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Abstract. Travel times inside cities can vary a lot during a day and this may have a significant 

impact on the duration of delivery routes. Several authors in the past have suggested time-

dependent variants of the most commonly encountered vehicle routing problems. In these papers, 

however, time-dependent variations are usually defined on a customer-based graph. 

Consequently, a major consequence of travel time variations in urban areas is over-looked 

because not only do travel times change, but also the paths used to travel from one customer to 

another. That is, different paths should be used at different points in time during the day. One must 

therefore work with a road network and consider travel time (or travel speed) variations on road 

segments, if realistic delivery routes are to be obtained. In this paper, we propose a solution 

approach based on tabu search for a time-dependent vehicle routing problem with time windows 

where the travel speeds are defined on the road network. A major contribution of this work is the 

development of techniques to evaluate the feasibility as well as the approximate cost of a solution 

in constant time, thus allowing our algorithm to handle instances with up to 200 nodes and 580 

arcs in very reasonable computing times. We show that solutions of high quality are obtained on a 

set of benchmark instances, when compared with solutions obtained with an exact method. 
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1 Introduction
For more than 25 years now, it has been reported that neglecting variations in travel
times in cities due, for example, to congestion during peak hours in the early morn-
ing and late afternoon, can lead to inefficient or even sometimes infeasible delivery
routes. Several authors in the past have suggested time-dependent versions of the
most commonly encountered vehicle routing problems. In these papers, however,
time-dependent variations are usually defined with respect to customer-based graphs
where the nodes are customers and an arc between two customers corresponds to a
fixed shortest path previously calculated in the underlying road network.

The Time-Dependent Vehicle Routing Problem with Time Windows on a Road
Network (TDV RPTWRN) is aimed at producing more realistic routes by taking into
account the time of the day to compute the shortest path (in time) in a road network to
travel from one customer to the next. That is, not only do we observe different travel
times during the day to go from one customer to the next, but even the paths used are
different. It is clear that many applications may benefit from efficient problem-solving
methodologies for the TDV RPTWRN , like home delivery services.

Considering different paths to travel from one customer to the next in the road
network, as well as accounting for the time-dependent travel time on each one of those
paths, make the problem much more complex (which may explain the few works
reported in the literature that address this problem). In this work, we propose a
metaheuristic approach based on tabu search to efficiently solve benchmark instances
of the TDV RPTWRN on road network graphs with up to 200 nodes and 580 arcs.
This is achieved first by testing the feasibility of a neighbor solution in constant time
and, second, by approximately evaluating the solution, again in constant time. The
computational results demonstrate that near-optimal solutions are produced with this
approach.

In the following, Section 2 provides a literature review about 1) time-dependent
VRPs on customer-based graphs, 2) time-dependent VRPs on customer-based multi-
graphs and 3) time-dependent VRPs on road network graphs. Section 3 provides a
formal description of our problem. Section 4 describes the problem-solving approach
for the Time-Dependent Shortest Path Problem (TDSPP ) on a road network, while
Section 5 focuses on the tabu search heuristic. Section 6 describes the techniques used
to assess the feasibility and evaluate solutions in constant time. The computational
experiments and results are presented in Section 7. Finally, we conclude and state
future research directions in Section 8.
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2 Literature review
Many papers, as pointed out in [1, 5, 6], consider that travel times between two
customers are constant over the day, which is rather unrealistic in practice. This
assumption hugely impacts solution quality and may result in sub-optimal or even
infeasible solutions, as shown in [8, 16]. In the following, we thus review the various
approaches proposed in the literature to solve VRPs with time-dependent travel times.

2.1 Time-Dependent VRP on customer-based graphs
In this section, we consider exact and heuristic methods for solving TDV RPs, where
the shortest path between two customers is precomputed and does not change over
time, although the time to travel along that path depends on the departure time. In
this case, the problem is defined on a customer-based graph, where an arc between two
customers stands for a fixed path in the underlying road network. A good overview
of this class of problems can be found in [12].

2.1.1 Heuristics

The work in [21] was the first, in 1992, to deal with a TDV RP without time windows.
The time horizon was divided into a few intervals and the travel time on each arc
was modeled as a stepwise function with a different travel time associated with each
interval. Unfortunately, this model does not satisfy the First-In-First-Out (FIFO)
property. That is, a vehicle can depart later than another vehicle and arrive earlier
at destination, even if the same path is followed by the two vehicles. This situation
occurs, for example, if one vehicle waits just a little before departing to catch a shorter
travel time associated with the next interval.

The authors in [16] were the first to consider a TDV RPTW , in this case with
soft time windows. As opposed to [21], stepwise speed functions are proposed, like
the one illustrated in Figure 1(a), where the day is divided into a number of time
periods and a speed is associated with each time period. This model, referred to as
IGP (due to the initials of the authors), satisfies the FIFO property since a vehicle
can only arrive later at destination if it departs later. For a given arc, a stepwise
speed function can easily be translated into a corresponding piecewise linear travel
time function, as shown in Figure 1(b). In [16], the time horizon is divided into three
time periods, one each for the early morning and late afternoon peak hours and one
for mid-day. Computational results are reported on instances derived from Solomon’s
classical VRPs with time windows (VRPTW). The benefits of time-dependency are
demonstrated by comparing the reported solutions with those obtained with constant
travel times.
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(a) Speed function

(b) Travel time function

Figure 1 – Piecewise linear travel time function derived from stepwise speed function of an
arc of length 2
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In [14, 17], the authors solve a TDV RP with soft time windows using a genetic
algorithm. In the first work the problem is dynamic, that is, new customer nodes
occur during the day and must be integrated in the solution while the current routes
are being executed. The objective to be minimized includes fixed costs for the vehicles,
routing costs and user inconvenience costs (lateness). In this work, time dependency is
modeled with continuous travel time functions that must satisfy different assumptions
to guarantee the FIFO property.

The authors in [8] address the TDV RP with hard time windows using a hier-
archy of two artificial ant colonies and a local search method, using the IGP time-
dependency model. Their method is applied to instances derived from Solomon’s
VRPTW instances, as well as a real network in Italy. The time-dependent problem
with soft and hard time windows is considered in [9], where a fast iterative route
construction and improvement method is proposed, still based on the IGP time-
dependency model.

In [25], the authors deal with a TDV RP with soft time windows and stochastic
travel times. A tabu search and an adaptive large neighborhood search are proposed
to optimize both service efficiency and reliability.

In the context of a traffic information system, the authors in [10] provide a general
framework to implement time-dependency in various algorithms for the TDVRPTW.
Computational tests based on real traffic data from the city of Berlin show that using
constant average travel times underestimates the total travel time by approximately
10%.

2.1.2 Exact method

It is only in 2013 that an exact method to solve a TDV RP with time windows was
proposed [7]. In this paper, the IGP time-dependency model is used and the objective
is to minimize the total duration of the routes. A branch-and-price algorithm is
developed where the master problem is a set-partitioning problem and the pricing
problem is a time-dependent shortest path problem with resource constraints, which
is solved by a tailored labeling algorithm. The latter is aimed at identifying new
feasible routes (columns) of negative reduced cost for the master problem in a typical
column generation scheme. When solving the pricing problem, a label is associated
with each customer to store the service completion time, the route duration and its
reduced cost. Dominance criteria are introduced to discard labels that cannot lead
to profitable routes while considering, at the same time, different departure times
from the depot. Heuristics are also used to quickly find routes or columns of negative
reduced cost. Experiments conducted on randomly generated instances of different
sizes show that instances with 25 vertices can be routinely solved to the optimum.
Even a few instances with 100 vertices were successfully addressed. As far as we
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know, no other authors have reported an exact method for tackling TDV RPs with
time windows on a customer-based graph.

2.2 Time-Dependent VRP on customer-based multigraphs
Here, we consider an intermediate representation between TDV RPs defined on
customer-based graphs and those defined on road networks. We have a customer-
based graph, but with multiple links between two customers that represent different
paths in the road network obtained with different departure times. Thus, rather than
having a single fixed path between two customers, alternative paths can be used,
see Figure 2(a). In this figure, the nodes represent customers and the multiple links
between two customers stand for alternative paths in the underlying road network,
depending on the departure time.

We are only aware of heuristic methods in this case. The authors in [23] in-
vestigate a TDV RP defined on a multigraph where parallel arcs stand for different
time-dependent paths obtained with speed functions, thus satisfying the FIFO prop-
erty. A tabu search is proposed to solve the problem with neighborhoods based on
swapping two customers and reversing subsequences of customers. In [18], a tabu
search is applied to a multigraph representation to address a TDV RP with hetero-
geneous fleet. In this work, the insertion of a customer in a route must also integrate
the selection of appropriate arcs between consecutive customers, which makes the
problem more difficult. This is addressed with dynamic programming, but also with
heuristic methods.

A multigraph representation is used in [3] for the TDV RPTW . When the se-
quence of customers in a route is determined, a Fixed Sequence Arc Selection Problem
is solved using dynamic programming, to identify the arc (path) between each pair
of consecutive customers in the route that must be selected (as it is done in [11] for a
dial-a-ride application). In [26], the authors consider the time-dependent alternative
vehicle routing problem with time windows. Two arcs are defined between each pair
of nodes: the first arc is associated with a time-dependent travel speed distribution,
to be used in case of low traffic, and the second one is associated with a constant
travel time for heavy congestion hours. Thus, depending on the departure time, one
of the two arcs dominates the other.

2.3 Time-Dependent VRP on Road Networks
In this section, the road network is fully exploited when considering time-dependent
paths between two customers. That is, no abstraction takes place by first generating
a customer-based graph. Exact methods and heuristics for solving the TDV RPRN

are reviewed in the following.
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(a) Multigraph (b) Road network graph

Figure 2 – Road Network representations

2.3.1 Heuristics

Using a Mixed-Integer Linear Programming (MILP) solver, the authors in [15] solve
a TDV RP with path flexibility under stochastic and deterministic conditions. The
objective is to minimize the total expected cost. The authors compute, off-line, a
non-exhaustive subset of shortest paths between each pair of customers by selecting
different departure times and using a time-dependent Dijkstra’s algorithm. Each path
is associated with a decision variable in the MILP. This approach solves exactly an
approximation of the problem because not all shortest paths are computed. Thus, it
can be considered as a heuristic.

In [22], the authors address a time-dependent VRPTW on a real network made
of two categories of arcs: main roads with time-dependent travel speeds, and small
streets with constant speeds. Time-dependent travel speeds on arcs are created with
high degree polynomial functions. A Greedy Randomized Adaptive Search Procedure
is used to solve the problem. It enables savings of 12.5% in travel time when compared
to solutions obtained with constant travel times.

2.3.2 Exact methods

To the best of our knowledge, there is no exact method for the TDV RPRN (without
time windows). However, an exact method for the TDV RPTWRN is reported in
[2, 4]. The authors adapt a branch-and-price algorithm previously developed for a
time-independent variant. The pricing problem is a Time-Dependent Shortest Path
Problem with Resource Constraints, which is addressed with a time-dependent la-
beling algorithm based on a bi-directional search strategy that limits the number of
generated labels. To account for the road network, where an arc can be traversed sev-
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eral times and by more than one vehicle, the branching scheme is defined as follows:
1) select an arc (i, j) with fractional flow φij and 2) generate two branches by setting
either the flow upper limit to bφijc or the flow lower limit to dφije. Unfortunately,
it can happen that all flows are integer, while the routing solution is fractional. In
this situation, an alternative binary branching scheme is applied. In the first branch,
it is checked if the flow support graph of the current fractional solution (i.e., all arcs
with a positive flow) contains a solution by enumerating all feasible routes and by
solving a set covering formulation. In the second branch, at least one arc not in the
flow support graph is enforced. The results of the branch-and-price algorithm on the
road network graph are compared to those of two customer-based graphs where the
single path between two customers is based either on travel distance or travel time.
The comparison shows that the solution cost on the road network provides average
improvements of 1.7% and 7.3% over the min-distance graph and min-time graph,
respectively.

3 Problem Description
In the following, we first define the time-dependent road network graph. Then, we
introduce two problems defined on this graph, namely, the Time-Dependent Shortest
Path Problem (TDSPP ) and the TDV RPTWRN .

3.1 Time-dependent road network
The road network is a directed graph G = (V,E), where the set of vertices V =
{0, 1, 2, ..., n} corresponds to road junctions and the set of arcs E to road segments
between pairs of junctions. Each arc (i, j) is associated with a distance dij, a time-
dependent speed function vij : t → R+ that returns the speed at time t, and a
time-dependent cost function cij : t → R+ that returns the cost of traversing arc
(i, j) at time t (often, cij corresponds to the travel time). Each speed function is a
stepwise function, from which a piecewise travel time function can be derived, see
Figure 1.

3.2 TDSPP

A path p in the road network G from a source node s ∈ V to a destination node
s′ ∈ V is defined as a sequence of consecutive arcs (i1, i2), (i2, i3), ..., (ij−1, ij) with
i1 = s and ij = s′. Alternatively, the path can be viewed as the sequence of nodes
s = i1, i2, i3, ..., ij−1, ij = s′.
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The TDSPP then consists in identifying a minimum-cost path p from a source
node i1 = s to a destination node ij = s′, given a departure time t0. The cost of path
p at time t0, cpp(t0), is defined recursively as follows:

cpi1,i2(t0) = ci1,i2(t0), (1)
cpi1,...,ij

(t0) = cpi1,i2,...ij−1(t0) + cij−1,ij
(t0 + tpi1,...,ij−1(t0)), (2)

where
tpi1,i2(t0) = tti1,i2(t0), (3)

tpi1,...,ij
(t0) = tpi1,i2,...ij−1(t0) + ttij−1,ij

(t0 + tpi1,...,ij−1(t0)). (4)

Note that tpp(t0) is the travel time of path p at departure time t0 and ttij(t) = dij

vij(t)
is the time-dependent travel time along arc (i, j) at time t.

3.3 TDV RPTWRN

In the TDV RPTWRN , a set of customers C ⊂ V and a depot (node 0) are located
on the time-dependent road network G, as defined above. Each customer i ∈ C has
a demand qi, a time window for the service start time twi = [ai, bi] and a service
or dwell time si. A vehicle cannot arrive at customer i after the upper bound bi of
the time window, but can arrive before the lower bound ai, in which case the vehicle
waits until time ai to start the service. The set of vehicles K, each of capacity Q,
is located at the depot. The time window at the depot [a0, b0] defines the beginning
and end of the time horizon. The problem is then to generate a set of feasible vehicle
routes (solution), one for each vehicle, that start and end at the depot and serve all
customers at minimum cost. The latter is obtained by summing the route durations
(travel time + waiting time + service time), where the travel time is time-dependent.
A solution is feasible if it satisfies the capacity constraints and the time windows.

Note that the travel time of a path in the road network between two customers
i and j for any given departure time t, tpi,j(t), is a piecewise linear function derived
from the speed functions of all arcs along the path.

4 Time-dependent shortest paths
A time-dependent variant of Dijktra’s algorithm is used to identify the minimum
cost (travel time) path between a source customer s and a target customer s′ in the
road network G at a given departure time t0, see Algorithm 1. In the pseudo-code, i
denotes the current vertex; tj is the arrival time at vertex j; flagj is True if vertex j
is permanently labeled, that is, if the best path from customer s to vertex j has been
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found; and labelj is the label of vertex j, that is, the travel time of the best path from
s to vertex j. At the beginning, labels = 0 and flags = True, while labelj =∞ and
flagj = False for j 6= s. At each iteration and starting from the current node, which
is customer s at the beginning, the arrival time at each non-permanently labeled
successor is calculated with the IGP procedure [16]. If the new path is better than
the best known one, then the label is updated. In the special case where the successor
is customer s′, the new path is considered only if ts′ does not exceed the time window’s
upper bound of s′. Once all successors of the current vertex have been considered,
the vertex in the road network with the minimum label among all those that are not
permanently labeled becomes the current one and its label is made permanent. This
is repeated until customer s′ is permanently labeled.

Algorithm 1 Time-dependent Dijkstra’s algorithm
1: Input: road network G = (V,A), source s, target s′, departure time t0
2: Output: time-dependent path of minimum travel time from s to s′
3: labels = 0
4: flags = True
5: for j ∈ V , j 6= s do
6: labelj ←∞; flagj ← False

7: i← s
8: ti ← t0
9: while flags′ 6= True do

10: for every successor j of i with labelj = False do
11: tj ← Algorithm 2(G, (i, j), ti)
12: if j = s′ then
13: if tj ≤ bj then
14: labelj ← min{labelj, tj}
15: else
16: labelj ← min{labelj, tj}
17: i← argmin{labelj | j ∈ V and flagj = False}
18: flagi ← True

As previously mentioned, the path from s to the current node is extended to all
non-permanently labeled successors at each iteration of the time-dependent Dijkstra’s
algorithm. The extension from the current node to a given successor through a
particular exit arc is done with the IGP procedure, using the speed function associated
with that arc, to produce the arrival time at the successor, see Algorithm 2. In
the pseudo-code, lb(period) and ub(period) denote the lower and upper bounds of
a time period and we assume that the associated speed is defined over the interval
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[lb(period), up(period)[ (i.e., the speed changes at the upper bound). After identifying
the time period, and thus the speed, associated with the departure time t on arc
(i, j), the procedures moves from one period to the next until the distance traveled
d+ exceeds dij. At that point, the arrival time at j is obtained by adding to the
lower bound of the current period, which is stored in t, the time needed to travel the
remaining distance to node j.

Algorithm 2 Arrival time at a successor of a node
1: Input: road network G = (V,A), arc (i, j), departure time t
2: Output: arrival time at j
3: period← 0
4: while (t ≥ ub(period)) do period← period+ 1 . find time period of t
5: d− ← 0
6: d+ ← (ub(period)− t)× vij(t)
7: while d+ ≤ dij do
8: t← ub(period)
9: d− ← d+

10: period← period+ 1
11: d+ ← d− + (ub(period)− t)× vij(t)
12: t← t+ (dij − d−)/vij(t)

5 Problem-solving method
Our solution approach is based on the tabu search metaheuristic. First introduced
by Glover [13], tabu search is a neighborhood-based metaheuristic widely used for
solving vehicle routing problems [19]. First, an initial solution is generated with
a simple heuristic and becomes the current solution. Then, at each iteration, the
best solution in the neighborhood of the current solution is selected (even if worse
than the current solution) and becomes the new current solution. This is repeated
until a stopping criterion is satisfied, at which point the best solution visited during
the search is returned. To avoid cycling, it is forbidden or tabu to perform certain
moves that could lead back to a previously visited solution. In our case, the initial
solution is produced with a greedy insertion heuristic and the neighborhood of the
current solution is generated using CROSS exchanges [24], see Section 5.2. Since
evaluating this neighborhood is computationally expensive, different techniques are
used to assess the feasibility and approximate the value of neighborhood solutions in
constant time. The main components of our tabu search will now be described in the
following.
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5.1 Initial solution
The initial solution is generated with a greedy insertion heuristic, where the routes
are constructed sequentially. At each iteration, a customer is randomly selected and
inserted at the best feasible insertion place in the current route. When a route
cannot admit any new customer due to capacity or time window constraints, a new
route is constructed. This is repeated until all customers are visited. The greedy
heuristic exploits the techniques developed for assessing the feasibility of an insertion
in constant time (see Section 6), although each insertion is evaluated exactly by
propagating its impact along the route.

5.2 Neighborhood structure
The tabu search exploits a neighborhood structure based on CROSS exchanges [24].
This type of exchange is well suited for problems with time windows because it does
not reverse segments of routes. The CROSS exchange consists in swapping sequences
of customers of arbitrary length, up to a maximum length L, between two routes,
where the number of customers in the two sequences does not need to be the same.
Parameter L was set to 8, based on the work in [24]. A CROSS exchange is illustrated
in Figure 3, where a sequence of n1 customers in the first route is exchanged with
a sequence of n2 customers in the second route, by removing arcs (il,il+1), (jh,jh+1),
(il+n1 , il+n1+1), (jh+n2 , jh+n2+1) and by adding arcs (il,jh+1), (jh,il+1), (il+n1 , jh+n2+1),
(jh+n2 , il+n1+1). In the figure, the squares are copies of the depot that represent the
start and end of each route.

i1 ... il il+1 ... il+n1 il+n1+1 ...

j1 ... jh jh+1 ... jh+n2 jh+n2+1 ...

Figure 3 – CROSS exchange

The neighborhood is explored in a systematic way by considering all possible
exchanges of sequences of length n1 = 1, 2, ..., L and n2 = 1, 2, ..., L for every pair
of routes in the current solution. Due to the size of this neighborhood, the feasibility
of a neighborhood solution as well as its approximate cost are evaluated in constant
time, as discussed in Section 6.
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5.3 Tabu list
When a move is performed to get from the current solution to the next one, the
inverse move is declared tabu for a number of iterations, which is called the tabu
tenure (tab). That is, if an exchange is performed at a given iteration (iter), then the
exchange that leads back to the previous solution is tabu until iteration iter + tab.

5.4 Aspiration criterion
The classical aspiration criterion is used, where the tabu status of an exchange is
overridden if it leads to a neighborhood solution that is better than the best known
solution.

5.5 Diversification strategy
Diversification is used in tabu search to favor the exploration of new regions in the
solution space when search stagnation is observed. The latter is detected when a num-
ber of consecutive iterations is performed without improving the best known solution.
Diversification is realized by using an alternative objective, namely, minimization of
the total distance, for a certain number of iterations. In such a case, the shortest
paths in the road network between two customers are based on distance while the
time-dependent travel times are only taken into account to guarantee feasibility (i.e.,
any path from customer i to customer j should reach j at or before its time window’s
upper bound bj). Obviously, the solution value is also based on the total distance.
After a certain number of iterations with the distance objective, the original objec-
tive (duration) is restored until stagnation occurs again. The parameter values for
the number of iterations during diversification and number of consecutive iterations
for detecting stagnation are discussed in the computational results, see Section 7.

6 Constant time evaluation framework
This section describes how the feasibility and approximate cost of a solution in the
neighborhood of the current solution can be assessed in constant time. With regard to
feasibility, we focus on time constraints, given that the vehicle load and, consequently,
capacity constraints do not pose any difficulty.

It is important to note that additional information must be stored in the current
solution to achieve this result. The corresponding information needs to be updated
(not in constant time) when the tabu search moves from the current solution to
the next one. However, this is done much less frequently (once per iteration) than
evaluating all solutions in the neighborhood of the current solution.
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For the sake of simplicity, we assume in this section that service or dwell time
si = 0 for every customer i.

6.1 Feasibility
The goal here is to avoid propagating the impact of a move along each modified
route when a CROSS exchange is applied to the current solution, due to the size of
this neighborhood. The additional information that needs to be maintained in the
current solution for this purpose is derived from the so-called dominant shortest-path
structure, as it is explained below.

6.1.1 Dominant shortest-path structure

Before running the tabu search, we generate different shortest paths for each pair i,
j of customers by applying the time-dependent Dijkstra’s algorithm with different
departure times from i. A piecewise linear function is then calculated and associated
with each path from i to j by combining the speed functions of all arcs that consti-
tute the path. These piecewise linear functions return the arrival time at j for any
departure time from i between ai and bi, see Figure 4. If we gather the functions of
all paths between customers i and j, it is then possible to create a so-called dominant
shortest path structure for the pair i, j by considering the best path at any moment
in time. For example, path2 in Figure 4 is the best path between t = ai and t = t1.
Similarly, path3 is the best path between t = t1 and t = t2, etc. At the end, we obtain
the structure shown in Figure 5, where the black dots at time t = t1, t2, t3 correspond
to crosspoints where the best path changes. This structure returns the arrival time
at j for any given departure time from i, using the best path at the given departure
time.

This dominant structure is used to evaluate the feasibility of a CROSS exchange,
as it is explained below.

6.1.2 Bounds on departure times

Given the sequence of customers in a route of the current solution, the dominant
shortest path structure associated with each pair of consecutive customers in this
route can be used to determine the latest departure time at each customer to maintain
feasibility from that customer up to the end of the route. Starting from the end depot
and moving backward, the procedure is the following.

Let i0, i1, i2, ...inr, inr+1 be a route r in the current solution with nr customers,
where i0 and inr+1 are copies of the depot at the start and end of r. We also denote
di the departure time from customer i in route r in the current solution. To compute
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Figure 4 – Piecewise linear arrival time functions for different paths between customers i
and j

2

path1
path2
path3

Departure time (from i)

A
rr

iv
al

ti
m

e
(a

t
j)

ai bi

ai
t1 t2 t3

bj

Figure 5 – Dominant shortest path structure between customers i and j

the latest departure time ldi from each customer i in route r we start with the end
depot inr+1 and end of time horizon ldinr+1 . Based on the path p used in the current
solution to go from customer inr to the end depot inr+1, we move backward along
that path to infer ldinr from ldinr+1 . It should be noted that ldinr is reset to binr when
ldinr > binr . Now, two cases can occur:
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(a) If the dominant shortest path structure indicates that the best path from inr to
inr+1 at time ldinr is the same as the one used in the current solution at time
di, then we continue moving backward, now with customer inr and time ldinr .

(b) Otherwise, there is a better path than path p to go from inr to inr+1 at time
ldinr . In this case, we increase ldinr

as much as possible (i.e., without exceeding
binr) to get as close as possible or match ldinr+1 using the dominant shortest
path structure of arc (inr, inr+1). In other words, the dominant shortest path
structure allows us to identify the appropriate path and departure time at inr

to reach the next node, here the end depot. Afterward, we continue moving
backward with customer inr and the updated time ldinr .

The above procedure is repeated until i0 is reached, see Algorithm 3. From a
practical point of view, the latest departure time is determined in case (b) by moving
from one crosspoint to another along the dominant shortest path structure associated
with customers i and j, until either bi is reached, in which case bi corresponds to
the latest departure time at i, or the arrival time at j exceeds its latest departure
time ldj. In the second situation, ldi is obtained by interpolating between the last
and next-to-last crosspoints. This is illustrated in Figure 6, where ld0

i is the latest
departure time at customer i obtained from ldj by going backward through the path
used in the current solution (it is assumed that this path is not path3, which is the
best at departure time ld0

i ). We then successively move to ld1
i and ld2

i (where ldj is
exceeded) along the dominant shortest path structure. The latest departure time at
customer i is finally identified by interpolating between ld1

i and ld2
i .

Algorithm 3 Latest departure times
1: Input: road network G = (V,A); route i0, i1, ...inr, inr+1, end of time horizon
ldinr+1 at end depot inr+1

2: Output: bounds on departure times at each node
3: for k = nr, nr − 1, ..., 0 do
4: calculate ldik

from ldik+1 by moving backward along the path p used to go
from ik to ik+1 in current solution

5: ldik
= min{ldik

, bik
}

6: if best path from ik to ik+1 at time ldik
is not p then

7: find best path p′ 6= p and departure time ldik
to reach ik+1, using dominant

shortest path structure
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Figure 6 – Latest departure time update

6.1.3 CROSS exchange feasibility

Considering again Figure 3, where a neighborhood solution is obtained by exchang-
ing two subsequences of customers between two routes in the current solution, the
feasibility of this solution can be assessed in constant time. This is done as follows.
First, the impact of replacing arc (il, il+1) by (il, jh+1) in the first route is propagated
from il to the customers in the sequence jh+1, jh+2, ..., jh+n2 (which contains at most
L customers) and then to il+n1+1, using the dominant structure associated with each
pair of consecutive customers. The arrival time at il+n1+1 is then checked against
its latest departure time to determine if the new route is feasible. Thus, there is no
need to propagate until the end of the route. The same procedure is repeated for the
second route involved in the exchange.

6.2 Approximate cost
To evaluate a neighborhood solution in constant time, we have no choice but to use
an approximation. Essentially, for each customer i in a route of the current solution,
we store a penalty pi that stands for the delay incurred in the service start time
of the next customer if the departure time at i is delayed by one time unit. Once
the impact of a CROSS exchange, like the one in Figure 3, is propagated up to
il+n1+1 (resp. jh+n2+1), the additional cost of the two new routes in the neighborhood
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solution is approximated by multiplying the delay ∆il+n1+1 (resp. ∆jh+n2+1) by the
penalty pil+n1+1 (resp. pjh+n2+1). That is, the additional cost associated with this
neighborhood solution is ∆il+n1+1 × pil+n1+1 + ∆jh+n2+1 × pjh+n2+1 . Note that ∆i can
well be positive or negative. For example, if a longer sequence is exchanged with a
smaller one, then the delay can be positive on one route and negative on the other.

To alleviate the effect of the approximation, we keep the napprox best solutions in
the neighborhood, based on this approximate computation. Then, each one of these
napprox solutions is evaluated exactly, through propagation to the end of each route
modified by the CROSS exchange, and the best solution obtained is selected as the
new current solution. Through preliminary experiments, napprox was set to 15 (values
5, 10, 15 and 20 were tested).

7 Computational experiments
In the following, we first describe the test instances used to perform our computational
study. Then, a comparison is provided between our algorithm and the exact branch-
and-price method BP reported in [4]. All experiments were performed on a Dell
PowerEdge R630 server with two Intel Xeon processors E5-2637V4 with 4 cores and
128GB of memory each.

7.1 Test instances
The test instances, called NEWLET , come from a recent work in [4]. These instances
were generated by the authors using a procedure for creating sparse graphs previously
reported in [20]. Three graphs are available with n = 50, 100 and 200 nodes. Three
different sets of random static travel times, called basic travel times, are associated
with the set of arcs in each graph, based on different levels of correlation, namely,
non-correlated (NC), weakly correlated (WC) and strongly correlated (SC). This leads
to 3 × 3 = 9 different networks. After dividing the time horizon into five periods,
time dependency is accounted for by associating a speed profile with each arc in each
network. This is done by multiplying the basic speed, which is derived from the
basic travel time, by a multiplier in each period. It is possible to choose from three
different sets of multipliers to define either congestion-free, normal or congested arcs.
Then, 21 different categories of test instances are obtained by randomly selecting
16 or 33 customer nodes from the three 50-node networks (3 × 2 = 6); 25, 33 or 50
customer nodes from the three 100-node networks (3 × 3 = 9); and 25 or 50 customers
from the three 200-node networks (3 × 2 = 6). Finally, each category is duplicated
by considering either narrow or wide time windows, for a total of 42 categories of
instances. Since 5 different instances are available in each category, we have a total of
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210 instances. The capacity of each vehicle is set to 200. The demands were produced
as follows in [4]: first, routes were created with a greedy heuristic while considering
only the time windows; then, the demand at each customer was generated to ensure
that each one of those routes remained feasible. Finally, the service time at each
customer is randomly selected in {1, 2}.

7.2 Comparison with optimal solutions
In the following, we first describe the procedure for tuning the main parameters of
our algorithm. Then, we compare our solutions with the optimal ones reported in [4].
Finally, we analyze the impact of diversification.

It is important to note that the objective to be minimized in [4] is the total
distance. Thus, at the road network level, minimum-distance paths are considered
between two customers (or between the depot and a customer), while the time-
dependent travel times are only used to guarantee path feasibility. In other words,
minimum-distance feasible paths in the road network are looked for. At the route
level, the set of vehicle routes must minimize the total distance. Consequently, we
modified our algorithm by setting the total distance as the main objective and dura-
tion as the objective in the diversification phase.

7.2.1 Parameter tuning

Our proposed tabu search, called TS, has four main parameters, two of which are
related to diversification: tabu tenure tab, maximum number of iterations itmax, num-
ber of consecutive iterations without improvement itcons to initiate the diversification
phase and number of iterations in the diversification phase itdiv.

The following values were considered, where nc denotes the number of customers:

• tab = nc/6, nc/3, nc/2, nc,

• itmax = 5nc, 10nc, 15nc,

• itcons = nc/2, nc, 2nc,

• itdiv = nc/10, nc/5, nc/2, nc.

Thus, we have a total of 4 × 3 × 3 × 4 = 144 possible combinations of parameter
settings. An exhaustive evaluation of all those combinations was performed on a
subset of 42 test instances. Precisely, one instance was randomly selected among the
five instances available in each category. The parameter setting leading to the best
average objective value on this subset was: tab = nc/3, itmax = 10nc, itcons = nc and
itdiv = nc/5.
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In Table 1, we show how the average objective values evolve for each parameter
when fixing the three other parameters at their best value. Each entry corresponds to
the average gap in percentage between the distance Dist(TS) produced by our Tabu
Search and the optimum distance Dist(Opt), that is:

GapO = Dist(TS)−Dist(Opt)
Dist(Opt) × 100. (5)

Considering the results for parameter itmax, it is clear that a sufficient number
of iterations is required for the Tabu Search to converge. After 5nc iterations, the
best known solution is still far from the optimum. On the other hand, a total of
15nc iterations does not bring any significant improvement over 10nc iterations. For
parameter itcons, the value nc is a good compromise between a larger number of
diversification phases with shorter runs in-between (nc/2) and a smaller number of
diversification phases with longer runs in-between (2nc). Otherwise, the value nc/3
for parameter tab is clearly the best one, as is the value nc/5 for parameter itdiv.

Table 1 – Sensitivity analysis results

Parameter 5nc 10nc 15nc

itmax 7.9240 0.9285 0.9282

nc/6 nc/3 nc/2 nc

tab 2.449 0.929 2.139 2.331

nc/2 nc 2nc

itcons 1.258 0.929 1.154

nc/10 nc/5 nc/2 nc

itdiv 2.940 0.929 1.109 1.589

7.2.2 Results on NEWLET instances

Tables 2 and 3 report the results of our tabu search TS on the NEWLET test
instances for narrow and wide time windows, respectively. In these tables, each
result was obtained on a single instance of each category, as defined by the graph
size (#nodes, #arcs), number of customers (#cust.) and correlation type (Corr.).
Thus, the results here are based on 42 instances only, not 5 × 42 = 210 instances,
because we had to choose in each category the single instance used by the authors in
[4] to report their results. The optimum was obtained on all these instances within
a computation time limit of 7,200 seconds in [4], except four instances with wide
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time windows. Tables 2 and 3 show the CPU time in seconds of TS (TS Time), the
CPU time in seconds of the exact branch-and-price algorithm in [4] (BP Time), the
improvement (Impr.) in percentage of the final distance produced by TS (Dist(TS))
over the initial distance produced by the greedy insertion heuristic (Dist(Init)), as
defined by

Impr = Dist(Init)−Dist(TS)
Dist(Init) × 100, (6)

and the gap in percentage between the final distance obtained by TS and the optimal
distance (GapO), which was previously defined in equation (5). Due to the slower
machine used in [4], the CPU times of TS reported in the tables should be multiplied
by a scaling factor of approximately 1.6.

Table 2 – Results on NEWLET instances - Narrow time windows

Instance #
nodes

#
arcs

#
cust. Corr. TS

Time(s)
BP

Time(s)
Impr.
(%)

GapO
(%)

NEWLET

50 134

16
NC 0.640 95.6 3.020 0.761
WC 0.967 1.7 1.712 0.751
SC 0.296 1.0 1.846 0.781

33
NC 2.813 3.5 5.610 0.822
WC 2.945 14.4 3.860 0.816
SC 2.694 8.9 2.823 0.850

100 286

NC 2.719 1.1 6.713 0.874
25 WC 1.935 1.4 2.528 0.922

SC 1.429 1.5 5.727 0.930

33
NC 2.488 1.0 1.704 0.968
WC 2.982 2.0 1.492 0.964
SC 3.264 49.6 2.019 0.942

50
NC 5.251 4.0 2.898 0.992
WC 5.464 4.0 1.826 0.982
SC 7.151 201.3 1.961 0.962

200 580

NC 2.393 4.0 3.071 0.948
25 WC 2.731 4.0 2.986 0.883

SC 2.406 3.9 1.833 0.991

50
NC 17.931 13.0 1.547 0.929
WC 27.182 7089.2 1.848 0.967
SC 18.274 18.7 6.918 0.908
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Table 3 – Results on NEWLET instances - Wide time windows

Instance #
nodes

#
arcs

#
cust. Corr. TS

Time(s)
BP

Time(s)
Impr.
(%)

GapO
(%)

NEWLET

50 134

16
NC 1.561 15.0 6.772 0.751
WC 1.526 2.8 7.556 0.716
SC 1.463 1.7 7.083 0.743

33
NC 4.769 7125.2 6.952 0.652
WC 4.871 7200 6.693 –
SC 2.163 7200 6.606 –

100 286

NC 4.737 28.2 3.712 0.693
25 WC 2.130 2.4 3.792 0.857

SC 3.916 26.2 5.820 0.862

33
NC 7.491 2229.9 6.681 0.882
WC 5.766 5.1 4.570 0.901
SC 5.865 24.4 4.548 0.909

50
NC 13.051 6.1 3.774 0.945
WC 17.366 56.7 2.769 0.845
SC 11.774 1532.5 5.702 0.905

200 580

NC 9.079 7199.2 4.693 0.822
25 WC 8.481 96.6 6.914 0.966

SC 9.316 27.4 5.628 0.901

50
NC 63.811 7200 4.338 –
WC 53.245 4364.3 2.511 0.974
SC 43.602 7200 3.853 –

Concerning the results in Tables 2 and 3, we can see that TS significantly improves
the solutions of the greedy insertion heuristic. The average improvement is 3.04%
and 5.28% on the instances with narrow and wide time windows, respectively. More
importantly, the gap between the final solutions produced by TS and the optimum is
systematically under 1% on all instances, even if our algorithm was not intended to
minimize the distance. The average gap on the instances with wide time windows is
0.843%, which is slightly better than the average gap of 0.902% on the instances with
narrow time windows. It should also be noted that TS runs faster than BP on 11
out of 21 instances with narrow time windows and 17 out of 21 instances with wide
time windows (after multiplying TS Time by the scaling factor of 1.6). The average
computing times in seconds of TS and BP are 5.43 and 358.27 over the instances
with narrow time windows, and 13.14 and 2454.46 over the instances with wide time
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windows, respectively. Thus, TS is much faster on average, even after multiplying
its computing times by 1.6. This is not a surprise, because exact methods are very
sensitive to the instance size. Also, they can sometimes be erratic and exhibit large
computing times even on instances of relatively small size.

7.2.3 Impact of diversification

Here, we examine the impact of the diversification phase on solution quality. Tables 4
and 5 show the average gap with optimal solutions (GapO) for TS with and without
diversification on the NEWLET instances. These results show that diversification
helps to significantly cut the gap with respect to the optimum, sometimes by more or
close to one half (see the results with 100 nodes, 286 arcs, and 25 customers in Table
4 or those with 50 nodes, 134 arcs and 33 customers in Table 5).

Table 4 – TS optimal gaps with and without diversification - Narrow time windows

#
nodes

#
arcs

#
cust.

Without
diversification

With
diversification

50 134 16 1.2560 0.7643
33 1.3223 0.8293

100 286
25 2.0117 0.9088
33 1.3730 0.9578
50 1.1363 0.9784

200 580 25 1.2749 0.9406
50 1.2009 0.9345

Table 5 – TS optimal gaps with and without diversification - Wide time windows

#
nodes

#
arcs

#
cust.

Without
diversification

With
diversification

50 134 16 1.0202 0.7366
33 1.1461 0.6520

100 286
25 1.1030 0.8040
33 1.2300 0.8972
50 1.4346 0.8983

200 580 25 1.1398 0.8963
50 1.3710 0.9740
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Figures 7 and 8 illustrate the evolution of the objective value (distance) on two
instances with narrow and wide time windows, on a graph with 100 nodes, 286 arcs
and 50 customers, while running TS without diversification and with diversification,
respectively. Due to the range of the objective values, it is not possible to clearly
see the final solution values and to claim that diversification is beneficial. However,
this is indeed the case: on the instance with narrow time windows a total distance of
2246.8 is obtained without diversification, as compared to 2242.7 with diversification.
Similarly, on the instance with wide time windows, a total distance of 2165.1 is
obtained without diversification, as compared to 2154.6 with diversification.

(a) Narrow time windows (b) Wide time windows

Figure 7 – Evolution of objective value of current solution without diversification

(a) Narrow time windows (b) Wide time windows

Figure 8 – Evolution of objective value of current solution with diversification

7.3 Minimum duration objective
Our algorithm was primarily designed to minimize the total duration of the routes,
which seems appropriate in the case of time-dependent travel times. Even if there
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is no alternative algorithm to compare with, we ran our Tabu Search on the 210
NEWLET instances with this new objective (while minimizing the distance in the
diversification phase). The results are reported in Tables 6 and 7, using the format
of Tables 2 and 3 in Section 7.2.2.

Table 6 – Results for NEWLET instances - NTW

Instance #
nodes

#
arcs

#
cust. Corr. TS

Time(s)
Impr.
(%)

GapT
(%)

GapD
(%)

NEWLET

50 134

16
NC 0.753 4.993 0.901 1.797
WC 0.719 6.697 1.182 2.998
SC 0.442 5.073 1.412 1.262

33
NC 1.268 5.852 0.686 1.298
WC 2.217 3.830 1.156 1.321
SC 2.222 3.907 1.837 1.200

100 286

NC 1.471 5.834 1.375 1.540
25 WC 1.480 1.941 1.856 1.737

SC 1.593 1.868 3.469 1.472

33
NC 0.493 4.894 1.711 1.251
WC 0.560 6.122 1.982 1.862
SC 2.385 3.902 1.005 1.854

50
NC 1.464 3.730 1.335 1.598
WC 1.065 6.994 1.600 1.115
SC 7.956 0.011 1.374 1.071

200 580

NC 3.109 6.886 1.746 1.261
25 WC 2.572 7.087 1.847 1.401

SC 2.238 6.875 1.693 1.453

50
NC 7.830 7.702 1.374 1.480
WC 7.413 4.609 1.544 1.323
SC 9.327 4.783 1.866 1.284
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Table 7 – Results for NEWLET instances - WTW

Instance #
nodes

#
arcs

#
cust. Corr. TS

Time(s)
Impr.
(%)

GapT
(%)

GapD
(%)

NEWLET

50 134

16
NC 0.778 7.985 0.843 2.994
WC 0.730 7.711 1.334 4.370
SC 0.734 2.619 1.118 3.446

33
NC 2.189 6.869 1.468 1.233
WC 2.271 5.838 1.855 2.450
SC 2.227 4.874 1.764 1.086

100 286

NC 1.499 5.088 1.577 1.620
25 WC 1.009 7.916 1.690 1.905

SC 1.681 5.852 1.710 1.327

33
NC 2.594 5.001 1.130 1.496
WC 2.517 5.025 1.520 1.208
SC 2.315 7.805 1.134 1.118

50
NC 3.507 5.814 1.011 1.268
WC 7.723 7.149 1.814 1.810
SC 8.334 6.955 1.779 1.052

200 580

NC 2.464 8.137 1.071 1.896
25 WC 2.431 8.931 1.122 1.614

SC 2.438 5.084 1.453 1.326

50
NC 8.403 5.031 1.960 2.467
WC 8.220 7.916 1.702 2.791
SC 9.812 6.010 1.240 2.368

The two last columns (GapT and GAPD) are calculated as

GapT = Time(TSD)− Time(TST )
Time(TST ) × 100, (7)

GapD = Dist(TST )−Dist(TSD)
Dist(TSD) × 100, (8)

to compare the solutions produced by TS when the distance (TSD) or the dura-
tion (TST ) is minimized. That is, GapT is the gap between the duration of the
routes when the distance is minimized (Time(TSD)) and when the duration is mini-
mized (Time(TST )), while GapD is the gap between the total distance of the routes
when the duration is minimized (Dist(TST )) and when the distance is minimized
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(Time(TSD)). These two gaps indicate that the solutions obtained are significantly
different depending if duration or distance is minimized.

8 Conclusion
This paper has proposed a tabu search heuristic, coupled with innovative techniques
to evaluate neighborhood solutions in constant time, for the time-dependent vehicle
routing problem with time windows on a road network. Computational experiments
show that our method can identify high-quality solutions in very reasonable compu-
tation times on benchmark instances recently reported in the literature.

With regard to future work, we want to combine our tabu search with a previously
developed deep learning neural network model that predicts travel speeds on the arcs
of a road network, depending on a number of contextual variables. We will now
apply this neural network in a real-time environment to continuously update the speed
predictions based on current data. This update may, in turn, lead to a reoptimization
of the planned routes using the tabu search.
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[5] O. Bräysy and M. Gendreau. Vehicle routing problem with time windows,
Part I: Route construction and local search algorithms. Transportation Science,
39(1):104–118, 2005.

26

Tabu Search for the Time-Dependent Vehicle Routing Problem with Time Windows on a Road Network

CIRRELT-2019-32
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