixing the values of some design variables. Such an algorithm is typically used as a heuristic by limiting the computational effort. We assume it is easy to provide as input to this algorithm a feasible solution, along with upper and lower bounds on the optimal value of the original, large-scale, instance. In our experiments, we give the MIP model to CPLEX to ease the implementation. Other viable alternatives would be the exact methods described in Section 2.

The Lagrangian matheuristic consists of four main steps:

1. **Solving the unrestricted MCND.** The original problem is solved for a limited time (using CPLEX for 30 minutes in our experiments) in order to find an initial feasible solution and to put aside the instances for which the optimal solutions are already found at this step.

2. **Solving the Lagrangian dual.** During this step, the column generation method is used to find lower bounds, while the slope scaling procedure is called on a regular basis to compute upper bounds (see Section 4.3 for details). The slope scaling heuristic receives as input the candidate design solutions computed by the column generation procedure. The slope scaling heuristic is also enhanced with intensification and diversification procedures (see Section 4.4).
3. **Solving restricted MCNDs.** Several restricted restricted MCNDs are solved to improve the upper bound. A long-term memory of elite solutions, constantly updated during the calls to the slope scaling procedure, is used during this step, which can be seen as a form of intensification (see Section 4.4).

4. **Solving the bounded unrestricted MCND.** The original problem is solved again for a limited time, by providing as input the best feasible solution identified so far, as well as the best upper and lower bounds on the objective value (in our experiments, we use CPLEX for a maximum of 4,200 seconds, but not exceeding 3 hours for all four steps).

4.1 Lagrangian dual optimization

We use column generation to solve the Lagrangian dual. The column generation method is stopped when it has converged or when a maximum number of iterations is achieved or when a time limit is reached (including the time spent in the slope scaling heuristic). These parameters were calibrated in our experiments (see Section 5.1). Following this calibration, we set the maximum number of iterations to 1,000 and the time limit to 4,200 seconds. At each iteration, the Lagrangian subproblem of the corresponding node-based relaxation has to be solved in order to obtain a lower bound and new columns to add to the DW master problem.

When solving the Lagrangian subproblems, we add the following knapsack inequalities to the CFLPs or the MSNFs associated to a given node $i \in N$, since these inequalities generally improve the performance of algorithms to solve these problems:

\[
\sum_{j \in N_i^+} u_{ij} y_{ij} \geq \sum_{k \in K_i^O} d^k, \\
\sum_{j \in N_i^-} u_{ji} z_{ji} \geq \sum_{k \in K_i^P} d^k.
\]

Even with these enhancements, solving the subproblems might be costly in terms of computational time. To accelerate the solution of the subproblems, we use the following approach. Assuming that each node-based subproblem (either a CFLP or an MSNF) is solved by B&B, we stop the B&B algorithm either when an optimality gap ϵ is attained or when a limited number of nodes L is reached. During the course of the column generation method, the values of the two parameters are gradually modified, so that early termination of the B&B is favored during the first iterations, while the B&B is almost exact near the end. The parameters are initially set to $\epsilon = 10^{-2}$ and $L = 10$. Subsequently, every 5 column generation iterations, ϵ is decreased by multiplying it by 0.95, down to a limit of $\epsilon = 10^{-6}$, while L is multiplied by 10.
4.2 Slope scaling heuristic

To obtain feasible solutions to the MCND, we use a slope scaling procedure, where the following linear MMCF is solved at each iteration:

$$\min \sum_{(i,j) \in A} \sum_{k \in K} c_{ij}^k x_{ij}^k$$ \hspace{1cm} (55)

subject to (2), (5) and

$$\sum_{k \in K} x_{ij}^k \leq u_{ij}, \ \forall (i, j) \in A.$$ \hspace{1cm} (56)

Given an optimal solution π to this MMCF, a feasible solution (π, γ) to the MCND is immediately derived:

$$\gamma_{ij} = \left\lceil \frac{\sum_{k \in K} \pi_{ij}^k}{u_{ij}} \right\rceil, \ (i, j) \in A.$$

Provided by the column generation method with a candidate design solution $\hat{\gamma}$, the slope scaling procedure starts with the following initial linearized costs, where M is a large positive value:

$$c_{ij}^k = \left(c_{ij}^k + \frac{f_{ij}}{u_{ij}} \right) \left(1 + M(1 - \hat{\gamma}_{ij}) \right), \ \forall (i, j) \in A, \forall k \in K.$$ \hspace{1cm} (57)

When $\hat{\gamma}_{ij} = 1$, for some arc $(i, j) \in A$, the corresponding costs are linearized in such a way that, if the arc is used at its full capacity in the optimal solution π to the MMCF, then the exact costs, variable and fixed, would be accounted for in the feasible solution (π, γ) to the MCND. If $\hat{\gamma}_{ij} = 0$, for some arc $(i, j) \in A$, then the linearized costs are set to large positive values to “discourage” any commodity to be routed on arc (i, j). Note that, even if $\hat{\gamma}$ has fractional components, formula (57) can be used and has a similar interpretation: the commodities are “discouraged” (respectively, “encouraged”) to be routed on the arcs with $\hat{\gamma}$ values close to 0 (respectively, close to 1).

After solving the MMCF at each iteration, a flow solution π is obtained and the linearized costs are updated using the following formula to trigger the next iteration:

$$c_{ij}^k = \begin{cases} c_{ij}^k + \frac{f_{ij}}{\sum_{k \in K} \pi_{ij}^k}, & \text{if } \pi_{ij}^k > 0, \\ c_{ij}^k, & \text{if } \pi_{ij}^k = 0, \end{cases} \ \forall (i, j) \in A, \forall k \in K.$$ \hspace{1cm} (58)

If $\pi_{ij}^k = 0$, the linear cost at the previous iteration is kept as is, since this cost was already large enough to incur no flow. When $\pi_{ij}^k > 0$, this formula ensures that, at the next iteration, if the solution remains the same, the linear costs of π reflect the exact costs, variable and fixed, of (π, γ), the corresponding feasible solution to the MCND, i.e.,

$$\sum_{k \in K} \sum_{(i,j) \in A} \pi_{ij}^k \gamma_{ij} = \sum_{k \in K} \sum_{(i,j) \in A} c_{ij}^k \pi_{ij}^k + \sum_{(i,j) \in A} f_{ij} \gamma_{ij}.$$

The slope scaling procedure is stopped either when the same objective value is obtained for two successive iterations or when a predefined maximum number of iterations is attained (25 in our experiments).
4.3 Combining slope scaling and Lagrangian dual optimization

At each iteration of the column generation method, several candidate design solutions are generated. For the facility location relaxation, the Lagrangian subproblem produces one candidate design solution \(\bar{y} \), while for the forward-backward facility location and multicommodity single-node flow relaxations, two candidate design solutions, \(\bar{y} \) and \(\bar{z} \), are generated. In addition, the solution of the DW master problem for all three relaxations provide a (fractional) candidate design solution \(\bar{y} \). These candidate design solutions are given as input to the slope scaling procedure (each such candidate design solution is stored in a memory in order to avoid calling the procedure twice with the same input).

We use the following rules to decide when to call the slope scaling procedure in conjunction with the column generation method:

- Call the slope scaling procedure using the candidate design solutions that correspond to the best lower bound obtained at the end of the column generation method.

- Call the slope scaling procedure if the lower bound has improved “significantly” since the last time the upper bound was computed. The improvement is considered “significant” if \((Z_c - Z_l)/Z_l > \delta \), where \(\delta \) is a parameter and \(Z_c \) and \(Z_l \) are, respectively, the lower bound computed at the current iteration and the lower bound obtained the last time the slope scaling procedure was called.

- Call the slope scaling procedure every \(n \)th iteration of the column generation method (to avoid too early “freezing” of the upper bound in case \(\delta \) is too large).

The parameters \(\delta \) and \(n \) were calibrated for each Lagrangian relaxation and the values used in our experiments are given in Section 5.1.

4.4 Intensification and diversification

At the end of the slope scaling procedure, two intensification steps are performed. The first intensification selects the \(\kappa \) best feasible solutions obtained during this call to the procedure (in our experiments, we use \(\kappa = 4 \)). For each such solution \((x, y) \), a linear MMCF is defined by setting the costs to the following values, where \(M \) is a large positive value:

\[
\tau_{ij}^k = \begin{cases} c_{ij}^k, & \text{if } y_{ij} > 0, \\ M, & \text{if } y_{ij} = 0, \end{cases} \quad \forall (i, j) \in A, \forall k \in K.
\]

Note that \(\bar{x} \) is feasible for this MMCF, but not necessarily optimal. This MMCF is solved in the hope of obtaining a better flow distribution for the same assignment of the design variables. The second intensification consists in solving a restricted MCND (for a limited time, set to 200 seconds in our experiments) using as guides the best solution
obtained after the first intensification and the best solution found so far. This restricted MCND is obtained by fixing to 0 the design variables that assume value 0 in both of these solutions.

The remaining intensification and diversification mechanisms make use of a long-term memory of the best feasible solutions found so far, denoted \mathcal{P}. We limit the number of solutions (1,000 in our experiments) kept in this memory and update it all along the algorithm.

In the case where several successive calls (5 in our experiments) to the slope scaling procedure (including the two intensifications) could not improve the upper bound, a diversification step is performed. The idea of this diversification step is to “discourage” the selection of arcs that are frequently used in the solutions stored in \mathcal{P}. This diversification step consists of a small number (at most 10) of calls to the slope scaling procedure, each time using as input a candidate design solution \hat{y} corresponding to the best solution in \mathcal{P}, slightly modified by closing 10 arcs, randomly selected from the most frequently used arcs (in at least 90% of) the solutions stored in \mathcal{P}. The selected arcs are tagged to avoid choosing them again in a subsequent slope scaling call during the same diversification step.

After solving the Lagrangian dual, including the calls to the slope scaling procedure and the intensification/diversification steps just described, we enter an intensification phase where several restricted MCNDs are solved, each one being stopped when a predefined optimality gap is reached (0.3% in our experiments). To define the t^{th}, $t \geq 1$ restricted MCND, we select the $t + 1$ best solutions from \mathcal{P}. The design variables that assume value 0 in all these solutions are fixed to 0. Each restricted MCND is enhanced by providing as input the best feasible solution. We also add a constraint that bounds from below the objective value, using the best lower bound computed by the column generation method. This intensification phase stops when it reaches a time limit (4,200 seconds in our experiments) or when the t^{th} best solution, to be used to define the next restricted MCND, is “too far” (in quality) from the overall best solution, i.e., when the gap between the two solutions is “too large” (we use 20% in our experiments).

5 Computational results

Our computational experiments have been performed on a computer with Intel Xeon-X5675 CPU 3.07GHz. To implement the column generation method, we use BTT, version 3.44, a publicly available code that enables to implement subgradient, bundle and column generation methods for solving Lagrangian duals. In particular, the code solves the DW master problems either with quadratic or linear solvers, and it can construct aggregated (i.e., each Lagrangian subproblem provides a single subgradient) or disaggregated (i.e., the Lagrangian subproblem decomposes into several subproblems, each providing its part
of a subgradient) DW master problems. For the three node-based relaxations, we solve disaggregated DW master problems, as described in Section 3, using CPLEX version 12.6.3, which is called by BTT. We also use the same version of CPLEX to solve the different MIP models, i.e., CFLP, MSNF and MCND. We use the default parameters of CPLEX, except when solving the restricted MCNDs, where we deactivated cut generation to focus on the fast computation of feasible solutions.

We compare the three node-based relaxation with one another, as well as with the classical flow and knapsack relaxations. For the flow relaxation, we solve the (disaggregated) DW reformulation with “easy components” using BTT [18], which can be considered as state-of-the-art. For the knapsack relaxation, we use the bundle method implemented in BTT (with a limit of 10,000 iterations) that solves the (aggregated) DW reformulation with a “stabilizing” quadratic objective function (this variant was shown to be the most effective in preliminary tests). We denote by Z^{FW} and Z^{KN} the Lagrangian dual bound for the flow and knapsack relaxations, respectively. For both relaxations, we adapted in a straightforward way the Lagrangian matheuristic presented in Section 4.

We tested our algorithms on 43 of the most difficult C and C+ instances widely used in the literature [9]. These instances consist of general transshipment networks with one commodity per origin-destination pair and no parallel arcs. Each test instance is characterized by the number of nodes $|N|$, the number of arcs $|A|$, the number of commodities $|K|$, the degree of capacity tightness, with regard to the total demand, and the importance of the fixed costs, with respect to the variable costs. For this subset of instances, the number of nodes is between 20 and 100, the number of arcs varies from 100 to 700, while the number of commodities ranges from 10 to 400. Each instance is identified with five entries of the form $|N|,|A|,|K|$, “F” or “V”, “T” or “L”, where the first three represent the dimensions, while the last two indicate if fixed (“F”) or variable (“V”) costs are dominant and whether the instance is tightly (“T”) or loosely (“L”) capacitated. Both these instances and the BTT code can be found at www.di.unipi.it/~frangio.

5.1 Lower bound computations

Table 1 presents a comparison of the lower bounds obtained by solving the Lagrangian duals of the different relaxations. The LP relaxation bound is also computed with CPLEX. In these experiments, the time limit is set to 2 hours and only the column generation (or bundle) method is performed (there is no call to the slope scaling heuristic). The first column shows the characteristics of the instances. Column Z^{LP} is the LP relaxation bound, while the next columns show the gaps between the lower bound of the different relaxations and LP relaxation bound, i.e., $100 \div (Z^{LP} - Z^{LR})/Z^{LP}$ where Z^{LR} is the lower bound of any one of the five Lagrangian relaxations (a negative value indicates a better lower bound than Z^{LP}).

Theoretically, the lower bounds obtained by the flow and knapsack relaxations are
equal to the LP relaxation bound. Therefore, positive values in columns Z^{FW} and Z^{KN} indicate that the computations were stopped due to either the numerical accuracy to declare convergence, or the time and iteration limits. It is noteworthy that the facility location relaxation always produces a better lower bound than Z^{LP}. It is not the case, however, for the forward-backward facility location and multicommodity single-node relaxations, for which the lower bounds are worse for 3 and 8 instances, respectively. For these large-scale instances with 400 commodities, the computations were stopped prematurely because of the time limit. Overall, the improvements over Z^{LP} obtained by Z^{FL}, Z^{FB} and Z^{SN} are significant: on average, 0.5%, 0.9%, and 1.8%, respectively, with maximum values of 4.8%, 7.7%, and 20.5%, respectively.

Table 2 shows the gaps between the Lagrangian relaxation lower bounds and the best known upper bounds reported in the literature, shown in column Z^{ND}. The remaining columns display the gaps, computed as $100 \times (Z^{ND} - Z^{LR})/Z^{ND}$, where Z^{LR} is the lower bound obtained by any of the five Lagrangian relaxations, respectively. The results show that, in comparison with the flow and knapsack relaxations, the node-based relaxations improve the gaps significantly, in particular the multicommodity single-node flow relaxation, with the exception of the instances with 400 commodities.

Table 3 shows statistics on the computational performance of the different relaxation methods. The first row presents the total computational times, on average over all instances. The fastest method by far is the flow relaxation. It is worth noting that both the flow and the knapsack relaxations are faster than CPLEX to compute the LP relaxation bound. Although the times are significant for the facility location relaxation, they are still reasonable (about four times slower than the LP relaxation computed by CPLEX). The results show, however, a very significant computational effort for the forward-backward and single-node flow relaxations, as they are both one order of magnitude slower than the facility location relaxation. The second row shows the number of master problem iterations for the different relaxations. The third and fourth rows present the fractions of the times dedicated to the solution of the Lagrangian subproblems and to the master problems, respectively. The table shows that a large proportion of the time is devoted to the solution of the master problems for all relaxations, except for the multicommodity single-node flow relaxation for which most of the time (65%) is spent in solving the Lagrangian subproblems.

5.2 Upper bound computations

We use a two-phase parameter calibration process to find suitable values for the parameters. In the first phase, we tune the parameters associated with a particular relaxation and the column generation method. In the second phase, we calibrate the slope scaling heuristic parameters in two steps. The first step is to calibrate n and δ, the parameters used to initiate a call to the slope scaling procedure (see Section 4.3). Since the total
Table 1: Comparison between lower bounds

<table>
<thead>
<tr>
<th>Instance</th>
<th>Z^{LP}</th>
<th>Z^{FW}</th>
<th>Z^{KN}</th>
<th>Z^{FL}</th>
<th>Z^{FB}</th>
<th>Z^{SN}</th>
</tr>
</thead>
<tbody>
<tr>
<td>25,100,10VL</td>
<td>14610.0</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.074</td>
<td>-0.133</td>
<td>-0.224</td>
</tr>
<tr>
<td>25,100,10FL</td>
<td>13017.5</td>
<td>0.000</td>
<td>0.000</td>
<td>-1.459</td>
<td>-3.595</td>
<td>-6.794</td>
</tr>
<tr>
<td>25,100,10FT</td>
<td>43454.7</td>
<td>0.001</td>
<td>0.000</td>
<td>-2.402</td>
<td>-3.647</td>
<td>-10.332</td>
</tr>
<tr>
<td>25,100,30VT</td>
<td>364390.0</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.044</td>
<td>-0.074</td>
<td>-0.145</td>
</tr>
<tr>
<td>25,100,30FL</td>
<td>33543.5</td>
<td>0.010</td>
<td>0.000</td>
<td>-0.842</td>
<td>-4.291</td>
<td>-6.815</td>
</tr>
<tr>
<td>25,100,30FT</td>
<td>82418.5</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.555</td>
<td>-0.605</td>
<td>-2.168</td>
</tr>
<tr>
<td>20,230,40VL</td>
<td>422853.0</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.011</td>
<td>-0.201</td>
<td>-0.207</td>
</tr>
<tr>
<td>20,230,40VT</td>
<td>368819.0</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.186</td>
<td>-0.400</td>
<td>-0.613</td>
</tr>
<tr>
<td>20,230,40FT</td>
<td>633466.0</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.302</td>
<td>-0.619</td>
<td>-0.878</td>
</tr>
<tr>
<td>20,300,40VL</td>
<td>427947.0</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.044</td>
<td>-0.074</td>
<td>-0.145</td>
</tr>
<tr>
<td>20,300,40VT</td>
<td>575255.0</td>
<td>0.001</td>
<td>0.000</td>
<td>-0.004</td>
<td>-0.011</td>
<td>-1.047</td>
</tr>
<tr>
<td>20,300,40FT</td>
<td>82418.5</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.555</td>
<td>-0.605</td>
<td>-2.168</td>
</tr>
<tr>
<td>20,230,200VL</td>
<td>91300.6</td>
<td>0.000</td>
<td>0.022</td>
<td>-0.213</td>
<td>-0.189</td>
<td>-0.079</td>
</tr>
<tr>
<td>20,230,200FL</td>
<td>132036.0</td>
<td>0.000</td>
<td>0.025</td>
<td>-0.326</td>
<td>-0.273</td>
<td>-0.358</td>
</tr>
<tr>
<td>20,230,200VT</td>
<td>95669.3</td>
<td>0.008</td>
<td>0.019</td>
<td>-0.113</td>
<td>-0.098</td>
<td>-0.134</td>
</tr>
<tr>
<td>20,230,200FT</td>
<td>131544.0</td>
<td>0.000</td>
<td>0.023</td>
<td>-0.160</td>
<td>-0.125</td>
<td>-0.138</td>
</tr>
<tr>
<td>20,300,200VL</td>
<td>73126.9</td>
<td>0.006</td>
<td>0.016</td>
<td>-0.094</td>
<td>-0.091</td>
<td>-0.133</td>
</tr>
<tr>
<td>20,300,200VT</td>
<td>74002.7</td>
<td>0.008</td>
<td>0.005</td>
<td>-0.050</td>
<td>-0.045</td>
<td>-0.199</td>
</tr>
<tr>
<td>20,300,200FT</td>
<td>103633.0</td>
<td>0.005</td>
<td>0.009</td>
<td>-0.327</td>
<td>-0.315</td>
<td>-0.185</td>
</tr>
<tr>
<td>100,400,10VL</td>
<td>27465.3</td>
<td>0.000</td>
<td>0.007</td>
<td>-0.063</td>
<td>-0.598</td>
<td>-1.890</td>
</tr>
<tr>
<td>100,400,10FL</td>
<td>19748.1</td>
<td>0.002</td>
<td>0.000</td>
<td>-3.871</td>
<td>-6.351</td>
<td>-11.112</td>
</tr>
<tr>
<td>100,400,10FT</td>
<td>48375.4</td>
<td>0.000</td>
<td>0.000</td>
<td>-4.767</td>
<td>-7.713</td>
<td>-20.518</td>
</tr>
<tr>
<td>100,400,30VT</td>
<td>380858.0</td>
<td>0.001</td>
<td>0.000</td>
<td>-0.068</td>
<td>-0.135</td>
<td>-0.521</td>
</tr>
<tr>
<td>100,400,30FL</td>
<td>45332.4</td>
<td>0.000</td>
<td>0.002</td>
<td>-1.412</td>
<td>-2.299</td>
<td>-5.048</td>
</tr>
<tr>
<td>100,400,30FT</td>
<td>53022.9</td>
<td>0.007</td>
<td>0.002</td>
<td>-0.291</td>
<td>-0.309</td>
<td>-0.732</td>
</tr>
<tr>
<td>30,520,100VL</td>
<td>51325.6</td>
<td>0.002</td>
<td>0.005</td>
<td>-0.090</td>
<td>-0.397</td>
<td>-0.632</td>
</tr>
<tr>
<td>30,520,100VT</td>
<td>45077.7</td>
<td>0.002</td>
<td>0.005</td>
<td>-0.090</td>
<td>-0.397</td>
<td>-0.632</td>
</tr>
<tr>
<td>30,520,100FL</td>
<td>94010.8</td>
<td>0.003</td>
<td>0.021</td>
<td>-0.273</td>
<td>-0.301</td>
<td>-0.398</td>
</tr>
<tr>
<td>30,700,100VL</td>
<td>47308.1</td>
<td>0.000</td>
<td>0.001</td>
<td>-0.052</td>
<td>-0.061</td>
<td>-0.302</td>
</tr>
<tr>
<td>30,700,100FL</td>
<td>58207.2</td>
<td>0.003</td>
<td>0.018</td>
<td>-0.089</td>
<td>-0.094</td>
<td>-0.360</td>
</tr>
<tr>
<td>30,700,100VT</td>
<td>45077.7</td>
<td>0.000</td>
<td>0.006</td>
<td>-0.301</td>
<td>-0.388</td>
<td>-0.568</td>
</tr>
<tr>
<td>30,700,100FT</td>
<td>53660.9</td>
<td>0.005</td>
<td>0.015</td>
<td>-0.226</td>
<td>-0.307</td>
<td>-0.407</td>
</tr>
<tr>
<td>30,520,400VL</td>
<td>111763.0</td>
<td>0.007</td>
<td>0.011</td>
<td>-0.106</td>
<td>-0.070</td>
<td>0.278</td>
</tr>
<tr>
<td>30,520,400FL</td>
<td>146880.0</td>
<td>0.005</td>
<td>0.011</td>
<td>-0.085</td>
<td>-0.030</td>
<td>0.647</td>
</tr>
<tr>
<td>30,520,400VT</td>
<td>114061.0</td>
<td>0.007</td>
<td>0.012</td>
<td>-0.071</td>
<td>-0.053</td>
<td>0.309</td>
</tr>
<tr>
<td>30,520,400FT</td>
<td>149751.0</td>
<td>0.003</td>
<td>0.017</td>
<td>-0.083</td>
<td>-0.031</td>
<td>0.399</td>
</tr>
<tr>
<td>30,700,400VL</td>
<td>96605.0</td>
<td>0.000</td>
<td>0.015</td>
<td>-0.080</td>
<td>0.035</td>
<td>1.517</td>
</tr>
<tr>
<td>30,700,400FL</td>
<td>130724.0</td>
<td>0.004</td>
<td>0.017</td>
<td>-0.099</td>
<td>0.082</td>
<td>2.454</td>
</tr>
<tr>
<td>30,700,400VT</td>
<td>94011.9</td>
<td>0.006</td>
<td>0.010</td>
<td>-0.097</td>
<td>-0.018</td>
<td>1.581</td>
</tr>
<tr>
<td>30,700,400FT</td>
<td>127572.0</td>
<td>0.008</td>
<td>0.011</td>
<td>-0.056</td>
<td>0.023</td>
<td>1.397</td>
</tr>
</tbody>
</table>

Average: 0.003 0.008 -0.508 -0.919 -1.781
Maximum: 0.010 0.045 0.000 0.082 2.454
Minimum: 0.000 0.000 -4.767 -7.713 -20.518
<table>
<thead>
<tr>
<th>Instance</th>
<th>Z_{10}^{ND}</th>
<th>Z_{FW}</th>
<th>Z_{KN}</th>
<th>Z_{FL}</th>
<th>Z_{FB}</th>
<th>Z_{SN}</th>
</tr>
</thead>
<tbody>
<tr>
<td>25,100,10VL</td>
<td>14712.0</td>
<td>0.69</td>
<td>0.69</td>
<td>0.62</td>
<td>0.56</td>
<td>0.47</td>
</tr>
<tr>
<td>25,100,10FL</td>
<td>14941.0</td>
<td>12.87</td>
<td>12.87</td>
<td>11.60</td>
<td>9.74</td>
<td>6.95</td>
</tr>
<tr>
<td>25,100,10FT</td>
<td>49899.0</td>
<td>12.92</td>
<td>12.91</td>
<td>10.82</td>
<td>9.74</td>
<td>6.95</td>
</tr>
<tr>
<td>25,100,30VT</td>
<td>365272.0</td>
<td>0.24</td>
<td>0.24</td>
<td>0.20</td>
<td>0.17</td>
<td>0.10</td>
</tr>
<tr>
<td>25,100,30FL</td>
<td>37060.0</td>
<td>9.50</td>
<td>9.49</td>
<td>8.73</td>
<td>5.60</td>
<td>3.32</td>
</tr>
<tr>
<td>25,100,30FT</td>
<td>85530.0</td>
<td>3.64</td>
<td>3.64</td>
<td>3.10</td>
<td>3.06</td>
<td>1.55</td>
</tr>
<tr>
<td>20,230,40VL</td>
<td>423848.0</td>
<td>0.23</td>
<td>0.23</td>
<td>0.22</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>20,230,40VT</td>
<td>371475.0</td>
<td>0.71</td>
<td>0.72</td>
<td>0.53</td>
<td>0.32</td>
<td>0.11</td>
</tr>
<tr>
<td>20,230,40FT</td>
<td>643036.0</td>
<td>1.49</td>
<td>1.49</td>
<td>1.19</td>
<td>0.88</td>
<td>0.62</td>
</tr>
<tr>
<td>20,300,40VL</td>
<td>429398.0</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>20,300,40VT</td>
<td>586077.0</td>
<td>1.85</td>
<td>1.85</td>
<td>1.84</td>
<td>1.84</td>
<td>0.82</td>
</tr>
<tr>
<td>20,300,40FT</td>
<td>464509.0</td>
<td>0.77</td>
<td>0.77</td>
<td>0.60</td>
<td>0.46</td>
<td>0.27</td>
</tr>
<tr>
<td>20,300,40FL</td>
<td>604198.0</td>
<td>1.22</td>
<td>1.22</td>
<td>1.08</td>
<td>0.95</td>
<td>0.44</td>
</tr>
<tr>
<td>20,230,200VL</td>
<td>94213.0</td>
<td>3.09</td>
<td>3.11</td>
<td>2.88</td>
<td>2.91</td>
<td>3.01</td>
</tr>
<tr>
<td>20,230,200VT</td>
<td>137642.0</td>
<td>4.07</td>
<td>4.10</td>
<td>3.76</td>
<td>3.81</td>
<td>3.73</td>
</tr>
<tr>
<td>20,230,200FT</td>
<td>745111.0</td>
<td>2.26</td>
<td>2.27</td>
<td>2.16</td>
<td>2.16</td>
<td>2.12</td>
</tr>
<tr>
<td>20,230,200VL</td>
<td>115539.0</td>
<td>3.99</td>
<td>4.00</td>
<td>3.89</td>
<td>3.92</td>
<td>3.70</td>
</tr>
<tr>
<td>20,230,200VT</td>
<td>74991.0</td>
<td>1.33</td>
<td>1.32</td>
<td>1.27</td>
<td>1.27</td>
<td>1.12</td>
</tr>
<tr>
<td>20,230,200FT</td>
<td>107102.0</td>
<td>3.24</td>
<td>3.25</td>
<td>2.92</td>
<td>2.93</td>
<td>3.06</td>
</tr>
<tr>
<td>20,300,200VL</td>
<td>28423.0</td>
<td>3.37</td>
<td>3.38</td>
<td>3.31</td>
<td>2.79</td>
<td>1.54</td>
</tr>
<tr>
<td>20,300,200VT</td>
<td>23949.0</td>
<td>17.54</td>
<td>17.54</td>
<td>14.35</td>
<td>12.30</td>
<td>8.38</td>
</tr>
<tr>
<td>20,300,200FT</td>
<td>63753.0</td>
<td>24.12</td>
<td>24.12</td>
<td>20.50</td>
<td>18.27</td>
<td>8.55</td>
</tr>
<tr>
<td>100,400,10VL</td>
<td>384802.0</td>
<td>1.03</td>
<td>1.02</td>
<td>0.96</td>
<td>0.89</td>
<td>0.51</td>
</tr>
<tr>
<td>100,400,10VF</td>
<td>49018.0</td>
<td>7.52</td>
<td>7.52</td>
<td>6.21</td>
<td>5.39</td>
<td>2.85</td>
</tr>
<tr>
<td>100,400,10FT</td>
<td>135866.0</td>
<td>3.18</td>
<td>3.20</td>
<td>3.03</td>
<td>3.06</td>
<td>3.05</td>
</tr>
<tr>
<td>100,400,30VL</td>
<td>74811.0</td>
<td>1.39</td>
<td>1.39</td>
<td>1.30</td>
<td>0.99</td>
<td>0.76</td>
</tr>
<tr>
<td>100,400,30VT</td>
<td>97914.0</td>
<td>1.74</td>
<td>1.74</td>
<td>1.45</td>
<td>1.43</td>
<td>1.01</td>
</tr>
<tr>
<td>100,400,30FT</td>
<td>52046.0</td>
<td>4.04</td>
<td>4.08</td>
<td>3.94</td>
<td>3.97</td>
<td>3.77</td>
</tr>
<tr>
<td>100,400,30FL</td>
<td>97107.0</td>
<td>3.19</td>
<td>3.21</td>
<td>2.92</td>
<td>2.90</td>
<td>2.80</td>
</tr>
<tr>
<td>30,520,100VL</td>
<td>47603.0</td>
<td>0.62</td>
<td>0.62</td>
<td>0.57</td>
<td>0.56</td>
<td>0.32</td>
</tr>
<tr>
<td>30,520,100VT</td>
<td>59958.0</td>
<td>2.92</td>
<td>2.94</td>
<td>2.83</td>
<td>2.83</td>
<td>2.57</td>
</tr>
<tr>
<td>30,520,100FT</td>
<td>45871.5</td>
<td>1.73</td>
<td>1.74</td>
<td>1.44</td>
<td>1.35</td>
<td>1.17</td>
</tr>
<tr>
<td>30,520,100VL</td>
<td>54904.0</td>
<td>2.27</td>
<td>2.28</td>
<td>2.04</td>
<td>1.96</td>
<td>1.87</td>
</tr>
<tr>
<td>30,520,100FL</td>
<td>112774.4</td>
<td>0.90</td>
<td>0.91</td>
<td>0.79</td>
<td>0.83</td>
<td>1.17</td>
</tr>
<tr>
<td>30,520,100VT</td>
<td>149335.4</td>
<td>1.78</td>
<td>1.79</td>
<td>1.69</td>
<td>1.75</td>
<td>2.41</td>
</tr>
<tr>
<td>30,520,100FT</td>
<td>114640.0</td>
<td>0.51</td>
<td>0.52</td>
<td>0.43</td>
<td>0.45</td>
<td>0.81</td>
</tr>
<tr>
<td>30,520,100FL</td>
<td>152510.0</td>
<td>1.81</td>
<td>1.83</td>
<td>1.73</td>
<td>1.78</td>
<td>2.20</td>
</tr>
<tr>
<td>30,700,100VL</td>
<td>97875.0</td>
<td>3.10</td>
<td>3.11</td>
<td>2.82</td>
<td>2.82</td>
<td>2.80</td>
</tr>
<tr>
<td>30,700,100VT</td>
<td>134589.8</td>
<td>2.88</td>
<td>2.89</td>
<td>2.78</td>
<td>2.95</td>
<td>5.26</td>
</tr>
<tr>
<td>30,700,100FL</td>
<td>95249.6</td>
<td>1.31</td>
<td>1.31</td>
<td>1.20</td>
<td>1.28</td>
<td>2.86</td>
</tr>
<tr>
<td>30,700,100FT</td>
<td>129909.6</td>
<td>1.81</td>
<td>1.81</td>
<td>1.74</td>
<td>1.82</td>
<td>3.17</td>
</tr>
</tbody>
</table>

Average:	3.90	3.91	3.46	3.10	2.39
Maximum:	24.12	24.12	20.50	18.27	8.55
Minimum:	0.23	0.23	0.20	0.03	0.00

Table 2: Comparison between lower bounds and best known upper bound
Table 3: Computational performance of Lagrangian relaxations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ZLP</th>
<th>ZFW</th>
<th>ZKN</th>
<th>ZFL</th>
<th>ZFB</th>
<th>ZSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total time (sec.)</td>
<td>170.25</td>
<td>7.40</td>
<td>125.56</td>
<td>699.74</td>
<td>4073.34</td>
<td>4677.71</td>
</tr>
<tr>
<td>Number of iterations</td>
<td>—</td>
<td>20</td>
<td>5866</td>
<td>284</td>
<td>373</td>
<td>316</td>
</tr>
<tr>
<td>Lagrangian subproblem time (%)</td>
<td>—</td>
<td>5</td>
<td>18</td>
<td>28</td>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>Master problem time (%)</td>
<td>—</td>
<td>95</td>
<td>82</td>
<td>72</td>
<td>90</td>
<td>35</td>
</tr>
</tbody>
</table>

Table 4: Values of parameters to call slope scaling heuristic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ZFW</th>
<th>ZKN</th>
<th>ZFL</th>
<th>ZFB</th>
<th>ZSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>δ</td>
<td>-</td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>2</td>
</tr>
</tbody>
</table>

number of column generation iterations varies significantly for different relaxations, these two parameters are tuned for each relaxation separately. The values used in our experiments are shown in Table 4. The second step is to calibrate the other parameters, for which the same value is calibrated for all the relaxations. For both calibration phases, we select 30% of the instances randomly. To find the best values of the parameters, we fix all the parameters, change one parameter at each time, and select the best value. We do not provide further details, as the parameter values selected after the calibration phase were already given in Section 4.

Table 5 compares the upper bounds computed by the Lagrangian matheuristic for each of the five different relaxations. Note that the instances for which CPLEX finds an optimal solution in less than 30 minutes are not presented in the table. This leaves 25 instances out of the 43 original ones. The results of the ILP heuristic [23] (that can be considered as state-of-the-art) are used as a basis of comparison. Column ZILP presents the upper bounds obtained with this method. The other columns show the gaps between ZLMH, the upper bound obtained by the Lagrangian matheuristic used with relaxation R, and ZILP, computed as 100 × (ZLMH − ZILP)/ZILP. The results show that all variants of the Lagrangian matheuristic are competitive with ILP, producing better upper bounds on average. Among the different Lagrangian relaxations, the facility location relaxation obtains slightly better upper bounds on average than the others.

Table 6 displays the proportion of the time spent in each step of the Lagrangian matheuristic for the different relaxations. We divide the time spent by the column generation method into three parts: Lagrangian subproblems, master problems and slope scaling heuristic. The other phases are the ones described at the beginning of Section 4: solving the unrestricted MCND; solving restricted MCNDs; solving the bounded unrestricted MCND.

Table 7 presents a comparison between the Lagrangian matheuristic based on the
Table 5: Comparison of upper bounds for different variants of Lagrangian matheuristic

<table>
<thead>
<tr>
<th>Instance</th>
<th>Z_{ILP}</th>
<th>Z^{FW}_{LMH}</th>
<th>Z^{KN}_{LMH}</th>
<th>Z^{FL}_{LMH}</th>
<th>Z^{FB}_{LMH}</th>
<th>Z^{SN}_{LMH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,230,200VL</td>
<td>94213.0</td>
<td>0.044</td>
<td>0.000</td>
<td>0.087</td>
<td>0.044</td>
<td>0.014</td>
</tr>
<tr>
<td>20,230,200FL</td>
<td>138169.0</td>
<td>-0.293</td>
<td>-0.037</td>
<td>-0.037</td>
<td>-0.037</td>
<td>-0.037</td>
</tr>
<tr>
<td>20,230,200VT</td>
<td>97914.0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>20,230,200FT</td>
<td>136513.0</td>
<td>-0.097</td>
<td>-0.023</td>
<td>-0.476</td>
<td>0.234</td>
<td>0.232</td>
</tr>
<tr>
<td>20,300,200VL</td>
<td>74971.0</td>
<td>-0.213</td>
<td>-0.188</td>
<td>0.167</td>
<td>-0.011</td>
<td>0.000</td>
</tr>
<tr>
<td>20,300,200FL</td>
<td>116375.0</td>
<td>-0.570</td>
<td>-0.077</td>
<td>-0.605</td>
<td>-0.611</td>
<td>-0.414</td>
</tr>
<tr>
<td>20,300,200VT</td>
<td>74991.0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>20,300,200FT</td>
<td>107298.0</td>
<td>0.256</td>
<td>-0.183</td>
<td>0.431</td>
<td>0.501</td>
<td>0.429</td>
</tr>
<tr>
<td>100,400,10FT</td>
<td>65247.0</td>
<td>-2.273</td>
<td>-2.273</td>
<td>-2.290</td>
<td>-2.290</td>
<td>-2.290</td>
</tr>
<tr>
<td>100,400,30FL</td>
<td>49018.0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.198</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>100,400,30FT</td>
<td>139177.0</td>
<td>-1.093</td>
<td>-1.206</td>
<td>-1.390</td>
<td>-0.669</td>
<td>-0.421</td>
</tr>
<tr>
<td>30,520,100VL</td>
<td>53958.0</td>
<td>0.327</td>
<td>-0.035</td>
<td>-0.086</td>
<td>0.453</td>
<td>0.934</td>
</tr>
<tr>
<td>30,520,100FL</td>
<td>94066.0</td>
<td>0.004</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>30,520,100VT</td>
<td>52046.0</td>
<td>0.004</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>30,520,100FT</td>
<td>97404.0</td>
<td>-0.314</td>
<td>-0.314</td>
<td>0.355</td>
<td>0.538</td>
<td>0.633</td>
</tr>
<tr>
<td>30,700,100VL</td>
<td>60049.0</td>
<td>0.050</td>
<td>0.008</td>
<td>0.012</td>
<td>0.078</td>
<td>0.150</td>
</tr>
<tr>
<td>30,700,100FL</td>
<td>45908.0</td>
<td>-0.008</td>
<td>-0.080</td>
<td>0.039</td>
<td>-0.072</td>
<td>-0.072</td>
</tr>
<tr>
<td>30,700,100FT</td>
<td>112974.0</td>
<td>-0.112</td>
<td>-0.102</td>
<td>0.201</td>
<td>0.321</td>
<td>0.081</td>
</tr>
<tr>
<td>30,520,400VL</td>
<td>149945.0</td>
<td>0.476</td>
<td>0.524</td>
<td>-0.001</td>
<td>0.022</td>
<td>-0.148</td>
</tr>
<tr>
<td>30,520,400FL</td>
<td>153856.0</td>
<td>-0.308</td>
<td>0.074</td>
<td>-0.572</td>
<td>-0.445</td>
<td>0.036</td>
</tr>
<tr>
<td>30,700,400VL</td>
<td>98385.0</td>
<td>-0.299</td>
<td>-0.299</td>
<td>-0.394</td>
<td>-0.421</td>
<td>-0.171</td>
</tr>
<tr>
<td>30,700,400FL</td>
<td>114798.0</td>
<td>-2.691</td>
<td>-2.184</td>
<td>-3.264</td>
<td>-3.185</td>
<td>-3.097</td>
</tr>
<tr>
<td>30,700,400FT</td>
<td>98385.0</td>
<td>-2.691</td>
<td>-2.184</td>
<td>-3.264</td>
<td>-3.185</td>
<td>-3.097</td>
</tr>
<tr>
<td>30,700,400VT</td>
<td>139663.0</td>
<td>-0.080</td>
<td>-0.080</td>
<td>-0.039</td>
<td>-0.072</td>
<td>-0.072</td>
</tr>
<tr>
<td>30,700,400FT</td>
<td>114798.0</td>
<td>-2.691</td>
<td>-2.184</td>
<td>-3.264</td>
<td>-3.185</td>
<td>-3.097</td>
</tr>
<tr>
<td>30,520,400VT</td>
<td>114798.0</td>
<td>-0.097</td>
<td>0.097</td>
<td>-0.050</td>
<td>-0.129</td>
<td>-0.138</td>
</tr>
<tr>
<td>30,520,400FT</td>
<td>54065.0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>30,700,400FT</td>
<td>54065.0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>30,700,400VT</td>
<td>54065.0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Average: -0.321 -0.273 -0.331 -0.254 -0.190

Table 6: Time analysis for different variants of Lagrangian matheuristic

<table>
<thead>
<tr>
<th>Unrestricted MCND</th>
<th>Subproblem</th>
<th>Master problem</th>
<th>Slope scaling</th>
<th>Restricted MCNDs</th>
<th>Bounded unrestricted MCND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z^{FW}_{LMH}</td>
<td>16.893</td>
<td>0.006</td>
<td>0.091</td>
<td>23.343</td>
<td>37.524</td>
</tr>
<tr>
<td>Z^{KN}_{LMH}</td>
<td>16.363</td>
<td>0.003</td>
<td>0.003</td>
<td>40.240</td>
<td>36.488</td>
</tr>
<tr>
<td>Z^{FL}_{LMH}</td>
<td>16.401</td>
<td>0.195</td>
<td>0.043</td>
<td>41.329</td>
<td>34.560</td>
</tr>
<tr>
<td>Z^{FB}_{LMH}</td>
<td>14.742</td>
<td>0.280</td>
<td>0.713</td>
<td>44.300</td>
<td>34.057</td>
</tr>
<tr>
<td>Z^{SN}_{LMH}</td>
<td>15.048</td>
<td>2.551</td>
<td>1.231</td>
<td>42.789</td>
<td>31.832</td>
</tr>
</tbody>
</table>

Average: 22.144 6.903 7.481 5.907 6.550

Table 5: Comparison of upper bounds for different variants of Lagrangian matheuristic

Table 6: Time analysis for different variants of Lagrangian matheuristic
facility location relaxation and the state-of-the-art heuristics proposed in the literature. Column LMH presents the upper bounds computed by the Lagrangian matheuristic. The other columns correspond to the gaps (in %) between the upper bound Z_{LMH} in column LMH and the upper bound Z_H reported in the literature (computed as $100 \times (Z_{LMH} - Z_H)/Z_{LMH}$) for the following methods:

- **CTS**: Cycle-based Tabu Search (2003) [26];
- **PR**: Path Relinking (2004) [27];
- **MCA**: Multilevel Cooperative Tabu Search (2006) [14];
- **CSH**: Capacity Scaling Heuristic (2009) [32];
- **IPS**: IP Search (2010) [29];
- **LocalB**: Local Branching (2010) [36];
- **SACG**: Simulated Annealing/Column Generation (2013) [38] tested with time limits of 600 seconds (SACG1) and 18000 seconds (SACG2);
- **CEA**: Cycle-Based Evolutionary Algorithm (2016) [35];
- **CCL**: Combined Capacity Scaling/Local Branching (2015) [31] tested with two different parameter settings (CCL) and (CCL2), which correspond, respectively, to columns “10-1000” and “20-2000” in Table 2 [31];
- **ILP**: Iterative Linear Programming (2018) [23].

The results show that the Lagrangian matheuristic provides better upper bounds on average than all the heuristics previously proposed in the literature, except CCL and CCL2. However, the Lagrangian matheuristic produces almost the same upper bounds (with an average gap of 0.24% and a maximum gap of 0.72%) in much less computational times, as we see in Table 8 which reports the CPU time spent by each method to reach its best feasible solution. The times are normalized based on the CPU type and the number of cores, using data from www.cpubenchmark.net. For any heuristic H that required a CPU time T_H on a computer C_H with U_H cores, the normalized CPU times T_H are computed with the formula

$$T_H = T_H \times \left(\frac{P(C_H)}{P(C_{LMH})} \right) \times U_H,$$

where $P(C_H)$ and $P(C_{LMH})$ are the Passmark CPU scores of the computers used to run heuristic H and our LMH algorithm [15]. Note that the Passmark CPU scores are not available for CTS and PR methods, and the CPU times of MCA are not reported in [14].
Table 7: Comparison between Lagrangian matheuristic and state-of-the-art heuristics

Therefore, the computational times for these methods are not presented in Table 8. The results show that the Lagrangian matheuristic is competitive with the heuristics in the literature. For instance, it requires about 6 times the effort of ILP, but it produces solutions that are 0.34% better on average. Also, it is 5.4 times faster than CCL2 to generate solutions that are only 0.24% away on average.

6 Conclusion

We have introduced three node-based Lagrangian relaxations for the MCND. We have shown through theoretical and experimental results that these relaxations provide better lower bounds than the classical flow and knapsack relaxations. The three relaxations define a hierarchy of lower bounds: the multicommodity single-node flow relaxation dominates the forward-backward facility location relaxation, which itself dominates the facility location relaxation. This last relaxation, in spite of being the weakest of the three, provides a good tradeoff between the quality of the lower bound and the computational efficiency of the column generation method to solve the Lagrangian dual. We have de-
Table 8: Normalized times for Lagrangian heuristics and state-of-the-art heuristics
veloped and tested a Lagrangian matheuristic to compute effective upper bounds. Our computational experiments on a set of benchmark instances show that the Lagrangian matheuristic based on the facility location relaxation is competitive with the state-of-the-art heuristics for the MCND.

The hierarchical nature of the three node-based Lagrangian relaxations paves the way to a dual-ascent method that would perform them sequentially, the optimal Lagrange multipliers of one relaxation being provided as input to the stronger relaxation. Such a method could serve as a basis for an exact algorithm, the development of which is a challenging research avenue. In particular, an exact algorithm could integrate specialized algorithms for the CFLP and the MSNF, to solve the Lagrangian subproblems, as well as for the MMCF and for restricted MCNDs of small- to medium-scale, to derive feasible solutions in an efficient way.

References

