
  

  
  
  

  CIRRELT-2019-36 

 

 
 
 
 
 
 
 

 
 
 
The Two-Echelon Inventory-Routing Problem 
with Fleet Management 
 
 
Cleder M. Schenekemberg 
Cassius T. Scarpin 
José E. Pécora Jr. 
Thiago A.Guimarães 
Leandro C. Coelho 
 
 
September 2019 

 
 
 
 

Document de travail également publié par la Faculté des sciences de 
l’administration de l’Université Laval, sous le numéro FSA-2019-12. 

 



The Two-Echelon Inventory-Routing Problem with Fleet Management 

Cleder M. Schenekemberg1,*, Cassius T. Scarpin1, José E.  Pécora J.1,2,             
Thiago A. Guimarães1,3 Leandro C. Coelho2,3 

1. Research Group of Technology Applied to Optimization (GTAO), Federal University of Paraná 
(UFPR), Curitiba, Brazil 

2. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation 
(CIRRELT) 

3. Federal Institute of Science and Technology of Paraná (IFPR), Curitiba, Brazil 
4. Canada Research Chair in Integrated Logistics, Operations and Decision Systems 

Department, Faculty of Administration Sciences, Université Laval, 2325, de la Terrasse, 
bureau 2525, Québec, Canada, G1V 0A6 

 
Abstract. This paper introduces the Two-Echelon Inventory-Routing Problem with Fleet 
Management. This problem arises under a two-echelon vendor-managed inventory system 
when a company must make vehicle routing and inventory management decisions, while 
renting a fleet subject to short-and mid-term agreements. Different chemical products are 
transported contaminating the vehicles that may require cleaning activities. Pickups of input 
take place in the first echelon, and the final product deliveries are performed in the second 
echelon. Based on a real-life case in the petrochemical industry, we introduce a formulation 
that takes into account vehicle rentals, cleanings, transportation, inventory management, 
and vehicle returns decisions. We design a branch-and-cut algorithm to solve it and also 
propose a matheuristic, in which vehicle routes are handled by an adaptive large 
neighborhood mechanism, while input pickups, product deliveries, and fleet planning are 
performed by solving several subproblems to optimality. Moreover, we introduce a hybrid 
parallel framework, combining our matheuristic and the branch-and-cut algorithm in order 
to solve very large instances exactly. We validate our methods by solving a set of instances 
of the two-echelon multi-depot inventory-routing problem from the literature, obtaining new 
best solutions for all instances. We also perform an extensive assessment of our methods, 
both on overall performance and on supply chain insights. 
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1 Introduction

Modern supply chains require high level of coordination and synchronization of their

decisions [9], and these can help decrease logistics costs and improve vendor-customer

relationships [29]. In this context, Vendor-Managed Inventory (VMI) systems configure

a collaborative practice between suppliers and customers [2]. Under the VMI paradigm,

suppliers control the inventory of the customers, deciding when to serve them and how

much to deliver. According to Zhao et al. [30], the VMI practice is mutually beneficial,

since customers do not have to spend resources to control their inventories and to man-

age orders, while suppliers improve their logistics activities coordination, particularly on

delivery routes composition.

To operate a VMI strategy one must solve an Inventory-Routing Problem (IRP), which

integrates the inventory management and the multi-period vehicle routing problem into

the same framework. Since it was introduced by Bell et al. [6], a wide range of IRP

variants have been proposed, involving strategic, tactical and operational criteria (see

[13]). Despite these studies, two simplifications are common in road-based logistics. First,

the supply chain is usually simplified into one-echelon only and involves one plant serving

multiple customers, known as a one-to-many structure [13]. Second, fleet decisions are

often taken on a tactical perspective, like sizing and mix [2].

Fleet management is one of the most expensive activities in the logistics industry [27].

Regarding routing problems, the main concern relates to fleet sizing, when an unlimited

number of homogeneous vehicles are considered, or to the fleet composition, when vehicles

with different capacities are available to perform deliveries [8]. Few studies address short-

term vehicle availability, and in the following, we review the relevant literature. Fagerholt

and Lindstad [15] present an interactive optimization-based decision support system for

ship routing and scheduling, where a cleaning procedure can be taken into account when

needed. Hvattum et al. [18] describe a similar approach for a tank allocation problem

arising in the shipping of bulk oil and chemical products by tanker ships. In road-based
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transportation, the majority of studies consider multi-compartment vehicles, as in Oppen

et al. [23], which deal with live animals from farms to slaughterhouses, where vehicle

disinfection is performed between consecutive tours. More recently, Lahyani et al. [19]

address a multi-product, multi-period routing problem arising in the collection of olive oil

in Tunisia. Due to the difference among olive oil grades, a compartment may require a

cleaning activity.

While fleet management in a integrated context is a complex task, outsourced fleet em-

ployment enables companies to focus their efforts on their core competence. According to

Rabinovich and Corsi [26], the outsourcing of integrated logistics functions allows to the

companies reduce their costs and improve the customer service level.

When more echelons are considered, the integrated supply chain management becomes

more complex, and the decision-making process is more difficult. Recently, Guimarães

et al. [17] introduced the two-echelon multi-depot IRP (2E-MDIRP), inspired by a VMI

system implementation of a real fuel distribution problem in South America. In that case,

plants in the middle layer control the gasoline inventory of a set of gas stations, besides

their own inventory of input (ethanol) picked up from supplying facilities. The aim is to

minimize pickups and deliveries routing costs, in addition to inventories costs. Despite

the costs involved, the authors assume that a fleet of vehicles is available at each plant,

omitting any cost for the use and maintenance of the vehicles.

In order to take advantage from the fleet outsourcing, to enable companies to focus on

their core business, and to consider a more realistic scenario, we extend the 2E-MDIRP,

incorporating fleet management decisions. We consider a two-echelon (2E) supply chain,

in which the plants in the middle layer are responsible for managing inputs pickups from

suppliers in the first echelon, and the product deliveries to customers in the second one.

Plants operate with a non-compartmentalized outsourced fleet, which must be rented.

Cleaning activities must take place whenever the vehicle exchanges the loaded product

or when it is returned to the rental company. In addition to traditional transportation

and inventory decisions, plants are in charge of fleet planning, including renting, cleaning,
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and returning vehicles. These aspects define an unparalleled problem in the literature,

which we call the 2E-IRP with fleet management (2E-IRPFM). The aim is to minimize

fleet management (rent and cleaning), routing (pickups of the input and deliveries of

gasoline blend) and inventories (input and final product) costs, avoiding stock-outs over

a planning horizon. We also perform extensive computational experiments on a new set

of 2E-IRPFM instances, inspired by a real-life case. We design a set of performance

indicators and derive many managerial insights for this rich and new problem.

The scientific contributions of this work are:

1. we are the first to consider an IRP while managing fleet decisions, not limited to

size and mix, but also taking into account rentals, cleanings, and returns;

2. we describe, model, solve, and compare different combinations of inventory poli-

cies with different fleet management costs. We analyze the performance of these

configurations based on their partial costs;

3. we design a matheuristic and a hybrid parallel exact algorithm based on branch-

and-cut (B&C);

4. we validate our algorithms on a special case of our problem from the literature,

proving optimally for several open instances and providing best known solutions to

all of them.

The remainder of the paper is organized as follows. In Section 2, we formally describe

the 2E-IRPFM, and propose a mixed-integer linear programming (MILP) formulation

in Section 3, where we present sets of new and existing valid inequalities. The B&C

algorithm is detailed in Section 4. In Section 5, we describe the matheuristic algorithm

we propose to solve the 2E-IRPFM, while Section 6 presents the hybrid parallel exact

approach. In Section 7, we discuss the results of extensive computational experiments

performed to assess the quality of the algorithms, and we also derive business insights

based on the results. Conclusions are presented in Section 8.
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2 Problem description

The 2E-IRPFM is defined over an undirected graph G = (V , E), where the vertex set V

represents the union of the sets F of suppliers, P of plants, and C of customers, while

E is the set of edges. The first echelon links suppliers and plants and it is defined by

subgraph G′ = (V ′, E ′), where V ′ = F ∪ P and E ′ = {(u, v) : u, v ∈ V ′, u ∈ F ∧ v ∈ P}.

The second echelon links plants and customers and is defined by subgraph G′′ = (V ′′, E ′′)

with V ′′ = P ∪ C and E ′′ = {(u, v) : u, v ∈ V ′′ ∧ u, v ⊕ P , u < v}, in which V = V ′ ∪ V ′′

and E = E ′ ∪ E ′′. A non-negative cost cuv is associated with each edge (u, v) ∈ E .

The planning horizon is defined over a set T = {1, ..., p} of periods. In each period t,

each plant j ∈ P is allowed to rent up to |K| of homogeneous vehicles of capacity Q

at rental cost fw per vehicle per period. Each vehicle can be used to pick up a certain

amount of input (α) from a supplier, and/or to deliver a certain amount of final product

(β) to customers. Once a customer is visited and one must determine the quantity to be

delivered, one of two policies are often applied. Under the maximum level (ML) policy,

the plant is free to decide how much to deliver to a customer, as long as the inventory

capacity is not exceeded. The order-up-to (OU) policy fills the customer’s inventory

capacity whenever a delivery occurs [4].

After performing a pickup of α (delivery of β), the vehicle remains contaminated with α

(β). Before a new trip with a different product, each vehicle must undergo a chemical

cleaning procedure, incurring in cleaning cost fs. This can occur in the same period, if α

is picked up at the beginning of t, and β is delivered at the end of t by the same vehicle k,

or in different periods, if the vehicle remains at the plant. In this case, fw is due for each

additional period in which the vehicle remains at the plant. A vehicle contaminated with

α in t can perform a new pickup in t′, t′ > t without going through chemical cleaning,

since it does not perform any delivery of β between [t, t′]. The same idea works for β. As

a vehicle remains contaminated with the last load, when a plant decides to return it, a

cleaning cost fs is due as every vehicle must be cleaned before being returned.
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Each unity of β requires a certain quantity ϕ of α in its blend, and the demand dtl of each

customer l in each period t is known a priori. Plant j has a maximum inventory capacity

Uj for α, and its level cannot be lower than Lj. One unit of α incurs an inventory holding

cost hj per period. Likewise, Ul and Ll denote the maximum and minimum inventory

levels for β at customer l, with unit holding cost hl. The total availability of α at all

suppliers is not constrained. However, each supplier i disposes of Φi units for the whole

planning horizon, according to a pre-established contract with plants. In t = 0, there are

no rented vehicles at the plants, and initial inventory levels I0j and I0l are known at each

plant j and each customer l.

Regarding the timing of the activities, we assume that α is always picked up at the

beginning of a period if a pickup is needed. When a delivery is also required, it must

be scheduled after all the pickups had been performed. That is mandatory to enable the

blending process and to produce β in the same period. A vehicle must be clean before its

return to the rental company at the end of a period.

The objective of the 2E-IRPFM is to minimize the total inventory, transportation, and

fleet management cost, determining, for each plant:

• when, how much and from which supplier to pickup α;

• when and how much to deliver β to a customer;

• when and how many vehicles to rent, to clean, to keep, and to return;

• how to combine customer deliveries into vehicle routes.

A customer may be visited at most by one vehicle per period. Likewise, a plant is allowed

to pick up α from one supplier using one vehicle in a period. Each input pickup or delivery

route must end at the same starting plant. As the fleet is non-compartmentalized, a

pickup and a delivery cannot be combined in the same tour. Thus, after collecting α

from a supplier, the vehicle needs to return to its original plant and will only be able to

perform a delivery route if it is properly cleaned.
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3 Mathematical formulation for the 2E-IRPFM

We now present the mathematical formulation for the 2E-IRPFM. For each plant j one

must determine the quantity of product qktjl delivered to customer l and the total amount

of input rktij picked up from supplier i, using vehicle k in period t. At the end of each

period, the inventory level of β at customer l is given by I tl , while the inventory level of

α at plant j is I tj . The remaining variables used in our model are:

• W kt
j = 1 if vehicle k is rented by plant j in period t, 0 otherwise;

• Rkt
j = 1 if vehicle k rented by plant j is returned in period t, 0 otherwise;

• Xkt
ij = 1 if vehicle k rented by plant j picks up α from supplier i in period t, 0

otherwise;

• Y kt
jl = 1 if vehicle k rented by plant j delivers β to customer l in period t, 0 otherwise;

• ykjtuv = 1 if vehicle k rented by plant j travels between customers u and v, u < v, in

period t, 0 otherwise;

• ykjtjl ∈ {0, 1, 2}. When ykjtjl = 1, vehicle k rented by plant j travels directly from

plant j to customer l in period t. If ykjtjl = 2, a round trip is defined, 0 otherwise;

• Zα,kt
j = 1 if vehicle k rented by plant j ends period t contaminated with α, 0

otherwise;

• Zβ,kt
j = 1 if vehicle k rented by plant j ends period t contaminated with β, 0

otherwise;

• Sα,ktj = 1 if vehicle k rented by plant j contaminated with β is cleaned to pickup α

in period t, 0 otherwise;

• Sβ,ktj = 1 if vehicle k rented by plant j contaminated with α is cleaned to deliver β

in period t, 0 otherwise;
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• SR,ktj = 1 if vehicle k rented by plant j, contaminated with α or β, is cleaned to be

returned in period t, 0 otherwise;

• Sktj : total number of cleanings of vehicle k rented by plant j in period t.

In addition, we also define variable Xkt
jj = 1 to indicate that vehicle k, rented by plant

j, performs a pickup in t, 0 otherwise. Equivalently, Y kt
jj = 1 works for a delivery, 0

otherwise. Without loss of generality, we assume that no vehicle is housed at plants in

t = 0, i.e., W k0
j , Rk0

j , Z
α,k0
j and Zβ,k0

j are set to zero.

A suitable representation of the 2E-IRPFM is shown on Figure 1. Considering two con-

secutive periods, t and t + 1, we depict the sequence of decisions for a given vehicle k,

rented by plant j. In order to simplify the example, indices k and j are omitted on the

variables. First, the vehicle is rented in period t, which obviously implies in W t = 1.

Then, this vehicle performs a pickup, becoming contaminated with α. Before it can be

assigned to a delivery, a cleaning is carried out, i.e., Sβ,t = 1. The vehicle then leaves

to the plant contaminated with β, and remains there in the following period, yielding

Zβ,t = 1 and an additional lease with W t+1 = 1. At the beginning of t + 1, the vehicle

is cleaned to perform a new input pickup (Sα,t+1 = 1). After returning to the plant, one

last cleaning is performed (SR,t+1 = 1), and the vehicle is returned at the end of t+ 1.

The 2E-IRPFM is formulated by (1)−(42).

min
∑
t∈T

∑
j∈P

∑
k∈K

fwW
kt
j +

∑
j∈P

∑
k∈K

fsS
kt
j +

∑
j∈P

hjI
t
j +

∑
l∈C

hlI
t
l +

∑
k∈K

∑
(i,j)∈E′

2cijX
kt
ij +

∑
j∈P

∑
k∈K

∑
(u,v)∈E′′

cuvy
kjt
uv


(1)

subject to

∑
t∈T

∑
j∈P

∑
k∈K

rktij ≤ Φi i ∈ F (2)

Itj = It−1j +
∑
i∈F

∑
k∈K

rktij −
∑
l∈C

∑
k∈K

ϕqktjl j ∈ P, t ∈ T (3)
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Figure 1: Graphical representation of the 2E-IRPFM
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Itl = It−1l +
∑
j∈P

∑
k∈K

qktjl − dtl l ∈ C, t ∈ T (4)

Ll ≤ Itl ≤ Ul l ∈ V ′′, t ∈ T (5)∑
k∈K

∑
i∈F

Xkt
ij ≤ 1 j ∈ P, t ∈ T (6)

∑
i∈F

∑
k∈K

rktij ≤ Uj − It−1j j ∈ P, t ∈ T (7)

rktij ≤ QXkt
ij j ∈ P, i ∈ F , k ∈ K, t ∈ T (8)∑

j∈P

∑
k∈K

qktjl ≤ Ul − It−1l l ∈ C, t ∈ T (9)

qktjl ≤ UlY ktjl l ∈ C, j ∈ P, k ∈ K, t ∈ T (10)∑
l∈C

qktjl ≤ QY ktjj j ∈ P, k ∈ K, t ∈ T (11)

∑
j∈P

∑
k∈K

Y ktjl ≤ 1 l ∈ C, t ∈ T (12)

∑
u∈V′′
u<l

ykjtul +
∑
u∈V′′
l<u

ykjtlu = 2Y ktjl l ∈ V ′′, j ∈ P, k ∈ K, t ∈ T (13)

∑
l∈S

∑
u∈S
l<u

ykjtlu ≤
∑
l∈S

Y ktjl − Y ktjm S ⊆ C, |S| ≥ 2,m ∈ S, j ∈ P, k ∈ K, t ∈ T

(14)∑
i∈F

Xkt
ij = Xkt

jj j ∈ P, k ∈ K, t ∈ T (15)

Xkt
jj ≤W kt

j j ∈ P, k ∈ K, t ∈ T (16)

Y ktjj ≤W kt
j j ∈ P, k ∈ K, t ∈ T (17)

Rktj ≤W kt
j j ∈ P, k ∈ K, t ∈ T (18)

Zα,k,t−1j ≤W kt
j j ∈ P, k ∈ K, t ∈ T (19)

Zβ,k,t−1j ≤W kt
j j ∈ P, k ∈ K, t ∈ T (20)

Zα,ktj + Zβ,ktj +Rktj = W kt
j j ∈ P, k ∈ K, t ∈ T (21)

Xkt
jj − Y ktjj −Rktj ≤ Z

α,kt
j j ∈ P, k ∈ K, t ∈ T (22)

Zα,k,t−1j − Zβ,ktj −Rktj ≤ Z
α,kt
j j ∈ P, k ∈ K, t ∈ T (23)

Y ktjj −Rktj ≤ Z
β,kt
j j ∈ P, k ∈ K, t ∈ T (24)

Zβ,k,t−1j − Zα,ktj −Rktj ≤ Z
β,kt
j j ∈ P, k ∈ K, t ∈ T (25)

W k,t−1
j −Rk,t−1j ≤W kt

j j ∈ P, k ∈ K, t ∈ T (26)

Xkt
jj + Zβ,k,t−1j − 1 ≤ Sα,ktj j ∈ P, k ∈ K, t ∈ T (27)
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Zβ,k,t−1j + Zα,ktj − 1 ≤ Sα,ktj j ∈ P, k ∈ K, t ∈ T (28)

Y ktjj +Xkt
jj − 1 ≤ Sβ,ktj j ∈ P, k ∈ K, t ∈ T (29)

Y ktjj + Zα,k,t−1j − 1 ≤ Sβ,ktj j ∈ P, k ∈ K, t ∈ T (30)

Zα,k,t−1j + Zβ,ktj − 1 ≤ Sβ,ktj j ∈ P, k ∈ K, t ∈ T (31)

Rktj ≤ S
R,kt
j j ∈ P, k ∈ K, t ∈ T (32)

Sα,ktj + Sβ,ktj + SR,ktj = Sktj j ∈ P, k ∈ K, t ∈ T (33)

Itj , r
kt
ij ≥ 0 i ∈ F , j ∈ P, k ∈ K, t ∈ T (34)

Itl , q
kt
jl ≥ 0 l ∈ C, j ∈ P, k ∈ K, t ∈ T (35)

Y ktjj , S
R,kt
j , Sβ,ktj , Sα,ktj , Rktj , Z

β,kt
j , Zα,ktj ,W kt

j ∈ {0, 1} j ∈ P, k ∈ K, t ∈ T (36)

Sktj ∈ {0, 1, 2, 3} j ∈ P, k ∈ K, t ∈ T (37)

Xkt
ij ∈ {0, 1} i ∈ F , j ∈ P, k ∈ K, t ∈ T (38)

Xkt
jj ∈ {0, 1} j ∈ P, k ∈ K, t ∈ T (39)

Y ktjl ∈ {0, 1} l ∈ C, j ∈ P, k ∈ K, t ∈ T (40)

ykjtjl ∈ {0, 1, 2} l ∈ C, j ∈ P, k ∈ K, t ∈ T (41)

ykjtuv ∈ {0, 1} u, v ∈ C, u < v, j ∈ P, k ∈ K, t ∈ T . (42)

The objective function (1) minimizes the total cost, given by six terms: fleet rental,

fleet cleaning, input inventory at the plants, final product inventory at the customers,

pickup transportation, and delivery transportation costs. Constraints (2) bound the in-

put availability, according to the contract between suppliers and plants. Constraints

(3)−(5) balance the flow and impose inventory bounds. Constraints (6) allow at most

one pickup per plant per period, while constraints (7) ensure the ML inventory policy

for α. Constraints (8) guarantee that the vehicle capacity is not exceed. The ML inven-

tory policy for β is formulated by (9). Constraints (10) link assignment variables with

the quantity delivered. Constraints (11) guarantee that total delivery quantity does not

exceed the vehicle capacity, while (12) avoid split deliveries. Constraints (13) and (14)

impose linking and subtour elimination conditions, while constraints (15) link a pickup

with the assigned vehicle. Constraints (16)–(33) formulate the fleet rental and return. In

particular, constraints (16) and (17) require a vehicle to be rented if it is used to either
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pickup α or deliver β. Constraints (18) impose that only rented vehicles can be returned.

Constraints (19) and (20) impose that if a vehicle remains rented its contamination is

kept. Constraints (21) define mutually exclusive conditions for a vehicle at the end of t:

contaminated with α, contaminated with β, or returned to the rental company. In the

last case, the vehicle must be cleaned. Constraints (22) and (23) balance the contami-

nation flow of α, while (24) and (25) impose it for β. Likewise, constraints (26) ensure

vehicle flow conservation. Constraints (27) and (28) encompass all the requirements to

clean up the vehicle, in order to allow a pickup. Similarly, constraints (29)–(31) do the

same to deliveries, while constraints (32) ensure that the vehicle is clean when returned.

Constraints (33) compute the total number of cleanings. Lastly, constraints (34)–(42)

define the variables domain.

The order-up-to level inventory policy (OU) links the decision of when and how much

to serve a customer. Thereby, whenever a plant performs a delivery, the total quantity

delivered must be equal to the customer inventory availability:

∑
j∈P

∑
k∈K

qktjl ≥ Ul
∑
j∈P

∑
k∈K

Y ktjl − It−1l l ∈ C, t ∈ T . (43)

In order to strengthen the formulation and improve the quality of its dual bound, we

also present a set of well-known valid inequalities from basic IRPs [4, 7, 10]. These are

described next.

ykjtjl ≤ 2Y ktjl l ∈ C, j ∈ P, k ∈ K, t ∈ T (44)

ykjtul ≤ Y
kt
jl u, l ∈ C, u < l, j ∈ P, k ∈ K, t ∈ T (45)

ykjtlu ≤ Y
kt
jl u, l ∈ C, l < u, j ∈ P, k ∈ K, t ∈ T (46)

Y ktjl ≤ Y ktjj l ∈ C, j ∈ P, k ∈ K, t ∈ T . (47)

Inequalities (44) strengthen the case if customer l is served in a direct delivery by vehicle

The Two-Echelon Inventory-Routing Problem with Fleet Management
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k rented by plant j in period t. Similarly, inequalities (45) and (46) work for customer l if

it is preceded or succeeded by another customer u, respectively. Inequalities (47) ensure

that customer l is served by vehicle k starting from plant j in period t, only if the vehicle

is assigned for that plant.

We also consider inequalities (48)–(50) adapted by Guimarães et al. [17] for the multi-

depot multi-vehicle IRP. It is useful to set the minimum number of deliveries, in order to

avoid a stock-out at customer l on the interval [t1, t2]. The same authors also proposed

inequalities (51), which identify the smallest range [t1, t2] for which plant j must perform

a pickup.

∑
j∈P

∑
k∈K

t2∑
t=t1

Y ktjl ≥

⌈∑t2
t=t1

dtl − Ul
min {Q,Ul}

⌉
l ∈ C, t1, t2 ∈ T , t2 > t1 (48)

∑
j∈P

∑
k∈K

t2∑
t=t1

Y ktjl ≥
∑t2
t=t1

dtl − I
t1−1
l

min {Q,Ul}
l ∈ C, t1, t2 ∈ T , t2 > t1 (49)

∑
j∈P

∑
k∈K

t2∑
t=t1

Y ktjl ≥
∑t2
t=t1

dtl − I
t1−1
l∑t2

t=t1
dtl

l ∈ C, t1, t2 ∈ T , t2 > t1 (50)

∑
i∈F

∑
k∈K

t2∑
t=t1

Xkt
ij ≥

∑
l∈C
∑
k∈K

∑t2
t=t1

(ϕ)qktjl − I
t1−1
j

min {Q,Uj}
j ∈ P, t1, t2 ∈ T , t2 > t1. (51)

Based on the features of the 2E-IRPFM, we introduce the following new inequalities.

∑
l∈C
∑
k∈K q

kt
jl

Q
≤
∑
k∈K

W kt
j j ∈ P, t ∈ T (52)

∑
k∈K

Y ktjj ≤
∑
k∈K

W kt
j j ∈ P, t ∈ T (53)

Y ktjj +Xkt
jj ≤W kt

j + Sβ,ktj j ∈ P, k ∈ K, t ∈ T . (54)

The left hand side of (52) computes the minimum number of vehicles required, based

on the total delivery amount scheduled in t. Thus, the right hand side sets the lower

bound for the number of rented vehicles per plant. Equivalently, this lower bound is also
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obtained according to the number of vehicles scheduled for deliveries, departing from each

plant, as presented by inequalities (53). Finally, inequalities (54) ensure that if vehicle k,

housed at plant j, is assigned to a pick up and a delivery in period t, then this vehicle

must be rented and cleaned.

It is known that the first-in, first-out rule can be associated with an optimal solution

of the IRP. Desaulniers et al. [14] then introduce the following notation. Let I0,sl =

max {0, I0l −
∑s

t=1 d
t
l} be the remaining quantity of initial inventory for customer l at the

end of period s ∈ T . The residual demands (d̄sl ) define the demand not met by the initial

inventory:

d̄sl =

max
{

0, d1l − I0l
}

if s = 1

max
{

0, dsl − I
0,s−1
l

}
otherwise

∀s ∈ T . (55)

Besides that, the same authors combine the maximum inventory level (Ul), the demand

(dsl ) and the residual demand (d̄sl ) in s ∈ T for each customer l, defining the following set

P+
lt , containing all periods in which a sub-delivery of β for a customer l in period t can be

used, either to satisfy the current demand or to be held in inventory for future periods.

P+
lt =

{
t|d̄tl > 0

}
∪

{
s > t|d̄sl > 0 and

s−1∑
t′=t

dt
′

l < Ul

}
∪

{
p+ 1|

p∑
t′=t

dt
′

l < Ul

}
. (56)

Finally, let P−ls =
{
t ∈ T |s ∈ P+

lt

}
be the set of periods for which a delivery can be

scheduled to satisfy the demand of l in s ∈ T . Desaulniers et al. [14] propose the following

valid inequalities for the IRP, derived from the minimum number of sub-deliveries per

demand. We adapt them to the 2E-IRPFM, as follows:

∑
j∈P

∑
k∈K

∑
t∈P−ls

Y ktjl ≥ 1, l ∈ C, s ∈ T , with P−ls 6= ∅. (57)
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Lefever [20] propose a set of valid inequalities to the IRP with transshipment (IRPT),

useful to bound the minimum number of delivery routes along the planning horizon T .

We adapt these inequalities to the 2E-IRPFM, as:

∑
j∈P

∑
k∈K

s∑
t=1

Y ktjj ≥

⌈∑
l∈C
∑s
t=1 d̄

t
l

Q

⌉
, s ∈ T . (58)

Finally, to strengthen the IRP inventory management component formulation, Lefever

et al. [21] employ a remaining quantity to restrict the range of continuous variables I tl

and qktjl . These improved bounds can be tightened as follows.

Itl ≥ I
0,t
l , l ∈ C, t ∈ T (59)

qktjl ≤ Ul − I
0,t
l , j ∈ P, l ∈ C, k ∈ K, t ∈ T . (60)

4 Branch-and-cut algorithm

Due to their combinatorial features, the number of subtour elimination constraints (SEC)

(14) is too large, and their full enumeration is impracticable. To overcome this limitation,

these constraints must be dynamically generated along the search process. We use an

exact approach to solve the model presented in Section 3, where SEC are added to the

search tree whenever subtours are found at the current solution. This technique is known

as a branch-and-cut method and works as follows.

At the beginning of the search, all valid inequalities are generated and added in the root

node. Whenever a node of the search tree is solved by a MIP solver, a search for violated

SEC is performed. We have used the CVRPSEP package of Lysgaard et al. [22] to generate
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SEC. When subtours are identified by CVRPSEP, their corresponding SEC are added to

the search tree. This process is repeated until a feasible or dominated solution is found,

or until there are no more cuts to be added. At this point, a new subproblem is generated

by branching on a fractional variable, and the model is reoptimized in a new node.

We provide a scheme of our branch-and-cut algorithm on Algorithm 1.

Algorithm 1 Pseudocode of the proposed B&C algorithm

1: At the root node of the search tree, generate (1)–(13), (15)–(42) and all valid inequalities (44)–(54),

(58)–(60).

2: Subproblem solution, Solve the LP relaxation of the node.

3: Termination check:

4: if there are no more nodes to evaluate then

5: Stop.

6: else

7: Select one node from the B&C tree.

8: end if

9: while the solution of the current LP relaxation contains subtours do

10: Add violated subtour elimination constraints.

11: Subproblem solution. Solve the LP relaxation of the node.

12: end while

13: if the solution of the current LP relaxation is integer then

14: Go to the termination check.

15: else

16: Branching: branch on one of the fractional variables.

17: Go to the termination check.

18: end if

5 Matheuristic-based adaptive large neighborhood search

algorithm

Since the 2E-IRPFM generalizes the vehicle routing problem (VRP), it is NP-hard and

traditional exact methods, like B&C algorithms, can solve only small size instances. To

handle large instances, we propose a matheuristic approach, combining mathematical

programming techniques with heuristic search procedures. Matheuristics are widely used
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to solve routing problems (see Archetti and Speranza [3]). In particular, Archetti et al.

[5] combine integer programming with tabu search to solve a multi-vehicle IRP. More

recently, Bertazzi et al. [7] propose a matheuristic to solve a multi-depot IRP.

In the context of the 2E-IRPFM we make use of an adaptive large neighborhood search

(ALNS) mechanism, responsible for handling the delivery routes, while pickup, delivery

quantities, fleet management, and some improvements are determined exactly by mixed

integer programming (MIP) subproblems.

5.1 ALNS mechanism

The ALNS was proposed by Pisinger and Ropke [25] to solve the VRP and its extensions.

In the inventory-routing context, it has since been successfully applied to several variants

(Aksen et al. [1], Coelho et al. [11, 12], Guimarães et al. [17]). Our ALNS deals with

the delivery routes, while delivery quantities, pickups and fleet decisions are determined

exactly by MIP subproblems. The search procedure follows the general scheme proposed

by Pisinger and Ropke [25] and is divided into ∆ segments. Given a solution, some

customers are either inserted, removed, or swapped among routes at each iteration, by

specific operators. Each operator i contains three attributes. The first one is the weight,

given by ωi, whose value depends on past performance. The second attribute is the score,

given by πi, which quantifies the effect on the solution when the operator is applied. It

increases by σ1 if the operator leads to a new best solution, by σ2 if it finds a solution better

than the current one, and by σ3 if the solution is worse but is still accepted according

to a simulated annealing criteria; the third and last attribute is ςij, which measures the

number of times the operator i has been applied in the last segment j ∈ ∆.

By the general ALNS framework, we adopt a simulated annealing acceptance criterion.

Let s be a solution and s′ a neighbor solution, obtained from s. The acceptance probability

of s′ is e(z(s)−z(s
′))/τ , where z(·) is the solution cost and τ > 0 is the current temperature.

The initial temperature is τstart, decreasing at each iteration by a cooling rate factor φ,
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with 0 < φ < 1.

In the first iteration, all scores are equal to zero, and all weights are equal to one. A

roulette wheel mechanism controls the choice of operators. Given h operators, operator

i is chosen with probability ωi/
∑h

j=1 ωj. In each segment ∆, if the operator was chosen,

a reaction factor η ∈ [0, 1] is applied to balance its weight between the past and present

performance, according to (61). After this step, all scores are reset to zero.

ωi :=

ωi if ςij = 0

(1− η)ωi + ηπi/ςij if ςij 6= 0.

(61)

A neighbor solution s′ is obtained when an operator is selected and applied on s. In the

list below, we present the operators developed for our ALNS.

1. Randomly remove ρ: It randomly selects a period t, a plant j, a vehicle k rented

by this plant, and a customer l served from it and removes this customer. It is

repeated ρ times.

2. Remove worst ρ: This operator computes the transportation saving of not vis-

iting each client served, according to the triangle inequality. It is applied ρ times,

removing, at each time, the customer yielding the highest saving.

3. Shaw removal route based : It randomly selects a period t, a plant j, a vehicle k

rented by this plant, and a customer l served by this vehicle. It then computes the

distance min(clu) to the closest customer u also being served by the same vehicle,

and removes all customers within 2min(clu) from customer l.

4. Empty one period : Randomly selects a period t and removes all its deliveries.

5. Empty one vehicle : Randomly selects a rented vehicle k and removes all deliveries

from all plants in all periods performed by this vehicle.
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6. Empty one plant : Randomly selects a plant j and removes all deliveries of all

vehicles from this plant over the planning horizon.

7. Farthest customer : This operator randomly selects a period t, a plant j, and a

vehicle rented by this plant, and removes its farthest customer, measured by the

direct distance from the depot. It is repeated ρ times.

8. Avoid consecutive visits : Starting from t = 1, it removes the second visit of all

customers receiving deliveries in two consecutive periods. The delivery quantities

are updated at each new period analyzed.

9. Remove ρ minimum residual deliveries : This operator calculates the residual

delivery for all served customers, given by
qktjl

Ul−It−1
l

, with qktjl > 0, for each l ∈ C, and

removes the customer with the minimum residual delivery. It is repeated ρ times.

10. Remove ρ most visited customers : This operator removes the most visited

customer over the planning horizon. Ties are broken randomly. It is repeated ρ

times.

11. Randomly insert ρ: Randomly selects a period t, a plant j and a vehicle k rented

by this plant, and inserts a randomly selected customer l unserved in t, following

the cheapest insertion rule. The operator is repeated ρ times.

12. Insert best ρ: Similar to Remove worst ρ, this operator inserts the customer

with the smallest increase in transportation cost. It is repeated ρ times.

13. Assignment to the nearest plant : This operator randomly selects a period t

and a customer l not served in that period, and inserts it on the route of its nearest

plant, following the cheapest insertion rule. It is repeated ρ times.

14. Shaw insertion : This operator randomly selects a period t and a customer l not

served in t. Then it is computes min(clv), with v ∈ V ′′. All customers not yet

served in that period, distant up to 2min(clv) are inserted in a rented vehicle k in

t, following cheapest insertion rule. It is repeated ρ times.
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15. Swap ρ customers : Randomly selects two customers served by different vehicles

and swaps their assignments. It is repeated ρ times.

16. Swap ρ customers inter-routes : Randomly selects two customers served by the

same plant in different vehicle routes in a given period t, and swaps their assign-

ments. The insertion follows the cheapest rule. It is repeated ρ times.

17. Swap ρ customers intra-plants : Randomly selects two customers served by dif-

ferent plants in a given period, and swaps their assignments, following the cheapest

insertion rule. It is repeated ρ times.

5.2 MIP subproblems

Our matheuristic scheme exploits the solutions obtained from three MIP subproblems.

These MIPs provide an initial solution for the 2E-IRPFM, which is polished and improved

by our ALNS operators, by a solution improvement procedure, and finally by a general

route improvement procedure.

5.2.1 Initial solution procedure

The initial solution procedure (ISP) simplifies the 2E-IRPFM model, disregarding route

decisions. To this end, all deliveries are scheduled based on direct links between plants

and customers, while minimizing pickups, inventory holding, and fleet management costs.

For each delivery plan, the visiting sequence is solved exactly as a traveling salesman

problem (TSP) as explained next. We employ the branch-and-cut technique proposed by

Padberg and Rinaldi [24]. The decision variables are precisely the same of the 2E-IRPFM

formulation, except for route variables y. The ISP model is formulated by:

min
∑
t∈T

∑
j∈P

∑
k∈K

fwW
kt
j +

∑
j∈P

∑
k∈K

fsS
kt
j +

∑
j∈P

hjI
t
j +

∑
l∈C

hlI
t
l +

∑
k∈K

∑
(i,j)∈E′

2cijX
kt
ij +

∑
j∈P

∑
k∈K

∑
l∈C

cjlY
kt
jl


(62)
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subject to (2)−(12), (15)−(40) and to:

Y ktjj ≤
∑
l∈C

Y ktjl j ∈ P, k ∈ K, t ∈ T . (63)

The objective function (62) minimizes the fleet management (rental and cleaning), in-

ventory holding, pickup and approximated delivery transportation costs, calculated as a

direct link cost cjl, between customer l and plant j. Constraints (63) ensure that each

vehicle rented by a given plant performs a delivery route if at least one customer is served

in this period. Valid inequalities (47)−(54) and (57)−(60) also apply and the OU policy

is handled through constraints (43). After solving the ISP, the TSP B&C [24] is solved

for each vehicle used in the solution, which already respects capacity due to constraints

(11).

5.2.2 Solution improvement procedure

The solution improvement procedure (SIP) plays a central role in the optimization process.

It first completes an 2E-IRPFM solution, after each ALNS iteration, determining fleet

assignment, pickups, and delivery quantities. It can also slightly improve a solution by

removing or inserting delivery customers, scheduling pickups, and swapping customers

among routes. Since a destroy ALNS operator may yield an infeasible solution, the

insertion mechanism embedded in our SIP can recover feasibility. The parameters used

are presented as follows.

• aktjl : routing reduction cost if customer l is removed from vehicle k rented by plant

j in period t, where Y kt
jl = 1. This cost follows the cheapest removal rule.

• bktjl : routing cost if customer l is inserted in the route of vehicle k rented by plant j

in period t, where Y kt
jl = 0. This cost follows the cheapest insertion rule.
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• ψktjl : a binary parameter equal to 1, if customer l is served in the current route of

vehicle k rented by plant j in period t, where Y kt
jl = 1, 0 otherwise.

Our SIP model keeps all decision variables from the 2E-IRPFM, except for the y routing

variables. Besides that, visiting customer variables Y are replaced by the following new

ones:

• δktjl = 1 if customer l is removed from the existing route of vehicle k rented by plant

j in period t, which obviously has ψktjl = 1, and 0 otherwise;

• ωktjl = 1 if customer l is inserted in the route of vehicle k rented by plant j in period

t, which obviously has ψktjl = 0, and 0 otherwise.

The SIP model is then formulated as:

min
∑
t∈T

∑
j∈P

hjI
t
j +

∑
l∈C

hlI
t
l +

∑
k∈K

∑
(i,j)∈E′

2cijX
kt
ij +

∑
j∈P

∑
k∈K

[
fwW

kt
j + fsS

kt
j +

∑
l∈C

bktjlω
kt
jl −

∑
l∈C

aktjl δ
kt
jl

]
(64)

subject to (2)−(9), (11), (15)−(39), and to:

ωktjl ≤ 1− ψktjl j ∈ P, l ∈ C, k ∈ K, t ∈ T (65)

δktjl ≤ ψktjl j ∈ P, l ∈ C, k ∈ K, t ∈ T (66)

qktjl ≤
(
ψktjl − δktjl + ωktjl

)
Ul j ∈ P, l ∈ C, k ∈ K, t ∈ T (67)∑

j∈P

∑
k∈K

(
ψktjl − δktjl + ωktjl

)
≤ 1 l ∈ C, t ∈ T (68)

ψktjl − δktjl + ωktjl ≤ Y ktjj j ∈ P, l ∈ C, k ∈ K, t ∈ T (69)∑
j∈P

∑
l∈C

(
δktjl + ωktjl

)
≤ G k ∈ K, t ∈ T (70)

ωktjl , δ
kt
jl ∈ {0, 1} j ∈ P, l ∈ C, k ∈ K, t ∈ T . (71)
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The objective function (64) minimizes the inventory holding, pickups, fleet management,

removal and insertion costs. Constraints (65) forbid inserting a customer on a route

that already serves it, while (66) guarantee that a customer can only be removed if it is

served by the route. Constraints (67) link removal and insertion variables with quantities

delivered. Constraints (68) avoid split deliveries, while constraints (69) force the departure

of a given vehicle k rented by plant j, if any customers are assigned to it. Constraints (70)

limit the total number of removals and insertions by a constant G ∈ Z+. This condition

is valid only for deliveries, while pickups are free to be optimized. This is less strict than

the one used by Guimarães et al. [17]. New variables domain are defined by (71).

The performance of SIP is strongly dependent on G. When G is small, feasibility may

not be recovered when a destroy operator is applied on the ALNS stage. Otherwise,

when its value is large, the removals and/or insertions on the routes may not lead to any

improvement, because of the approximated transportation costs. We consider a dynamic

arrangement to set up an appropriate value for G, detailed in Section 5.3. The OU policy

is handled through the constraints (72).

qktjl ≥
(
ψktjl − δktjl + ωktjl

)
Ul − It−1l j ∈ P, l ∈ C, k ∈ K, t ∈ T . (72)

As a final polishing, each time the SIP model is solved, the TSP procedure is applied to

provide an optimal sequence of visits for each vehicle route, allowing us to compute the

cost of a new solution exactly.

5.2.3 General improvement routing procedure

To overcome the drawback arising from the approximated transportation costs present in

many ALNS operators, we introduce a novel way to optimize inventory holding and fleet

management costs, while performing routing improvements considering real transporta-

tion costs. To the best of our knowledge, this is a new approach introduced in this paper
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and useful for other routing problems.

The general improvement routing procedure (GIRP) can apply any movement in all ex-

isting routes in a given solution (either a removal, an insertion, or a swap), taking into

account the true transportation costs, unlike SIP. Let Ajkt be the set of customers l ∈ C

served by vehicle k rented by plant j in period t, which obviously has Y kt
jj = 1. If Ajkt = ∅,

it means that there are no customers being served by that vehicle, i.e., Y kt
jj = 0. Consider

also a new set of arcs Ejkt ⊆ E ′′, with Ejkt =
{

(u, v) : u, v ∈ {j} ∪ Ajkt ∪ Acjkt
}

, where Ejkt
represents edges adjacent to plant j, the set of customers in the existing routes Ajkt, and

its complement Acjkt, where |Ajkt| > 0. We note that the set generated by Ajkt∪Acjkt = C.

Since all the decisions concerning fleet management, inventory flows, pickup, and deliver-

ies are interdependent, GIRP works as the 2E-IRPFM model, with a much smaller search

space. In this sense, removals, insertions, and customers swaps are allowed only on estab-

lished routes, avoiding customers from being served by new ones. Formally, variables qktjl ,

Y kt
jl and ykjtuv are free to be optimized if and only if their associated routes exist, where

(u, v) ∈ Ejkt and |Ajkt| > 0. Otherwise, qktjl , Y
kt
jl and ykjtuv are set to zero, where (u, v) ∈ Ejkt

and when Ajkt = ∅.

The remainder of the 2E-IRPFM formulation is not affected, and all other decision vari-

ables are free to be optimized. Moreover, for a given solution and a positive integer

parameter B, we add the following constraints to the GIRP model, inspired by the local

branching constraints of Fischetti and Lodi [16].

∑
l∈Ajkt

(
1− Y ktjl

)
+
∑
l∈Ac

jkt

Y ktjl ≤ B j ∈ P, k ∈ K, t ∈ T , |Ajkt| > 0. (73)

The left hand side of constraints (73) counts the number of binary variables exchanging

their value with respect to each existing route from a solution s̄, either from 1 to 0 or

from 0 to 1, respectively. The set of 2E-IRPFM solutions satisfying (73) define the B-

OPT neighborhood N (s̄,B) of s̄. The neighborhood size B should be properly chosen,
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so that the neighborhood N (s̄,B) must be small enough to be explored thoroughly in

a reasonable time, but sufficiently large to maximize the probability of finding solutions

better than s̄. Beyond that, we note that all valid inequalities (44)−(60) are applicable

to GIRP and the OU inventory policy is ensured by imposing constraints (43).

Figure 2 shows an example of how the GIRP works. Figure 2a shows a solution for which

the sets A11t = {1, 2, 3}, A21t = {7, 8, 9} and A22t = {5, 6} represent all customers served

by vehicle k = 1 rented by plant j = 1, and k = 1 and k = 2 from plant j = 2, respectively.

Setting B = 2, GIRP is able to perform up to two movements on each route. As shown in

Figure 2b, unserved customer l = 4, and also l = 5 who was served by k = 2 from j = 2,

are inserted on route k = 1 from plant j = 1. This last insertion removes l = 5 from

k = 2. As customer l = 6 is inserted in route k = 1, these two removals empty vehicle

k = 2, while the removal of l = 8 leads to one insertion and one removal in vehicle k = 1

from plant j = 2. Finally, A11t = {1, 2, 3, 4, 5} and A21t = {6, 7, 9} are the new sets of

customers served in t, while all others Ajkt = ∅.

5.3 Math-ALNS general framework

Our Math-ALNS starts by solving the ISP model and all associated TSPs, which provide

an initial solution sini. When an ALNS operator is applied on a given solution s (sini in

the first iteration), a neighboring solution s′ is obtained by solving the SIP model. We

initially define G = n + m where n = |P| and m = |C|, which guarantees feasibility is

recovered if it was lost by a destroy operator. While z(s′) < z(s), G is decreased by one

unit until G = 1, and the SIP model is solved after each ALNS iteration. Otherwise, if

z(s′) ≤ (1 + ε) z(s), where ε ∼ U [0.05, 0.15], we accept s′ as a new incumbent solution.

Then, we also define G = max {ξ ∗ (n+m), 1}, with ξ ∼ U [0.1, 0.2] and solve SIP once

again. After that, all individual routes are optimized by solving their associated TSPs.

Whenever a new best solution sbest is found, we enumerate all its routes. Then, the GIRP

model is generated and solved, yielding s′′′. Due to the critically of neighborhood-size B,
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( )a ( )b

Figure 2: An example for the general improvement routing procedure (GIRP), before (a) and

after (b) all movements
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we only accept the neighbor solution if z(s′′′) < z(sbest), and then the optimization process

continues. Because of the complexity of SIP and GIRP subproblems, our Math-ALNS is

executed for about 1000 iterations. In order to roughly generate this number of iterations,

we set τstart = 8000 and φ = 0.989. Scores are updated with σ1 = 10, σ2 = 5 and σ3 = 2,

and the reaction factor η is set to 0.8. We define ∆ = 20, when weights are updated,

scores are set to zero, and the value of ε is redrawn. A pseudocode of our matheuristic is

provided in Algorithm 2.

6 Branch-and-cut-based ALNS algorithm

During preliminary experiments, we observed that our B&C algorithm is very effective in

solving small size instances, but as expected from an exact procedure, the upper bound

quality deteriorates dramatically for medium and large instances. On the other hand, our

Math-ALNS is very powerful to find good upper bounds in very short computing, even for

very large instances. Based on that, we hybridize a branch-and-cut-based ALNS scheme,

which we name H-B&C, in order to allow B&C algorithm to take advantage of the good

solutions of our Math-ALNS and vice-versa.

Employing parallel computing, H-B&C starts from two fronts, one solving the pure B&C

of Section 4, and the other one executing our Math-ALNS described in Algorithm 2.

Whenever a new best solution is found by one of the algorithms, it is immediately provided

to other one. This strategy is used to provide better upper bounds to B&C, especially

in large instances. Since B&C stops when the optimal solution is found, it avoids wast-

ing time exploring ALNS neighborhoods over and over again on small instances. The

algorithm runs until a time limit is reached or an optimal solution is proved, which char-

acterizes it as an exact method. Figure 3 illustrates the dynamics of the proposed H-B&C

algorithm.
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Algorithm 2 Math-ALNS pseudocode

1: Initialize weights to 1 and scores to 0 for all operators;

2: Solve ISP and all associated TSPs, yielding sini.

3: sbest ← s← sini; τ ← τstart; iter = 0; Generate ε;

4: while τ ≥ 0.01 and iter ≤ 1, 000 do

5: Select and apply an operator i to s; set G = n+m;

6: Solve SIP and all associated TSPs, yielding s′;

7: if z(s′) < z(s) then

8: s← s′;

9: Set G = max {G− 1, 1};
10: Solve SIP and all associated TSPs, yielding s′′;

11: if z(s′′) < z(s) then

12: s← s′′ and go to step (9);

13: else

14: if z(s′′) ≤ (1 + ε) z(s) then

15: Set G = max {ξ ∗ (n+m), 1} and go to step (10);

16: end if

17: end if

18: if z(s) < z(sbest) then

19: sbest ← s;

20: πi ← πi + σ1;

21: Solve GIRP, yielding s′′′;

22: if z(s′′′) < z(sbest) then

23: sbest ← s← s′′′;

24: end if

25: Go to step (9);

26: else

27: πi ← πi + σ2;

28: if z(s′′) ≤ (1 + ε) z(sbest) then

29: Set G = max {ξ ∗ (n+m), 1} and go to step (10);

30: end if

31: end if

32: else

33: if e(z(s)−z(s
′))/τ > Θ, where Θ ∼ U [0, 1] then

34: s← s′;

35: πi ← πi + σ3;

36: end if

37: end if

38: if (iter mod ∆) = 0 then

39: Generate ε, update the weights of all operators and reset their scores;

40: s← sbest;

41: end if

42: iter ← iter + 1;

43: τ ← φτ ;

44: end while

45: return sbest;
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Figure 3: Scheme of our H-B&C parallel algorithm
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7 Computational experiments

All algorithms were coded in C++, executed on a grid of Intel(R) Xeon(R) processors

at 2.60GHz with up to 16 GB of RAM per node, running in CentOS Linux operating

system. All MIPs were solved by Gurobi 8.1.0 and both pure B&C and Math-ALNS were

processed using six threads. After preliminary tests, we split the hybrid algorithm H-B&C

in four threads dedicated to B&C front, and two threads to Math-ALNS front. ISP and

SIP are solved to optimality while GIRP is executed for 200s. The algorithms ran up to

7200s on each experiment.

7.1 Overall results for 2E-IRPFM

We have adapted the 2E-MDIRP instances proposed by Guimarães et al. [17], wich one

derived from Archetti et al. [4]. Four settings are considered: one supplier-one plant,

two suppliers-two plants, two suppliers-three plants, and three suppliers-two plants. The

number of customers ranges from 5 to 50. Inventory costs and planning horizon make up

four groups: low inventory cost with three (absH3low) and six (absH6low) periods, and

high inventory cost with three (absH3high) and six (absH6high) periods. To generate

a variety of cleaning and rental costs scenarios, we created four additional groups: low

rental-low cleaning (LRLS), low rental-high cleaning (LRHS), high rental-low cleaning

(HRLS), and high rental-high cleaning (HRHS) costs. We generate a total of 256 instances.

Due to the 2E-IRPFM multi-vehicle topology, we consider only the three-vehicle instances

from the 2E-MDIRP, which are available for each plant at the rental company. The

parameters are calculated as follows and all instances generated and detailed results are

available from https://www.leandro-coelho.com/two-echelon-inventory-routing-problem-

with-fleet-management/.

• High rental cost (HR): fw = dΩQe, where Ω ∼ U [0.4, 0.6]

• Low rental cost (LR): fw = dΩQe, where Ω ∼ U [0.2, 0.3]
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• High cleaning cost (HS): fs = dΩQe, where Ω ∼ U [0.3, 0.5]

• Low cleaning cost (LS): fs = dΩQe, where Ω ∼ U [0.1, 0.2]

We start our analysis by presenting the results obtained with the exact algorithms. Table

1 shows a comparison between B&C and H-B&C for ML and the OU policies. On each

supply chain considered, we have 16 instances, with four (one instance absH3low, one

absH6low, one absH3high, and one absH6high) on each fleet management cost combina-

tion (LRLS, LRHS, HRLS, HRHS). The first three columns describe the supply chain

structure, where |C|, |P| and |F| represent the number of customers, plants and suppli-

ers, respectively. For each method considered, columns OPT and SF show the number

of optimal and feasible solutions found. Column LB presents the average lower bound,

while T (s) shows the run time.

Due to the difficulty of the 2E-IRPFM, the performance of the exact methods clearly

deteriorate as the supply chain structure becomes more complex, especially for the OU

policy. Given that the H-B&C gets an initial solution from the Math-ALNS front, the

algorithm finds a solution for every instance. Furthermore, H-B&C was able to find three

additional optimal solutions for the ML policy. The overall results do not compromise

the LB quality, showing the efficiency of B&C and Math-ALNS combination. Among the

512 instances evaluated on both policies, H-B&C found 212 better solutions than B&C

and there were 300 ties.

We also compare the performance of B&C with H-B&C, on the subset of instances where

B&C obtained a solution. Table 2 has up to 32 instances on each supply chain structure,

making up 128 instances per row (64 ML and 64 OU). As observed, H-B&C yielded tighter

bounds, in an equivalent running time.

Table 3 presents the mean results among 64 instances on each inventory policy, for Math-

ALNS and H-B&C. As H-B&C took advantage from the B&C front, it was able to solve

small instances in much shorter running time. The UBs were equivalent, showing the

quality of our heuristic method. Considering both inventory policies, we highlight that
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Table 1: Comparison between B&C and H-B&C on the 2E-IRPFM

|C| |P| |F|

ML OU

B&C H−B&C B&C H−B&C

OPT SF LB T (s) OPT LB T (s) OPT SF LB T (s) OPT LB T (s)

5

1 1 16 16 4423.4 0.9 16 4423.4 3.4 16 16 4672.8 1.6 16 4672.8 4.7

2 2 16 16 4383.5 375.2 16 4383.5 313.1 16 16 4719.0 363.6 16 4719.0 210.9

2 3 16 16 4343.1 225.7 16 4343.1 417.2 16 16 4679.7 232.1 16 4679.7 233.3

3 2 14 16 4151.9 1628.4 16 4191.3 1359.1 15 16 4464.8 1276.4 16 4495.1 1024.2

10

1 1 16 16 6128.4 5.9 16 6128.4 10.0 16 16 6460.1 12.8 16 6460.1 23.6

2 2 8 16 5959.7 3823.2 8 5901.6 3731.6 8 16 6268.0 3812.1 8 6237.0 3857.2

2 3 8 16 5942.3 3689.3 8 5861.1 3712.1 8 16 6202.9 3773.0 8 6192.5 3814.9

3 2 8 16 5646.0 3997.0 8 5650.8 4044.8 8 16 5966.7 3733.5 8 5989.5 3693.4

25

1 1 16 16 7898.8 128.9 16 7898.8 144.2 16 16 8635.7 479.2 16 8635.7 633.7

2 2 8 16 6932.5 4613.3 8 6962.5 4817.4 3 16 7433.2 6803.7 2 7469.8 6966.9

2 3 8 16 6940.5 4422.6 8 6938.3 4678.1 3 16 7425.5 6668.5 3 7474.6 6816.3

3 2 4 13 6909.5 6536.3 5 6913.1 6534.9 0 13 7368.5 7200.0 0 7404.9 7200.0

50

1 1 7 16 13239.4 5271.1 7 13317.1 5469.1 0 16 13915.2 7200.0 0 14305.4 7200.0

2 2 0 8 10923.4 7200.0 0 10964.5 7200.0 0 11 11549.5 7200.0 0 11750.3 7200.0

2 3 0 8 10771.6 7200.0 0 10921.2 7200.0 0 9 11455.2 7200.0 0 11664.6 7200.0

3 2 0 8 10891.9 7200.0 0 10928.2 7200.0 0 6 11886.8 7200.0 0 11978.0 7200.0

Total 145 229 148 125 231 125

Avg 7217.9 3519.9 7232.9 3552.2 7694.0 3947.3 7758.1 3954.9

Table 2: Average results for B&C and H-B&C to 2E-IRPFM, where B&C found a solution

|C| SF
B&C H−B&C

Z GAP T (s) Z GAP T (s)

5 128 4488.5 0.2 513.0 4488.5 0.0 445.7

10 128 6520.2 5.3 2855.8 6476.8 5.1 2860.9

25 122 9138.3 12.5 4587.4 8253.3 8.2 4704.7

50 82 12092.9 20.3 6958.9 10583.1 8.0 6983.6

Avg 8060.0 9.6 3728.8 7450.4 5.3 3748.8
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H-B&C found better solutions in 54 cases, against 45 from Math-ALNS. In another per-

spective, H-B&C reached the BKS in 467 cases while Math-ALNS did in 458, having 51

exclusive BKS, six more than Math-ALNS.

Table 3: Comparison between Math-ALNS and H-B&C on the 2E-IRPFM

|C|

ML OU

Math−ALNS H−B&C Math−ALNS H−B&C

Z T (s) Z T (s) Z T (s) Z T (s)

5 4335.4 2144.6 4335.4 523.2 4641.6 1807.3 4641.6 368.3

10 6262.2 2771.7 6263.2 2874.6 6690.3 2860.6 6690.5 2847.2

25 8081.4 2873.6 8079.0 4043.6 8852.1 3108.1 8860.1 5404.2

50 12861.3 4388.6 12882.8 6767.3 14289.9 4674.3 14298.4 7200.0

Avg 7885.1 3044.6 7890.1 3552.2 8618.5 3112.6 8622.7 3954.9

Since H-B&C and Math-ALNS reached similar results without a clear dominance, all

following analyses are performed taking into account the BKS on each instance on each

inventory policy.

7.2 Cost analysis for 2E-IRPFM

We evaluate the impact of choosing each of the inventory policies from the perspective

of total cost. As shown in Table 4, imposing the OU policy at customers increases the

total cost in almost 8.6% on average, and its impact is greater in more complex supply

chain structures. These results are consistent with the findings of Archetti et al. [4] for

the basic IRP, Coelho et al. [11] for multi-vehicle IRP, Coelho et al. [12] for the IRP with

transshipment, and Guimarães et al. [17] for the 2E-MDIRP.

Tables 5 and 6 make it possible to evaluate the effect of supply chain complexity on

average costs. For the ML policy, it is interesting to observe that in a more complex

system with more plants and suppliers, cleaning costs are less representative. This is due

to the fact that deliveries can be better coordinated among different plants, reducing the
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Table 4: Comparison for inventory policies on BKS of the 2E-IRPFM

|C| ML OU GAP %

5 4335.4 4641.6 7.1

10 6262.2 6688.6 6.8

15 8070.0 8846.2 9.6

50 12851.1 14257.3 11.0

Avg 7879.7 8608.5 8.6

need for vehicle cleaning. Another interesting point is that the share of rental costs does

not change among the policies, while cleaning costs are not influenced by the complexity

of the system. This fact can be explained by the loss of delivery flexibility when the

inventory policy is more strict.

Table 7 shows a sensitivity analysis when the rental and cleaning costs change, with

respect to the LRLS case. The total cost increases 4.5% (ML) and 4.9% (OU) on average,

when the cleaning cost changes from low to high. Due to the higher coordination, it is

relevant mentioning that the system complexity can mitigate this variation, especially

when instances are large. For both policies, the total cost increases around 12% when

rental costs shift from low to high, and more than 18% when both rental and cleaning

costs are high.

7.3 Fleet management analysis

We also carry out an analysis regarding the fleet management decision. Aiming to pro-

vide a compact evaluation, we investigate the quantity-distance (q/dist) ratio, which

computes the volume delivered per distance traveled. Equation (74) shows the index.

q

dist
=

∑
t∈T

∑
j∈P

∑
k∈K

∑
l∈C

qktjl∑
t∈T

∑
j∈P

∑
k∈K

∑
(u,v)∈E′′

cuvy
kjt
uv

. (74)
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Table 5: Fleet management cost as % of total cost for the ML policy

|C| |P| |F|
Rental Cost % Cleaning Cost %

LRLS LRHS HRLS HRHS LRLS LRHS HRLS HRHS

5

1 1 5.2 7.2 10.7 10.1 3.4 3.3 3.1 6.6

2 2 6.0 7.0 11.1 11.5 1.6 2.8 1.5 3.4

2 3 6.1 6.5 10.6 11.2 2.1 3.5 2.0 3.3

3 2 6.5 8.7 13.1 12.6 4.0 3.6 3.7 6.2

10

1 1 10.2 12.0 19.0 19.2 3.1 4.6 2.7 5.3

2 2 8.9 10.7 15.8 15.3 2.4 2.6 2.6 4.5

2 3 9.0 11.0 16.1 15.6 2.4 2.6 2.8 4.0

3 2 8.6 10.1 15.6 15.5 2.8 3.1 3.0 3.6

25

1 1 13.9 15.7 24.9 22.4 7.8 7.9 6.8 11.7

2 2 12.7 19.9 21.9 20.4 6.4 2.9 6.1 7.5

2 3 13.8 17.3 22.4 19.6 4.7 4.7 6.1 6.9

3 2 12.6 16.9 21.3 21.5 4.9 4.6 5.2 6.7

50

1 1 19.9 25.1 30.7 26.3 9.2 10.5 7.9 19.5

2 2 19.5 21.1 31.7 30.5 6.3 6.2 5.3 6.4

2 3 19.2 19.7 33.2 31.9 5.5 7.0 6.0 6.7

3 2 19.6 20.2 32.7 31.7 2.9 4.9 2.5 5.3

Avg 12.0 14.3 20.7 19.7 4.3 4.7 4.2 6.7
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Table 6: Fleet management cost as % of total cost for the OU policy

|C| |P| |F|
Rental Cost % Cleaning Cost %

LRLS LRHS HRLS HRHS LRLS LRHS HRLS HRHS

5

1 1 6.0 7.7 12.4 11.9 2.1 3.2 2.0 5.8

2 2 5.8 7.9 10.1 11.5 2.7 2.8 2.6 4.4

2 3 6.5 7.6 9.7 11.1 2.0 3.2 2.7 3.6

3 2 7.1 10.1 13.5 12.1 3.7 3.4 3.2 6.1

10

1 1 9.7 11.3 18.2 18.3 3.2 5.2 2.9 6.5

2 2 8.7 10.6 15.5 15.6 2.7 3.0 3.0 4.6

2 3 9.0 10.4 16.4 16.4 3.4 2.8 3.1 4.7

3 2 8.7 11.1 15.6 15.6 3.5 3.3 3.1 6.2

25

1 1 14.8 17.0 24.4 22.4 5.7 7.2 4.5 12.4

2 2 11.9 16.6 22.0 21.8 6.6 5.6 5.3 7.1

2 3 12.5 14.9 21.6 20.4 6.2 4.8 5.3 8.0

3 2 12.7 15.9 22.5 21.9 5.4 4.2 5.2 6.8

50

1 1 22.5 24.6 32.0 29.0 5.6 9.7 4.8 12.2

2 2 17.8 20.6 29.0 28.3 5.2 6.6 4.7 9.0

2 3 17.8 21.1 30.4 29.7 6.3 7.1 5.7 8.4

3 2 18.2 20.5 30.6 29.7 5.1 4.9 4.5 7.8

Avg 11.9 14.2 20.2 19.7 4.3 4.8 3.9 7.1
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Table 7: Comparison of fleet management costs

|C| |P| |F|
ML OU

LRLS ∆%HS ∆%HR ∆%HRHS LRLS ∆%HS ∆%HR ∆%HRHS

5

1 1 4168.7 3.8 7.2 13.4 4395.2 3.1 8.8 13.4

2 2 4197.9 2.6 6.1 9.0 4508.8 2.6 6.0 10.0

2 3 4171.2 2.4 5.7 8.3 4482.2 2.5 5.8 9.3

3 2 3941.8 3.1 8.9 13.3 4217.0 3.1 9.4 13.9

10

1 1 5693.8 3.9 10.5 16.0 6004.0 4.4 10.0 15.9

2 2 5857.7 3.3 9.6 13.7 6282.0 3.0 9.2 13.6

2 3 5841.1 2.6 9.7 13.2 6289.7 2.3 9.4 13.2

3 2 6105.9 2.8 8.6 11.9 6519.1 3.2 8.6 13.1

25

1 1 6951.7 9.1 16.1 29.3 7654.7 7.1 16.8 27.4

2 2 7201.8 3.9 13.7 21.0 7892.0 5.9 14.0 21.6

2 3 7346.2 3.6 11.2 17.7 7941.4 5.1 12.5 18.3

3 2 7862.4 4.0 12.2 18.3 8600.8 4.0 13.6 18.8

50

1 1 11473.9 13.3 16.3 37.4 12771.7 9.8 18.2 31.3

2 2 11181.6 5.9 18.8 23.5 12230.5 8.3 18.9 27.2

2 3 10980.4 4.7 22.6 27.5 12259.0 6.8 19.3 27.1

3 2 11694.7 2.7 18.7 22.9 13011.3 6.3 17.3 24.5

Avg 7166.9 4.5 12.3 18.5 7816.2 4.9 12.4 18.7
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As pointed by Song and Savelsbergh [28], q/dist is not effective to measure absolute

performance. We then introduce two new performance indices, in order to evaluate fleet

management strategies among different costs combinations. The gross fleet usage (GFU)

shown in (75) computes the average occupancy of the rented fleet. The numerator calcu-

lates the total volume delivered to customers, while the denominator computes the total

rented capacity. GFU is particularly useful to compute rented fleet idleness, derived

from delivery and fleet management strategy facing different rental and cleaning costs

combinations.

GFU =

∑
t∈T

∑
j∈P

∑
k∈K

∑
l∈C

qktjl( ∑
t∈T

∑
j∈P

∑
k∈K

W kt
j

)
Q

. (75)

Given that rented vehicles can be housed at plants and not being used, the net fleet

usage (NFU) presented in (76) computes the average occupancy of the fleet. Thus, it

is possible to split the delivery strategy from fleet management decisions in our analyses.

NFU =

∑
t∈T

∑
j∈P

∑
k∈K

∑
l∈C

qktjl( ∑
t∈T

∑
j∈P

∑
k∈K

Y kt
jj

)
Q

. (76)

In Table 8, each row reports the average of 128 instances (64 for each inventory policy),

according to the supply chain structure. As expected, the q/dist index does not reveal

anything distinctive among cost combinations. Overall, we observed that for large in-

stances, the fleet carries a greater volume per traveled distance. The clearest conclusion

lies on GFU and NFU comparison on the LRHS combination. We note that the rented

fleet average occupancy is 66%, but for vehicles actually assigned it rises up to 81%. When

cleaning cost is low or both are high, there is no remarkable difference between GFU

and NFU .

Finally, Tables 9 clarifies the single fleet management decision as cost parameters change.
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Table 8: Performance indices

|C|
GFU NFU q/dist

LRLS LRHS HRLS HRHS LRLS LRHS HRLS HRHS LRLS LRHS HRLS HRHS

5 0.72 0.58 0.75 0.73 0.72 0.72 0.75 0.75 0.28 0.28 0.28 0.28

10 0.80 0.66 0.83 0.81 0.80 0.80 0.83 0.84 0.48 0.48 0.48 0.48

25 0.88 0.67 0.91 0.90 0.88 0.86 0.91 0.91 0.72 0.70 0.71 0.68

50 0.88 0.74 0.88 0.86 0.88 0.87 0.88 0.87 1.27 1.23 1.26 1.19

Avg 0.82 0.66 0.84 0.83 0.82 0.81 0.84 0.84 0.69 0.68 0.68 0.66

Column #W brings the average of rentals, #S the average number of cleanings, #R the

average return, and #(X+Y) the average pickup plus delivery routes. For low rental

and low cleaning cost (LRLS) we observe that five rentals, three cleanings, two returns

and six routes are performed. When cleaning cost switched to high, it becomes more

advantageous to keep the vehicles at the plants, instead of returning them. The number

of returns is 86.6% smaller than before, and the number of cleanings is 55.6% smaller as

well. When rental costs are high, the cleaning cost is less relevant and the average number

of cleanings dropped 32% when cleaning costs changed from low to high. At the same

time, we observe a decrease in the number of rentals, especially when cleaning costs are

high, decreasing from 6.3 on LRHS to 5.0 on HRHS.

7.4 Results for the 2E-MDIRP

We have also compared the performance of our methods on instances proposed by Guimarães

et al. [17] for the 2E-MDIRP. We assessed all 64 instances with three vehicles and solved

them under the ML and the OU policies on the second echelon, making a total of 128

experiments for each algorithm.

The mathematical model proposed in Section 3 is flexible enough to handle all 2E-MDIRP

features. To this end, it is sufficient set to zero all of fleet management costs, i.e., fs = 0

and fw = 0. We highlight that all valid inequalities (44)−(60) and the OU policy (43)

apply to both problems.

The Two-Echelon Inventory-Routing Problem with Fleet Management

38 CIRRELT-2019-36



Table 9: Average fleet usage

Rental

Cost
|C|

Low Cleaning Cost High Cleaning Cost Comparative Analysis

#W #S #R #(X+Y) #W #S #R #(X+Y) ∆% W ∆% S ∆% R
∆%

(X+Y)

Low

5 4.2 2.8 1.7 5.2 5.4 1.3 0.3 5.3 30.5 -51.6 -82.4 0.6

10 5.7 3.0 2.0 6.7 7.1 1.3 0.3 6.8 23.2 -56.1 -87.5 0.8

25 5.0 3.5 2.4 6.1 6.7 1.3 0.2 6.2 33.1 -63.7 -91.7 1.8

50 5.1 2.7 1.6 6.2 6.1 1.3 0.3 6.2 20.3 -51.0 -85.0 0.9

Avg 5.0 3.0 1.9 6.0 6.3 1.3 0.2 6.1 26.8 -55.6 -86.6 1.0

High

5 4.0 2.8 1.8 5.1 4.2 2.1 1.0 5.2 5.3 -27.0 -43.5 1.9

10 5.5 3.3 2.3 6.5 5.7 2.1 1.1 6.5 4.2 -34.4 -50.9 0.5

25 4.8 3.7 2.6 5.9 4.9 2.2 1.2 5.9 1.0 -38.0 -52.9 -0.2

50 5.0 2.8 1.8 6.1 5.1 2.0 0.9 6.1 1.7 -28.9 -42.7 0.0

Avg 4.8 3.2 2.1 5.9 5.0 2.1 1.1 5.9 3.0 -32.1 -47.5 0.5

Guimarães et al. [17] proposed an asymmetric formulation for the 2E-MDIRP, employing

symmetry breaking constraints. Our formulation is subtly different, since we consider

edge (i, j) only if i < j. This reformulation is useful to enable direct deliveries through

a single-edge, which substantially reduces the number of decision variables, before the

search tree is structured. In addition, we propose a new set of valid inequalities (58)−(60).

Therefore, we are able to analyze the performance of the B&C and H-B&C, derived from

this new formulation, against the B&C proposed by [17].

Table 10 shows a comparison among exact algorithms for the ML policy. We highlight that

our B&C was able to find a solution to all instances up to 25 customers, and 36 optimal

solutions were proved, with seven new ones. Our B&C and H-B&C had an equivalent

performance in this regard, but H-B&C obtained tighter bounds. Analogously, Table 11

presents the results to OU policy, with similar performance.

To handle large instances, Guimarães et al. [17] designed a matheuristic under the ALNS

mechanism. Although we follow a similar way, our Math-ALNS embeds reformulated

MIPs. The main innovation lies in the GIRP model, which has a neighborhood exploration
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Table 10: Comparison between B&C from Guimarães et al. [17], new B&C and H-B&C to

2E-MDIRP, ML policy.

|C| |P| |F|
B&C [17] B&C H-B&C

OPT SF LB T (s) OPT SF LB T (s) OPT SF LB T (s)

5

1 1 4 4 3781.5 1.9 4 4 3781.5 1.2 4 4 3781.5 2.7

2 2 4 4 3822.5 81.9 4 4 3822.6 52.7 4 4 3822.6 278.4

2 3 4 4 3786.2 66.9 4 4 3786.2 57.4 4 4 3786.2 430.3

3 2 4 4 3484.6 238.7 4 4 3484.6 478.3 4 4 3484.6 1461.6

10

1 1 4 4 4897.7 54.1 4 4 4897.7 20.5 4 4 4897.7 48.4

2 2 2 4 4661.8 3716.2 2 4 4695.6 4326.9 2 4 4674.5 3734.9

2 3 2 4 4702.7 3697.0 2 4 4707.4 3823.5 2 4 4683.8 3644.8

3 2 2 4 4421.1 3812.5 2 4 4682.6 5286.7 2 4 4606.9 4120.3

25

1 1 2 4 5305.0 4314.5 4 4 5403.4 626.7 4 4 5403.4 838.7

2 2 0 2 4538.7 7200.0 2 4 4998.0 3862.0 2 4 4951.8 4126.8

2 3 1 2 4574.6 6920.0 2 4 4962.2 3854.6 2 4 5012.2 3868.1

3 2 0 2 4399.8 7200.0 2 4 4971.2 5521.2 2 4 4899.8 5065.9

50

1 1 0 2 7365.1 7200.0 0 3 7468.1 7200.0 0 4 7454.8 7200.0

2 2 0 0 6500.5 7200.0 0 1 6752.0 7200.0 0 4 6815.2 7200.0

2 3 0 1 6693.7 7200.0 0 2 6810.2 7200.0 0 4 6729.9 7200.0

3 2 0 0 6143.6 7200.0 0 1 6727.8 7200.0 0 4 6819.6 7200.0

Total 29 45 36 55 36 64

Avg 4942.4 4131.5 5121.9 3544.5 5114.0 3526.3
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Table 11: Comparison between B&C from Guimarães et al. [17], new B&C and H-B&C to

2E-MDIRP, OU policy.

|C| |P| |F|
B&C [17] B&C H-B&C

OPT SF LB T (s) OPT SF LB T (s) OPT SF LB T (s)

5

1 1 4 4 3998.2 2.1 4 4 3998.2 2.3 4 4 3998.2 5.3

2 2 4 4 4085.4 431.6 4 4 4085.4 416.9 4 4 4085.4 219.6

2 3 4 4 4065.7 320.4 4 4 4065.7 319.3 4 4 4065.7 189.6

3 2 4 4 3733.4 1057.0 4 4 3733.3 1261.1 4 4 3733.5 778.9

10

1 1 4 4 5204.2 114.1 4 4 5204.2 33.1 4 4 5204.2 235.2

2 2 2 4 4799.2 3700.4 2 4 4927.8 4460.6 2 4 4999.8 3746.3

2 3 2 4 4811.2 3801.3 2 4 4933.4 3715.0 2 4 4920.8 3765.6

3 2 2 4 4597.9 3647.5 2 4 4817.8 3660.8 2 4 4831.9 3666.6

25

1 1 1 3 5262.3 5663.3 3 4 5800.4 3462.7 2 4 5767.5 4207.6

2 2 0 2 4664.8 7200.0 1 4 5452.7 6453.8 1 4 5317.2 6637.6

2 3 0 2 4548.0 7200.0 0 4 5453.1 7200.0 0 4 5408.5 7200.0

3 2 0 2 4344.7 7200.0 0 4 5320.9 7200.0 1 4 5297.3 6508.6

50

1 1 0 1 7773.6 7200.0 0 3 8016.2 7200.0 0 4 8044.7 7200.0

2 2 0 0 7034.9 7200.0 0 1 7413.5 7200.0 0 4 7442.8 7200.0

2 3 0 0 7178.6 7200.0 0 1 7358.2 7200.0 0 4 7359.7 7200.0

3 2 0 0 6627.3 7200.0 0 2 7489.8 7200.0 0 4 7539.1 7200.0

Total 27 42 30 55 30 64

Avg 5170.6 4321.1 5504.4 4186.6 5501.0 4122.6
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strategy based on real transport costs (see Section 5.2.3). Table 12 compares our Math-

ALNS and the matheuristic from [17]. Each row shows the average of sixteen instances,

four instances (absH3low, absH6low, absH3high, and absH6high) on each supply chain

structure (one supplier one plant, two suppliers two plants, two suppliers three plants, and

three suppliers two plants). For each inventory policy, columns Z [17] and T (s) [17] show

the average results for total cost and processing time for the matheuristic of Guimarães

et al. [17], while our Math-ALNS is presented inZ and T (s). The gap between the average

total cost is obtained by

(
Z−Z[17]
Z[17]

)
× 100. As Math-ALNS has been adapted from 2E-

IRPFM, it preserves the full set of fleet management constraints, requiring more time

to solve the associated MIPs. Although the overall relative improvement on Z suggests

an equivalent performance, Math-ALNS was superior especially on large instances. In

general, there was improvement in 46 (23 for ML and 23 for OU) out of the 128 instances,

with a tie in 81 and only one worse result.

Table 12: Comparison between the matheuristic of Guimarães et al. [17] and our Math-ALNS

|C|
ML OU

Z [17] T (s) [17] Z T (s)
GAP %

(Z)
Z [17] T (s) [17] Z T (s)

GAP %

(Z)

5 3718.73 280.77 3718.73 1160.18 0.00 3970.70 313.41 3970.70 874.16 0.00

10 5131.25 874.21 5121.70 2075.28 -0.18 5475.60 1320.02 5474.37 1743.51 -0.02

25 5846.60 902.26 5824.61 2633.23 -0.36 6429.30 1029.30 6350.48 2457.46 -1.19

50 8167.46 1246.01 8068.61 3942.77 -1.19 9105.79 2335.23 9076.98 4486.34 -0.32

Avg 5716.0 825.8 5683.4 2452.9 -0.4 6245.3 1249.5 6218.1 2390.4 -0.4

8 Conclusions

In this study, we have introduced the 2E-IRPFM, a new variant of IRP which incorporates

fleet planning in a two-echelon logistics system. This problem has a complex many-to-

many supply chain structure, where the plants are in the middle layer and must control the

inventory and routing decisions regarding input pickup and final product delivery, while
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managing tactical and operational fleet decisions. We have proposed a MILP formulation

and a B&C algorithm to solve the problem, taking into account different inventory policies.

We have also designed a matheuristic algorithm and an exact hybrid parallel approach

to efficiently solve large instances. Validation experiments, performed on 2E-MDIRP

instances from the literature, showed that our algorithms are very effective, yielding BKSs

for the whole set of problems evaluated. We have shown that rentals, cleanings and

vehicle returns represent a significant portion of logistics costs. Moreover, a more complex

logistics system proved more resilient regarding changing in rental and cleaning costs,

leading to greater efficiency in logistics operations.
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