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Abstract. Network expansion problems are a special class of multi-period network design 
problems in which arcs can be opened gradually in different time periods but can never be 
closed. Motivated by practical applications, we focus on cases where demand between 
origin-destination pairs expands over a discrete time horizon. Arc opening decisions are 
taken in every period, and once an arc is opened it can be used throughout the remaining 
horizon to route several commodities. Our model captures a key timing trade-off: the earlier 
an arc is opened, the more periods it can be used for, but its fixed cost is higher, since it 
accounts not only for construction but also for maintenance over the remaining horizon. For 
the capacitated variant, we develop an arc-based Lagrange relaxation, combined with local 
improvement heuristics. For uncapacitated problems, we develop four Benders 
decomposition formulations and show how taking advantage of the problem structure leads 
to enhanced algorithmic performance. We then utilize real-world and artificial networks to 
generate 1,080 instances, with which we conduct a computational study. Our results 
demonstrate the efficiency of our algorithms. Notably, for uncapacitated problems we are 
able to solve instances with 2.5 million variables to optimality in less than two hours of 
computing time. Finally, we provide insights into how instance characteristics influence the 
multi-period structure of solutions. 
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1. Introduction

Network expansion models represent a variety of problems arising in fields as diverse as

road construction (Yang et al. 1998), logistics (Lee and Dong 2008), energy transport and

telecommunications (Minoux 1989), and railways (Hooghiemstra et al. 1999). These prob-

lems exhibit a multi-period structure: given a planning horizon and a demand forecast

therein, one needs to decide which arcs to open and when, so that the resulting network

can accommodate the typically increasing demand throughout the planning horizon. Con-

cretely, opening an arc implies that this arc can be used to route commodities until the end

of the planning horizon. However, the more periods the arc is under operation, the higher

the total fixed cost that is incurred. This fixed opening cost represents the total expense

over the remaining horizon, such as construction and maintenance costs for building a

track in a rail network.

In this paper, we study an archetypal formulation that captures the key timing trade-off

of network expansion decisions. On the one hand, building an arc early on implies a high

fixed cost, but the arc can be used to route commodities for a large number of subsequent

periods. On the other hand, building an arc later in the horizon is associated with a lower

fixed cost, but the number of periods in which the arc can be used is smaller. The objective

is then to jointly minimize the arc construction and operating costs over the given planning

horizon.

Although such network expansion formulations can provide useful input for strategic

and tactical decisions, their very large scale makes them difficult or even impossible to

solve with modern mixed-integer programming (MIP) technology. To this end, we exploit

their multi-period structure to devise specialized decomposition algorithms for both capac-

itated and uncapacitated variants. First, we apply arc-based Lagrange relaxation for the

capacitated problem. Second, we develop a stand-alone heuristic which we combine with

Lagrange relaxation. Third, we apply Benders decomposition to uncapacitated problems,

by decomposing the original problem into single-period shortest path subproblems per

period and per commodity. We then show how Pareto-optimal Benders cuts can be gen-

erated efficiently for our application, and compare the resulting implementations with the

novel formulation of Fischetti et al. (2010). Further, we employ our algorithms to analyze
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how problem characteristics, such as capacity tightness, influence the structure of obtained

solutions.

In order to illustrate the computational efficiency of our algorithms and investigate the

structural characteristics of multi-period solutions, we generate new instances. Specifically,

we utilize three actual shipping networks that were used in Pazour et al. (2010) to investi-

gate the usefulness of designing a high-speed freight rail network in the United States. It is

worth noting that Pazour et al. (2010) recognize the mutli-period nature of this problem,

but resort to solving a simplified, single-period version. Then, we use a subset of the R

instances of Crainic et al. (2001), which have been used in a multitude of other studies

(Katayama et al. 2009, Yaghini et al. 2014, Costa et al. 2009). In total, we construct more

than 1,000 instances, with which we perform extensive computational experiments. First,

we show that our heuristics, Lagrange relaxation and Benders decomposition are efficient in

finding high-quality solutions within a reasonable amount of time, while their performance

scales well in larger problem instances. Notably, we are able to solve to optimality instances

with 2.5 million variables in less than two hours of CPU time. Second, we are interested in

examining structural characteristics of multi-period problem solutions. We deduct several

insights, such as that (i) the majority of the arcs are opened in early periods but instances

with too short horizons, tight capacities or low fixed costs may open fewer arcs therein;

(ii) an increasing commodity demand implies that routing costs are predominant in later

periods, regardless of the timing of arc opening; (iii) because of (ii), high-quality solutions

may have low capacity utilization, especially in very sparse networks.

The remainder of the paper is organized as follows. We first review related research in

Section 2. Then, Section 3 describes the problem formulation and Section 4 explains the

construction of a heuristic tailored to large-scale instances. Section 5 provides details on the

Lagrange relaxation and Benders decomposition. Then, Section 6 presents computational

results. We conclude by reflecting on future research avenues, reported in Section 7.

2. Literature Review

The literature on network design and expansion problems is voluminous. In what follows,

we first focus on applications related to capacitated and uncapacitated multi-period prob-
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lems and then provide an overview of methodological advancements in the larger field of

network design problems.

2.1. Applications of Multi-period Problems.

Bärmann et al. (2017) consider the problem of expanding the German railway network,

whose demand is anticipated to increase by 50% in the coming two decades. Their model

captures capacity installation decisions that span over multiple periods. In their setting,

investments have to be paid throughout the construction periods but the corresponding

capacity becomes available only at the last construction period. Related to our model

is also the work of Papadimitriou and Fortz (2015), who study multi-period networks

with capacity installation, link maintenance and routing decisions in telecommunication

networks. Their work is similar to the problem studied here but incorporates features

specific to telecommunication networks, such as link aging, non-linear routing cost and

switching capacity.

Another related problem is the stochastic network expansion problem for railway capac-

ity planning, considered in Lai and Shih (2013), where the authors minimize a combina-

tion of network upgrading costs, expected arc operations costs and unfulfilled demand.

Other research, such as Blanco et al. (2011) and Marin and Jaramillo (2008), focuses

on application-specific transportation network expansion models using heuristics, while

Petersen and Taylor (2001) develop a decision support system to investigate the economic

viability of a new railway in Brazil. Cheung et al. (2001) highlight the importance of long-

term planning by noting that “Today’s optimal service network may not be adequate in

the future [...] Therefore, we needed to base the network design on a long-term demand

forecast”. The authors study the problem of redesigning DHL’s network of depots and ser-

vice centers, determining facility capacities and opening timing by solving a multi-period

facility location problem, which can be recast as a network design problem, with each

facility converted to an arc. In a similar fashion, Pazour et al. (2010), who consider the

design of a high-speed rail network for cargo distribution, note that such a network is likely

to be built across multiple periods, and assume an incremental design plan by restricting

the total length of the network and by fixing prior line construction decisions.
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Systems with ample capacity or systems where the pertinent decision is determining

the network topology can be represented by uncapacitated models. Capacity restrictions

are relevant for freight rail networks, but the study of uncapacitated models can be use-

ful since capacity restrictions can be tackled by post-processing strategies, as in Pazour

et al. (2010), who assume that excess flows are directed from high speed rail to the road

network. Yet another interesting application is the infrastructure expansion problem in

the coal export supply chain, studied by Kalinowski et al. (2015). The authors consider

an uncapacitated multi-period network design problem which can be described by our

uncapacitated model formulation. There, our model arises when the authors devise an

alternative formulation, which results in a model with a multi-period structure, where

the number of periods equals the difference between the ultimate and the initial flow. A

special characteristic of this formulation is that it has a single commodity whose demand

increases by one unit each time period. The same group (Baxter et al. 2014) has studied a

single-commodity incremental network design problem with shortest paths, in which they

are able to characterize the structure of optimal solutions and derive a 4-approximation

algorithm. Such papers are representative of incremental optimization, a research stream

pioneered by Şeref et al. (2009). Our paper adds to this literature by designing tailored

algorithms for multi-commodity variants of such incremental problems.

2.2. Methodology.

In a seminal paper, Balakrishnan et al. (1989) utilize dual ascent methods to solve singe-

period uncapacitated network design problems with up to 500 integer and 1.98 million con-

tinuous variables. Subsequent works focus mostly on exact approaches, such as Lagrange

relaxation-based branch-and-bound (Cruz et al. 1998, Holmberg and Yuan 1998), branch-

and-cut, and Benders decomposition (Randazzo and Luna 2001, Rahmaniani et al. 2016).

To the best of our knowledge, the Lagrange relaxation algorithm of Holmberg and Yuan

(1998) is the state-of-the-art exact approach for solving single-period uncapacitated prob-

lems. A heuristic used by several researchers is the dynamic slope scaling approach of

Kim and Pardalos (1999), which the authors utilized for single-commodity uncapacitated

and capacitated network design problems. The main idea of slope scaling is to update the
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objective function coefficients of the continuous variables dynamically, so that the adjusted

linear cost is a locally good approximation of both the linear and fixed costs. This idea was

adopted by other authors for problems with richer structures, such as capacitated network

design (Crainic et al. 2004) and freight rail transportation (Zhu et al. 2014).

In spite of some notable research output on the single-period uncapacitated problem, the

largest literature stream has focused on solution methods for its capacitated counterpart.

To this end, some authors have conducted polyhedral studies (Atamtürk 2002, Atamtürk

and Rajan 2002, Bienstock and Günlük 1996, Raack et al. 2011, Günlük 1999), while others

have used column generation (Frangioni and Gendron 2009, 2013) and Lagrange relax-

ation (Frangioni and Gorgone 2014). In terms of other exact methods, we note Chouman

et al. (2017), who develop a cutting-plane algorithm which utilizes five classes of valid

inequalities.

Since single-period network design is computationally challenging, most authors have

adopted heuristic approaches. Yaghini et al. (2014) use a tabu-search algorithm with a

neighborhood induced by families of valid inequalities, while Paraskevopoulos et al. (2016)

use scatter and local search alongside new search operators that allow partial rerouting

of multiple commodities. The computational experiments show that those two approaches

are perhaps the most efficient heuristics at the time of this writing, while Katayama et al.

(2009), which is based on capacity scaling using column and row generation, remains

competitive.

Finally, most papers that consider multi-period variants utilize heuristics, such as

Papadimitriou and Fortz (2015), who propose a rolling horizon heuristic to solve practical

problem instances. An exception is Petersen and Taylor (2001) who use dynamic program-

ming to solve one specific instance, whose state space can be reduced significantly. We

next provide a mathematical description of the problem we consider.

3. Problem Description and Formulation

We consider a network of nodes N and arcs A and a set of commodities K that need

to be routed from given origin nodes to given destination nodes during each time period

t ∈ T . Each commodity should satisfy a period-dependent demand between its origin and
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its destination. Routing a commodity through an arc incurs a variable, commodity-specific

cost. In addition, routing a commodity through an arc is possible only if this arc is opened

in this period, or if it has been opened in an earlier period. Opening an arc in a specific

period incurs a fixed cost. We introduce the following notation:

Parameters

f tij, cost of opening arc (i, j) at the start of period t

ckij, cost of sending one unit of commodity k through arc (i, j)

uij, capacity of arc (i, j)

dkt, demand of commodity k in period t

Ok,Dk, origin and destination of commodity k, respectively

bki = 1, if i≡Ok;−1, if i≡Dk; 0, otherwise

Decision Variables

xktij , fraction of dkt that is directed through arc (i, j)

ytij, = 1 if arc (i, j) is opened at the beginning of period t, 0 otherwise

The multi-period network expansion problem (M-NEP) is formulated as follows:

min
∑
t∈T

∑
k∈K

∑
(i,j)∈A

ckijd
ktxktij +

∑
t∈T

∑
(i,j)∈A

f tijy
t
ij [M −NEP ] (1)

s.t
∑

j:(i,j)∈A

xktij −
∑

j:(j,i)∈A

xktji = bki , ∀i∈N ,∀k ∈K,∀t∈ T, (2)

∑
k∈K

dktxktij ≤ uij
t∑
l=1

ylij, ∀(i, j)∈A, t∈ T, (3)

xktij ≤min{1, uij
dkt
}

t∑
l=1

ylij, ∀(i, j)∈A,∀k ∈K,∀t∈ T, (4)∑
t∈T

ytij ≤ 1, ∀(i, j)∈A, (5)

0≤ xktij ≤ 1, ∀(i, j)∈A, k ∈K, t∈ T, (6)

ytij ∈ {0,1}, ∀(i, j)∈A,∀t∈ T. (7)

The objective function (1) minimizes the costs of routing commodities and opening arcs

throughout the horizon. Constraints (2) maintain the balance of each commodity in each

node and period. Constraints (3) prevent the total amount of flow that is routed through
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each arc from exceeding that arc’s capacity in each period. If at time t, ysij = 0, for all

1 ≤ s ≤ t, then no flow is routed through the arc (i, j) during period t. Constraints (4)

are redundant but potentially useful, since they strengthen the problem’s LP relaxation.

Specifically, they are the multi-period counterparts of the “strong” inequalities used in

single-period problems to improve the LP relaxation (Gendron and Crainic 1994). Finally,

constraints (5) express that each arc can be opened at most once. Arc capacity expansions

can be modeled by considering additional pairs of arcs between nodes. This is important

for rail networks, where constructing additional tracks to expand the capacity between

stations is commonplace (Bärmann et al. 2017).

To avoid trivial solutions, we assume that opening an arc earlier implies a higher cost,

i.e., f tij > f
t+1
ij ,∀(i, j)∈A, t∈ T . A special case of the above formulation arises when uij ≥∑

k∈K d
kt for all (i, j)∈A and t∈ T . Then, constraints (3) are redundant, and (4) change to

xktij ≤
∑t

l=1 y
l
ij,∀(i, j)∈A, k ∈K and t∈ T . We will hereafter refer to this case as the multi-

period uncapacitated network expansion problem (M-UNEP). This variant is interesting

in its own right, because it has different decomposability features than the capacitated

variant. Before applying decompositions, we introduce a heuristic that generates high-

quality solutions fast.

4. Initial Heuristic Search.

Our heuristic tries to detect arcs that are going to be opened in some period, and then

decides when it is best to open each of the identified arcs. Algorithm 1 describes the

high-level steps of this select-and-time procedure.

Selecting good arcs. We first solve two single-period instances. The first one outputs

a good set of candidate arcs, by incorporating cost and demand information from the

entire horizon, and the second one adopts a worst-case demand perspective, to make sure

the proposed set of arcs leads to feasible solutions. We start by calculating weights wt

that are used to average the fixed cost of each arc over the horizon. The weight of each

period is determined in two steps. First, we set it equal to the fraction of the remaining

cumulative demand over the total demand, and then we normalize between zero and one

(line 1). The first single-period model we solve has a fixed cost per arc (i, j) that is a
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weighted average of that arc’s cost across the horizon, i.e., f̂ij =
∑

tw
tf tij (line 2). In order

to capture future demand growth, we use the first period demand of each commodity

scaled by maxt d
kt/ 1

T

∑
l d
kl (line 3). That way we obtain an instance with fixed costs that

are more representative of the entire horizon, and demands that anticipate the growth

of future periods. After solving this problem, we store which arcs are opened (line 4).

These arcs may not be enough to guarantee feasibility throughout the horizon, and to

tackle this we create an instance that has no arc opening cost and maximum demand

from each commodity (line 5). This can be seen as a “worst-case” scenario from a demand

perspective, because all commodity demands take their maximum values simultaneously.

This instance can be solved efficiently as follows: since there are no arc opening costs, we

solve an LP that allows positive flows via all arcs, and then select those arcs that have

a strictly positive flow in the optimal solution. After solving this formulation (line 6), we

form the set of arcs that are selected in either the first (ŷij) or the second (ȳij) model (line

7). After this initial selection of arcs, i.e., Apot, is determined, the decision of when to open

an arc is considered.

Arc opening timing. In order to decide when to open arcs, we iteratively solve single-

period instances for each period in the horizon, using only arcs from the set Apot, whose

fixed cost is a weighted average of each period’s cost and the average cost of the remaining

periods, and the variable cost is inflated by maxt d
kt/ 1
|T |

∑
t d

kt (lines 9 - 11). This way we

take into account the variable cost of future periods, anticipating the potential increase in

demand. Every time an arc is newly opened, we mark it as such and do not consider its

cost further (lines 15 - 16). During early periods, we give more weight to the actual fixed

costs rather than the anticipated future costs, acknowledging that early capacity opening

decisions are more important, since they impact the routing decisions of the entire horizon.

Thus, fixed costs for the first periods carry the largest weights, while for later periods the

weights of each period become smaller. Having decided when to open each arc, the problem

reduces to solving a series of linear multi-commodity flow problems for each period in the

planning horizon (line 20).

The advantage of the select-and-time heuristic is that although it works with a reduced

problem size, it takes into account information from multiple periods. We thus use it to

efficiently warm-start the decomposition schemes we develop.
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Algorithm 1 The Select-and-Time heuristic procedure

Input: dkt, f tij, c
k
ij, uij, b

k
i

Output: ytij, x
kt
ij , vH

1: wt←
∑|T |

l=t

∑
k∈K d

kl∑
l∈T

∑
k∈Kd

kl ;w
t← wt∑

l∈T w
l

2: f̂ij
∑

t∈T w
tf tij . Create weighted fixed cost (f̂ij)

3: d̂k← dk1 maxt∈T d
kt

1
|T |

∑
t∈T d

kt . Create inflated demand (d̂k)

4: ŷij← SlvSnPer(d̂k, f̂ij, c
k
ij, uij, b

k
i ) . Solve MIP with f̂ij , d̂

k; Store ŷij

5: d̂k←maxt∈T d
kt; f̂ij 0 . Take max demand (d̂k), set zero fixed costs (f̂ij)

6: ȳij← SlvSnPer(d̂k, f̂ij, c
k
ij, uij, b

k
i ) . Solve LP with f̂ij d̂

k; Store arcs (ȳij)

7: Apot = {(i, j)∈A | ŷij + ȳij ≥ 1} ;A0 =A\Apot ;A1←∅

8: for t∈ T do

9: tmax←min{t+ 1, |T |}

10: f̂ij←{wtf tij + 1−wt

|T |−tmax+1

∑|T |
l=tmax f lij, ∀(i, j)∈Apot; 0,∀(i, j)∈A1}

11: ĉkij← ckij
maxt d

kt

1
|T |

∑
t d

kt ; d̂k← dkt

12: ŷtij← SlvSnPer(d̂k, f̂ij, ĉ
k
ij, uij, b

k
i | yij = 1,∀(i, j)∈A1 ;yij = 0,∀(i, j)∈A0) . Fix

opened & closed arcs; solve for period t; store ŷtij

13: for (i, j)∈Apot do . Find open arcs

14: if ŷtij = 1 then

15: Apot←Apot\{(i, j)} . If opened, remove from potential

16: A1←A1 ∪{(i, j)} . Save opening

17: end if

18: end for

19: end for

20: (ytij, x
kt
ij , vH)← SlvMltPerLP(dkt, f tij, c

k
ij, uij, b

k
i | ytij = ŷtij,∀(i, j)∈A,∀t∈ T )

5. Decomposition Algorithms and Local-Search Heuristics.

We next exploit structural characteristics of capacitated and uncapacitated variants to

utilize Lagrange relaxation and Benders decomposition, respectively.
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5.1. Capacitated Problems.

5.1.1. Lagrange relaxation of M-NEP. By dualizing constraints (2) in the objec-

tive function (1), M-NEP decomposes into a series of single-arc multi-period subproblems.

We let πkti denote the dual values associated with constraints (2). To miminize notation

clutter, we remove the indices (i, j) and formulate the single-arc problems as follows:

vπij = min
∑
t∈T

∑
k∈K

(ckdkt +πkti −πktj )xkt +
∑
t∈T

f tyt [SUB] (8)

s.t.
∑
k∈K

dktxkt ≤ u
t∑
l=1

yl, ∀t∈ T (9)

xkt ≤min{1, u
dkt
}

t∑
l=1

yl, ∀k ∈K,∀t∈ T (10)∑
t∈T

yt ≤ 1, (11)

0≤ xkt ≤ 1, ∀k ∈K, t∈ T (12)

yt ∈ {0,1}, ∀t∈ T. (13)

Then, the Lagrange dual optimization problem can be expressed as

v∗LR = max
π
v(π) = max

π

 ∑
(i,j)∈A

vπij −
∑
t∈T

∑
i∈N

∑
k∈K

bki π
kt
i

 . (14)

It is well-known that (14) is a concave optimization problem and that v(π) is piece-

wise linear (Fisher 1981). In order to calculate v∗LR, we evaluate v(π) pointwise and apply

subgradient optimization. To this end, we note the following remark.

Remark 1. For a given vector with yt ∈ {0,1}, t∈ T values that satisfy (11), problem

[SUB] decomposes into a series of single-period, linear bounded knapsack problems, each

of which can be solved in O(|K| log |K|) time. Given such a vector, [SUB] can be solved in

O(|K||T | log |K|) time.

We next provide information on how strong the bound obtained by the Lagrange relaxation

is. To this end, we note that the linear relaxation of [SUB] has the integrality property, i.e.,

its basic feasible solutions have yt ∈ {0,1} for all t ∈ T without imposing the integrality

restrictions explicitly (Fisher 1981).
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Proposition 1. Problem [SUB] has the integrality property, thus v∗LP = v∗LR .

Proof. See Appendix A of the electronic companion.

5.1.2. Lower Bounds and Approximate Primal Solutions. When solving the

Lagrange dual problem (14) with regular subgradient optimization, the obtained primal

solution typically violates the dualized constraints (2). Moreover, devising good quality

branching rules from such a solution is challenging, because the arc opening decisions

obtained by subgradient optimization (ytij) are integral. To tackle this issue, we employ the

volume algorithm of Barahona and Anbil (2000), an extension of the subgradient algorithm

that returns, alongside the Lagrangian lower bound, a y-solution with small violations

of (2). This way, we have a solution with fractional binary variables at each subgradient

iteration, which we then use to direct our heuristic search.

5.1.3. Finding Upper Bounds. Within the framework of the volume algorithm we

find feasible solutions of the original problem, M-NEP, by employing three local search

heuristics. The first heuristic checks if moving the arc opening decisions later in time

provides an improved solution. Algorithm 2 shows the details. For large models, how-

ever, attempting to check all arcs might be prohibitive. We thus restrict the search to a

neighborhood defined by comparing the arc-opening variables of the best feasible solution

(the incumbent) and the possibly fractional arc-opening variables, retrieved by the volume

algorithm. Concretely, for a cutoff point δ ∈ (0,1) and for each arc (i, j), we set yt
∗
ij = 1

if t∗ = arg maxt{ytij : ytij > δ} exists and ytij = 0,∀t ∈ T, otherwise. Then, we compare the

resulting vector with the incumbent solution. For each period, we invoke Algorithm 2 only

for the arcs that are different in the incumbent and the rounded solution. In addition, we

sort the arcs in order of decreasing ∆fc, in order to ensure that we first check those that

give the highest period-on-period reduction in fixed costs. This procedure utilizes a small

set of relevant arcs, for which there are discrepancies between the rounded approximate

primal solution of the Lagrange relaxation and the incumbent solution.
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Algorithm 2 Single-arc search heuristic

Input: Period t, feasible solution (ȳtij, x̄
kt
ij ), objective value zt

Output: Improved feasible solution (ȳtij, x̄
kt
ij ), objective value zt

1: Ā← {(i, j)∈A : ȳtij = 1}

2: M t← LP model for period t with xktij ≤
∑t

l=1 ȳ
l
ij,∀(i, j)∈A,∀k ∈K

3: for (i, j)∈ Ā do

4: ∆fc← f tij − f t+1
ij

5: Solve M t with xktij = 0,∀k ∈K

6: z′←Objective(M t) if M t is feasible, otherwise z′ =∞;∆z← z′− zt

7: If ∆fc−∆z > 0 then . Fixed cost reduction > flow cost increase

8: ȳtij 0, ȳt+1
ij 1, x̄ktij Solution(M t), zt←

∑
(i,j)∈Ā c

k
ijd

ktx̄ktij

9: end for

10: return (ȳtij, x̄
kt
ij , z

t)

Our second heuristic checks if changing the period when an arc is opened leads to

improved solutions. Thus, given a feasible solution ȳtij we define Āt = {(i, j) ∈ A|ȳtij =

1},∀t∈ T and impose the constraints

min{|T |,t+τ+}∑
l=max{t−τ−,0}

ylij = 1,∀t∈ T,∀(i, j)∈ Āt (15)

to the original problem M-NEP. This explores a neighborhood of the incumbent where the

arc opening decisions remain the same, but their timing can be shifted up to τ+ periods

later or τ− periods earlier.

Our third and last heuristic applies a simple fixing procedure based on the values of the

fractional y variables recovered by the volume algorithm, as follows. First, it interprets

each fractional value as signifying a degree of “ambiguity”, meaning that the exploration

of variables closer to 0.5 takes priority. To this end, it sorts the y variables in increasing

values of |ytij − 0.5| and, for a given fraction f , it finds lf and uf in (0,1) such that the

first f |A||T | variables lie in the interval [lf , uf ]. Finally, in M-NEP, it fixes to zero those

variables that are lower than lf and to one those that are higher than uf , respectively, and

solves the remaining MIP model. The advantage of this heuristic is that it can be tuned
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easily by only changing f , while it searches a promising neighborhood of the fractional

solution.

5.2. Uncapacitated Problems.

Removing constraints (3) from M-NEP gives rise to the uncapacitated variant, M-UNEP.

The resulting model exhibits a decomposable structure: for fixed arc opening decisions, it

decomposes into a series of independent shortest path problems, per commodity and per

period. In this part, we leverage this property to develop Benders decomposition formula-

tions.

5.2.1. Regular Benders Decomposition. Let Y denote the set of binary vectors

y that satisfy
∑

t∈T y
t
ij ≤ 1,∀(i, j) ∈A. Then, for a given ȳ ∈ Y , the uncapacitated model

reduces to the following linear program:

z(ȳ) = min
∑
t∈T

∑
k∈K

∑
(i,j)∈A

ckijd
ktxktij (16)

s.t
∑

j:(i,j)∈A

xktij −
∑

j:(j,i)∈A

xktji = bki , [πkti ], ∀i∈N ,∀k ∈K,∀t∈ T, (17)

0≤ xktij ≤
t∑
l=1

ȳlij, [λktij ], ∀(i, j)∈A,∀k ∈K,∀t∈ T, (18)

Then, the original problem can be expressed as miny∈Y {z(y) +
∑

t∈T
∑

(i,j)∈A f
t
ijy

t
ij}. Note

that (16)-(18) decomposes into a series of shortest path problems, each one corresponding

to a commodity–period pair. The dual of (16)-(18) is then

z(ȳ) = max
∑
t∈T

∑
k∈K

(
πktO −πktD

)
−
∑

(i,j)∈A

∑
k∈K

∑
t∈T

(
t∑
l=1

ȳlij)λ
kt
ij (19)

s.t. πkti −πktj −λktij ≤ ckijdkt, ∀(i, j)∈A, k ∈K, t∈ T (20)

λktij ≥ 0, ∀(i, j)∈A, k ∈K, t∈ T. (21)

The dual polyhedron ∆ = {(πππ,λλλ)|(20)− (21)} is non-empty, and therefore can be repre-

sented by a finite set of extreme rays, denoted by R∆, and a finite set of extreme points,
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denoted by P∆ (Schrijver 1998). Using this representation, the Benders reformulation of

M-UNEP is as follows:

min
∑
t∈T

∑
(i,j)∈A

f tijy
t
ij + z (22)

s.t.
∑
t∈T

∑
k∈K

(
π̄ktO − π̄ktD

)
−
∑

(i,j)∈A

∑
k∈K

∑
t∈T

( |T |∑
l=t

λ̄klij

)
ytij ≤ 0, ∀(π̄kti , λ̄ktij )∈R∆ (23)

∑
t∈T

∑
k∈K

(
π̄ktO − π̄ktD

)
−
∑

(i,j)∈A

∑
k∈K

∑
t∈T

( |T |∑
l=t

λ̄klij

)
ytij ≤ z ∀(π̄kti , λ̄ktij )∈ P∆ (24)

∑
t∈T

ytij ≤ 1, ∀(i, j)∈A (25)

yktij ∈ {0,1}, ∀(i, j)∈A, t∈ T. (26)

Constraints (23), the feasibility cuts, prevent the objective function of the dual problem

(19)-(21) from being unbounded, and therefore the corresponding primal problem (16)-

(18) from becoming infeasible. Constraints (24) are the optimality cuts, which impose that

z corresponds to the optimal objective value function of the dual subproblem (19)-(21).

Although this formulation is useful conceptually, the often large cardinalities of P∆ and

R∆ make the a priori inclusion of the corresponding constraints inefficient from a compu-

tational point of view. Benders himself noted that formulation (22)-(26) can be solved for a

limited number of feasibility and optimality cuts, in which case it delivers a lower bound on

the optimal objective function value, and new cuts can be added dynamically. Specifically,

in each iteration the optimal ytij values can be used to solve the pair of primal-dual sub-

problems (16)-(18) and (19)-(21), respectively. If the primal subproblem is infeasible, then

the dual subproblem returns a feasibility cut, (23), whereas when the primal subproblem

is feasible, the dual subproblem returns an optimality cut, (24). These cuts are added to

the master problem and the algorithm proceeds to the next iteration. If no optimality or

feasibility cut is violated, then the algorithm has converged to an optimal solution.

Modern implementations of Benders decomposition employ additional computational

enhancements. First, the decomposition of the subproblem into a series of |K||T | subprob-

lems allows the generation of individual cuts from each commodity–period pair. To this
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end, z is replaced by
∑

k∈K
∑

t∈T z
kt in (22), the summations over periods and commodities

are dropped in (23) and (24), and the sets of extreme rays and points are defined over

the polyhedra ∆kt = {(πππ,λλλ) | πkti −πktj −λktij ≤ ckijdkt;λktij ≥ 0,∀(i, j)∈A}. The correspond-

ing cuts are denser and tend to be more effective than a single cut generated from the

aggregated master problem (22)-(26) (Cordeau et al. 2001). Second, instead of solving the

master program (22)-(26) to optimality in each iteration, we take advantage of the callback

capabilities of modern solvers to solve it only once and add the cuts dynamically in the

branch-and-bound tree. Concretely, we start by solving the master program with a limited

number of cuts, use a callback to invoke the cut-generating procedure every time a feasible

solution is found and to add the generated cuts, and then return control to the solver

(Bai and Rubin 2009, Adulyasak et al. 2015). In addition, we add cuts from individual

subproblems, and two classes of valid inequalities which warm-start the master problem,

as detailed in Section 5.2.5.

5.2.2. FSZ Benders Decomposition. Fischetti et al. (2010) suggest an alternative

normalization approach that uses the best known flow cost values z̄kt in the subproblem

formulation. Let (ȳtij; z̄
kt) denote a feasible solution of the master problem (22)-(26) with

disaggregated Benders cuts. For notational brevity, we suppress the commodity and period

notation when we refer to a single subproblem. Using this notation, Fischetti et al.’s

subproblem (FSZ) can be formulated as follows:

max πO−πD−
∑

(i,j)∈A

(
t∑
l=1

ȳlij)λij − z̄η [FSZ] (27)

s.t. πi−πj −λij ≤ cijdη, ∀(i, j)∈A (28)∑
(i,j)∈A

wijλij +w0η= 1 (29)

η≥ 0; λij ≥ 0, ∀(i, j)∈A. (30)

In this formulation, the user is able to select non-negative weights wij and w0 to better

configure the normalization hyperplane (29). The regular Benders subproblem arises as the

special case of w0 = 1 and wij = 0. Our implementation sets the convexity condition w0 =

wij = 1 for each arc (i, j)∈A. As long as non-negative weights are selected, FSZ always has
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a feasible solution and is bounded. Therefore, a cut πO−πD−
∑

(i,j)∈A(
∑t

l=1 ȳ
l
ij)λij− z̄η≤ 0

can always be generated. Note also that if no arc has been opened until period t, i.e.,∑t

l=1 ȳ
l
ij = 0 for each (i, j) ∈ A, an optimal solution will generate a cut with η = 0 and∑

(i,j)∈A λij = 1. Thus, this subproblem can generate both optimality and feasibility cuts.

5.2.3. Pareto-Optimal Cuts. The cut selection problem becomes relevant when the

dual subproblem (19)-(21) has multiple optimal solutions, and therefore one has to select

the best among alternative cuts. A criterion that partially quantifies cut quality is cut

dominance (Magnanti and Wong 1981): a cut generated from the extreme point (πππ1,λλλ1)

is said to dominate another cut generated from (πππ2,λλλ2) iff

π1
O−π1

D−
∑

(i,j)∈A

(
t∑
l=1

ylij

)
λ1
ij ≥ π2

O−π2
D−

∑
(i,j)∈A

(
t∑
l=1

ylij

)
λ2
ij

holds for all ytij ∈ Y = {ytij ∈ {0,1} |
∑

t∈T y
t
ij ≤ 1,∀(i, j) ∈A} with strict inequality for at

least one point. A cut is non-dominated, or Pareto optimal (PO) if there is no other cut

that dominates it. Magnanti and Wong (1981) devised a mechanism that generates PO cuts

by solving an additional linear program, formulated as follows. First, let yyyr = (yt,rij )t∈T(i,j)∈A

denote a core point, i.e., a point that lies in the relative interior of conv(Y ). Then, denoting

by ȳtij the master problem solution and by z∗ = max{πO−πD−
∑

(i,j∈A
∑t

l=1 ȳ
l
ijλ

t
ij : (πππ,λλλ)∈

∆kt} the subproblem solution for the pair (k, t), one can identify a PO cut by solving the

following subproblem:

max πO−πD−
∑

(i,j)∈A

(
t∑
l=1

yl,rij

)
λij [PO−SUB] (31)

s.t. πi−πj −λij ≤ cijd, ∀(i, j)∈A (32)

πO−πD−
∑

(i,j)∈A

(
t∑
l=1

ȳlij

)
λij = z∗ (33)

λij ≥ 0 ∀(i, j)∈A. (34)

Constraint (33) ensures that the new point is an optimal solution to the original subprob-

lem, while the objective function ensures that it is a PO cut.
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Although finding a core point is NP-hard in general (Papadakos 2008), the simple

structure of Y makes it possible to characterize a family of core points: given a feasible

point, ȳtij ∈ Y , the perturbed point yt,rij = {1− ε|T | if ȳtij = 1; ε, otherwise} is a core point

for ε∈ (0,1/|T |). Selecting a small ε guarantees that we generate a core point which lies in

the neighborhood of ȳtij. Thus, we make use of this selection policy in our implementation.

We also note that an optimal solution to the regular Benders subproblem is feasible to the

PO subproblem.

5.2.4. Efficient Generation of Pareto-Optimal Cuts. For single-period uncapac-

itated problems, Magnanti et al. (1986) have shown that a PO cut can be generated by

solving a single minimum cost flow problem instead of two generally structured LPs. We

show here that their main argument can be extended to our setting. To this end, we rewrite

the dual of (31)-(34) as follows:

max d
∑

(i,j)∈A

cijxij − z∗x0 (35)

s.t.
∑
j∈A+

i

xij −
∑
j∈A−i

xji = bi(1 +x0), ∀i∈N [πi] (36)

0≤ xij ≤ x0

t∑
l=1

ȳlij +
t∑
l=1

yl,rij , ∀(i, j)∈A [λij ≥ 0], (37)

where x0 represents the dual price of constraint (33). Magnanti et al. (1986) observe that

x0 can be fixed to any value greater than or equal to
∑

(i,j)∈A
∑t

l=1 y
l,r
ij at an optimal

solution. In our computational experiments, we set x0 = |A|. Therefore, the objective term

z∗x0 becomes a constant and (35)-(37) is recast as a minimum cost flow problem, while its

dual solution corresponds to a PO cut.

5.2.5. Strengthening the Master Problem. We use two families of cutting planes

that strengthen the formulation of the master problem. First, we employ origin-destination

cuts, which impose that at least one arc from each origin and to each destination should be

opened, respectively. To explain our second set of inequalities, let p∗ denote the shortest

path cost for a certain commodity-period pair and p∗ij the shortest path cost when arc

(i, j) is removed from the graph. Then, the cut z ≥ p∗ij + (p∗ − p∗ij)
∑t

l=1 y
l
ij is a valid cut
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(Magnanti et al. 1986), since it expresses the fact that the flow cost for a commodity cannot

be lower than the shortest path cost when the complete graph is considered (
∑t

l=1 y
l
ij = 1)

or p∗ij when arc (i, j) is not opened (
∑t

l=1 y
l
ij = 0). In our implementation, instead of adding

|T ||K||A| such inequalities, we find for each commodity the arc whose removal increases

the shortest path cost the most and add inequalities only for this arc.

6. Computational Experiments

The purpose of our computational study is twofold. First, we aim to illustrate the efficiency

of the developed solution methods. To this end, we conduct a series of experiments that

assess the quality of (i) the lower bound obtained by Lagrange relaxation (LR); (ii) the

upper bound returned by the S&T heuristic; (iii) the LR algorithm integrated with S&T

and the heuristics described in Section 5.1.3 and (iv) the various Benders implementations.

Second, we investigate how different instance characteristics influence the solution struc-

ture. In particular, we are interested in deriving insights on when arcs are opened, what is

the influence of the fixed versus variable cost ratio, how capacity tightness influences the

timing of arc opening and how cost correlations influence solution characteristics.

6.1. Instances

We utilize three real-world networks introduced in Pazour et al. (2010), which originate

from high-speed rail network design for cargo distribution. Specifically, two of these net-

works are constructed using data from the US Census Bureau and one from the annual

shipments of J.B. Hunt transport services. We use these networks to construct 648 instances

with horizons varying from 5 to 20 periods, 624 of which are feasible for capacitated prob-

lems. Pazour et al. (2010) use a single-period network design formulation but recognize

that “due to the high costs of these systems, it is likely that a high-speed network, [...],

would be implemented in phases throughout a planning horizon of many years”. There-

fore, these instances are appropriate use cases for our formulation. We then repeat our

analysis using a subset of the R instances constructed by Crainic et al. (2001), which we

extend to 20, 40, 60 and 80 periods, for a total of 432 instances, 408 of which are feasible

for capacitated problems. Although such long horizons are rarely found in transportation
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networks, they are relevant in problems arising in telecommunication networks, such as

in Idzikowski et al. (2011), where the authors use 15-minute epochs to analyze networks

with daily dynamic demand, resulting in problems with 96 periods. For brevity, we have

included the detailed analysis of this experiment in the electronic companion, and give

a summary of results in the main paper, focusing on the instances originating from real

transportation networks. In total, our complete dataset consists of 1,080 instances, which

are used to assess algorithmic performance and gain insights in the problem structure.

Next, we provide a brief overview of the multi-period Pazour networks. Further details of

how the instances are constructed and to what cost structure each label corresponds can

be found in Appendix B.1 of the electronic companion of this paper.

In order to keep the instances tractable in a multi-period setting, we have kept com-

modities that cover 80% of the total original demand by eliminating the commodities with

the smallest demand. Table 1 shows the characteristics of these instances. Gurobi is able

to eliminate about 4% of variables via pre-processing, for capacitated instances using the

M-CNDP formulation. Therefore, the reported model sizes are accurate representations of

the actual model sizes tackled by Gurobi. We used these three instances and the methodol-

Instance |N | |A| |K| Variable range Constraint range

USC30 30 126 87 [55,440 − 221,760] [13,680 − 54,720]

USC53 53 278 245 [341,940 − 1,367,760] [66,315 − 265,260]

JBH50 50 198 62 [620,730 − 2,482,920] [157,490 − 629,960]

Table 1 Characteristics of the networks of Pazour et al. (2010). The variable range refers to the

generated multi-period instances, for |T |= 5 and |T |= 20, respectively.

ogy in Crainic et al. (2001) to construct instances with loose, medium and tight capacities

and with low, medium and high fixed cost ratios. In addition, we further extend the design

space by considering instances that have correlations between fixed and variable costs and

instances where these costs can be proportional to the original distance matrix, random

or mixed. Table 2 presents in detail the levels of each parameter we considered.

Using a full factorial design, we have constructed 54 instances from each original instance,

which we then extended to multiple periods. The fixed cost per arc is assumed to decrease
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Parameter Levels Symbols Explanations

Fixed cost Low, Medium, High L, M, H Ratio fr=
∑
fij∑

dk
∑
cij
∈ {0.01,0.5,0.1}, respectively

Capacity Loose, Medium, Tight L, M, T Ratio cr=
|A|

∑
k∈K d

k∑
uij

∈ {1,2,8}, respectively

Correlation

structure

Positive correlation (Original),

Negative correlation
PC, NC

If negative, fixed and variable costs

have correlation -70%

Routing cost mode Euclidean, Mixed, Random E, M, R

Costs proportional to distance (E),

50% of costs shuffled randomly (M),

all costs shuffled randomly (R)

Table 2 Design parameters of single-period network design instances.

linearly with the remaining periods, such that (i) the average fixed cost per arc equals that

of the single-period instance, and (ii) the last period has 10% of the single-period fixed

cost. For demand expansion, we use a sigmoid curve which consists of a convex, a linear

and a concave part. This generic profile represents a period of rapid growth in demand, a

subsequent linear trend and then a stabilization phase. The curves are constructed so that

the average demand coincides with that of the original instance, and that demand expands

from 50% to 150% of the original demand. Further details can be found in the electronic

companion of this paper.

6.2. Computational performance

The experiments of this section aim to illustrate the usefulness of the developed algo-

rithms, and to benchmark them against solving the MIP formulation (1)-(7). To this end,

we study capacitated and uncapacitated variants separately, since they utilize different

solution methods. In each table, we report results disaggregated per number of nodes and

periods for the Pazour instances, and provide aggregate results for the R instances.

6.2.1. Capacitated instances The first matter of interest is to assess the quality

of the lower bound returned by Lagrange relaxation (LR). In theory, the Lagrange dual

provides the same lower bound as the LP relaxation of (1)-(7) when the tight inequalities

(4) are included. In practice, when LR is solved by subgradient optimization a lower

approximation is obtained, which may or may not be close to the LP bound, depending

on implementation-specific details (Fisher 1981). We therefore solve the LP relaxation of
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(1)-(7) with Gurobi, adding all strong inequalities as default constraints, and compare this

bound with the one obtained by LR. Table 3 reports the results, showing in column (3)

the number of instances for which Gurobi could solve the LP relaxation within a time

limit of 7,200s, in column (4) the lower bound gap, defined as (LBGRB −LBLR)/LBGRB,

and the CPU time consumed by Gurobi and LR in columns (5) and (6), respectively, for

the instances solved to optimality. These results suggest that the lower bound returned

by LR is close to the exact bound, having a gap of approximately 1%. For the Pazour

instances, Gurobi consumes 40% more CPU time, and although it is faster than LR in

small instances, its performance does not scale up equally well for larger instances. To

see this, note that for 20-period instances Gurobi fails to solve the LP relaxation for 40

out of 134 instances, while for the remaining 94 instances it is marginally faster than LR.

Furthermore, for the R instances with 20 to 80 periods, the CPU time of LR is one fifth of

the CPU time for Gurobi.

Next, we compare the LR bound against the actual bound Gurobi returns at the root

node, in columns (7) to (10) of Table 3. The reason for doing so is that Gurobi does not

necessarily utilize all strong inequalities when solving the root node of the MIP formulation,

but rather a subset of them combined with generic cutting planes. In fact, while the LP

relaxation with strong inequalities could not be solved within the time limit for 130 Pazour

instances and for 151 R instances, when solved as a MIP Gurobi was able to return a lower

bound at the root node for 596 Pazour instances and 384 R instances. However, since not

all strong inequalities are included by default, this lower bound is no longer guaranteed to

be better than the one of LR. This leads us to partition the instances in those where LR

or GRB returned the best lower bound, respectively, and assess each category separately.

Column (7) reveals that in cases where LR returns a stronger lower bound for the Pazour

instances, this is 8.42% stronger than that of Gurobi, while column 8 suggests that when

Gurobi finds a stronger lower bound this is only 1.37% stronger than that of LR. These

conclusions also apply to the R instances. Overall, Gurobi is four times slower for the

Pazour and 20 times slower for the R instances, respectively, in calculating a root node

lower bound compared to LR. These findings are qualitatively persistent across planning

horizons of various lengths. Although Gurobi seems more efficient for the USC30 instances,
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Instances GRB LR<GRB LP CPU Time (s) LR>GRB Root LR<GRB Root CPU Time (s)

|N | # Solved LB Gap (%) GRB LR LB Gap (%) LB Gap (%) GRB LR

30 216 216 0.43 4 147 0.09 (59) 0.61 (157) 33 147

50 164 97 0.86 1,301 733 16.11 (56) 1.17 (108) 3,652 913

53 216 181 2.16 991 639 9.68 (48) 2.20 (168) 3,473 683

|T |

5 159 151 0.23 670 278 2.59 (29) 0.27 (130) 1,828 289

10 155 130 0.76 670 422 6.40 (52) 0.89 (103) 2,306 478

15 148 119 1.69 638 578 12.54 (41) 1.80 (107) 2,480 681

20 134 94 2.48 447 564 10.98 (41) 2.94 (93) 1,828 808

Total 596 494 1.15 620 442 8.42 (163) 1.37 (433) 2,276 552

Total (R) 408 257 0.85 760 166 12.83 (101) 1.10 (283) 4,258 206

Notes. Columns (4) and (8) are calculated as (LBGRB − LBLR)/LBGRB, while column (7) as (LBLR − LBGRB)/LBLR.

Columns (9) and (10) report the average CPU time for instances in (7) and (8) combined. Numbers in parentheses denote

the number of instances. For the Pazour instances, we report results for 596 out of 624 instances, because Gurobi ran out

of memory or returned a segmentation fault at the remaining 28 instances.

Table 3 Average Lagrange relaxation gaps and CPU Time for instances where the exact lower bound is found (columns 1-6)

and where Gurobi returns another lower bound at the root node (columns 7-10).

which are the smallest ones in size and can all be solved optimally, its advantage is not

retained for larger instances. The conclusion from this experiment is that LR delivers high

quality lower bounds, which are close to the theoretically best ones, while its performance

scales well to large instances.

Next, we assess the quality of upper bounds, as obtained by the S&T heuristic and by

the integrated LR algorithm, i.e., the LR bounding scheme combined with our incremental

and local branching heuristics, when it is initialized by the S&T heuristic, as described

in Section 5.1.3. To this end, we utilize the instances that Gurobi could solve to proven

optimality, and compare their bounds to the ones obtained by our heuristics. In addition, we

utilize two other benchmark approaches: one that myopically solves single-period problems,

fixes the arcs to be opened and proceeds to the next period, and a rolling horizon one which

solves a problem of length l < T , fixes the arc opening decisions of the first m periods and
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repeats, starting from period m+ 1, until the end of the horizon. After some preliminary

tuning, we select l= 5 and m= 1 when T > 5 and l= 3,m= 1 for T = 5. Table 4 reports

the results.

UB Gap (%) CPU Time (s)

|N | Optimal MH RH(5,1) S&T LR MH RH(5,1) S&T LR GRB

30 216 14.37 1.30 4.09 0.39 12 107 9 189 128 (81)

53 117 12.98 2.75 4.80 0.47 767 2,077 209 1,277 1,389 (1,171)

50 89 6.59 3.78 2.99 0.16 854 1,749 300 1,599 1,415 (1,312)

|T |

5 110 5.81 1.57 9.41 0.35 312 632 92 495 500 (439)

10 111 11.7 2.34 3.17 0.36 410 890 142 752 559 (598)

15 107 14.79 2.39 1.82 0.36 493 1,231 162 995 716 (849)

20 94 17.96 2.67 1.38 0.41 381 1,296 103 938 832 (699)

Total 422 12.34 2.23 4.06 0.37 399 999 125 788 649 (643)

Total (R) 163 27.88 2.85 4.84 0.86 249 1,634 47 332 2,092 (1,591)

Table 4 Upper bound quality of various heuristics. Gaps are calculated as (UBheur −UBGRB)/UBGRB. The last

column shows total time and, in parenthesis, the time Gurobi consumed to find the optimal solution.

A first observation is that the myopic heuristic (MH) delivers solutions that deviate con-

siderably from optimality. In particular, solution quality deteriorates consistently for prob-

lems with longer horizons. The rolling horizon heuristic (RH) finds much better solutions,

but also consumes a considerably larger CPU time, while its performance also deteriorates

with longer horizons. The S&T heuristic finds solutions with a larger gap compared to

RH, but it does so in a fraction of the time RH requires to terminate. Given that the

purpose of S&T is to find good solutions to inject in LR, its performance is aligned with

its objective. In addition, it delivers lower gaps for longer horizons and the main difference

with RH is in five-period instances. Finally, we note that LR finds solutions of excellent

quality, having an average gap of 0.37% for the Pazour and 0.86% for the R instances,

respectively. In terms of CPU time, LR is slightly slower than Gurobi for the small Pazour

instances but six times faster for the R instances. The slower performance on the Pazour
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instances can be partly attributed to the fact that our algorithm is tuned to be efficient

across a wider set of instances. Specifically, we made some critical design choices, such as

the number of subgradient iterations, so that not only a good upper bound is found but

also a strong lower bound is returned consistently across all instances, at the expense of

longer CPU times for easier instances.

Finally, Table 5 reports the overall performance of the LR algorithm on all instances.

Specifically, column 3 reports the number of instances in which Gurobi could find non-

Instances Integrality Gap (%) CPU Time (s) Only LR

|N | All GRB Gap<1 GRB LR GRB LR Gap (%) CPU Time (s)

30 216 216 0.00 0.96 128 189 - -

50 192 128 4.61 2.11 1,953 1,726 2.63 2,849

53 216 192 5.49 4.26 2,481 1,608 6.88 2,440

|T |

5 159 153 3.13 1.80 2,121 825 7.48 2,033

10 156 141 3.18 1.87 1,966 1,048 2.70 2,838

15 155 129 3.03 2.71 1,836 1,235 4.09 2,949

20 154 113 2.89 3.58 1,854 1,215 4.75 2,532

Total 624 536 3.07 2.41 1,951 1,065 4.33 2,686

Total (R) 408 357 7.51 5.14 4,868 517 9.76 3,738

Table 5 Optimality gap quality of LR. Gaps are calculated as (UB−LB)/UB. The last two columns refer to

instances in which Gurobi terminated after 7,200 seconds without an upper bound.

trivial upper and lower bounds, i.e., which have a gap less than 100%, and columns 4 and

5 the corresponding optimality gaps for each method, with respect to their own upper

and lower bound. Next, columns 6 and 7 report the corresponding CPU times. The results

suggest that LR delivers a better overall gap, while it consumes less CPU time compared

to Gurobi. This is true for all but the smaller instances, USC30, and for instances with 20

periods. For the latter, Gurobi returns a smaller gap, but note that it does not manage to

return a gap for 41 instances. In both cases, LR remains competitive. It is worth noting

that columns 3 to 7 subsume instances that Gurobi solved to optimality. If we consider
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instances which Gurobi could not solve to optimality but for which it did find an upper

and lower bound, then the difference is even more profound: for example, for the Pazour

instances LR returns an average gap of 5.09% and 2,088 seconds of CPU time, as opposed

to a gap of 14.41% and 7,200 seconds of CPU, reported by Gurobi. Finally, the last two

columns report the optimality gap and CPU time of LR when run on instances for which

Gurobi could not find an upper bound. For these difficult instances, our algorithm seems

to scale very well, with an average CPU time of 2,686 seconds (3,738 for the R instances)

and an optimality gap of 4.33% (9.76% for the R instances). Interestingly, it seems that

instances with five periods are quite challenging to solve.

In summary, these experiments suggest that the S&T heuristic and the Lagrange relax-

ation constitute efficient bounding techniques that are competitive with Gurobi for small

instances, scale better for medium instances and attain good optimality gaps for the most

difficult instances. We then proceed to uncapacitated instances and assess the performance

of the various Benders decomposition implementations.

6.2.2. Uncapacitated instances We investigate the efficiency of our Benders decom-

position implementations by utilizing the same set of multi-period instances but without

considering their capacity. Specifically, we benchmark (i) a basic implementation (B-Reg);

(ii) Adding PO cuts (B-MW1); (iii) Adding PO cuts solving only one subproblem, as in

Magnanti et al. (1986) (B-MW2) and finally (iv) the formulation of Fischetti et al. (2010)

(B-F). All implementations exploit modern callback technology to avoid solving the mas-

ter problem multiple times (Bai and Rubin 2009) and make use of the cutting planes

described in Section 5.2.5, while the Pareto-optimal formulations update the core point

using Remark 3. In addition, all methods other than B-F use a subroutine that detects if

a primal subproblem is infeasible, by either finding a path between each o− d pair or by

detecting an edge cut set, which is then used to generate a feasibility cut. This is not nec-

essary for B-F, since the FSZ subproblem generates both optimality and feasibility cuts.

Similar to the capacitated experiments, our basic benchmark is the best Gurobi (GRB)

formulation, which uses the cut pool to handle the separation of the strong inequalities

(18). Table 4 shows the average optimality gaps and CPU times obtained by each method.

The time limit is set to 7,200 seconds for all algorithms.
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Optimality Gap (%) CPU Time (s)

|N | # GRB B-REG B-MW1 B-MW2 M-F GRB B-REG B-MW1 B-MW2 B-F

30 216 0.00 0.03 0.01 0.48 0.00 28 622 777 86 28

50 216 48.92 23.40 9.12 3.30 0.67 3,264 5,161 5,175 4,171 2,240

53 216 17.5 11.57 5.92 3.57 1.38 3,852 6,650 6,818 4,809 2,888

|T |

5 162 8.66 7.21 3.38 2.34 1.21 2,384 3,952 3,910 3,103 1,959

10 162 15.43 9.62 3.54 2.57 0.68 2,456 4,107 4,624 2,983 1,710

15 162 30.79 13.65 2.86 2.23 0.49 2,334 4,276 4,975 3,047 1,465

20 162 33.69 16.20 10.27 2.65 0.35 2,351 4,243 3,517 2,956 1,630

Total 648 22.14 11.67 5.01 2.45 0.68 2,381 4,144 4,257 3,022 1,696

Total (R) 432 15.12 6.47 2.33 1.52 0.42 1,902 2,191 2,866 1,583 1,572

Table 6 Optimality gaps and CPU times of Gurobi and Benders implementations.

A careful analysis of Table 6 suggests some important conclusions. First, Benders refor-

mulations seem to be intrinsically more efficient compared to branch-and-cut (GRB).

Specifically, our best implementation (B-F), attains an average gap which is approximately

30 times lower, and consumes about 70% of GRB’s CPU time (80% for the R instances).

This performance difference has been observed for other problems as well, such as facil-

ity location (Fischetti et al. 2016), suggesting that a modern implementation of Benders

decomposition can be a superior alternative to an off-the-shelf, state-of-the-art solver. Sec-

ond, with respect to the basic Benders implementation, we note that although it achieves

a far better gap than branch-and-cut, it falls behind the more sophisticated implemen-

tations by a large margin. Third, when assessing the impact of PO cuts, we observe a

non-trivial gap improvement between the basic Benders B-R and the basic PO Benders B-

MW1 implementations, implying that the impact of adding PO cuts significantly enhances

performance. However, these improvements come at a high CPU time cost, because two

LPs are solved to generate every optimality cut, resulting in B-MW1 having the worst

time performance across all methods. Fourth, implementation B-MW2, which generates

PO cuts using a single subproblem per iteration dominates B-MW1 in terms of both gap

and CPU time performance. Finally, B-F is the best-performing implementation, having
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clearly the lowest gap and CPU time. In particular, it was able to solve optimally 99 (54

for R) instances that GRB failed to solve to optimality, and 58 (39 for R) instances that

no other algorithm solved optimally. The ability of this model to incorporate the current

flow cost in the cut-generating subproblem and to generate cuts that unify feasibility and

optimality leads to important improvements over the Magnanti-Wong implementations.

Finally, the breakdown per original network shows that the USC30 instances can all be

solved to near-optimality rather easily, while JBH50 and USC53 are more challenging. In

addition, problems with more periods are generally more challenging to solve, but inter-

estingly B-F seems to attain a better gap performance for longer horizons, using about the

same amount of CPU time.

On further analysis, it is interesting to investigate the number and type of cuts each

Benders implementation generates. To this end, Figure 1 shows the average number of

binding, optimality and feasibility cuts each algorithm generated in a subset of 306 Pazour

instances for which all algorithms could find an optimal solution. The average number of

10,554

2,884

7,484

2,405
4,830 5,3213,979

49,315

Binding Feasibility

Benders cuts 

133,619

651,884

159,793

11,826

Optimality

B-REG

B-MW1

B-MW2

B-F

Figure 1 Cuts generated by each implementation. Optimality and feasibility refer to the totals gener-

ated during branch-and-cut. Binding are the cuts binding at an optimal solution.

Benders cuts generated over a large number of instances may lead to some notable insights.

First, in terms of cuts binding at an optimal solution, regular Benders is outperformed by

all other algorithms, followed by B-MW1, B-MW2 and B-F. The regular implementation

MW1, which solves two LPs to generate a single PO cut, generates a very large number of

optimality cuts, and the smallest number of feasibility cuts. Interestingly, B-F generates

the smallest number of binding and total optimality cuts, but it generates a very large

Decomposition Methods for Large-Scale Network Expansion Problems

CIRRELT-2019-42 27



number of feasibility cuts. A possible explanation for this is that it does not use the path

finding subroutine that detects infeasibility, but rather generates feasibility cuts using

the same subproblem as for optimality cuts. This experiment underlines that there may

be a considerable spectrum when it comes to the performance variability of PO cuts. In

particular, generating the cuts by solving LPs could result in strong cuts, since there exists

some variability embedded in the pivoting rules that return one among multiple optimal

solutions. An interesting direction for future research is to devise a mechanism that exploits

this variability in a systematic way.

6.3. Solution analysis

A focal question pertinent to multi-period settings is how the inclusion of the multi-period

structure influences the characteristics of the resulting solutions. Specifically, we investi-

gate the timing of the arc opening decisions, the variable versus fixed costs composition and

commodity flow changes over the horizon. To this end, we partition the problem horizon

in early, middle and late periods, and report aggregate statistics for each segment. This

partition is made so that each segment captures |T |/3 periods, with the middle segment

capturing more periods when rounding is necessary. Since we did not observe any major

differences in the behavior of capacitated or uncapacitated instances, we report our analy-

sis for capacitated instances of the Pazour dataset, based on the solutions we obtained from

our integrated Lagrange Relaxation algorithm. For brevity, we only summarize conclusions

that (i) have an interesting interpretation and (ii) are persistent across capacitated and

uncapacitated instances. In particular, we do not report results for different correlations

and routing cost modes because the differences are small across the corresponding config-

urations. The complete results of our study, including the uncapacitated instances and the

R instances, can be found in the electronic companion of our paper.

Arc opening timing. The first matter of interest is the timing of arc opening. Overall,

80% of the arcs used are opened during early, 7% during middle and 13% during late

periods. Despite the lower demand in early periods, the fact that all commodities have

to be routed from their origins to their destinations induces the majority of the arcs to

be opened early on. Yet another factor that could influence early opening is that the
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%  of Arcs opening through the horizon
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Figure 2 Proportion of arcs opening over early, middle and late periods.

original networks are very sparse and have a relatively large number of commodities, and

therefore the number of feasible and cost-efficient paths per commodity may be limited.

In addition, since commodity demands increase through the horizon, it becomes more

important to contain the routing cost, resulting in relatively more arcs opening in late

periods. When considering arc opening separately for different horizon lengths, however,

Figure 2 shows that for an horizon of five periods there are significantly fewer arcs opened

early, and more arcs opened late. This suggests that models with too short horizons used

as approximations to long horizon problems could underestimate the number of arcs to be

opened early, leading to suboptimal solutions. This is not the case for horizons with 10 or

more periods, where the proportion of arcs opened early seems to stabilize. In addition,

the more periods are considered, the more arcs are opened in middle periods, leading to a

“smoother” opening plan, with a decreasing number of arcs opening as we approach the

end of the horizon. This is also the case with the R instances, which extend to 80 periods.

It is also interesting to investigate the impact that capacity tightness and cost ratio have

on arc opening. To this end, Figure 3 shows the proportion of opened arcs for each capacity

and fixed cost level. The impact of capacity tightness is more pronounced over middle and

late periods, where more arcs need to be opened when capacity is tight, leaving fewer arcs

to be opened early. In other words, the higher percentage of arcs that are opened late is a

consequence of the overall demand increase, coupled with tight network capacities. When

it comes to fixed costs, it is more beneficial to defer arc opening when the fixed cost is

high relative to the variable cost. Interestingly, this does not make a significant difference
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Low Fixed Cost

Medium Fixed Cost

High Fixed Cost
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Figure 3 Proportion of arcs opening per capacity (a) and fixed cost level (b).

in middle periods, where commodity demand is linear, but a significant difference in early

and late periods.

Cost composition. Another matter of interest is how the arc opening decisions influence

the proportion of the resulting fixed versus variable cost over time. To this end, recall

that fixed costs decrease linearly as we approach the end of the horizon, while commodity

routing costs remain constant and demand increases. The combined effect of those trends

is that the proportion of fixed costs decreases from 54% in early to 5% and 3%, in middle

and late periods, respectively. In other words, after the initial arc opening phase, the

predominant cost results from routing the commodities through the network. However,

this composition depends heavily on the magnitude of fixed costs, as Figure 4 shows.

33%

1% 1%

61%

5% 3%

70%

8% 6%

Early Periods Middle Periods  Late Periods

%  of Fixed Cost through the horizon
Low Fixed Cost

Medium Fixed Cost

High Fixed Cost

Figure 4 Fixed cost composition per horizon segment.
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Figure 5 Proportion of rerouted commodities per capacity (a) and fixed cost level (b).

Reflecting on Figure 4, we observe that high fixed costs account for 70% of the overall

cost in early periods despite the observation that fewer arcs are opened in this case, as

shown by Figure 3b. Taken together, when the opening cost is high, as is typically the

case for constructing rail segments, it seems beneficial to selectively construct certain arcs

early, even if they bear a high initial cost, since the increase in demand can be tackled in

later periods, where fixed costs are less expensive.

Commodity Rerouting. Another consequence of increasing commodity demands is that

more commodities change their routes in late periods, compared to their initial routes.

Specifically, in early and middle periods, only 3% and 4% of commodities are rerouted,

respectively, compared to 12% in late periods. Figure 5 shows that this increases to 15%

when capacities are tight and to 17% when fixed costs are high. This latter case of high

fixed costs reflects a higher proportion of arcs opening late, as suggested by panel b of

Figure 3, which in turn allows more commodities to reroute their original paths.

Capacity Utilization. We conclude this part by commenting on the capacity utilization,

defined as the average proportion of capacity that is being used by routing commodities

across opened arcs and horizon segments. The average capacity utilization is 8%, 12% and

13% for early, middle and late periods, respectively. Such low utilization is likely to be

related to the nature of the underlying networks, which are quite sparse and have a large

number of commodities with diverse origins and destinations. This diversity implies that

it may be necessary to open specific arcs only to route a small number of commodities,

thereby reducing the average capacity utilization. In contrast, the R instances, which are
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Figure 6 Average capacity utilization per capacity (a) and fixed cost level (b).

randomly generated and significantly denser, reach utilization rates of 59%, 65% and 70%

for early, middle and late periods, respectively. Figure 6 shows how capacity utilization

varies among instances with varying capacity and fixed cost levels.

The disproportionate impact of tight capacities is depicted in panel 6a, while panel 6b

shows that the higher the fixed cost, the more beneficial it is to increase capacity utilization,

suggesting that expensive arcs should be better utilized. However, note that the differences

are small, and utilization practically stabilizes for middle and late periods. To interpret this

finding, recall that in single-period problems the core trade-off is to balance (i) excessive

fixed costs by opening a few key arcs through which many commodities can be routed with

(ii) routing each commodity through its minimum cost paths. In a multi-period setting,

however, fixed costs have a one-off impact, while routing costs are recurrent, and rise when

demand is increasing. Therefore, for problems such as designing and expanding a freight

rail network, the impact of arc construction decisions on the year-to-year operational costs

can be detrimental, and a low capacity utilization should not be perceived as inefficient

a priori. This is a key insight coming from the temporal interplay of opening and routing

decisions, but research that utilizes actual cost data is required to validate this claim.

7. Extensions and future research

We introduce a multi-period extension of the multi-commodity network design problem

that arises in an array of applications, and study its capacitated and uncapacitated vari-
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ants. By taking advantage of problem structure, we develop heuristic and decomposition-

based algorithms that are superior to existing approaches. For capacitated problems,

Lagrange relaxation scales very well with problem size and delivers high quality lower

and upper bounds across a large range of problem sizes. For uncapacitated problems, we

employ a variety of Benders decomposition formulations and show that the best one solves

to optimality very large instances. Our algorithms are tested on two sets of networks, for

which we analyze the temporal characteristics of solutions.

A potential limitation of our study is that it assumes deterministic commodity demands.

For freight rail applications, it is common to assume a target demand (Bärmann et al.

2017) which reflects anticipated growth and strategic targets. In other contexts, such as

DHL’s strategic service network design case (Cheung et al. 2001), deterministic network

design may be combined with a simulation model to assess the network’s operational

characteristics and solution quality in a stochastic environment, although for such problems

using a deterministic solution may lead to fewer consolidation opportunities (Lium et al.

2009). Further, deterministic solutions can be used to decide which arcs to open and when

(Thapalia et al. 2012), and then solve the corresponding stochastic LPs. While conceptually

simple, this heuristic may substantially improve the deterministic solution, by as much as

97% (Sun et al. 2017). For multi-period problems, where the routing costs are predominant

over fixed costs, it is likely that such a method delivers good results.

There are several avenues for future research. For capacitated problems, volume-based

branch-and-bound appears to be an approach worth exploring. Investigating the efficiency

of well-established heuristics, such as large neighborhood search (Ropke and Pisinger 2006),

evolutionary algorithms (Paraskevopoulos et al. 2016), slope scaling (Crainic et al. 2004)

or column and row generation (Katayama et al. 2009) can lead to further improved solu-

tions. For uncapacitated problems, further improvements on the Benders cut generation

mechanism can be investigated. We hope that our study inspires future work on such

problems.
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Electronic companion

The electronic companion is organized in five appendices. The first appendix provides a proof and an

illustration of Proposition 1. The second appendix provides details on the data construction process,

while the third appendix reports on the computational results of long-period instances. Finally,

appendices four and five report the complete solution analysis for the Pazour and R instances,

respectively, and provide graphical representations of the two largest Pazour networks.

Appendix A: Proof and illustration of Proposition 1

A.1. Proof

We hereby prove that Problem [SUB] has the integrality property.

Proof. We will show that there exists no point with at least one fractional yt that is an extreme

point of [SUB]. To this end, note that the origin is a feasible point of [SUB]. Then, let a feasible point

p be such that there exist s periods {t1, . . . , ts} with (ytj )p ∈ (0,1) and (yt)p = 0 for t 6∈ {t1, . . . , ts}.
We construct feasible points qj , j = 1, . . . , s such that the original point p can be written as their con-

vex combination, using as weights the components of (yt)p, i.e., (yt)p =
∑s

j=1(ytj )p(yt)qj ; (xkt)p =∑s

j=1(ytj )p(xkt)qj (1). To this end, for each j ∈ {1, . . . , s} we set (ytj )qj = 1; (yt)qj = 0, for all t 6= tj

and (xkt)qj = min{1,Akt
j }, if t≥ tj ; 0, otherwise, for all k ∈K, t∈ T , where Akt

1 = (xkt)p/(y
t1)p and

Akt
j =

[
(xkt)p −

∑j−1
l=1 (ytl)p(xkt)ql

]
/(ytj )p for all j ∈ {2, . . . , s}. Note that for each t and k there

exists at least one j such that Akt
j ≤ 1, otherwise (xkt)qj = 1 for all j, and Akt

s > 1 implies that

(xkt)p >
∑

j∈{1,...s}(y
tj )p which is not true because p is feasible. Thus, let j∗ denote the first j such

that Akt
j ≤ 1. We evaluate each (xkt)qj for j < j∗, j = j∗ and j > j∗ and substitute them back in (1).

Case (i): j < j∗. By the definition of j∗ and (xkt)qj it holds that (xkt)qj = 1.

Case (ii): j = j∗. Likewise, the definitions of j∗ and (xkt)qj give (xkt)qj∗ = Akt
j∗ (2).

Case (iii): j > j∗. We first note that the quantities Akt
j can be written recursively as Akt

j+1 =
(ytj )p

(ytj+1 )p
[Akt

j −(xkt)qj ] (3). This recursion written for j = j∗ implies that Akt
j∗+1 = 0 (because of (2)),

which in turn gives xkt
qj∗+1

= 0. Then, using (3) it is easy to show by induction that Akt
j = (xkt)qj = 0

for all j > j∗.

Substitution of the above in (1) gives
∑s

j=1(ytj )p(xkt)qj =
∑j∗−1

j=1 (ytj )p +

(ytj∗)p
[
(xkt)p−

j∗−1∑
j=1

(ytj )p
]
/(ytj∗)p︸ ︷︷ ︸

Akt
j∗

+ 0 + · · ·+ 0︸ ︷︷ ︸
Terms {j∗+1,...,s}

= (xkt)p. This final relationship, alongside the

fact that
∑

j(y
tj )p ≤ 1 and that the origin is feasible signifies that p can be written as a convex

combination of qi feasible points and the origin, which completes the proof. �

We next provide a small example that shows how points qj are constructed.
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A.2. Illustration: construction of points qj

We illustrate hereby the construction of points qj for a small example with one commodity and

seven periods, in Table 7. There, it can be readily verified that (yt)p =
∑3

j=1(y)ql(y
t)ql and (xt)p =∑3

j=1(y)ql(x
t)ql , for all t= 1, . . . ,7.

Point Weight Component t=1 t=2 t=3 t=4 t=5 t=6 t=7

p –
y 0.2 0.1 0.6

x 0.2 0.1 0.25 0.25 0.05 0.8

q1 (y)q1 = 0.2

y 1

x 1 0.5 1 1 0.25 1

A 1 0.5 1.25 1.25 0.25 4

q2 (y)q2 = 0.1

y 1

x 0.5 0.5 1

A 0.5 0.5 6

q3 (y)q3 = 0.6

y 1

x 0.83

A 0.83

Table 7 Illustration of point construction. Empty spaces imply zero coordinates.

Appendix B: Data construction details

For each instance that we generate in any of the datasets, we first check its feasibility. For capacitated

problems, an instance is infeasible if there exists one period in which the corresponding single-period

problem is infeasible. To check this, we run the myopic heuristic that solves single periods problems,

specifically tuned to detect infeasibility. For uncapacitated instances, infeasibility detection reduces

to checking whether there exists at least one path from each origin to each destination. We report

details on how we constructed our instances next.

B.1. Pazour instances

We employ the networks USC30, USC53 and JBH50 from Pazour et al. (2010). The first two net-

works make use of the 2002 Commodity Flow Survey, which is pursued jointly by the US Census

Bureau, the US Department of Transportation, the Bureau of Transportation Statistics and the US
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Department of Commerce. For each origin-destination pair, we obtain the number of tons shipped

as commodity demand. The other network, JBH50, shows the 2002 annual shipments of J.B. Hunt

transport services, a large US-based carrier. The unit of shipment used here is a 53-foot equivalent

container. We refer the interested reader to Pazour et al. (2010) for more information on the details

of these networks and focus hereby on our design decisions for the parts of the dataset that we

generated.

Variable Costs. For instances with Euclidean costs, we assume that variable routing costs are

proportional to the physical distance of each arc. To construct instances with random costs, we

shuffle randomly the original variable costs across the arcs. For instances with mixed costs, we

randomly select 50% of arcs and reshuffle their variable costs.

Fixed Costs and capacities. To generate a wide range of fixed costs and capacities, we fol-

low Crainic et al. (2001). First, we denote T =
∑

k∈K d
k and define the capacity ratio as C =

|A|T/
∑

(i,j)∈A uij and the Fixed cost ratio as F =
∑

(i,j)∈A fij/(T
∑

(i,j)∈A cij). We then generate

nine instances from each original instance by combining F ∈ {0.01,0.05,0.1} with C ∈ {1,2,8}

corresponding to low, medium and high fixed cost and loose, medium and tight capacity config-

urations, respectively. Each individual arc capacity was drawn from the discrete uniform distri-

bution U{0.5T/C,1.5T/C} and each individual fixed cost from the uniform discrete distribution

U{0.5TFcij ,1.5Fcij}. Thus, for instances with Euclidean costs, fixed costs are proportional to (and

positively correlated with) variable costs. For instances with random costs we shuffle randomly the

generated fixed costs across the arcs, while for mixed costs we randomly select 50% of arcs and

reshuffle their fixed costs.

Correlations structure. In addition to the reshuffling operations, which influence the correlation

between fixed and variable costs, we explicitly impose a condition in which fixed and variable costs

have a strong negative correlation. To achieve this, we first check the resulting correlation between

fixed and variable costs, since random shuffling could have resulted in a strong negative correlation,

in which case we take no action. If the correlation is higher than -0.50, we rearrange the fixed costs so

that the n− th highest one is allocated to the arc with the n− th lowest variable cost. As this creates

a very strong negative correlation (close to -1), we then reshuffle a subset of fixed costs. Overall,

the correlation coefficient of instances labeled ‘NC’ (Negative Correlation) is -0.70. Note that the

difference with the cost mode, which can be Euclidian, Mixed and Random, is that imposing a cost

mode means altering both fixed and variable costs, while imposing negative correlations is done by

rearranging fixed costs only. For example, a random cost mode with a negative correlation means

that (i) the originally generated fixed and variable costs have been randomly shuffled; (ii) if their
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correlation was greater than -0.50 the fixed costs were remapped to arcs with the opposite order

and (iii) a subset of the fixed costs has been reshuffled again, to mediate the negative correlation

that has been created.

Extension to multiple periods. We construct multi-period fixed costs and demands based on their

single period variants. Specifically, for fixed costs we consider a linear form in which the average

cost per period equals the original value and the final period cost is 10% of the original fixed cost.

The corresponding formula is f t
ij = [1.9−1.8(t+1)/T ]fij . For the demands, we utilize a generalized

logistic function, which signifies a simple model of demand growth (Richards 1959), with additional

random perturbation. Specifically, we use

dkt = (1 + rkt)

(
λ+

µ−λ
(1 + e−B(t−T

2
))

1
ν

)
dk1,∀k ∈K,1< t≤ T,

where rkt is randomly drawn from U [−0.1,0.1], λ and µ represent the minimum and maximum

asymptotic demand respectively, B denotes the growth rate, which we set to 1, and ν is a locational

parameter, also set to 1, that determines near which asymptote the maximum growth occurs.

B.2. R instances

We have also created multi-period extensions of a subset of the Canad R dataset, which has been

used extensively by several authors such as Crainic et al. (2000, 2001), Crainic and Gendreau (2002),

Ghamlouche et al. (2003), Crainic et al. (2004), Costa et al. (2009). It is also used in Katayama et al.

(2009) and Yaghini et al. (2014), which, to the best of our knowledge, seem to be the best-performing

algorithms at the time of this writing.

The original R instances, which are randomly generated, are codified as rx.y, with x denoting the

number of nodes, arcs and commodities, and y denoting the fixed cost and capacity combination

that is considered. Table 8 shows this information for the instances we employed. More information

about the single-period data generators can be found in Gendron and Crainic (1994, 1995).

Extension to multiple periods. Extending the R instances over multiple periods was made using

the same file generator, with one additional design level, namely demand variability. To this end, we

constructed instances of small and large variability, with parameter r taking values in U [−0.1,0.1]

and U [−0.5,0.5], respectively. Figure 7 shows an example of a logistic growth function with no

perturbation to the left, and one with a high level of perturbation to the right.

From each original single-period instance we generate multi-period instances by varying (i) the

number of periods and (ii) the demand variability of each instance. In particular, we generate

instances with 20, 40, 60 and 80 periods and with low and high demand variability. Under a full
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x Nodes Arcs Commodities

3 10 35 50

6 10 60 50

9 10 83 50

11 20 120 100

14 20 220 100

17 20 318 100

y Cost Capacity

1 L L

2 M L

3 H L

4 L M

5 M M

6 H M

7 L T

8 M T

9 H T

Table 8 Taxonomy of the original R instances.
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(a) Logistic growth function for λ= 0.5, µ= 1.5.
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(b) Logistic growth with random perturbations.

Figure 7 Demand is modeled using logistic growth functions and varying levels of perturbations.

factorial design, 8 multi-period instances are generated from each single-period instance, accounting

for 432 instances in total. From these instances, 408 are found feasible for capacitated problems,

and all are feasible for the uncapacitated variant. Table 9 gives an overview of their characteristics.

Gurobi is able to eliminate about 1% of variables via pre-processing.

It is worth noticing that the R instances span across a wide variety of periods, nodes, arcs and

commodities, resulting in a number of variables between 35,700 and 2,569,440 and a number of

constraints between 10,720 and 185,520. Also important is that for capacitated instances the average

optimality gap, i.e., the gap between the lower and upper bound, for the entire dataset is at 19%,
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# Instances |N | |A| |K| |T | Bin Vars Vars Constraints

12 10 35 50 20 700 35,700 10,720

18 10 60 50 20 1,200 61,200 11,220

18 10 83 50 20 1,660 84,660 11,680

18 20 120 100 20 2,400 242,400 42,420

18 20 220 100 20 4,400 444,400 44,420

18 20 318 100 20 6,360 642,360 46,380

12 10 35 50 40 1,400 71,400 21,440

18 10 60 50 40 2,400 12,2400 22,440

18 10 83 50 40 3,320 169,320 23,360

18 20 120 100 40 4,800 484,800 84,840

18 20 220 100 40 8,800 888,800 88,840

18 20 318 100 40 12,720 1,284,720 92,760

12 10 35 50 60 2,100 107,100 32,160

18 10 60 50 60 3,600 183,600 33,660

18 10 83 50 60 4,980 253,980 35,040

18 20 120 100 60 7,200 727,200 127,260

18 20 220 100 60 13,200 1,333,200 133,260

18 20 318 100 60 19,080 1,927,080 139,140

12 10 35 50 80 2,800 142,800 42,880

18 10 60 50 80 4,800 244,800 44,880

18 10 83 50 80 6,640 338,640 46,720

18 20 120 100 80 9,600 969,600 169,680

18 20 220 100 80 17,600 1,777,600 177,680

18 20 318 100 80 25,440 2,569,440 185,520

Table 9 Instance characteristics. Constraint count excludes the strong inequalities. The number of

instances per category may vary, since some instances were infeasible.

between a minimum of 0% and a maximum of 100%, calculated by using the best known upper

and lower bounds obtained by Gurobi for each instance. This comes as no surprise since even
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single-period capacitated problems are hard to solve to optimality, and most authors have designed

heuristic approaches to tackle them.

Appendix C: Computational experiments with long-horizon instances

All experiments were carried out using one thread on an Intel Xeon X5675 3.07GHz processor. All

algorithms are coded in Python 2.7.10 using the Numpy library for numeric manipulations (van der

Walt et al. 2011) and Gurobi v8.0.0 to solve the mixed-integer linear programs. When it comes

to the inclusion of the strong inequalities (4) in the LP relaxation of (1)-(7), we implemented and

tested four alternative strategies: (i) not including strong inequalities; (ii) adding all of them a priori

in the model; (iii) adding them dynamically (via a callback) when they are violated, and (iv) adding

them in a lazy cut pool and resorting to Gurobi’s pool management mechanism. Strategy (iv) gave

the best results overall, when considering CPU time and optimality gap quality, and therefore we

adopt this strategy throughout our computational experiments. We set a time limit of 7,200 seconds

and 12GB of RAM for all methods. The source code of our implementations can be found at the

public Github repository https://github.com/IoannisFragkos/Multi-period-network-design.

C.1. Capacitated Instances

We conducted the same computational study described in the paper for the R instances. Specifically,

for capacitated instances, we first assess the Lagrange relaxation lower bound quality, and then the

quality of the upper bound obtained by our heuristics. Then, we proceed to further computational

experiments, demonstrating the usefulness of our approach. Unless stated otherwise, the Lagrange

relaxation algorithm performed 1,000 subgradient iterations and it was initialized using the select-

and-time heuristic.

C.1.1. Lower Bound Quality We first solved the LP relaxation of the problem with all the

strong inequalities included. We then excluded 151 out of 408 instances in which Gurobi failed to

solve the LP relaxation with the strong inequalities to optimality within the time limit of 7,200

seconds, since in those instances it did not return a lower bound. To this end, columns (3)-(6) of

Table 10 report the lower bound gap, defined as (LBGRB−LBLR)/LBGRB and CPU time obtained

by Lagrange relaxation for the instances that Gurobi could calculate an exact lower bound.

We first observe that, overall, the lower bound obtained by Lagrange relaxation (LR) deviates

less than 1% from the exact lower bound, obtained by including all inequalities (4), as the 0.85%

gap indicates. When broken down by each input size, no large variability is apparent, while the

gaps appear to be relatively insensitive to problem size. With respect to CPU time performance,
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

# Instances GRB LR<GRB LP CPU Time (s) LR>GRB Root LR<GRB Root CPU Time (s)

|N | All Solved LB Gap(%) GRB LR LB Gap(%) LB Gap(%) GRB LR

10 192 191 0.85 313 124 1.30 (1) 1.05 (191) 3,457 124

20 216 66 0.85 2,052 288 12.95 (100) 1.22 (92) 5,921 376

|A|

35 48 48 0.88 64 88 − (0) 0.94 (48) 320 88

60 72 72 0.66 326 124 − (0) 0.91 (72) 4,175 124

83 72 71 1.02 468 148 1.3 (1) 1.27 (71) 4,850 148

120 72 29 1.47 2,255 213 9.49 (26) 1.96 (46) 6,757 271

220 72 22 0.39 1,863 335 12.37 (35) 0.56 (27) 5,191 423

318 72 15 0.33 1,937 364 15.77 (39) 0.35 (19) 4,937 566

|K|

50 192 191 0.85 313 124 1.30 (1) 1.05 (191) 3,437 124

100 216 66 0.85 2,052 288 12.95 (100) 1.22 (92) 5,921 376

|T |

20 102 87 0.83 935 124 5.56 (16) 1.05 (86) 3,591 124

40 102 65 0.9 606 171 12.89 (32) 1.20 (70) 4,240 180

60 102 56 0.83 647 192 15.27 (30) 1.13 (66) 4,577 249

80 102 49 0.83 781 204 14.63 (23) 1.05 (61) 4,875 305

Total 408 257 0.85 760 166 12.83 1.10 4,258 206

Notes. Columns (4) and (8) are calculated as (LBGRB −LBLR)/LBGRB, while column (7) as (LBLR−LBGRB)/LBLR.

Columns (9) and (10) report the average CPU time for instances in (7) and (8) combined. Numbers in parentheses denote

the number of instances.

Table 10 Average Lagrange relaxation gaps and CPU Time for instances where the exact lower bound is found (columns

1-6) and where Gurobi returns a positive lower bound at the root node (columns 7-10).

LR is more than four times faster than Gurobi (GRB) overall, but the difference can be as large as

10 times.

In a second experiment, we defined the problem formulation as a MIP, added the strong inequal-

ities as lazy constraints and let Gurobi solve the root node, having all standard cuts and the strong
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inequalities at its disposal. The idea here is that Gurobi may make use of some strong inequalities,

and blend them with standard cutting planes and other techniques, such as reduced cost fixing, in

order to improve the lower bound. As a result, the resulting lower bound may be lower or higher

than the one calculated by the Lagrange relaxation. To this end, columns (7) and (8) of Table 10

show the gaps between the LR lower bound and the GRB lower bound, when the former is stronger

and when the latter is stronger, respectively, while columns (9) and (10) show the CPU time each

method utilized. We observe that the LR lower bound remains consistently close to GRB’s lower

bound when GRB has a better bound, while when LR delivers a better lower bound GRB deviates

12.83%. In addition, LR is about 20 times faster, while it can be as much as 33 times faster.

To summarize, we notice that LR delivers near-optimal lower bounds in cases where the optimal

lower bounds can be verified, and very competitive lower bounds compared to Gurobi’s default cut-

ting plane algorithm. In both cases, the CPU time consumed by Lagrange relaxation is significantly

lower, suggesting that it exhibits better scalability. Having established that our approach produces

near-optimal lower bounds, we proceed to assess the quality of the upper bounds obtained by our

heuristics.

C.1.2. Upper Bound Quality In order to assess the upper bound quality obtained by our

heuristics, we use formulation (1)-(6), but this time we let Gurobi solve it to optimality by using its

default cutting planes, also including the strong inequalities in the lazy cut pool. Gurobi was able

to solve 163 out of 408 instances to proven optimality within the time limit of 7,200 seconds, and

we used the optimal solutions of these instances to assess the upper bounds obtained heuristically

by four approaches: first, a myopic heuristic (MH) that solves each period independently, records

which arcs are opened and uses them in the next periods and iterates; second, the rolling horizon

heuristic that solves five-period problems (RH5), fixes the first period decisions and iterates; third,

our select and time heuristic (S&T); and fourth, the hybrid bound obtained by S&T and Lagrange

relaxation (S&T+LR). Table 11 reports how many instances were solved to optimality, the CPU

times and upper bound gaps of each method, obtained as (UBm−OPT )/OPT , where UBm denotes

the best upper bound found by each method m∈ {MH,RH5, S&T,S&T +LR}.
The experiments show that the myopic heuristic is dominated by S&T, since it delivers solutions of

worse quality and requires a higher amount of CPU time. On average, MH has an upper bound gap

of 27.88%, and, while it requires a rather small amount of CPU time for small instances, it requires

considerably high CPU times for instances with a large number of arcs, nodes or commodities.

The S&T heuristic achieves gaps that are five times smaller, on average, while it needs a fifth of

the time MH requires. The RH5 heuristic finds higher quality solutions than S&T, but in doing
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# Instances Gap (%) CPU Time (s)

|N | All GRB Opt MH RH5 S&T S&T+LR MH RH5 S&T S&T+LR GRB

10 192 123 27.06 2.73 4.62 0.71 22 716 14 180 1,388 (998)

20 216 40 30.4 3.23 5.5 1.32 945 4,457 150 803 4,258 (3,412)

|A|

35 48 48 25.17 2.60 3.05 1.12 4 56 5 123 320 (292)

60 72 40 23.29 2.21 6.77 0.45 20 966 13 194 1,755 (1,195)

83 72 35 33.96 3.49 4.32 0.45 50 1,334 27 241 2,433 (1,742)

120 72 15 14.48 1.50 4.15 2.82 443 4,789 93 602 5,838 (4,525)

220 72 13 40.13 3.42 5.73 0.56 1,188 4,178 195 840 3,026 (2,513)

318 72 12 39.77 5.17 6.92 0.28 1,308 4,346 174 1,012 3,617 (2,996)

|K|

50 192 123 27.06 2.73 4.62 0.71 22 716 14 180 1,388 (998)

100 216 40 30.4 3.23 5.5 1.32 945 4,457 150 803 4,258 (3,412)

|T |

20 102 51 20.26 0.91 2.23 0.38 198 1,240 30 177 1,113 (749)

40 102 42 26.32 2.49 4.44 0.51 300 1,890 54 329 2,267 (1,786)

60 102 37 32.86 4.14 6.32 1.12 267 1,775 56 409 2,522 (1,857)

80 102 33 36.07 4.86 7.71 1.76 240 1,757 57 492 2,901 (2,345)

Total 408 163 27.88 2.85 4.84 0.86 249 1,634 47 332 2,092 (1,591)

Notes. Gaps are calculated with respect to the optimal solution, as obtained by Gurobi. The time Gurobi needs to find

the best solution is shown in parenthesis.

Table 11 Average upper bound gaps and CPU Times for instances solved to optimality.

so consumes 35 times as much CPU time. Combined with Lagrange relaxation, S&T+LR achieves

gaps lower than 1% on average, but this comes at the expense of a higher CPU time compared to

S&T. However, S&T+LR is still about five times faster than RH5. In addition, S&T+LR is about

six times faster than solving the problem to optimality, and about five times faster than finding

the best solution using Gurobi. In summary, the S&T heuristic appears to strike a good balance

between solution quality and CPU time, given that its goal is to initialize the Lagrange relaxation

algorithm, while the hybrid S&T+LR scheme delivers high quality upper bounds in a time-efficient
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manner. We next turn our attention to a larger set of instances, namely those where Gurobi was

able to calculate both a lower and an upper bound, but not necessarily an optimal solution.

C.1.3. Comparison with Branch-and-Cut Although 163 instances were solved to proven

optimality, a non-trivial optimality gap, i.e., a gap less than 100%, was calculated by Gurobi for

a total of 357 instances. Therefore, 163 instances were solved to optimality and the remaining

357-163 = 194 were not solved to optimality but had a gap of less than 100%. We focus on these

357 instances to compare the efficiency of the hybrid S&T+LR algorithm with the branch-and-cut

implementation of Gurobi. Correspondingly, columns (3)-(6) of Table 12 report the obtained results,

where the gaps are calculated for each method using the corresponding upper and lower bounds.

Overall, Lagrange relaxation achieves a lower gap than branch-and-cut in our dataset, requiring

about eight times less CPU time. For instances with a small number of nodes, arcs or commodities

Gurobi returns better average gaps, at the expense, however, of larger CPU times. For larger

instances, our algorithm outperforms branch-and-cut both in terms of CPU time and optimality

gaps.

In a final experiment, we attempt to tackle instances in which branch-and-cut failed to return an

optimality gap. There are 51 instances, all of which have 20 nodes and 100 commodities. For these

instances, we tune our heuristics so that they spend more time searching for high quality feasible

solutions. Specifically, we (i) increase the time limit of the single-period NEP solved in line 4 of

Algorithm 1 from 100 seconds to 500 seconds, (ii) increase the time limit of the fixing heuristic

from 1,000 seconds to 2,000 seconds and (iii) we only employ the incremental heuristics and the

fixing heuristic once at the end of Lagrange relaxation instead of applying the fixing heuristic twice

and the local branching heuristic once. Columns (8) and (9) report the gap and CPU time of our

algorithm for these instances. As evidenced, these 51 instances are particularly hard to tackle, with

our algorithm obtaining an average gap of less than 10% and consuming more than one hour of CPU

time. Although it is beyond the scope of our current research, an exact branch-and-bound algorithm

based on Lagrange relaxation can be developed to tackle those instances and further reduce their

optimality gap. The relatively short amount of CPU time required by Lagrange relaxation, and

the fact that branching on a single arc is unlikely to change significantly the neighborhood of the

optimal Lagrange multipliers, make such an approach a promising direction for future research.

C.2. Uncapacitated Instances

We investigate the efficiency of our Benders decomposition implementations for uncapacitated net-

work design instances by utilizing the same set of multi-period instances but without considering
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Instances Integrality Gap (%) CPU Time (s) Only LR

|N | All GRB Gap<1 GRB LR GRB LR Gap (%) CPU Time (s)

10 192 192 1.05 3.28 3,477 209 − −

20 216 165 15.03 7.3 6,487 874 9.76 3,738

|A|

35 48 48 0.00 2.12 320 115 − −

60 72 72 1.76 3.55 4,175 217 − −

83 72 72 1.03 3.79 4883 265 − −

120 72 56 6.33 5.93 6,836 594 5.37 2,661

220 72 55 15.64 7.89 6,214 948 13.05 3,627

318 72 54 23.43 8.12 6,404 1,088 10.54 4,801

|K|

50 192 192 1.05 3.28 3477 209 − −

100 216 165 15.03 7.3 6,487 874 9.76 3,738

T

20 102 102 4.49 3.77 4,157 375 − −

40 102 101 10.14 5.55 5,149 560 4.74 572

60 102 85 9.01 6.15 5164 572 9.9 3,878

80 102 69 6.27 5.31 5145 594 9.83 3,762

Total 408 357 7.51 5.14 4,868 517 9.76 3,738

Table 12 Optimality gap quality of LR. Gaps are calculated as (UB−LB)/UB. The last two columns refer

to instances in which Gurobi terminated after 7,200 seconds without an upper or lower bound (i.e., 100%

gap).

their capacity. Specifically, we benchmark (i) a basic implementation (B-REG); (ii) Adding PO

cuts (B-MW1); (iii) Adding PO cuts solving only one subproblem, as in Magnanti et al. (1986)

(B-MW2) and finally the formulation of Fischetti et al. (2010) (B-F). All implementations update

the core point using Remark 3, and exploit modern callback technology to avoid solving the master

problem multiple times (Bai and Rubin 2009) and make use of the cutting planes described in

section 5.2.5. If a primal subproblem is infeasible, all methods except (B-F) generate a feasibility

cut of the form (23) by using the extreme rays of the dual subproblem (19)-(21). Similar to the
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capacitated experiments, our basic benchmark is the best Gurobi (GRB) formulation, which uses

the cut pool to handle the separation of the strong inequalities (18). Table 13 shows the average

optimality gaps and CPU times obtained by each method, respectively.

Optimality Gap (%) CPU Time (s)

|N | # GRB B-REG B-MW1 B-MW2 B-F GRB B-REG B-MW1 B-MW2 B-F

10 216 0.00 0.00 0.00 0.00 0.00 76 72 275 23 15

20 216 30.24 12.93 4.66 3.04 0.83 3,729 4,310 5,468 3,144 3,129

|A|

35 72 0.00 0.00 0.00 0.00 0.00 34 47 78 17 11

60 72 0.00 0.00 0.00 0.00 0.00 75 61 395 20 14

83 72 0.00 0.00 0.00 0.00 0.00 119 108 353 31 19

120 72 12.84 1.72 0.47 0.16 0.00 1,984 4,107 4,342 1,530 1,535

220 72 32.27 16.89 2.65 1.35 1.26 4,439 3,910 5,989 3,940 4,002

318 72 45.61 20.18 10.87 7.61 1.24 4,763 4,913 6,083 3,963 3,851

|K|

50 216 0.00 0.00 0.00 0.00 0.00 76 72 275 23 15

100 216 30.24 12.93 4.66 3.04 0.83 3,729 4,310 5,468 3,144 3,129

T

20 108 3.18 1.92 0.59 0.19 0.00 1,113 2,131 2,232 956 941

40 108 12.84 3.54 1.2 0.66 0.29 1,902 2,473 2,905 1,599 1,592

60 108 22.3 7.83 1.6 0.86 0.48 2,208 2,251 3,367 1,971 1,998

80 108 22.16 12.57 5.94 4.38 0.90 2,387 1,909 2,953 1,807 1,756

Total 432 15.12 6.47 2.33 1.52 0.42 1,902 2,191 2,866 1,583 1,572

Table 13 Optimality gaps and CPU times of Gurobi and Benders.

A careful analysis of Table 13 suggests some important observations. First, Benders reformulations

seem to be intrinsically more efficient compared to branch-and-cut (GRB). Specifically, our best

implementation (B-F), attains an average gap which is more than one order of magnitude lower, and

consumes about 60% of GRB’s CPU time. This performance difference has been observed for other
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problems as well, such as facility location (Fischetti et al. 2016), suggesting that a modern imple-

mentation of Benders decomposition can be a superior alternative to an off-the-shelf, state-of-the-art

solver. Second, with respect to the basic Benders implementation, we note that although it achieves

a far better gap than branch-and-cut, it falls behind the more sophisticated implementations by a

large margin, implying that the impact of adding PO cuts significantly enhances performance. In

addition to the poor CPU time performance of basic Benders, it is worth noting that it ran out of

memory in 36 instances. These 36 instances consumed an average of 1,787 seconds of CPU time

before running out of memory and resulted in an average gap of 55%, which is still better compared

to Gurobi’s average gap for these instances, which is 85%. Third, when assessing the impact of PO

cuts, we observe a non-trivial gap improvement between the basic Benders (B-REG) and the basic

PO Benders (B-MW1) implementations. Further, (B-MW1) ran out of memory in 12 instances

instead of 36, but these improvements come at a high CPU time cost, because two LPs are needed

in order to generate every cut, making (B-MW1) have the worst time performance across all meth-

ods. Fourth, implementation (B-MW2), which generates PO cuts using a single subproblem per

iteration dominates (B-MW1) in terms of both gap and CPU time performance, across every single

averaged configuration, while it ran out of memory for six instances. This confirms the importance

of an efficient generation of PO cuts. Fifth, (B-F) is the best-performing implementation, having

both the lowest gap and CPU time, while no instances ran out of memory. In particular, it was

able to close the gap for 54 instances that GRB failed to solve to optimality, and for 39 instances

that no algorithm solved optimally, nine of which have 2.5 million variables. The ability of this

model to incorporate the current flow cost in the cut-generating subproblem and to generate cuts

that unify feasibility and optimality leads to important improvements over the Magnanti-Wong

implementations. Finally, the breakdown per instance attribute shows that problems with 10 nodes

and 50 commodities can all be solved to optimality rather easily by all algorithms, while problems

with 20 nodes and 100 commodities are far more challenging. Problems with more arcs or periods

are also more challenging to solve, while the toughest instances tend to be the largest ones, 18 of

which have 2.5 million variables.

On further analysis, it is interesting to investigate the strength of the cuts each Benders imple-

mentation requires. To this end, Figure 8 shows the average number of binding, optimality and

feasibility cuts each algorithm generated in a subset of instances in which all algorithms could find

an optimal solution.

Figure 8 suggests some important conclusions. First, (B-F) has the smallest number of cuts

binding at an optimal solution, suggesting that it generates cuts of high quality. Second, only a
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Figure 8 Benders cuts generated by each implementation. Optimality and feasibility refer to the total

number of each type generated during branch-and-cut. Binding are the cuts binding at an

optimal solution.

limited number of feasibility cuts are added per instance. This is expected, since these instances

are generally dense, and we already add origin-destination cuts, which are necessary for feasibility.

However, this is in sharp contract with the Pazour instances, where the networks are much sparser,

and all methods generate an order of magnitude more feasibility cuts. When it comes to optimality

cuts, perhaps what is the most surprising is that (B-MW1) generates a very large number of them.

This pattern is also observed for the Pazour instances, suggesting that a textbook implementation

of Magnanti-Wong cuts may result in generating a large number of them. Nevertheless, the number

of cuts binding at an optimal solution is less than that of (B-REG) and (B-MW2).

Appendix D: Solution analysis for the Pazour instances

Hereby we report the full set of results of the solution analysis, both for capacitated and uncapaci-

tated instances.

D.1. Capacitated instances

Proportion of arcs opening through the horizon. Figure 9 reports the full results.

Proportion of variable cost through the horizon. Figure 10 reports the full results.

Proportion of commodities that change path through the horizon. Figure 11 reports the full results.

Proportion of commodities that bifurcate through the horizon. Figure 12 reports the full results.

Capacity utilization through the horizon. Figure 13 reports the full results. Note that random

instances utilize more capacity compared to instances with Euclidean distances, and that mixed

instances are in between those two categories in terms of capacity utilization.

D.2. Uncapacitated instances

For uncapacitated instances, we report results on arc opening, cost composition and flow change.

Note that in the absence of capacity constraints, flows do not bifurcate at an optimal solution.
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Proportion of arcs opening through the horizon. Figure 14 reports the full results.

Proportion of variable cost through the horizon. Figure 15 reports the full results.

Proportion of commodities that change path through the horizon. Figure 16 reports the full results.

Appendix E: Solution analysis for the R instances

Hereby we report the full set of results of the solution analysis, both for capacitated and uncapaci-

tated instances. The reporting format is similar to the one followed for the Pazour instances, but we

include additional comments when necessary. Note that the R instances have slightly different design

configuration, and we report results per nodes/commodities, arcs, periods, capacity tightness, fixed

cost ratio and demand variability. The same quantities are reported, namely proportion of arcs,

of variable cost, flow changes and bifurcations (for capacitated instances) and capacity utilizations

(for capacitated instances).

E.1. Capacitated instances

Proportion of arcs opening through the horizon. Figure 17 reports the full results. Note that for this

dataset, fewer arcs are opened during early periods (62%) compared to the Pazour instances (80%).

However, for both datasets it holds that, the looser the capacity and the lower the fixed cost, the

higher the proportion of arcs that are opened early.

Proportion of variable cost through the horizon. Figure 18 reports the full results. With respect to

cost composition, no significant variations are apparent, with the only exception being the fixed

cost magnitude, as expected.

Proportion of commodities that change path through the horizon. Figure 19 reports the full results.

Notably, for these instances 15% to 30% of commodities change their flows, compared to 3% to

12% for the Pazour instances. The patterns observed (more changes for tight capacities, high fixed

costs and in late periods) are similar but it is interesting to observe here that for instances with

high demand variability, significantly more commodities change their flows (bottom right panel of

Figure 19).

Proportion of commodities that bifurcate through the horizon. Figure 20 reports the full results. For R

instances, significantly more commodities bifurcate (13% to 29%) compared to the Pazour instances

(0.03% to 0.4%). Note that this may not be true in absolute numbers, since instances JHB50 and

USC53 have a large number of commodities (626 and 245, respectively) while the R instances have

50 or 100 commodities. Bifurcations are more common for instances with tight capacities and low

fixed costs. In the former case, flow splitting may be necessary for feasibility, while in the latter case

the impact of flow splitting is less profound compared to when fixed costs are high. In general, the
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more commodities split their flows, the more arcs per commodity are utilized, which may increase

the overall fixed cost.

Capacity utilization through the horizon. Figure 21 reports the full results. We observe that overall

capacity utilizations of the R instances (between 50% and 70%) are significantly higher than those

of the Pazour instances (between 8% and 13%). In both datasets, fixed cost magnitude and capacity

tightness have consistenly the most profound impact on capacity utilization.

E.2. Uncapacitated instances

For uncapacitated instances, we report results on arc opening, cost composition and flow change.

Proportion of arcs opening through the horizon. Figure 22 reports the full results. We observe that

the proportion of arcs opening early is about the same for both the R and Pazour instances. How-

ever, for the R instances more arcs are opened during the middle periods (17% versus 7%) and

fewer during late periods. This may be due to the R instances having longer horizons, since this

means there are more arc opening opportunities to leverage before reaching the end of the horizon.

Instances with 20 periods in both datasets exhibit the same behavior, namely a decreasing pro-

portion of opening arcs through the horizon. In addition, it is interesting to observe that low fixed

costs encourage early arc opening across both datasets.

Proportion of variable cost through the horizon. Figure 23 reports the full results. The cost compo-

sition also appears to have similar patterns in both datasets. However, it seems that for very long

horizons, no arc opening occurs in late periods. This is true for all R instances, and the Pazour

instances that extend to 20 periods, suggesting that the marginal benefit from considering very long

horizons is rather low for uncapacitated instances.

Proportion of commodities that change path through the horizon. Figure 24 reports the full results.

Compared to the Pazour instances, fewer commodities change their path through the horizon. This

could be partly attributed to the longer horizons of the R instances. We observe that high fixed costs

stimulate flow changes in late periods. This makes intuitive sense, because fixed costs become less

expensive as we approach the end of the horizon, while variable costs increase, due to the increase

of commodity demands. Thus, at some point it becomes beneficial to open new arcs, which used

to be too expensive to open in the past. The most expensive arcs are, the later in the horizon the

optimal opening points will be.
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Figure 25 JBH50 Network.

Figure 26 USC53 Network.
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