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Abstract. The Team Orienteering Problem (TOP) is a well-known NP-Hard problem in 

which one maximizes the collected profits for visiting some nodes. In this paper, we propose 

a new Hybrid Adaptive Large Neighborhood Search (HALNS) to solve this problem. Our 

algorithm combines the exploration power of ALNS with local search procedures and an 

optimization stage using a Set Packing Problem to further improve the solutions. Extensive 

computational experiments demonstrate the high performance of our HALNS when 

compared to competing algorithms in the literature on a large set of benchmark instances. 

HALNS identifies 386 over the 387 best known solutions (BKS) from the literature on a first 

dataset including small-scale instances and all the BKS for large-scale instances within very 

short computational times. Moreover, we prove 3 new optimal solutions for small-scale 

instances. 
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1 Introduction

The Team Orienteering Problem (TOP) is a routing problem with profits involving mul-

tiple vehicles and is a variant of the Vehicle Routing Problem (VRP) (Archetti et al.,

2014). The aim of the TOP is to maximize the profit accumulated by a set of vehicles

while visiting some locations. Each vehicle starts its route from a depot node and finishes

at a different depot node within a predefined time limit. The vehicle collects a profit

associated with each node visited, which is visited at most once. The problem was intro-

duced by Butt and Cavalier (1994) as the Multiple Tour Maximum Collection Problem,

also known as the vehicle routing problem with profits, and Chao et al. (1996) coined the

term TOP.

The OP is a special case of the TOP which consists of a single vehicle problem. The

OP was introduced by Golden et al. (1987) and is also known as the Selective Travelling

Salesman Problem (STSP) (Laporte and Martello, 1990), the maximum collection problem

(Butt and Cavalier, 1994) or the bank robber problem Arkin et al. (1998). Surveys

about the OP can be found in Feillet et al. (2005) and Laporte and Mart́ın (2007).

Vansteenwegen et al. (2011) elaborate a survey on the OP and cover its variants such as the

TOP and the TOP with Time Windows (TOPTW), describing formulations and solution

algorithms. Later, Gunawan et al. (2016) extended this survey covering more recent

papers including new variants of the OP such as the Arc OP (Archetti and Speranza, 2015;

Archetti et al., 2016), the Team Orienteering Arc Routing Problem (TOARP) (Archetti

et al., 2013, 2015), the OP with stochastic profits (OPSP) (Ilhan et al., 2008; Evers

et al., 2014), and the clustered OP (COP) (Angelelli et al., 2014). Other OP variants

from the literature are discussed in Vansteenwegen and Gunawan (2019a). Recently,

Vansteenwegen and Gunawan (2019b) surveyed the benchmark instances and some of

state-of-the-art exact and heuristic algorithms for both OP and TOP.

In this paper we propose a Hybrid Adaptive Large Neighborhood Search (HALNS) al-

gorithm to solve the TOP. Our proposed algorithm combines the exploration power of
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ALNS and different local search procedures to speed up the solution process. We also

design a new sub-route optimization procedure to improve solution obtained by ALNS.

Promising ones discovered during the search process are then passed to a Set Packing

Problem (SPP) in an attempt to further improve the HALNS solution. Our heuristic

is hybridized by addressing the sub-route optimization problem and the SPP which are

solved via the branch-and-cut procedure of a commercial solver. HALNS is evaluated

on two sets of instances: a set of small-scale instances proposed by Chao et al. (1996)

and a set of large-scale instances proposed by Dang et al. (2013b). The obtained results

are compared to different algorithms from the literature. Our results show that HALNS

outperforms all 21 existing state-of-the-art heuristics in terms of solution quality and/or

computational time for the small-scale instances. To the best of our knowledge, only two

methods from the literature have been tested on the large instances. Here, our algorithm

finds all 82 Best Known Solutions (BKS) in shorter computing time for the majority of

the instances, and we report a new improved solution value for one large-scale instance.

In addition to that, we prove 3 new optimal solutions for small-scale instances.

The remainder of this paper is organized as follows. Section 2 presents a literature review

of the TOP covering different exact and heuristic solution approaches. In Section 3

we propose a MIP mathematical formulation for the TOP. In Section 4, we describe

the HALNS and its different features. Section 5 presents the results obtained by our

HALNS and compare them to those reported by other methods in the literature. Section

6 concludes the paper and offers insights for future research.

2 Literature review

The TOP is one of the most studied problems in the context of routing with profits

(Archetti et al., 2014). Several exact and heuristic solution approaches have been proposed

to solve the single vehicle version of the problem, the OP, since it has been proved to be

NP-hard (Laporte and Martello, 1990).
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Boussier et al. (2007) were the first to propose an exact method to solve the TOP. The

authors proposed a branch-and-price approach based on an SPP formulation with special

branching rules tailored to the OP. Computation results show that the proposed approach

is able to solve to optimality 270 out of the 387 small-scale benchmark instances already

proposed by Chao et al. (1996). The method was also adapted to solve the TOPTW.

Poggi de Aragão et al. (2010) proposed three different formulations for the TOP. The

authors developed a robust branch-cut-and-price algorithm to solve the problem and used

two different cuts in their algorithm (Min Cut inequalities and Triangle Clique cuts)

inspired from the work of Pessoa et al. (2009).

Dang et al. (2013a) introduced a branch-and-cut algorithm to solve a three-index math-

ematical formulation with a polynomial number of binary variables for the TOP. The

method is based on a set of valid inequalities and dominance criteria. The authors were

able to prove optimality for 29 previously open instances. Later, Keshtkaran et al. (2016)

developed a branch-and-price approach, based on that proposed by Boussier et al. (2007).

They also developed the first branch-cut-and-price explicitly designed for the TOP. The

proposed algorithm was able to identify 17 new optimal solutions for the benchmark

instances in addition to instances already solved by the previous exact methods.

El-Hajj et al. (2016) investigate the use of a linear formulation with a polynomial number

of variables to solve the TOP. The authors proposed an exact algorithm based on a

cutting-plane approach and added several types of cuts to strengthen the classical linear

formulation. Adding cuts dynamically during the solution process was confirmed to be

effective when tested on benchmark instances and yielded 12 new optimal solutions.

Bianchessi et al. (2018) presented a new two-index formulation with a polynomial number

of variables and constraints for the TOP. The authors reinforced the proposed formulation

with a set of connectivity constraints and solved the problem by branch-and-cut. The

developed solution approach was compared to all the previous exact algorithms. Their

branch-and-cut solved to optimality 24 previously open instances.

Recently, Pessoa et al. (2019) proposed a branch-cut-and-price solver for a generic model
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which encompasses some VRPs variants, including the TOP. The authors reported that

their algorithm incorporates the key elements present in the recent VRP solution ap-

proaches. Although the conducted computational experiments show that the developed

solver outperforms the approach of Bianchessi et al. (2018) when tested on a 60 instances

of the TOP in terms of computational time, they did not report solution values.

Although exact solution approaches allowed to solve 338 out of the 387 benchmark in-

stances, they remain very time- and resource-consuming. In order to solve the TOP faster

with less computational resources, several heuristics have been proposed, as reviewed next.

Chao et al. (1996) were the first to propose a heuristic approach to solve the TOP. The

authors developed a fast and effective heuristic based on the notion of record-to-record

improvement and compared its performance against a modified heuristic developed by

Tsiligirides (1984), which was initially designed to solve the OP.

Later, Tang and Miller-Hooks (2005) proposed a tabu search heuristic embedded in an

adaptive memory procedure (Rochat and Taillard, 1995) that alternates between small

and large neighborhood stages during a solution improvement phase. Computational

results show that this method outperformed the results at that time.

Archetti et al. (2007) proposed two variants of a generalized tabu search algorithm as

well as a slow and a fast Variable Neighborhood Search (VNS) algorithm. The first tabu

search procedure only considers feasible solutions, while the second accepts infeasible ones.

Computation results showed that these heuristics outperform the algorithm proposed by

Tang and Miller-Hooks (2005) in terms of solution quality, with the VNS being the most

efficient one.

Ke et al. (2008) presented an Ant Colony Optimization (ACO) approach developed for the

TOP. Four algorithms were proposed to construct candidate solutions in their framework.

These are the sequential, deterministic-concurrent, random-concurrent, and simultaneous

methods. By comparing the four variants of ACO the authors showed that the sequential

one obtained the best solution quality within less than one minute for each instance.
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Vansteenwegen et al. (2009b) proposed a Skewed VNS (SkVNS) using a combination of

heuristics to efficiently solve the TOP. The obtained results are comparable to the results

of the best known heuristics. Later, Vansteenwegen et al. (2009a) described an algorithm

combining different local search procedures to solve the problem. Guided Local Search

(GLS) is used to improve two local search heuristics. Although the GLS results are almost

the same as the best known ones, it significantly reduces the computational time.

Souffriau et al. (2010) designed two variants of a Greedy Randomized Adaptive Search

Procedure (GRASP) with Path Relinking for the TOP. The authors tested a fast variant of

the method (FPR) and a slow variant (SPR) which yields much better results. According

to numerical results, the solution quality of SPR is comparable to that of state-of-the-art

heuristics.

Bouly et al. (2010) proposed a simple hybrid genetic algorithm using new algorithms

dedicated to the specific scope of the TOP. Their Memetic Algorithm (MA) exploits

an optimal split procedure for chromosome evaluation and local search techniques for

mutation. The reported results showed that this evolutionary algorithm is competitive

when compared to state-of-the-art heuristics; however, it may require up to 357.05 seconds

to solve some instances, which is much more than some of the competing algorithms.

Dang et al. (2011) presented a Particle Swarm Optimization-based MA (PSOMA) for

the TOP. Computational results showed that it outperformed the previous MA in terms

of computational time and solution quality with a reported average gap of 0.016% to

the BKS. Lin (2013) designed a multi-start simulated annealing (MSA) algorithm which

combines a simulated annealing (SA) based metaheuristic with a multi-start hill-climbing

strategy to solve the TOP. Numerical results showed that MSA obtained five new best

solutions. Starting with this paper, many papers only test 57 instances out of the 387

available ones as all methods find the same (proven optimal) solution.

Kim et al. (2013) proposed an augmented large neighborhood search (AuLNS) method

with three improvement algorithms: local search improvement, shift and insertion, and

replacement. The proposed solution approach was able to identify 386 of the best known
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solutions for the 387 benchmark instances proposed by Chao et al. (1996), outperforming

all previous algorithms.

Dang et al. (2013b) proposed a PSO-inspired Algorithm (PSOiA) based on their previous

study (Dang et al., 2011). The authors stated that the main contribution lies on a faster

evaluation process than the one proposed in Bouly et al. (2010). Reported computation

results showed that this heuristic outperforms other methods. Furthermore, Dang et al.

(2013b) proposed a new package of large-scale instances to test the performance of their

PSOiA. Numerical results for this set of large instances showed that the PSOiA requires

up to 96,187.70 seconds to solve these instances with an average computational time of

11,031.04 seconds.

Ferreira et al. (2014) proposed a genetic algorithm for which computational results ob-

tained BKS in more than half of tested instances; however, one should note that tests

were only conducted on 20 of the 387 available benchmark instances, and they did not

include the large benchmark set.

Ke et al. (2016) proposed a new algorithm called Pareto Mimic Algorithm (PMA) for the

TOP. The developed algorithm follows the general framework of the population-based

meta-heuristic (Talbi, 2009). Numerical results shows that PMA outperforms all the

previous state-of-the-art methods when tested on the packages of small- and large-scale

benchmark instances. Moreover, the authors extended the PMA to solve the Capacitated

Vehicle Routing Problem (CVRP).

Recently, Tsakirakis et al. (2019) proposed a Similarity Hybrid Harmony Search (SHHS)

algorithm as a solution approach for the TOP. Two versions of the method have been

developed and tested. The first variant is static with predefined values of the parameters,

and the second one contains a dynamic adjustment of the parameters. Computational

results showed the performance of the second variant outperforms the first one. However,

the second version of the proposed solution approach reached the BKS for only 84% of

the instances.
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Overall, among the 387 small-scale benchmark instances available in seven different sets,

21 solution approaches have provided results for some of them. The best results come

mainly from the works of Dang et al. (2013b); Kim et al. (2013); Ke et al. (2016). Op-

timality is known for 338 of these instances, as reported by Bianchessi et al. (2018). On

the large-scale benchmark instances set, BKS are provided by Ke et al. (2016).

3 Problem definition and mathematical formulation

We consider a directed graph G = (V,A) where V = {1, . . . , N} = V ∗∪{1, N} represents

the set of nodes and nodes 1 and N represent respectively the start and end depot. The

set of arcs is defined as A = {(i, j) : i 6= j, i ∈ V ∗, j ∈ V ∗} ∪ {(1, j) : j ∈ V ∗} ∪ {(i, N) :

i ∈ V ∗}. To each arc (i, j) ∈ A is associated a travel time tij. Each node i ∈ V ∗ has

an associated profit pi. L denotes the set of vehicles. All vehicles are identical and must

respect a maximum route duration Dmax. All vehicles must be used and each one starts

at the start depot and ends its route at the end depot.

We propose to model the TOP with three sets of variables: (1) binary variables xlij

determining if arc (i, j) ∈ A is traversed by vehicle l ∈ L, (2) continuous variables Bi for

each node i ∈ V and each vehicle l ∈ L indicating the order of visit of node i, and (3)

binary variables yli for each node i ∈ V ∗ and each vehicle l ∈ L indicating whether the

node i is visited by vehicle l. The mathematical model for the TOP can be formulated as

follows:

MTOP : max
∑
l∈L

∑
i∈V ∗

piy
l
i (1)
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s.t.
∑
l∈L

∑
j∈V

(i,j)∈A

xlij ≤ 1 ∀i ∈ V ∗ (2)

∑
l∈L

∑
j∈V
j 6=1

xl1j =
∑
l∈L

∑
i∈V
i6=N

xliN = |L| (3)

∑
j∈V

(i,j)∈A

xlji =
∑
j∈V

(i,j)∈A

xlij = yli ∀l ∈ L, i ∈ V ∗ (4)

∑
(i,j)∈A

tijx
l
ij ≤ Dmax ∀l ∈ L (5)

∑
l∈L

∑
(i,j)∈A

tijx
l
ij ≤ |L|Dmax (6)

Bi +
∑
l∈L

xlij − |V |

(
1−

∑
l∈L

xlij

)
≤ Bj ∀(i, j) ∈ A (7)

B1 = 0 (8)

BN =
∑
l∈L

∑
i∈V ∗

yli + 1 (9)

Bi ≤ BN − 1 ∀i ∈ V ∗ (10)

xlij ∈ {0, 1} ∀(i, j) ∈ A, l ∈ L (11)

Bi ≥ 0 ∀i ∈ V (12)

yli ∈ {0, 1} ∀i ∈ V ∗, l ∈ L. (13)

The objective function (1) maximizes the total collected profit. Constraints (2) allow

nodes to be served at most once. Constraint (3) implies that each route starts at node

1 and ends at node N and that each vehicle must be used. Flow conservation and links

between variables xlij and yli are ensured via constraints (4). Constraints (5) impose

maximum tour length. Constraint (6) is proposed by Bianchessi et al. (2018) and is

imposed on the global duration of routes to strengthen the formulation. Constraints (7)

eliminate sub-tours and impose an order for visiting nodes. Constraint (8) implies that

each route starts from the depot. Constraint (9) imply that order of the end depot is
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equal to the number of visited notes. Constraints (10) impose an upper bound on the

order of visit of each node and strengthen the formulation. Finally, constraints (11)–(13)

define the domain of the decision variables.

4 Solution approach

We propose a HALNS to solve the TOP described in Section 3. The ALNS is an exten-

sion of the large neighborhood search (LNS) developed by Shaw (1998) for VRPs. It is

proved to be efficient when used to solve several variants of the VRP. Ropke and Pisinger

(2006) and Pisinger and Ropke (2007) used this heuristic to tackle several variants of

the VRP namely the pickup and delivery with time windows (PDPTW), the VRP with

time windows, the CVRP, the multi-depot VRP, the open VRP, and the site-dependent

VRP. Furthermore, several other routing problems exploited the ALNS such as the multi-

PDPTW (Naccache et al., 2018), the two-echelon VRP (Hemmelmayr et al., 2012), the

pollution routing problem (Demir et al., 2012), the VRP with drones (Sacramento et al.,

2019) and the multi-depot open VRP (Lahyani et al., 2019). Within the ALNS frame-

work, the heuristic starts with an initial solution and tries to improve its value by applying

removal and insertion operators. Applying these operators can be seen as a move that

defines a very large neighborhood search (Li et al., 2016).

Our hybrid ALNS is inspired by many of these works, but we define some modifications

and new features to deal with the TOP. The first feature we propose is the use of what

we call a node selection strategy to select at each iteration which nodes to try to insert

given that all nodes yield a profit when inserted in a route. The principle of the node

selection strategy is to select nodes to be inserted independently of the selected insertion

operator. In fact, the TOP has the particularity to be a VRP variant in which no node

is mandatory to be visited (except the depots). The second feature we propose is the use

of an efficient local search procedure in order to optimize each improved solution. Third,

we propose to hybridize the ALNS by addressing a sub-route optimization problem where
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the objective is to find a more profitable sequence of nodes to replace a less profitable

one. Finally, we hybridize again the ALNS by solving a SPP where the objective is to

find the combination of the best routes obtained during the search process. The sub-route

optimization problem and the SPP are solved exactly by a commercial solver.

The general structure of our HALNS is sketched in Algorithm 1 and its main components

are detailed next. Our algorithm starts by eliminating nodes that cannot be visited in

order to reduce the size of the problem and thus the computational time. This simple

and efficient elimination procedure is proposed by El-Hajj et al. (2016): on the basis

of the travel time matrix (tij), it eliminates nodes that cannot be serviced. A node is

considered inaccessible if by serving it the route time limit Dmax is exceeded: node i ∈ V ∗

is eliminated from the problem if and only if t1i + tiN > Dmax.

After reducing the size of the problem, an initial solution is constructed using the nearest

neighbor algorithm (Keller et al., 1985). Lines 3 and 4 of Algorithm 1 initialize the best

solution sbest, the admissible solution sadm, the SA current temperature T with an initial

value T0 and the iterations’ counter. While the stopping criteria is not met, the algorithm

iterates the following procedure.

First, the number of nodes β to be removed is determined randomly taking into account

the number of inserted nodes within the current solution s. Node selection strategy γ,

removal (R) and insertion (I) operators are then selected based on their past performances,

modeled by scores. At the end of each run segment of size Nseg, these scores are updated.

The adaptive selection of the insertion strategy and the removal/insertion operators is

described in Section 4.1.

At each iteration, a current admissible solution sadm is modified into a current solution s

as follows. The selected removal operator R removes β nodes from s. Then, the selected

insertion operator I tries to insert, following the node selection strategy γ the non-inserted

nodes into s in order to improve its profit. Node selection strategies and removal/insertion

operators are described in Section 4.2. The modified solution is accepted if f(s) ≥ f(sadm)

or it satisfies a SA criterion (line 15): it is accepted following a probability e
f(s)−f(sadm)

T
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Algorithm 1 Structure of the HALNS heuristic for the TOP

1: Apply a node elimination procedure
2: Construct initial solution s using the nearest neighbor algorithm
3: sbest ← s, sadm ← s, T ← T0, iteration← 0, iterationbest ← 0
4: Initialize the scores of the node selection strategy and the removal and insertion operators
5: while (iteration < iterationmax and iterationbest < iterationbestmax) do
6: j ← 0
7: while (j < Nseg) do
8: s← sadm
9: Generate β

10: Select a node selection strategy: γ
11: Select a removal and an insertion operators: R and I
12: Remove β nodes from s using R
13: Insert nodes in s using I following γ
14: Generate a random number δ ∈ ]0, 1[

15: if
(
f(s) ≥ f(sadm) or δ ≤ e

f(s)−f(sadm)

T

)
then

16: if (f(s) > f(sadm)) then
17: Apply local search procedures on s
18: end if
19: if (f(s) > f(sbest)) then
20: Generate and solve a sub-route optimization problem
21: sbest ← s, iterationbest ← 0
22: else
23: iterationbest ← iterationbest + 1
24: end if
25: sadm ← s
26: end if
27: if (T ≤ Tmin) then
28: T ← T0
29: Generate and solve a SPP
30: if (f(s) > f(sbest)) then
31: iterationbest ← 0
32: end if
33: sbest ← s, sadm ← s
34: end if
35: T ← T × c, j ← j + 1
36: end while
37: Update scores of the ALNS operators and insertion strategies
38: iteration← iteration+ 1
39: end while
40: Generate and solve a SPP
41: Update and return sbest
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where T > 0 denotes the current temperature. T is decreased at the end of each iteration

by a predefined cooling factor c ∈ ]0, . . . , 1[. If a solution s improves the last admissible

solution sadm, a local search procedure is performed to further improve it. Our local

search algorithms are described in Section 4.3. If the current solution s improves the

best solution sbest, a sub-route optimization problem is generated and solved using the

branch-and-cut procedure of CPLEX. The sub-route optimization procedure is described

in Section 4.4. The search process is stopped when the maximum number of iterations

(iterationmax) is reached or the solution has not been improved for a given number of

iterations (iterationbestmax). Finally, a SPP including all the routes generated during the

search is solved using a branch-and-cut procedure at the end of the algorithm and each

time T ≤ Tmin, where Tmin denotes the SA minimum temperature. sadm and sbest are

updated each time the SPP is solved. The SPP model is described in Section 4.5.

4.1 Adaptive selection of node selection strategies and removal/insertion

operators

At the start of each iteration of the ALNS, a node selection strategy and removal and

insertion operators are selected on the basis of their past performance. Each node selection

strategy and removal/insertion operator k has a score πk,q in each run segment q (a finite

number of iterations) and set to zero at the first iteration of the algorithm. Following that,

πk,q is updated at the the end of a run segment q as πk,q+1 = λ
πk,q
nk

+ (1− λ) πk,q where

nk is the number of times the node selection strategy or operator k has been selected

during the run segment q. Observe that πk,q indicates the observed score of k for the

run segment q and λ ∈ ]0, 1[ denotes a predefined reaction factor to adjust node selection

strategies and operators weights. The observed score πk,q is initialized at the start of each

run segment and is incremented at each iteration by a predefined parameter ρ which may

take three different values:
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ρ =


ρ1 if the new solution value is a new best,

ρ2 if the new solution value is better than the last admissible one,

ρ3 if the new solution value does not improve the last admissible solution,

The node selection strategies and removal/insertion operators are selected on the basis

of a roulette wheel selection mechanism which is based on the strategy/operator score.

The probability of selecting a strategy/operator k in run segment q is
πk,q∑m

k′=0 πk′,q
where m

denotes the number of considered strategies/operators within the algorithm.

4.2 Node selection strategies and removal/insertion operators

The ALNS is an efficient heuristic often applied to several VRPs in which all nodes must

be visited. Contrarily to classical VRPs, the TOP has the particularity that nodes are

served only if they are profitable. Hence, it is necessary to make modifications to the

removal and insertion operators proposed in the literature and to design new ones.

4.2.1 Node selection strategies

Since the TOP has the particularity of not taking into account traveling costs, a node

inserted in any route yields the same profit. Four strategies are proposed to determine

which nodes to insert first.

1. Dynamic profit per travel time incremental selection: this strategy is newly designed.

Given a solution s, we compute for each non-inserted node i the ratio between its

profit pi and the total network travel time denoted D(s+i) if i is inserted in the

best position in s that minimizes the total travel time. Formally, node i∗ to be first

inserted is such that:
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i∗ := arg maxi∈V ∗
pi

D(s+i)
.

2. Highest profit selection: this strategy prioritizes the selection of nodes with highest

profits to be inserted first. In order to prevent cycling, a roulette wheel mechanism

is used so that the more profitable a node is the probability of selecting it by the

roulette wheel algorithm is also larger.

3. Random selection: this strategy randomly selects the node to insert and is used to

diversify the search.

4. Last removed first inserted selection: this strategy starts by selecting nodes to insert

following the “Last removed, first inserted” (LRFI) rule. The aim of this strategy is

to prioritize the insertion of nodes that have been removed the last and give them

a chance to get inserted into better positions than their positions.

4.2.2 Removal operators

1. Random removal : this operator randomly selects nodes to be removed from the

current solution. This operator is used in order to diversify the search.

2. Lowest profit removal : this operator is used to remove β nodes with the smallest

profits. In order to prevent cycling, a roulette wheel is used to select nodes to be

removed. This procedure gives high probabilities to remove nodes having the lowest

profits.

3. Largest saving in traveling time: this newly designed operator is inspired by the

Largest saving in traveling cost operator proposed by Hammami et al. (2019). For

each node i visited by the current solution s, the algorithm computes the total trav-

eling time if i is removed from s, denoted by D(s−i). Then, the operator removes the

node which maximizes D(s)−D(s−i). A roulette wheel then gives larger probability

to remove nodes inducing larger savings in total travel time.
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4. Route removal : the aim of using this operator is to diversify the search. It randomly

selects a vehicle and removes all nodes served by it.

5. Sequence removal : the idea of this operator is inspired from the related removal op-

erator described by Pisinger and Ropke (2007). It removes a sequence of connected

nodes from a randomly selected route. The motivation for removing a sequence

of nodes served by the same route is to create a large slot to serve a non-inserted

sequence of nodes which may be more profitable.

4.2.3 Insertion operators

1. First available position insertion: this newly designed operator inserts nodes in the

first feasible position in a route, one node at a time. A position is feasible if the route

resulting from inserting the node in this position respects the maximum duration

constraint. In order to prevent cycling, our algorithm shuffles the order of routes.

2. Last available position insertion: this operator is similar to the previous one and

inserts nodes in the last feasible position in a route, one node at a time.

3. Random available position insertion: this operator starts by checking for each node

all the feasible positions in all routes then inserts the node in a feasible position

randomly chosen.

4. Best overall position: this operator inserts each non-inserted node within a feasible

position that minimizes the total travel time.

5. Best position insertion: This operator is newly designed for the TOP. It inserts each

node within the feasible route position minimizing the sum of travel time between

the node and its predecessor and between the node and its successor within the

route.
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4.3 Local search procedures

In our solution approach, we sequentially apply four local search heuristics for each new

improved admissible solution. First, we start by applying a complete 2-opt procedure

to each route from the current solution s to reduce the corresponding total traveling

time (Croes, 1958). The 2-opt procedure enables to create more slots within routes so

more nodes could be inserted in the following steps. Second, we randomly select non-

inserted nodes and try to insert them within the current solution using our “Best position

insertion” operator. A third local search heuristic randomly selects two inserted nodes i

and j and one non-inserted node k, removes the first two and tries to insert k then i and

j in order to improve the solution value. Finally, we randomly select two inserted nodes

served by different routes and swap them in order to reduce the total travel time. If the

solution is not improved after these moves, it gets rejected and the algorithm returns the

best solution identified so far.

4.4 Sub-route optimization procedure

We designed a new sub-route optimization procedure to improve the value of each newly

obtained best solution. The principle of this procedure consists in finding the best node

sequence which can be inserted between two inserted nodes and replace the sequence

already inserted. If such sequence exists, can be inserted and improves the profit, it

replaces the old inserted one.

Given a solution s, we define V+ as the set of inserted nodes and V− as set of non-inserted

nodes (V+ ∪ V− = V ∗). Let seq denote a sequence of αl nodes served by vehicle l within

s. We define Dseq as the required time to serve the nodes forming seq. Let o and d

denote respectively the first and last node of the sequence. Here, the algorithm starts

by removing the nodes forming seq. Afterwards, a sub-route optimization problem is

introduced and formulated as follows.

We model the problem with two sets of variables: binary variables χij determining if arc

17

A Hybrid Adaptive Large Neighborhood Search Heuristic for the Team Orienteering Problem

CIRRELT-2019-51



(i, j) ∈ V− × V− is served and continuous variables ζi to indicate the order of visit of

node i ∈ V−. The mathematical model for the sub-route optimization problem can be

formulated as follows:

max
∑
i∈V−

∑
j∈V−

piχij (14)

s.t.
∑

j∈V−:j 6=i

χij ≤ 1 ∀i ∈ V− \ {d} (15)

∑
j∈V−:j 6=o

χoj =
∑

i∈V−:i6=d

χid = 1 (16)

∑
j∈V−:j 6=i

χji =
∑

j∈V−:j 6=i

χij i ∈ V− \ {o, d} (17)

∑
i∈V−\{d}

∑
j∈V−\{o}

tijχij ≤ Dseq (18)

ζi + χij (1 + |V−|)− |V−| ≤ ζj ∀i ∈ V−, j ∈ V− (19)

ζo = 0 (20)

χij ∈ {0, 1} ∀i ∈ V−, j ∈ V− (21)

ζi ≥ 0 ∀i ∈ V−. (22)

The objective function (14) is to maximize the total collected profit. Constraints (15)

imply that each node is visited at most once. Constraint (16) implies that the route

starts from node o and ends at node d. Constraints (17) ensure the connectivity of the

route. Constraint (18) ensures the route duration. Constraints (19) eliminate sub-tours.

Constraint (20) implies that route must start from node o. Finally, constraints (21)–(22)

define the domain of decision variables. One should note that seq is used as an initial

solution when solving the sub-route optimization problem.
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4.5 Set packing problem

The SPP considers a set of routes generated during the search procedure and optimally

selects |L| routes that maximize the total profit.

Let R denote the set of routes generated during the ALNS iterations. Each route r ∈ R

has an associated profit ϕr which is equal to the sum of nodes’ profits served by this route.

Variables zr are defined for each route r ∈ R such that zr equal to 1 if route r is chosen,

and 0 otherwise. We also define a parameter for each route r ∈ R and each node i ∈ V ∗

such that ari = 1 if route r serves node i, and 0 otherwise. The SPP is formulated as

follows:

max
∑
r∈R

ϕrzr (23)

s.t.
∑
r∈R

arizr ≤ 1 ∀i ∈ V ∗ (24)

∑
r∈R

zr = |L| (25)

zr ∈ {0, 1} ∀r ∈ R. (26)

The objective function (23) maximizes the global profit. Constraints (24) imply that each

node i ∈ V ∗ can be served at most once. Constraint (25) imposes that the number of

selected routes is equal to |L|. Finally, constraints (26) define the variables.

5 Computational results

The HALNS is implemented in Java. All experiments were conducted on a 64-bit version

of Windows 10, with an Intel i7 processor 7700-HQ, 3.80 GHz with 8 threads and 16 GB

of RAM. CPLEX 12.9 was used as MIP solver to solve the SPP and the sub-route opti-

mization problem. Twenty independent runs are performed for each instance and the best
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obtained solutions are reported. In order to evaluate our solution approach, we compare it

against the existing heuristics in the literature. We use two sets of instances. The first one

includes 387 small-scale instances (Chao et al., 1996). The second set includes 333 large in-

stances proposed by Dang et al. (2013b). All instances and detailed computational results

are available from https://www.leandro-coelho.com/team-orienteering-problem/.

5.1 Instances description

The small-scale instances were reported in Chao et al. (1996). They are divided into seven

sets depending on the number of nodes |V | (from 21 to 102). For each set of instances,

the parameters are the number of vehicles |L| and the time limit Dmax. A total of 387

instances are reported in Chao et al. (1996). As in other papers dealing with the TOP,

instances for which all the state-of-the-art heuristics obtain the same results are excluded

from the comparison. Hence, we compare the results obtained for 157 relevant benchmark

instances over the 387 instances of Chao et al. (1996) corresponding to instances from sets

4, 5, 6 and 7. For these instances, we compare our HALNS to 21 state-of-the-art heuristics

described in Table 1.

The results obtained by Chao et al. (1996) are not considered in this comparison as they

use a different rounding precision to obtain the travel times and are outperformed by the

other solution approaches (Bianchessi et al., 2018).

In their work, Dang et al. (2013b) estimated that it will be more difficult to improve

the BKS for the small-scale instances of Chao et al. (1996). Hence, they introduced a

new set of instances with a larger number of nodes. Dang et al. (2013b) generated 333

instances on the basis of the ones of the OP previously generated by Fischetti et al. (1998)

with the transformation of Chao et al. (1996). Two classes of large-scale instances were

generated by Dang et al. (2013b). The first class is derived from instances of the CVRP

(Christofides et al., 1979; Reinelt, 1991) in which customers demands were transformed

into profits and different values of Dmax were considered. The second class is derived from
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Table 1: State-of-the-art heuristics for the TOP

Name Description Reference
TMH Tabu search Tang and Miller-Hooks (2005)
GTP Tabu search with penalty strategy Archetti et al. (2007)
GTF Tabu search with feasible strategy Archetti et al. (2007)
FVNS Fast Variable Neighborhood Search Archetti et al. (2007)
SVNS Slow Variable Neighborhood Search Archetti et al. (2007)
SACO Sequential Ant Colony Optimization Ke et al. (2008)
DACO Deterministic variant of Ant Colony Optimization Ke et al. (2008)
RACO Random variant of Ant Colony Optimization Ke et al. (2008)
SiACO Simultaneous variant of Ant Colony Optimization Ke et al. (2008)
SkVNS Skewed Variable Neighborhood Search Vansteenwegen et al. (2009b)
GLS Guided Local Search Vansteenwegen et al. (2009a)
FPR Fast variant of Path Relinking Souffriau et al. (2010)
SPR Slow variant of Path Relinking Souffriau et al. (2010)
MA Memetic Algorithm Bouly et al. (2010)
PSOMA Particle Swarm Optimization-based MA Dang et al. (2011)
AuLNS Augmented Large Neighborhood Search Kim et al. (2013)
PSOiA PSO-inspired Algorithm Dang et al. (2013b)
MSA Multi-start Simulated Annealing Lin (2013)
PMA Pareto Mimic Algorithm Ke et al. (2016)
SHHS Similarity Hybrid Harmony Search Tsakirakis et al. (2019)
SHHS2 Second version of SHHS Tsakirakis et al. (2019)

instances of the Traveling Salesman Problem (Reinelt, 1991) in which customers’ profits

were generated on the basis of three different methods. We refer the reader to Dang et al.

(2013b) for more details. The methods of Dang et al. (2013b); Ke et al. (2016) are used

to compare to our solutions.

5.2 Parameter settings for HALNS

In order to set the HALNS parameters, we have run several preliminary tests. We noticed

that a high value for the number of nodes to be removed from the solution (β) and a

high number of iterations exceeding 100,000 have a negative impact on the computational

time. Furthermore, the algorithm tends to quickly obtain very good solutions when the

SA initial temperature T0 is set to a value lower than 100. As for the stopping criterion

for ALNS, a maximum of 5,000 iterations without any improvement is considered. After
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an experimental phase, the retained parameters are presented in Table 2. It is important

to mention that |V l
+| denotes the number of nodes served by vehicle l.

Table 2: Parameter tuning of our HALNS heuristic

Parameter Description Value
iterationmax Maximum number of iterations per run segment 1,000/5,000 for small/large-scale instances
iterationbestmax Maximum number of iterations without improvement 5,000
Nseg Number of run segments 100
β Number of nodes to remove β ∈ [1, 0.25|V+|]
T0 SA initial temperature 95
Tmin SA minimum temperature 0.0001
c Cooling rate for the SA 0.9999
ρ1 Operator score increment case 1 20
ρ2 Operator score increment case 2 5
ρ3 Operator score increment case 3 1
λ Reaction factor to adjust node selection strategies and operators weights 0.85
αl Random size of the sequence to remove [2, . . . , 15%|V l

+|]

To solve the SPP, we set the time limit to 60 seconds and provided the solver with the

best solution (sbest) returned by the ALNS as an initial solution. As for the sub-route

optimization problem, we set the time limit to 60 seconds.

5.3 Results for the small-scale benchmark instances

In Tables 3–6, we report the values of the solutions obtained for the small-scale instances

by the different state-of-the-art algorithms as well as those of our proposed algorithm

under the column HALNS. The best obtained solution for each instance is reported under

the column “Best”.

As depicted in Table 3, HALNS is able to obtain the BKS for 53 instances over 54. Three

heuristics were able to obtain the same results: AuLNS, PSOiA and PMA proposed

respectively by Kim et al. (2013), Dang et al. (2013b) and Ke et al. (2016). Although 4

methods reported the same results, our HALNS beats them with an average computational

time of 50.24 seconds versus 77.30, 218.58 and 109.30 seconds respectively required by

AuLNS, PSOiA and PMA. Observe from Table 3 that the BKS for instance p4.4.n was

obtained by TMH proposed by Tang and Miller-Hooks (2005). The authors report a BKS

of 977 whereas our HALNS and four other methods report a solution value of 976.

For set 5, our HALNS identified the BKS for all 45 instances. This was also the case for the
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Table 3: Results for set 4 of the small-scale benchmark

Ins BKS TMH GTP GTF FVNS SVNS SACO DACO RACO SiACO SkVNS GLS FPR SPR MA PSOMA AuLNS PSOiA MSA PMA SHHS SHHS2 HALNS
p4.2.a 206 202 206 206 206 206 206 206 206 206 202 206 206 206 206 206 206 206 206 206 206 206 206
p4.2.b 341 341 341 341 341 341 341 341 341 341 341 303 341 341 341 341 341 341 341 341 341 341 341
p4.2.c 452 438 452 452 452 452 452 452 452 452 452 447 452 452 452 452 452 452 452 452 452 452 452
p4.2.d 531 517 530 531 531 531 531 531 530 531 528 526 531 531 531 531 531 531 531 531 528 531 531
p4.2.e 618 593 618 613 618 618 618 600 600 613 593 602 612 618 618 618 618 618 618 618 611 613 618
p4.2.f 687 666 687 676 684 687 687 672 672 672 675 651 687 687 687 687 687 687 687 687 673 684 687
p4.2.g 757 749 751 756 750 753 757 756 756 756 750 734 757 757 757 757 757 757 757 757 753 757 757
p4.2.h 835 827 795 820 827 835 827 819 819 820 819 797 835 835 835 835 835 835 835 835 816 827 835
p4.2.i 918 915 882 899 916 918 918 900 918 918 916 826 918 918 918 918 918 918 918 918 896 912 918
p4.2.j 965 914 946 962 962 962 965 962 962 962 962 939 962 965 965 965 965 965 962 965 936 957 965
p4.2.k 1022 963 1013 1013 1019 1022 1022 1016 1016 1016 1007 994 1013 1022 1022 1022 1022 1022 1022 1022 983 1010 1022
p4.2.l 1074 1022 1061 1058 1073 1074 1071 1070 1071 1069 1051 1051 1064 1074 1071 1071 1074 1074 1073 1074 1048 1074 1074
p4.2.m 1132 1089 1106 1098 1132 1132 1130 1115 1119 1113 1051 1051 1130 1132 1132 1132 1132 1132 1132 1132 1078 1125 1132
p4.2.n 1174 1150 1169 1171 1159 1171 1168 1149 1158 1169 1124 1117 1161 1173 1174 1174 1174 1174 1174 1174 1152 1168 1174
p4.2.o 1218 1175 1180 1192 1216 1218 1215 1209 1198 1210 1195 1191 1206 1218 1218 1218 1218 1218 1217 1218 1171 1216 1218
p4.2.p 1242 1208 1226 1239 1239 1241 1242 1229 1233 1239 1237 1214 1240 1242 1242 1241 1242 1242 1241 1242 1211 1242 1242
p4.2.q 1268 1255 1252 1255 1265 1263 1263 1253 1252 1260 1239 1248 1257 1263 1267 1267 1268 1268 1259 1268 1245 1259 1268
p4.2.r 1292 1277 1281 1283 1283 1286 1288 1278 1278 1279 1279 1267 1278 1286 1292 1292 1292 1292 1290 1292 1269 1282 1292
p4.2.s 1304 1294 1296 1299 1300 1301 1304 1304 1303 1304 1295 1286 1293 1296 1304 1304 1304 1304 1300 1304 1284 1294 1304
p4.2.t 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306 1305 1294 1299 1306 1306 1306 1306 1306 1306 1306 1302 1306 1306

p4.3.c 193 192 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193
p4.3.d 335 333 335 335 335 335 335 333 333 335 331 335 333 335 335 335 335 335 335 335 335 335 335
p4.3.e 468 465 468 468 468 468 468 468 468 468 460 444 468 468 468 468 468 468 468 468 468 468 468
p4.3.f 579 579 579 579 579 579 579 579 579 579 556 564 579 579 579 579 579 579 579 579 579 579 579
p4.3.g 653 646 651 652 653 653 653 652 653 652 651 644 653 653 653 653 653 653 653 653 651 653 653
p4.3.h 729 709 722 727 724 729 720 713 713 713 718 706 725 729 728 729 729 729 729 729 715 729 729
p4.3.i 809 785 806 806 806 807 796 793 793 786 807 806 797 809 809 809 809 809 809 809 796 809 809
p4.3.j 861 860 858 858 861 861 861 857 855 858 854 826 858 861 861 861 861 861 860 861 854 858 861
p4.3.k 919 906 919 918 919 919 918 913 910 910 902 864 918 918 919 919 919 919 919 919 908 919 919
p4.3.l 979 951 976 973 975 978 979 958 976 966 969 960 968 979 979 979 979 979 978 979 954 973 979
p4.3.m 1063 1005 1034 1049 1056 1063 1053 1039 1028 1046 1047 1030 1043 1063 1063 1063 1063 1063 1063 1063 1028 1063 1063
p4.3.n 1121 1119 1108 1115 1111 1121 1121 1109 1112 1103 1106 1113 1108 1120 1121 1121 1121 1121 1121 1121 1093 1116 1121
p4.3.o 1172 1151 1156 1157 1172 1170 1170 1163 1167 1165 1136 1121 1165 1170 1172 1172 1172 1172 1170 1172 1149 1168 1172
p4.3.p 1222 1218 1207 1221 1208 1222 1221 1202 1207 1207 1200 1190 1209 1220 1222 1222 1222 1222 1222 1222 1213 1222 1222
p4.3.q 1253 1249 1237 1241 1250 1251 1252 1239 1239 1238 1236 1210 1246 1253 1253 1253 1253 1253 1251 1253 1226 1251 1253
p4.3.r 1273 1265 1224 1269 1272 1272 1267 1263 1263 1263 1250 1239 1257 1272 1273 1273 1273 1273 1265 1273 1247 1269 1273
p4.3.s 1295 1282 1250 1294 1289 1293 1293 1291 1289 1291 1280 1279 1276 1287 1295 1295 1295 1295 1293 1295 1265 1285 1295
p4.3.t 1305 1288 1303 1304 1298 1304 1305 1304 1303 1304 1299 1290 1294 1299 1305 1304 1305 1305 1299 1305 1278 1302 1305

p4.4.e 183 182 183 183 183 183 183 183 183 183 183 183 183 183 183 183 183 183 183 183 183 183 183
p4.4.f 324 315 324 324 324 324 324 324 324 324 319 312 324 324 324 324 324 324 324 324 324 324 324
p4.4.g 461 453 461 461 461 461 461 461 461 460 461 461 461 461 461 461 461 461 461 461 461 461 461
p4.4.h 571 554 571 571 571 571 571 556 556 556 553 565 571 571 571 571 571 571 571 571 556 571 571
p4.4.i 657 627 655 657 657 657 657 653 652 653 657 657 653 657 657 657 657 657 657 657 653 657 657
p4.4.j 732 732 731 731 732 732 732 731 711 731 723 691 732 732 732 732 732 732 732 732 731 732 732
p4.4.k 821 819 821 816 821 821 821 820 818 818 821 815 820 821 821 821 821 821 821 821 819 820 821
p4.4.l 880 875 878 878 879 880 880 877 875 875 876 852 875 879 880 880 880 880 880 880 859 878 880
p4.4.m 919 910 916 918 916 919 918 911 906 911 903 910 914 919 916 919 919 919 919 919 896 916 919
p4.4.n 977 977 972 976 968 968 961 956 956 956 948 942 953 969 969 969 976 976 975 976 948 971 976
p4.4.o 1061 1014 1057 1057 1051 1061 1036 1030 1021 1029 1030 937 1033 1057 1061 1061 1061 1061 1061 1061 1035 1061 1061
p4.4.p 1124 1056 1120 1120 1120 1120 1111 1108 1088 1110 1120 1091 1098 1122 1124 1124 1124 1124 1124 1124 1112 1120 1124
p4.4.q 1161 1124 1148 1157 1160 1161 1145 1150 1137 1148 1149 1106 1139 1160 1161 1161 1161 1161 1161 1161 1129 1158 1161
p4.4.r 1216 1165 1203 1211 1207 1203 1200 1195 1195 1194 1193 1148 1196 1213 1216 1216 1216 1216 1216 1216 1170 1216 1216
p4.4.s 1260 1243 1245 1256 1259 1255 1249 1256 1249 1252 1213 1242 1231 1250 1260 1259 1260 1260 1256 1260 1223 1252 1260
p4.4.t 1285 1255 1279 1285 1282 1279 1281 1281 1283 1281 1281 1250 1256 1280 1285 1285 1285 1285 1285 1285 1264 1281 1285

solution approaches proposed in Dang et al. (2013b); Ke et al. (2016); Kim et al. (2013)

who obtained these solutions respectively within an average computational time of 49.50,

109.30 and 77.30 seconds vs only 21.10 seconds for our HALNS. Observe however that

the MSA proposed by Lin (2013) obtained 44 BKS in a very short average computational

time of 6.60 seconds.

For Set 6, 12 solutions approaches in addition to our HALNS were able to obtain all 15

BKS. In terms of computational time, the fastest approach was MSA developed by Lin

(2013) with an average computational time of 1.40 seconds which is much smaller than

the average time required by all the other solution approaches as reported in Table 9.

For set 7, in addition to AuLNS, PSOiA and PMA proposed respectively by Kim et al.

(2013), Dang et al. (2013b) and Ke et al. (2016), our HALNS identified all 43 BKS. In
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Table 4: Results for set 5 of the small-scale benchmark

Ins BKS TMH GTP GTF FVNS SVNS SACO DACO RACO SiACO SkVNS GLS FPR SPR MA PSOMA AuLNS PSOiA MSA PMA SHHS SHHS2 HALNS
p5.2.h 410 410 410 410 410 410 410 410 410 410 395 385 410 410 410 410 410 410 410 410 410 410 410
p5.2.j 580 560 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580
p5.2.k 670 670 670 670 670 670 670 670 670 670 670 665 670 670 670 670 670 670 670 670 670 670 670
p5.2.l 800 770 800 800 800 800 800 800 800 800 770 760 800 800 800 800 800 800 800 800 800 800 800
p5.2.m 860 860 860 860 860 860 860 860 860 860 860 830 860 860 860 860 860 860 860 860 860 860 860
p5.2.n 925 920 925 925 925 925 925 920 920 925 920 920 925 925 925 925 925 925 925 925 925 925 925
p5.2.o 1020 975 1020 1020 1020 1020 1020 1020 1010 1010 1020 1010 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020
p5.2.p 1150 1090 1130 1150 1150 1150 1150 1150 1150 1150 1150 1030 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150
p5.2.q 1195 1185 1195 1195 1195 1195 1195 1195 1195 1195 1195 1145 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195
p5.2.r 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1225 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260
p5.2.s 1340 1310 1330 1340 1340 1340 1340 1330 1330 1330 1325 1325 1340 1340 1330 1340 1340 1340 1340 1340 1325 1340 1340
p5.2.t 1400 1380 1380 1400 1400 1400 1400 1400 1400 1400 1380 1360 1400 1400 1400 1400 1400 1400 1400 1400 1380 1400 1400
p5.2.u 1460 1445 1440 1460 1460 1460 1460 1460 1460 1460 1450 1460 1460 1460 1460 1460 1460 1460 1460 1460 1460 1460 1460
p5.2.v 1505 1500 1490 1505 1500 1505 1505 1495 1500 1495 1500 1500 1505 1505 1505 1505 1505 1505 1505 1505 1505 1505 1505
p5.2.w 1565 1560 1555 1565 1560 1560 1560 1555 1555 1555 1560 1560 1560 1560 1560 1560 1565 1565 1565 1565 1560 1560 1565
p5.2.x 1610 1610 1595 1610 1590 1610 1610 1610 1610 1610 1600 1610 1610 1610 1610 1610 1610 1610 1610 1610 1610 1610 1610
p5.2.y 1645 1630 1635 1635 1635 1635 1645 1645 1645 1645 1630 1630 1645 1645 1645 1645 1645 1645 1645 1645 1645 1645 1645
p5.2.z 1680 1665 1670 1680 1670 1670 1680 1680 1680 1680 1665 1680 1670 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680

p5.3.k 495 495 495 495 495 495 495 495 495 495 495 470 495 495 495 495 495 495 495 495 495 495 495
p5.3.l 595 575 595 595 595 595 595 595 595 595 595 545 595 595 595 595 595 595 595 595 595 595 595
p5.3.n 755 755 755 755 755 755 755 755 755 755 755 720 755 755 755 755 755 755 755 755 755 755 755
p5.3.o 870 835 870 870 870 870 870 870 870 870 870 870 870 870 870 870 870 870 870 870 870 870 870
p5.3.q 1070 1065 1070 1070 1070 1070 1070 1065 1065 1065 1065 1045 1070 1070 1070 1070 1070 1070 1070 1070 1070 1070 1070
p5.3.r 1125 1115 1110 1125 1125 1125 1125 1120 1125 1125 1125 1090 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125
p5.3.s 1190 1175 1185 1190 1190 1190 1190 1190 1190 1185 1185 1145 1185 1190 1190 1190 1190 1190 1190 1190 1190 1190 1190
p5.3.t 1260 1240 1250 1260 1260 1260 1260 1250 1255 1260 1260 1240 1260 1260 1260 1260 1260 1260 1260 1345 1260 1260 1260
p5.3.u 1345 1330 1340 1345 1345 1345 1345 1330 1335 1335 1345 1305 1335 1345 1345 1345 1345 1345 1345 1345 1345 1345 1345
p5.3.v 1425 1410 1420 1425 1425 1425 1425 1425 1425 1420 1425 1425 1420 1425 1425 1425 1425 1425 1425 1425 1425 1425 1425
p5.3.w 1485 1465 1485 1485 1485 1485 1485 1465 1465 1465 1475 1460 1465 1485 1485 1485 1485 1485 1485 1485 1470 1480 1485
p5.3.x 1555 1530 1555 1555 1555 1555 1540 1535 1540 1540 1535 1520 1540 1550 1555 1555 1555 1555 1555 1555 1545 1550 1555
p5.3.y 1595 1580 1590 1595 1595 1595 1590 1590 1590 1590 1580 1590 1590 1590 1590 1595 1595 1595 1590 1595 1590 1595 1595
p5.3.z 1635 1635 1625 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1620 1635 1635

p5.4.m 555 555 555 555 555 555 555 555 555 555 550 550 555 555 555 555 555 555 555 555 555 555 555
p5.4.o 690 680 690 690 690 690 690 690 690 690 690 680 690 690 690 690 690 690 690 690 690 690 690
p5.4.p 765 760 765 765 765 765 765 760 760 760 760 760 760 760 760 765 765 765 765 765 765 765 765
p5.4.q 860 860 860 860 860 860 860 860 860 860 835 830 860 860 860 860 860 860 860 860 860 860 860
p5.4.r 960 960 960 960 960 960 960 960 960 960 960 890 960 960 960 960 960 960 960 960 960 960 960
p5.4.s 1030 1000 1025 1030 1030 1030 1030 1030 1030 1030 1020 1020 1005 1025 1030 1030 1030 1030 1030 1030 1025 1030 1030
p5.4.t 1160 1100 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160
p5.4.u 1300 1275 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300
p5.4.v 1320 1310 1320 1320 1320 1320 1320 1320 1320 1320 1320 1245 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320
p5.4.w 1390 1380 1375 1390 1390 1390 1390 1380 1390 1380 1380 1330 1380 1390 1380 1385 1390 1390 1390 1390 1380 1385 1390
p5.4.x 1450 1410 1440 1450 1450 1450 1450 1450 1450 1450 1440 1410 1430 1450 1450 1450 1450 1450 1450 1450 1435 1445 1450
p5.4.y 1520 1520 1520 1520 1520 1520 1520 1510 1510 1500 1500 1485 1520 1520 1520 1520 1520 1520 1520 1520 1485 1520 1520
p5.4.z 1620 1575 1620 1620 1620 1620 1620 1620 1575 1580 1600 1590 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620

Table 5: Results for set 6 of the small-scale benchmark

Ins BKS TMH GTP GTF FVNS SVNS SACO DACO RACO SiACO SkVNS GLS FPR SPR MA PSOMA AuLNS PSOiA MSA PMA SHHS SHHS2 HALNS
p6.2.d 192 192 192 192 192 192 192 192 192 192 192 180 192 192 192 192 192 192 192 192 192 192 192
p6.2.j 948 936 948 948 948 948 948 948 948 948 948 948 942 948 948 948 948 948 948 948 948 948 948
p6.2.l 1116 1116 1098 1110 1116 1116 1116 1110 1116 1116 1116 1104 1110 1116 1116 1116 1116 1116 1116 1116 1116 1116 1116
p6.2.m 1188 1188 1164 1188 1188 1188 1188 1188 1188 1188 1188 1164 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188
p6.2.n 1260 1260 1242 1260 1260 1260 1260 1260 1254 1260 1248 1254 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260

p6.3.g 282 282 282 282 282 282 282 282 282 282 276 264 282 282 282 282 282 282 282 282 282 282 282
p6.3.h 444 444 444 444 444 444 444 444 438 438 444 444 444 444 444 444 444 444 444 444 444 444 444
p6.3.i 642 612 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642
p6.3.k 894 876 894 894 894 894 894 888 888 894 894 882 894 894 894 894 894 894 894 894 894 894 894
p6.3.l 1002 990 1002 1002 1002 1002 1002 1002 1002 1002 996 990 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002
p6.3.m 1080 1080 1080 1080 1080 1080 1080 1074 1080 1080 1080 1068 1080 1080 1080 1080 1080 1080 1080 1080 1080 1080 1080
p6.3.n 1170 1152 1170 1170 1170 1170 1170 1164 1164 1164 1152 1140 1164 1170 1170 1170 1170 1170 1170 1170 1170 1170 1170

p6.4.j 366 366 366 366 366 366 366 366 366 366 366 360 366 366 366 366 366 366 366 366 366 366 366
p6.4.k 528 522 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528
p6.4.l 696 696 696 696 696 696 696 696 696 696 678 678 696 696 696 696 696 696 696 696 696 696 696

terms of computational time, only 46.90 seconds in average were required by our algorithm

to obtain the BKS values for instances from Set 7 versus 66.80, 97.47 and 54.60 seconds

required respectively by AuLNS, PSOiA and PMA to obtain 43 best solutions values over

the 43 which proves that our heuristic is very efficient and fast.

Tables 7–9 summarize the results and the computational time for each studied solution

approach. In Table 7, we provide the number of times each solution approach reached

the BKS for each set of the benchmark instances. Table 8 provides the average gap over
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Table 6: Results for set 7 of the small-scale benchmark

Ins BKS TMH GTP GTF FVNS SVNS SACO DACO RACO SiACO SkVNS GLS FPR SPR MA PSOMA AuLNS PSOiA MSA PMA SHHS SHHS2 HALNS
p7.2.d 190 190 190 190 190 190 190 190 190 190 182 190 190 190 190 190 190 190 190 190 190 190 190
p7.2.e 290 290 290 290 289 290 290 290 290 290 289 279 290 290 290 290 290 290 290 290 290 290 290
p7.2.f 387 382 387 387 387 387 387 387 387 387 387 340 387 387 387 387 387 387 387 387 384 387 387
p7.2.g 459 459 456 459 459 459 459 459 459 459 457 440 459 459 459 459 459 459 459 459 453 459 459
p7.2.h 521 521 520 520 521 521 521 521 521 521 521 517 521 521 521 521 521 521 521 521 520 521 521
p7.2.i 580 578 579 579 575 579 580 579 579 579 579 568 578 580 580 580 580 580 579 580 572 579 580
p7.2.j 646 638 643 644 643 644 646 646 646 646 632 633 646 646 646 646 646 646 646 646 637 641 646
p7.2.k 705 702 702 705 704 705 705 704 704 704 700 691 702 705 705 705 705 705 705 705 678 700 705
p7.2.l 767 767 758 767 759 767 767 767 767 767 758 748 759 767 767 767 767 767 767 767 742 761 767
p7.2.m 827 817 827 824 824 827 827 827 827 827 827 798 816 827 827 827 827 827 827 827 794 827 827
p7.2.n 888 864 884 888 883 888 888 878 878 878 866 861 888 888 888 888 888 888 888 888 859 878 888
p7.2.o 945 914 933 945 945 945 945 945 940 941 928 897 932 945 945 945 945 945 945 945 925 941 945
p7.2.p 1002 987 1000 1002 1002 1002 1002 991 993 993 955 954 993 1002 1002 1002 1002 1002 1002 1002 972 997 1002
p7.2.q 1044 1017 1041 1043 1038 1044 1043 1042 1043 1043 1029 1031 1043 1044 1044 1044 1044 1044 1043 1044 1005 1043 1044
p7.2.r 1094 1067 1091 1088 1094 1094 1094 1093 1088 1094 1069 1075 1076 1094 1094 1094 1094 1094 1093 1094 1052 1080 1094
p7.2.s 1136 1116 1123 1128 1136 1136 1136 1136 1134 1131 1118 1102 1125 1136 1136 1136 1136 1136 1135 1136 1094 1125 1136
p7.2.t 1179 1165 1172 1174 1168 1179 1179 1179 1179 1179 1154 1142 1168 1175 1179 1179 1179 1179 1172 1179 1128 1160 1179

p7.3.h 25 416 25 25 25 25 25 25 25 25 25 418 25 25 25 25 25 25 25 25 25 25 25
p7.3.i 487 481 487 487 487 487 487 487 486 487 480 480 485 487 487 487 487 487 487 487 487 487 487
p7.3.j 564 563 564 564 562 564 564 564 564 564 543 539 560 564 564 564 564 564 564 564 558 564 564
p7.3.k 633 632 633 633 632 633 633 632 633 633 633 586 633 633 633 633 633 633 633 633 632 633 633
p7.3.l 684 681 683 679 681 681 684 683 684 684 681 668 684 684 684 683 684 684 684 684 681 684 684
p7.3.m 762 756 749 755 745 762 762 762 762 762 743 735 762 762 762 762 762 762 762 762 762 762 762
p7.3.n 820 789 810 811 814 820 820 819 819 820 804 789 813 820 820 820 820 820 820 820 809 819 820
p7.3.o 874 874 873 865 871 874 874 874 874 874 841 833 859 874 874 874 874 874 874 874 856 874 874
p7.3.p 929 922 917 923 926 927 929 925 926 925 918 912 925 927 929 927 929 929 927 929 915 926 929
p7.3.q 987 966 976 987 978 987 987 987 987 987 966 945 970 987 987 987 987 987 987 987 972 987 987
p7.3.r 1026 1011 1018 1022 1024 1022 1026 1024 1021 1022 1009 1015 1017 1021 1026 1026 1026 1026 1026 1026 1003 1019 1026
p7.3.s 1081 1061 1081 1081 1079 1079 1081 1081 1081 1077 1070 1054 1076 1081 1081 1081 1081 1081 1081 1081 1056 1076 1081
p7.3.t 1120 1098 1114 1116 1112 1115 1118 1117 1103 1117 1109 1080 1111 1118 1120 1120 1120 1120 1119 1120 1092 1114 1120

p7.4.g 217 217 217 217 217 217 217 217 217 217 217 209 217 217 217 217 217 217 217 217 217 217 217
p7.4.h 285 285 285 285 285 285 285 285 285 285 283 285 285 285 285 285 285 285 285 285 285 285 285
p7.4.i 366 359 366 366 366 366 366 366 366 366 364 359 366 366 366 366 366 366 366 366 366 366 366
p7.4.k 520 503 520 520 518 520 520 520 520 520 518 511 518 518 520 520 520 520 520 520 518 518 520
p7.4.l 590 576 590 588 588 590 590 590 590 590 575 573 581 590 590 590 590 590 590 590 576 590 590
p7.4.m 646 643 644 646 646 646 646 644 646 646 639 638 646 646 646 646 646 646 646 646 646 646 646
p7.4.n 730 726 723 721 715 730 730 725 725 726 723 698 723 730 726 726 730 730 730 730 726 726 730
p7.4.o 781 776 772 778 770 781 781 778 781 778 778 761 780 780 781 781 781 781 781 781 776 779 781
p7.4.p 846 832 841 839 846 846 846 846 838 842 841 803 842 846 846 846 846 846 846 846 834 846 846
p7.4.q 909 905 902 898 899 906 909 909 909 909 896 899 902 907 909 909 909 909 909 909 899 909 909
p7.4.r 970 966 970 969 970 970 970 970 970 970 964 937 961 970 970 970 970 970 970 970 952 970 970
p7.4.s 1022 1019 1021 1020 1021 1022 1022 1019 1021 1019 1019 1005 1022 1022 1022 1022 1022 1022 1022 1022 1016 1022 1022
p7.4.t 1077 1067 1071 1071 1077 1077 1077 1072 1077 1077 1073 1020 1066 1077 1077 1077 1077 1077 1077 1077 1063 1077 1077

Table 7: Number of best solutions found for each data set of the small-scale benchmark in-
stances

Set # TMH GTP GTF FVNS SVNS SACO DACO RACO SiACO SkVNS GLS FPR SPR MA PSOMA AuLNS PSOiA MSA PMA SHHS SHHS2 HALNS
4 54 5 16 15 22 35 30 12 12 13 7 6 17 35 49 48 53 53 38 53 10 26 53
5 45 12 26 44 40 42 42 31 31 30 21 9 33 40 40 43 45 45 44 45 34 40 45
6 15 9 12 14 15 15 15 11 11 13 10 4 12 15 15 15 15 15 15 15 15 15 15
7 43 8 15 20 17 35 41 26 27 28 6 2 16 36 42 40 43 43 36 43 9 24 43
All 157 34 69 93 94 127 128 80 81 84 44 21 78 126 146 146 156 156 133 156 68 105 156

these instances to the BKS computed as follows:

Gap(%) =
157∑
ins=1

(
BKSins−Sins

Sins

157

)
(27)

where BKSins is BKS value for instance ins and Sins denotes the solution value obtained

by the corresponding solution approach. Table 9 reports for each heuristic the average

computational time in seconds for each set.

Table 8: Average gap to the BKS for each data set of the small-scale benchmark instances

Set # TMH GTP GTF FVNS SVNS SACO DACO RACO SiACO SkVNS GLS FPR SPR MA PSOMA AuLNS PSOiA MSA PMA SHHS SHHS2 HALNS
4 54 2.07130 0.89585 0.49432 0.28792 0.12035 0.31620 0.91932 1.00903 0.78782 1.51434 3.13737 0.73788 0.11630 0.03055 0.02632 0.00190 0.00190 0.07532 0.00190 1.67613 0.26990 0.00190
5 45 1.42264 0.34805 0.01359 0.06938 0.03402 0.03576 0.23285 0.26022 0.28773 0.62163 2.51528 0.23033 0.04674 0.06154 0.01514 0.00000 0.00000 0.00699 0.00000 0.23166 0.03751 0.00000
6 15 0.81086 0.34337 0.03604 0.00000 0.00000 0.00000 0.15269 0.20263 0.12569 0.53035 1.85077 0.11286 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 43 1.18224 0.43780 0.30066 0.40590 0.05804 0.00639 0.14690 0.18932 0.15100 1.34151 3.22574 0.54639 0.04557 0.01281 0.02124 0.00000 0.00000 0.03141 0.00000 1.56445 0.27579 0.00000
Avg 157 1.52145 0.56060 0.25971 0.23009 0.06704 0.12076 0.43776 0.49285 0.40681 1.11712 2.86034 0.48024 0.06588 0.03166 0.01921 0.00065 0.00065 0.03651 0.00065 1.07138 0.17912 0.00065
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Table 9: Average CPU time (s) for each data set of the small-scale benchmark instances

Set TMH GTP GTF FVNS SVNS SACO DACO RACO SiACO SkVNS GLS FPR SPR MA PSOMA AuLNS PSOiA MSA PMA SHHS SHHS2 HALNS
4 796.70 105.29 282.92 22.52 457.89 370.90 317.90 307.40 320.40 7.40 11.40 8.60 367.40 182.36 83.89 77.30 218.58 81.00 109.30 107.30 109.70 50.24
5 71.30 69.45 26.55 34.17 158.93 173.60 150.60 143.30 151.30 1.50 3.50 2.90 119.90 35.33 14.72 22.10 49.50 6.60 22.90 30.40 28.10 21.10
6 45.70 66.29 20.19 8.74 147.88 161.10 140.80 135.20 141.70 1.90 4.30 2.10 89.60 39.07 7.59 12.30 47.08 1.40 36.40 14.50 12.20 13.41
7 432.60 158.97 256.76 10.34 309.87 303.50 245.90 233.10 246.50 4.30 12.10 6.30 272.80 112.75 49.09 66.80 97.47 32.20 54.60 82.50 82.50 46.90
Avg 336.58 100.00 146.61 18.94 268.64 252.28 213.80 204.75 214.98 3.78 7.83 4.98 212.43 92.38 38.82 44.63 103.16 30.30 55.80 58.68 58.13 32.91

5.3.1 New optimal solutions

Bianchessi et al. (2018) reported in their work that the number of open instances is equal

to 49 however according to the previous published results by El-Hajj et al. (2016) the

number of open instances is 45. Hence, in order to reduce this number and provide the

literature with new optimal solutions, we addressed these open instances by solving them

via the branch-and-cut procedure of CPLEX applied to model MTOP with a time limit of

12 hours. In Table 10 we report the instances solved to optimality for the first time. We

present in Table 10 for each instance its name, number of nodes, number of vehicles, the

maximum time limit, the optimal solution and the computational time in seconds.

Table 10: New optimal solutions for the small-scale benchmark instances

Instance |V | |L| Dmax Optimal CPU (s)
p4.3.o 100 3 63.30 1172 36801.16
p4.3.p 100 3 66.70 1222 8865.11
p4.3.q 100 3 70.00 1253 16925.14

5.4 Results for the large-scale benchmark instances

Considering the fact that only Dang et al. (2013b) and Ke et al. (2016) tested their

solution approaches, respectively the PSOiA and the PMA, on the large-scale instances,

we compare in the following their best results and the average computational time with

our HALNS. According to Dang et al. (2013b), the average relative percentage error

(ARPE) between the best value (Best) and the mean solution value obtained by the

PSOiA, defined by Best−mean
mean

(%), is zero in 251 instances. Hence, only the results for 82

instances are reported. In Table 11, we report the solutions values reported by Dang et al.

(2013b) and Ke et al. (2016) as well as those of our HALNS. Table 11 also reports for

26

A Hybrid Adaptive Large Neighborhood Search Heuristic for the Team Orienteering Problem

CIRRELT-2019-51



each instance the BKS and the best CPU in seconds required to identify the BKS.

The results reported in Table 11 show that the PSOiA requires more computational time

in average to reach its best solution value when compared to PMA and HALNS. The

average computational time of the PSOiA is 11,031.04 seconds which is very high against

1,004.15 and 843.66 seconds required respectively by the PMA et HALNS. This proves

that both PMA and HALNS converge quickly when compared to PSOiA. Moreover, the

best computational times reported for each instance show that the PMA and HALNS

outperforms PSOiA in terms of computational time for all instances. Observe that for

the 81 instances where our heuristic and PMA reach the BKS, HALNS was faster than

PMA for 55 instances. In terms of solution quality, the number of BKS reported by the

PSOiA, the PMA and our heuristic, over the 82 instances is respectively equal to 71,

81 and 82. Observe that our solution approach reports a new solution for the instance

rd400 gen2 m3 with a value of 12,646 which proves that our heuristic is very competitive

and deals well even with large-scale instances.

6 Conclusion

In this paper, we have introduced an efficient Hybrid Adaptive Large Neighborhood Search

(HALNS) solution approach for the Team Orienteering Problem (TOP), an intensively

studied variant of the vehicle routing problem with profits (VRPP). Computational results

on two sets of standard benchmark instances for the TOP showed that our heuristic out-

performs all state-of-the-art algorithms in terms of solution quality and/or computational

time. The HALNS was able to provide the best known solution (BKS) for 386 small-scale

instances over 387 and 82 BKS for the 82 large-scale instances with a new BKS. We also

proved 3 new optimal solutions. A future research avenue would be to adapt our solution

approach to solve more VRPP variants, for example those dealing with time windows or

arc routing variants.
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Corberán, Á. (Eds.), Arc Routing: Problems, Methods, and Applications. Society for

Industrial and Applied Mathematics, Philadelphia, PA. volume 20, pp. 281–299.
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Table 11: Results for the large-scale benchmark instances

Instance
Best Known PSOiA PMA HALNS
Sol CPU (s) Sol CPU (s) Sol CPU (s) Sol CPU (s)

cmt101c m3 1300 42.00 1300 111.11 1300 42.00 1300 99.03
cmt151b m3 1385 169.9 1385 754.01 1385 169.90 1385 200.20
cmt151c m2 1964 291.76 1963 1799.64 1964 368.50 1964 291.76
cmt151c m3 1916 410.36 1916 1376.24 1916 441.50 1916 410.36
cmt151c m4 1880 571.69 1880 881.11 1880 826.50 1880 571.69
cmt200b m2 2096 201.41 2096 4180.99 2096 669.40 2096 201.41
cmt200b m3 2019 406.66 2019 2711.66 2019 1351.70 2019 406.66
cmt200b m4 1894 360.34 1894 1515.19 1894 974.50 1894 360.34
cmt200c m2 2818 409.36 2818 7320.26 2818 1048.30 2818 409.36
cmt200c m3 2766 300.01 2766 4217.29 2766 1200.00 2766 300.01
cmt200c m4 2712 403.99 2712 3004.10 2712 1411.40 2712 403.99
eil101b m3 916 123.58 916 134.39 916 160.60 916 123.58
eil101c m2 1305 250.50 1305 452.79 1305 250.50 1305 292.36
eil101c m3 1251 95.00 1251 227.61 1251 95.00 1251 118.54
gil262a m2 4078 501.96 4078 5907.29 4078 2100.00 4078 501.96
gil262a m4 3175 139.36 3175 271.83 3175 222.60 3175 139.36
gil262b m2 8081 605.74 8081 7473.18 8081 1267.80 8081 605.74
gil262b m3 7585 498.05 7585 7276.80 7585 1027.20 7585 498.05
gil262b m4 6781 342.81 6781 4878.64 6781 912.60 6781 342.81
gil262c m2 11030 786.29 11030 27500.87 11030 1309.00 11030 786.29
gil262c m3 10757 723.19 10757 14553.76 10757 1375.60 10757 723.19
gil262c m4 10281 561.41 10281 8472.01 10281 1997.00 10281 561.41
bier127 gen1 m2 106 159.95 106 1153.87 106 673.50 106 159.95
bier127 gen1 m3 103 237.41 103 591.89 103 470.10 103 237.41
bier127 gen2 m2 5464 398.80 5464 1132.57 5464 398.80 5464 402.71
bier127 gen2 m3 5393 291.27 5393 648.08 5393 359.30 5393 291.27
bier127 gen2 m4 5123 383.80 5122 657.57 5123 383.80 5123 401.36
bier127 gen3 m2 2885 296.70 2885 1301.27 2885 296.70 2885 563.10
bier127 gen3 m3 2706 290.84 2706 711.74 2706 509.60 2706 290.84
bier127 gen3 m4 2402 227.70 2402 680.79 2402 227.70 2402 232.88
gil262 gen1 m3 101 482.60 101 1769.31 101 482.60 101 754.03
gil262 gen1 m4 78 123.50 78 155.76 78 123.50 78 199.11
gil262 gen2 m2 7498 403.12 7498 7356.65 7498 742.10 7498 403.12
gil262 gen2 m3 5615 391.54 5615 3304.55 5615 1163.80 5615 391.54
gil262 gen3 m2 7183 284.20 7183 9129.30 7183 284.20 7183 566.07
gil262 gen3 m4 2507 249.61 2507 276.42 2507 308.80 2507 249.61
gr229 gen1 m4 223 46.60 223 11922.02 223 46.60 223 496.20
gr229 gen2 m3 11566 711.56 11566 14197.21 11566 1665.30 11566 711.56
gr229 gen2 m4 11355 401.36 11355 18799.50 11355 2272.00 11355 401.36
gr229 gen3 m3 8056 998.67 8056 14090.06 8056 1065.30 8056 998.67
gr229 gen3 m4 7651 781.50 7621 11399.71 7651 781.50 7651 881.57
kroA150 gen2 m2 4335 431.10 4335 892.98 4335 495.90 4335 431.10
kroA150 gen3 m3 2726 174.03 2726 538.01 2726 597.20 2726 174.03
kroA200 gen1 m4 81 116.22 81 560.29 81 503.40 81 116.22
kroB200 gen1 m2 111 317.53 111 2344.53 111 663.90 111 317.53
kroB200 gen2 m2 6185 426.70 6185 3467.26 6185 426.70 6185 487.02
kroB200 gen2 m4 4944 396.09 4944 640.66 4944 582.40 4944 396.09
kroB200 gen3 m2 4765 500.11 4765 6306.62 4765 513.90 4765 500.11
kroB200 gen3 m3 3028 570.02 3028 1713.88 3028 741.50 3028 570.02
lin318 gen1 m2 180 1168.30 180 20667.24 180 1168.30 180 2906.27
lin318 gen1 m3 149 221.21 149 9014.64 149 721.40 149 221.21
lin318 gen2 m2 9544 1924.60 9544 23804.82 9544 1924.60 9544 2002.18
lin318 gen2 m3 7807 1413.50 7786 9773.63 7807 1413.50 7807 1633.24
lin318 gen3 m2 7936 631.81 7936 44029.00 7936 1547.30 7936 631.81
lin318 gen3 m4 3797 140.04 3797 1446.26 3797 970.70 3797 140.04
pr136 gen1 m2 63 107.50 63 451.13 63 107.50 63 368.14
pr136 gen2 m2 3646 154.75 3641 601.31 3646 281.60 3646 154.75
pr264 gen1 m4 107 203.99 107 503.07 107 289.80 107 203.99
pr264 gen2 m2 6635 656.10 6635 2048.20 6635 719.00 6635 656.10
pr264 gen2 m3 6420 555.02 6420 938.39 6420 859.00 6420 555.02
pr264 gen2 m4 5584 300.71 5584 590.79 5584 663.20 5584 300.71
pr264 gen3 m3 2772 922.50 2772 1037.51 2772 922.50 2772 1569.28
pr299 gen1 m2 139 366.25 139 4775.93 139 573.40 139 366.25
pr299 gen1 m3 111 431.02 111 1303.73 111 506.00 111 431.02
pr299 gen1 m4 84 201.36 84 383.48 84 340.30 84 201.36
pr299 gen2 m3 6018 704.50 6018 1446.05 6018 909.70 6018 704.50
pr299 gen2 m4 4457 263.01 4457 593.41 4457 767.70 4457 263.01
pr299 gen3 m2 5729 713.53 5729 11872.55 5729 1489.50 5729 713.53
pr299 gen3 m3 3655 678.29 3655 2705.82 3655 1058.20 3655 678.29
pr299 gen3 m4 2268 286.25 2268 455.64 2268 402.40 2268 286.25
rat195 gen2 m2 5148 345.91 5148 2156.98 5148 886.60 5148 345.91
rat195 gen3 m3 2574 288.37 2574 721.82 2574 369.50 2574 288.37
ts225 gen2 m2 5859 700.55 5859 2998.43 5859 759.60 5859 700.55
rd400 gen2 m2 13045 3220.60 12993 77049.22 13045 3220.60 13045 4203.21
rd400 gen2 m3 12646 2852.70 12645 53707.14 12645 2852.70 12646 2901.63
rd400 gen2 m4 12032 3299.30 12032 42001.58 12032 3299.30 12032 4031.71
rd400 gen1 m2 232 3066.60 230 56767.29 232 3066.60 232 4005.69
rd400 gen1 m3 224 2844.00 222 62476.08 224 2844.00 224 4263.27
rd400 gen1 m4 213 1985.40 213 34744.80 213 1985.40 213 3103.02
rd400 gen3 m2 12431 2418.40 12428 96178.70 12431 2418.40 12431 2901.71
rd400 gen3 m3 11639 3500.00 11639 68074.77 11639 3500.00 11639 3709.18
rd400 gen3 m4 10436 3500.00 10417 48462.77 10436 3500.00 10436 3766.10

Average 11,031.04 1,004.15 843.66
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