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1. Introduction

This paper discusses the multicommodity capacitated location problem with balancing require-

ments (MCLB) introduced in Crainic et al. (1989) in the context of planning the movements of

containers between ports and terminals. This problem is formulated as a mixed-integer program-

ming (MIP) model. It aims to locate the depots (ports and terminals) to meet the demands of

customers for several commodities (types of containers), while minimizing the total cost, which

includes the cost of opening and operating depots, the cost of transportation between customers

and depots, and the cost of the inter-depot movements. The MCLB is NP-hard, as it generalizes the

well known NP-hard uncapacitated facility location problem (Krarup and Pruzan 1983). Different

exact and heuristic approaches have been proposed for the version of the problem without capacity

(Crainic and Delorme 1993, Crainic et al. 1993a,b, Gendron and Crainic 1995, 1997, Gendron et al.

1999). A more challenging capacitated version, where each depot has a fixed and finite capacity,

is presented in Gendron et al. (2003a) and Gendron et al. (2003b). In Gendron et al. (2003a), the

authors proposed a tabu search heuristic combined with a slope scaling procedure for solving the

MCLB, while in Gendron et al. (2003b), the authors developed a parallel hybrid heuristic.

In this paper, we propose a Lagrangian relaxation approach, based on the bundle method (Fran-

gioni 2005, Bonnans et al. 2006), to compute tight lower bounds on the optimal value of the MCLB.

We show that the corresponding Lagrangian dual provides the same bound as the linear program-

ming (LP) relaxation. We propose a Lagrangian heuristic based on slope scaling (see Gendron and

Gouveia (2017) for a similar approach) that finds good quality solutions in short computing times.

We test our method on large-scale instances that cannot be solved in reasonable times by state-

of-the-art MIP solvers. On this set of instances, we show that the bundle method is faster than

a state-of-the-art LP solver, while providing accurate lower bounds. In addition, the slope scaling

method is robust and much faster than solving the root node by a state-of-the-art MIP solver.

In contrast with the approaches in Gendron et al. (2003a) and Gendron et al. (2003b) that only

focus on finding feasible solutions, we take into account the lower bound as well, thus producing

provably effective feasible solutions.

The remainder of the paper is structured as follows. Section 2 focuses on the presentation and

the mathematical formulation of the problem. Section 3 presents the application of Lagrangian

relaxation to this problem and the formulation of the Lagrangian subproblem. In Section 4, the

Lagrangian heuristic based on slope scaling is presented. In Section 5, we present our experiments

and results. Finally, conclusions and future work are discussed in Section 6.
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2. Problem formulation

We consider a directed network G= (N,A), where N is the set of nodes and A is the set of arcs.

In our problem, N represents customers and depots, while A is the set of transportation links

that connect either two depots or a customer and a depot. The commodities moving through the

network are represented by set K. We distinguish three subsets of the set of nodes:

• Origins O: Each origin i supplies a quantity oki ≥ 0 of commodity k.

• Destinations D: Each destination i requests a quantity dki ≥ 0 of commodity k.

• Depots T : Each depot is a transshipment node for the commodities transported between the

origins and the destinations.

We assume that the total supply equals the total demand for each commodity:∑
i∈O

oki =
∑
i∈D

dki ≡Mk, k ∈K.

The set of arcs can be partitioned into three subsets:

• Origin-to-depot arcs AOT = {(i, j)∈A : i∈O,j ∈ T};

• Depot-to-depot arcs ATT = {(i, j)∈A : i∈ T, j ∈ T};

• Depot-to-destination arcs ATD = {(i, j)∈A : i∈ T, j ∈D}.

The problem consists in finding an optimal distribution of flows moving through the network to

satisfy the supplies at origins and the demands at destinations. The objective considers the costs

of transporting the commodities between depots, as well as between depots and customers, and

the fixed costs of opening the depots. For each unit of commodity k ∈K, xkij, moving from node

i ∈ N to node j ∈ N , is associated a transportation cost ckij ≥ 0. For each depot j ∈ T having a

fixed capacity qj > 0, a fixed cost fj ≥ 0 is incurred if the depot is opened. The volume of one unit

of commodity k ∈K is denoted vk > 0. A binary location variable yj takes value 1 if depot j ∈ T is

opened, and value 0, otherwise. The multicommodity capacitated location problem with balancing

requirements (MCLB) is then formulated as follows:

min
∑
j∈T

fjyj +
∑
k∈K

 ∑
(i,j)∈AOT

ckijx
k
ij +

∑
(l,j)∈ATT

ckljx
k
lj +

∑
(j,i)∈ATD

ckjix
k
ji

 (1)

∑
j∈T+

i

xkij = oki , i∈O,k ∈K, (2)

∑
j∈T−

i

xkji = dki , i∈D,k ∈K, (3)

∑
i∈Oj

xkij +
∑
l∈T−

j

xklj −
∑
l∈T+

j

xkjl−
∑
i∈Dj

xkji = 0, j ∈ T,k ∈K, (4)
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∑
k∈K

vk

(∑
i∈Oj

xkij +
∑
l∈T−

j

xklj

)
≤ qjyj, j ∈ T, (5)

∑
i∈Oj

xkij +
∑
l∈T−

j

xklj ≤Mkyj, j ∈ T,k ∈K, (6)

xkij ≤ oki yj, j ∈ T, i∈Oj, k ∈K, (7)

xkji ≤ dki yj, j ∈ T, i∈Dj, k ∈K, (8)

xkij ≥ 0, (i, j)∈A,k ∈K, (9)

yj ∈ {0,1}, j ∈ T, (10)

where Oj = {i ∈ O : (i, j) ∈ A}, Dj = {i ∈ D : (j, i) ∈ A}, j ∈ T , T+
i = {j ∈ T : (i, j) ∈ A} and

T−i = {j ∈ T : (j, i)∈A}, i∈N .

The objective function (1) minimizes the total cost, i.e., the transportation costs and the fixed

costs of opening the depots. Constraints (2) and (3) ensure the satisfaction of supplies and demands.

Constraints (4) ensure that the sum of the incoming flow is equal to the sum of the outgoing

flow for each depot and each commodity. Constraints (2), (3) and (4) are the flow conservation

equations. Constraints (5) ensure that the capacity at each depot is not exceeded, while at the same

time forbidding any flow to circulate through a closed depot. The same is achieved by constraints

(6), which are therefore redundant, but are added to improve the LP relaxation bound. Note

that constraints (6) do not appear in the formulation of the MCLB presented in Gendron et al.

(2003a). Finally, constraints (7) and (8) are linking constraints that forbid customer-depot and

depot-customer flows going through a closed depot. These constraints are also redundant, but

improve the LP relaxation bound.

This model includes as special cases several problems considered in the literature. The uncapac-

itated version of the problem is simply obtained by setting qj ≥
∑

k∈K v
kMk, j ∈ T, in which case

constraints (5) can be removed. If, in addition, the interdepot costs satisfy the triangle inequality,

i.e., cklj ≤ cklh+ ckhj, (l, j)∈ATT , h∈ T+
l

⋂
T−j , k ∈K, constraints (6) can be removed as well, and we

obtain the formulation introduced in Crainic et al. (1989). The case where each commodity k ∈K

has a single origin O(k) and a single destination D(k) with a demand wk > 0 is obtained by setting

oki =

{
wk, if i=O(k),
0, otherwise,

dki =

{
wk, if i=D(k),
0, otherwise.

In that case, if we assume the triangle inequality holds, no more than two intermediate depots

can be used on any path connecting O(k) to D(k) for each k ∈K. The variant of the capacitated
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hub location problem introduced in Campbell (1994) can thus be formulated as a special case of

our model for the (MCLB), the depots representing the hubs. Indeed, Campbell (1994) considers

a problem where the capacity at each hub limits the flow coming into the hub from the origins

and from other hubs, in the same way as in constraints (5). In addition, the problem defined in

Campbell (1994) allows several paths to be used to satisfy the demand wk between O(k) and D(k),

as in our arc-based model, which is otherwise quite different than the path-based formulation of

Campbell (1994). Note that many other variants of the capacitated hub location problem have

since been proposed, see, e.g., Marin (2005) and Contreras et al. (2012).

3. Lagrangian relaxation

In this section, we present a Lagrangian relaxation method that provides a lower bound on the

optimal value of the MCLB. We propose to relax the flow conservation equations. The advantage

of this approach is that it yields a simple Lagrangian subproblem that decomposes by depot and

can be efficiently solved. However, if we perform this Lagrangian relaxation on our model (1)-(9),

only the incoming interdepot flow variables are considered for each depot. To overcome this issue,

one could add the equivalent of constraints (5) and (6) that make use of outgoing interdepot flow

variables, but then we would obtain a Lagrangian subproblem that is no more decomposable by

depot because the inter-depot flow variables would be shared by two depots. In order to obtain a

Lagrangian subproblem that is decomposable by depot, we add copy constraints on the inter-depot

flow variables, as in Lagrangian decomposition (Guignard and Kim 1987):

wkjl = xkjl, j ∈ T, l ∈ T+
j , k ∈K. (11)

The duplicated variables are simply bounded as follows:∑
i∈Dj

xkji +
∑
l∈T+

j

wkjl ≤Mkyj, j ∈ T, k ∈K, (12)

wkjl ≥ 0, j ∈ T, l ∈ T+
j , k ∈K. (13)

We also add the redundant capacity constraints:

∑
k∈K

vk

(∑
i∈Dj

xkji +
∑
l∈T+

j

wkjl

)
≤ qjyj, j ∈ T. (14)

We obtain the following reformulation of the MCLB :

min
∑
j∈T

fjyj +
∑
k∈K

 ∑
(i,j)∈AOT

ckijx
k
ij +

∑
(l,j)∈ATT

ckljx
k
lj +

∑
(j,i)∈ATD

ckjix
k
ji

 (15)
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subject to constraints (2)-(14).

The Lagrangian relaxation consists in relaxing the copy constraints (11) by associating with

them a vector of Lagrange multipliers γ and the flow conservation equations (2), (3) and (4)

by associating with each of these constraints a vector of Lagrange multipliers δ. We obtain the

following Lagrangian subproblem:

Z(δ, γ) = min
∑
k∈K

( ∑
(i,j)∈AOT

(ckij − δki + δkj )xkij +
∑

(l,j)∈ATT

(cklj − δkl + δkj + γklj)x
k
lj

+
∑

(j,i)∈ATD

(ckji− δkj + δki )xkji−
∑

(j,l)∈ATT

γkjlw
k
jl−

∑
i∈D

δki d
k
i +
∑
i∈O

δki o
k
i

)
+
∑
j∈T

fjyj (16)

subject to constraints (5)-(10) and (12)-(14).

The objective function (16) of the Lagrangian subproblem can also be written as follows:

Z(δ, γ) = min
∑
j∈T

{∑
k∈K

(∑
i∈Oj

(ckij − δki + δkj )xkij +
∑
l∈T−

j

(cklj − δkl + δkj + γklj)x
k
lj

+
∑
i∈Dj

(ckji− δkj + δki )xkji−
∑
l∈T+

j

γkjlw
k
jl

)
+ fjyj

}
+
∑
k∈K

(∑
i∈O

δki o
k
i −
∑
i∈D

δki d
k
i

)
(17)

The Lagrangian subproblem decomposes by depot. For each depot j ∈ T , it is solved by considering

the two possible alternatives, either yj = 0, for which the optimal value is 0, or yj = 1, in which

case the Lagrangian subproblem reduces to a continuous knapsack problem, with optimal value

fj + gj(δ, γ), where

gj(δ, γ) = min
∑
k∈K

(∑
i∈Oj

Ck
ij(δ)x

k
ij +

∑
l∈T−

j

Ck
lj(δ, γ)kxklj +

∑
i∈Dj

Ck
ji(δ)x

k
ji +

∑
l∈T+

j

Ck
jl(γ)wkjl

)
(18)

∑
k∈K

vk

(∑
i∈Oj

xkij +
∑
l∈T−

j

xklj

)
≤ qj, (19)

∑
k∈K

vk

(∑
i∈Dj

xkji +
∑
l∈T+

j

wkjl

)
≤ qj, (20)

∑
i∈Dj

xkji +
∑
l∈T+

j

wkjl ≤Mk, k ∈K, (21)

∑
i∈Oj

xkij +
∑
l∈T−

j

xklj ≤Mk, k ∈K, (22)

0≤ xkij ≤ oki , i∈Oj, k ∈K, (23)

0≤ xkji ≤ dki , i∈Dj, k ∈K, (24)
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wkjl ≥ 0, l ∈ T+
j , k ∈K, (25)

xklj ≥ 0, l ∈ T−j , k ∈K, (26)

where
Ck
ij(δ) = ckij − δki + δkj , i∈Oj, k ∈K,

Ck
lj(δ, γ) = cklj − δkl + δkj + γklj, l ∈ T−j , k ∈K,

Ck
ji(δ) = ckji− δkj + δki , i∈Dj, k ∈K,

Ck
jl(γ) = γkjl, l ∈ T+

j , k ∈K.
Among these two alternatives (yj = 0 and yj = 1), we choose the least cost one.

The values for the Lagrange multipliers (δ, γ) are obtained by solving the Lagrangian dual:

Z(LD) = max
(δ,γ)

Z(δ, γ). (27)

We use the bundle method (Frangioni 2005) to solve the Lagrangian dual. Note that the Lagrangian

subproblem has the integrality property (Geoffrion 1974). Thus, the lower bound provided by the

Lagrangian dual is equal to the LP relaxation bound Z(LP ):

Z(LD) =Z(LP ). (28)

Even though the Lagrangian dual and the LP relaxation have the same strength, solving the LP

relaxation with a state-of-the-art solver is computationally more expensive for large-scale instances,

as we demonstrate with our computational experiments (see Section 5). A key advantage of using

Lagrangian relaxation is that the subproblem is decomposable by depot and is easy to calculate.

We use the solutions to the subproblem in the Lagrangian heuristic described in the next section.

4. Lagrangian heuristic

Upper bounds on the optimal value of the MCLB are obtained by a Lagrangian heuristic that uses

a slope scaling procedure (Kim and Pardalos 2000, Gendron et al. 2003b, Gendron and Gouveia

2017), which is repetitively called every I iterations of the bundle method, where I is a parameter

(in our experiments, we use I = 10).

At each slope scaling iteration t ≥ 0, we solve an associated multicommodity minimum cost

network flow problem (MMCF ) with modified linear costs c(t), defined as follows:

min
∑
k∈K

 ∑
(i,j)∈AOT

c̄kij(t)x
k
ij +

∑
(l,j)∈ATT

c̄klj(t)x
k
lj +

∑
(j,i)∈ATD

c̄kji(t)x
k
ji

 (29)

subject to constraints (2)-(4), (9) and

∑
k∈K

vk

(∑
i∈Oj

xkij +
∑
l∈T−

j

xklj

)
≤ qj, j ∈ T. (30)

A Lagrangian Heuristic for the Multicommodity Capacitated Location Problem with Balancing Requirements

5 CIRRELT-2019-38



Given a feasible solution x̃ to this MMCF, a feasible solution (x̃, ỹ) to the MCLB is obtained as

follows:

ỹj =


1, if

∑
i∈Oj

x̃kij +
∑
l∈T−

j

x̃klj

> 0,

0, otherwise.

j ∈ T. (31)

An upper bound on the optimal value of the MCLB is then computed as:

Z(x̃, ỹ) =
∑
j∈T

fj ỹj +
∑
k∈K

 ∑
(i,j)∈AOT

ckijx̃
k
ij +

∑
(l,j)∈ATT

ckljx̃
k
lj +

∑
(j,i)∈ATD

ckjix̃
k
ji

 . (32)

To define the initial modified linear costs c(0), we use the Lagrangian subproblem solution ŷ

obtained at the current iteration of the bundle method. We define the modified linear costs at

iteration t= 0 as follows:

c̄kij(0) = (ckij + vkαj
fj
qj

)(1 +L(1− ŷj)), (i, j)∈AOT , k ∈K,
c̄kji(0) = (ckji + vk(1−αj)

fj
qj

)(1 +L(1− ŷj)), (j, i)∈ATD, k ∈K,
c̄klj(0) = (cklj + vk(αj

fj
qj

+ (1−αl) flql ))(1 +Lmax{1− ŷj,1− ŷl}), (l, j)∈ATT , k ∈K,

where αj = ξj/(ξj+∆j) with ξj =
∑

k∈K v
k
∑

i∈Oj
oki and ∆j =

∑
k∈K v

k
∑

i∈Dj
dki , for each j ∈ T and

L is a number large enough to penalize the costs associated to closed depots (in our experiments, we

set L= 100). In these formulas, ξj (∆j) is the maximum volume that might transit through depot

j from all supply (demand) customers adjacent to j. The values αj and (1−αj) thus approximate

the fractions of the maximum volume in-transit at depot j that can be imputed to supply and

demand customers, respectively. For any arc between a customer and a depot j, if j is open in the

Lagrangian subproblem solution ŷ (i.e., ŷj = 1), the costs on that arc then correspond to the initial

linear costs used in the slope scaling method introduced in Gendron et al. (2003b), while if j is

closed in solution ŷ (i.e., ŷj = 0), the initial linear costs on that arc are multiplied by 1 +L, thus

discouraging the use of that arc when solving the MMCF. For any arc between two depots j and

l, if both depots are open in solution ŷ (i.e., ŷj = ŷl = 1), the initial linear costs on that arc are

the same as those used in Gendron et al. (2003b), while if at least one depot is closed in solution

ŷ (i.e., ŷj = 0 or ŷl = 0), the initial linear costs on that arc are multiplied by 1 +L. Note that such

an arc will be used if needed to satisfy the capacity constraints, and its linear costs will then be

adjusted accordingly, as we see next.

The modified linear costs c(t) at each iteration t ≥ 1 are computed by using the total volume

X̃j(t− 1) at each depot j ∈ T in the solution x̃(t− 1) identified at the previous iteration:

X̃j(t− 1) =
∑
k∈K

vk

∑
i∈Oj

x̃kij(t− 1) +
∑
l∈T−

j

x̃klj(t− 1)

 , j ∈ T. (33)
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The modified linear costs are then computed as follows:

c̄kij(t) =

{
ckij + vkαj

fj

X̃j(t−1)
, if X̃j(t− 1)> 0,

c̄kij(t− 1), otherwise,
(i, j)∈AOT , k ∈K, (34)

c̄kji(t) =

{
ckji + vk(1−αj)

fj

X̃j(t−1)
, if X̃j(t− 1)> 0,

c̄kji(t− 1), otherwise,
(j, i)∈ATD, k ∈K, (35)

c̄klj(t) =

{
cklj + vk(αj

fj

X̃j(t−1)
+ (1−αl) fl

X̃l(t−1)
), if X̃j(t− 1), X̃l(t− 1)> 0,

c̄klj(t− 1), otherwise,
(l, j)∈ATT , k ∈K,

(36)

The stopping criterion of the slope scaling procedure is when the objective function remains

unchanged from one iteration to the next. At the end of the slope scaling procedure, we apply

an intensification step that proceeds as follows. First, starting from the best feasible solution (x̃,

ỹ) found during this call to the slope scaling procedure, it removes each closed depot and its

incident arcs. Then, it solves the resulting MMCF, but with the linear costs equal to the original

transportation costs. This simple intensification step often yields an improved solution, since x̃ is

optimal with respect to the modified linear costs, but generally not with respect to the original

transportation costs.

5. Computational experiments

In this section, we report computational results on a large set of randomly generated instances.

Our objective is to evaluate the performance of the Lagrangian relaxation approach, in particular

the Lagrangian heuristic method. We compare the lower bounds computed by the bundle method

with those obtained from solving the LP relaxation and the root node of the MIP model using a

state-of-the-art MIP solver. We compare as well the upper bounds from the Lagrangian heuristic

method with those obtained when solving the root node of the MIP model with the same state-of-

the-art MIP solver. Note that we do not attempt to compute the optimal values since solving the

MIP model exactly would require excessive computing times.

The Lagrangian heuristic method is implemented in C++. For the bundle method, we use the

code in Frangioni (2005). For the MMCF problem, we use CPLEX (version 12.8.0). The code is

compiled and run on a 3.07 GHz Intel Xeon X5675 computer.

We report computational results on problem instances obtained with the generator described

in Gendron et al. (2003b). We generate three types of instances, with 10 instances of each type:

2× 2 grid, 3 × 2 grid and 4 × 2 grid, as in Gendron et al. (2003b). All of these instances have

the same number of customers (|O|= |D|= 500), the same number of depots (|T |= 200) and the
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Instance |ATT | |ATD| |AOT |
2× 2 0 796000 2000000 2000000
2× 2 1 796000 2000000 2000000
2× 2 2 796000 2000000 2000000
2× 2 3 796000 2000000 2000000
2× 2 4 796000 2000000 2000000
2× 2 5 796000 2000000 2000000
2× 2 6 796000 2000000 2000000
2× 2 7 796000 2000000 2000000
2× 2 8 796000 2000000 2000000
2× 2 9 796000 2000000 2000000
3× 2 0 796000 1174160 1174160
3× 2 1 796000 1186920 1186920
3× 2 2 796000 1503040 1503040
3× 2 3 796000 1323000 1323000
3× 2 4 796000 1425300 1425300
3× 2 5 796000 1392640 1392640
3× 2 6 796000 1208360 1208360
3× 2 7 796000 1459980 1459980
3× 2 8 796000 1375320 1375320
3× 2 9 796000 1274000 1274000
4× 2 0 796000 1165160 1165160
4× 2 1 796000 1164880 1164880
4× 2 2 796000 1150120 1150120
4× 2 3 796000 1109680 1109680
4× 2 4 796000 1127040 1127040
4× 2 5 796000 1094700 1094700
4× 2 6 796000 1034080 1034080
4× 2 7 796000 1157280 1157280
4× 2 8 796000 1044440 1044440
4× 2 9 796000 1115640 1115640

Table 1 Size of the instances

same number of commodities (|K|= 20). The difference between them is the number of arcs, as

illustrated in Table 1.

The following methods are used to compute lower and upper bounds on the optimal value of the

MCLB :

• Root LB: The lower bound obtained by solving the root node of the branch-and-bound method

of CPLEX, with the barrier method (otherwise using default parameters).

• LP: The LP relaxation bound computed by the LP solver of CPLEX, with the barrier method

(otherwise using default parameters).

• Bundle: The lower bound obtained by the Lagrangian relaxation method to solve the

Lagrangian dual presented in Section 3.

• Root UB: The upper bound obtained by solving the root node of the branch-and-bound method

of CPLEX, with the barrier method (otherwise using default parameters).
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• Slope Scaling: The upper bound computed by the Lagrangian heuristic method with slope

scaling described in Section 4.

Two performance measures are provided: the GAP and the CPU times in seconds. For the GAP,

we use the following measure:

GAP =
|best solution value− lower or upper bound|

best solution value
× 100.

The best solution value is obtained by solving the root node of the branch-and-bound method of

CPLEX (Root UB).

Tables 2 and 3 summarize the computational results obtained for our set of 30 instances. In

Table 2, we show the solution values and GAPs for the lower bound yielded by CPLEX at the root

(Root LB). We do not include the times for Root LB because the total times associated with the

root node computations are reported in Table 3 under column Root UB. Table 2 also shows the

solution values, the GAPs and the times associated with the LP relaxation and with the bundle

method. The averages of each type of instances and for all instances are reported.

When comparing the LP relaxation and bundle methods, we conclude that the computing time

of the bundle is small compared to that of the LP relaxation. In particular, the bundle method

is about 4 times faster on 2× 2 instances, almost 3 times faster on 3× 2 instances and about 1.5

times faster on 4× 2 instances. The GAP for the bundle method is between 0.1% and 1.89% with

average values of 0.25%, 0.62% and 0.85%, respectively, on 2× 2, 3× 2 and 4× 2 instances. These

GAPs are close to those obtained by the LP relaxation, which are 0.09%, 0.10% and 0.12% on

2× 2, 3× 2 and 4× 2 instances respectively. When we compare the Root LB and the LP methods,

we observe that the GAP of LP is very close to the one of Root LB, which provides lower bounds

that are about 0.01% away from the LP relaxation bounds. This indicates that CPLEX, even with

its sophisticated MIP features (including preprocessing and cut generation), is not able to improve

the LP relaxation bounds. Note that the computing time for the Root LB (see Table 3) is 3 to 4

times higher than that of LP.

Table 3 reports the values of the upper bounds yielded by CPLEX (Root UB) and the times in

seconds, as well as the solution values, GAPs and times in seconds for the slope scaling method.

The averages of each type of instances and for all instances are reported. When analyzing the

results of the slope scaling method, all the instances have low GAPs: the worst values of GAP

for the 2 × 2, 3 × 2 and 4 × 2 instances are, respectively, 1.80%, 2.77% and 1.47%, while the

average values are 0.55%, 0.73% and 0.52%. We conclude that the Lagrangian heuristic is robust.

Concerning the computing time, the slope scaling heuristic is several orders of magnitude faster:

we observe an average of 1743.9 seconds compared to 145865.5 seconds for Root UB. The whole

Lagrangian heuristic, including the bundle method, is still one order of magnitude faster with a

global computing time of about 14000 seconds on average.
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Instances
Root LB LP Bundle

Solution GAP Solution GAP Time Solution GAP Time
(%) (%) (sec) (%) (sec)

2× 2 0 350925444 0.03 350905854 0.04 54766 350551187 0.14 13223
2× 2 1 336006068 0.05 335957076 0.06 59118 335314927 0.25 13535
2× 2 2 268039678 0.05 268008997 0.06 40914 267683442 0.18 13580
2× 2 3 294333110 0.06 294331910 0.06 51956 293710032 0.27 13757
2× 2 4 306430176 0.13 306406378 0.14 43133 305990252 0.27 13202
2× 2 5 308499446 0.08 308457806 0.09 46756 307917135 0.27 10652
2× 2 6 312042692 0.06 312041052 0.06 51106 311391878 0.27 12418
2× 2 7 312541642 0.09 312540341 0.09 47331 312145356 0.22 14183
2× 2 8 329794483 0.12 329793457 0.12 35300 329385379 0.24 12511
2× 2 9 317096075 0.14 317084503 0.14 56345 316465133 0.34 11428

Average 313570881.4 0.08 313552737.4 0.09 48672.5 313055472.1 0.25 12848.9
3× 2 0 462902868 0.04 462899188 0.04 29939 459461282 0.78 14390
3× 2 1 462196632 0.13 462175261 0.13 35373 461106182 0.36 10420
3× 2 2 270282933 0.08 270280507 0.08 24408 269314224 0.44 13220
3× 2 3 239360611 0.13 239358231 0.13 25787 237616889 0.86 11333
3× 2 4 324810526 0.09 324788093 0.10 40053 323497285 0.49 12398
3× 2 5 300810035 0.12 300798456 0.12 40509 299504138 0.55 13708
3× 2 6 643236523 0.04 643234940 0.04 22487 641952188 0.24 10815
3× 2 7 329932217 0.19 329928409 0.19 41534 327971299 0.79 11518
3× 2 8 556601312 0.07 556598680 0.07 56645 556311718 0.12 10870
3× 2 9 355777075 0.11 355773655 0.11 31884 350403242 1.62 11833

Average 394591073.2 0.10 394583542 0.10 34861.9 392713844.7 0.62 12050.5
4× 2 0 509137774 0.13 509121673 0.13 23686 504750042 0.99 12466
4× 2 1 749569623 0.04 749550238 0.04 25178 744895577 0.66 12972
4× 2 2 512615632 0.16 512608332 0.16 12425 508396243 0.98 11332
4× 2 3 460256664 0.18 460248382 0.19 14605 457815343 0.71 12830
4× 2 4 510258242 0.10 510248078 0.10 17569 507829897 0.58 11237
4× 2 5 695587597 0.10 695585496 0.10 15980 693886195 0.34 13926
4× 2 6 436717386 0.15 436713379 0.15 23859 429142676 1.89 11515
4× 2 7 584436722 0.12 584433431 0.12 20609 581645954 0.60 10028
4× 2 8 548055019 0.09 548051126 0.09 20692 543123748 0.99 11902
4× 2 9 611104201 0.10 611103094 0.10 14592 606862561 0.79 13063

Average 561773886 0.12 561766322.9 0.12 18919.5 557834823.6 0.85 12127.1
Average All 433810768.6 0.10 433801889.9 0.11 32406.4 431536532.9 0.61 12231.7

Table 2 Lower bounds

6. Conclusions

We have studied the multicommodity capacitated location problem with balancing requirements

(MCLB). For solving this problem, we have presented a Lagrangian relaxation approach based on

the bundle method and a Lagrangian heuristic based on a slope scaling procedure. We have shown

that the bundle method is faster than solving the LP relaxation with a state-of-the art solver for

all the instances used in our experiments (we observe an average of 12231.7 seconds compared to

32406.4 seconds for the LP relaxation). The average GAP obtained by the bundle method for all
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Instances
Root UB Slope Scaling

Solution Time Solution GAP Time
(sec) (%) (sec)

2× 2 0 351051596 115122 351561773 0.14 1149
2× 2 1 336184267 154787 337443555 0.37 1378
2× 2 2 268190651 442341 268781050 0.22 1487
2× 2 3 294529997 196208 297055088 0.85 1223
2× 2 4 306842224 323060 307600967 0.24 975
2× 2 5 308762065 350471 309836977 0.34 1217
2× 2 6 312254851 197320 314650767 0.76 1347
2× 2 7 312836669 206937 313196632 0.11 1346
2× 2 8 330207910 254072 336183200 1.80 1463
2× 2 9 317545544 226828 319623461 0.65 1179

Average 313840577.4 246714.6 315593347 0.55 1276.4
3× 2 0 463114946 93590 464038311 0.19 5206
3× 2 1 462815632 151792 463307925 0.10 1771
3× 2 2 270504978 163534 270993018 0.18 2935
3× 2 3 239678826 108971 240571040 0.37 1143
3× 2 4 325118194 141291 327642181 0.77 605
3× 2 5 301189597 99170 302481156 0.42 2235
3× 2 6 643526866 54046 646194415 0.41 3165
3× 2 7 330587311 238669 339758173 2.77 1211
3× 2 8 557007675 117148 559757377 0.49 1912
3× 2 9 356195243 85690 361763737 1.56 2773

Average 394973926.8 125390.1 397650733.3 0.73 2295.6
4× 2 0 509816963 124884 511561788 0.34 2422
4× 2 1 749873946 87776 751088152 0.16 3346
4× 2 2 513467648 88015 516142853 0.52 1071
4× 2 3 461125045 95658 467921405 1.47 1692
4× 2 4 510794505 85480 511909523 0.21 1192
4× 2 5 696285534 45068 700470147 0.60 1730
4× 2 6 437412659 83810 443510217 1.39 734
4× 2 7 585193185 131324 586193608 0.17 732
4× 2 8 548575868 88680 549871308 0.23 593
4× 2 9 611737024 73909 612695052 0.15 1979

Average 562428237.7 90460.4 565136405.3 0.52 1549.1
Average All 434274788.2 145865.5 436813298.8 0.63 1743.9

Table 3 Upper bounds

the instances is 0.61% compared to 0.11% for the LP relaxation. Considering the upper bounds,

we have shown that the slope scaling procedure is robust and orders of magnitude faster than

solving the root node by CPLEX, for an average GAP of 0.63% on all the instances used in our

experiments. For further research, we plan to explore alternative Lagrangian relaxations and other

approaches such as Benders decomposition. We also propose to develop exact methods for solving

the MCLB.
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