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1 Introduction

To remain competitive, carriers need to optimize their transport network and obtain new

profitable contracts by offering attractive rates for their customers. There are two settings

available for carriers to optimize their network (Gansterer and Hartl, 2018). The first one

is known as collaborative transportation planning. It involves small- and medium-sized

carriers forming a coalition. They exchange, often, less-than-truckload (LTL) contracts

to collect shipments by sharing transportation capacities (Lafkihi et al., 2019; Lai et al.,

2019). The objective is to maximize the coalition global profit and reduce transportation

costs (Ergun et al., 2007; Özener et al., 2011; Wang and Kopfer, 2014). The second

setting, which is considered in this paper, is more common and non-collaborative: carriers

compete in auction mechanisms by bidding on transportation contracts requested by

shippers. Auction mechanisms are generally used for the procurement of full truckload

(TL) services resulting in long-term contracts between carriers and shippers. According

to Nandiraju and Regan (2005) and Sheffi (2004), shippers prefer, in most cases, mid- to

long-term transportation contracts in order to avoid future prices variation and to secure

transportation capacity availability.

Combinatorial auctions (CAs), in particular, are commonly used for TL transportation

services procurement. In these auctions, bids on combinations of items are allowed so that

either all the items in the combination are allocated – if the bid is won – or nothing at all

(Caplice and Sheffi, 2006; Abrache et al., 2007; Nisan et al., 2007). Shippers act as auc-

tioneers seeking transportation services between several origin and destination locations,

and carriers, acting as bidders, compete by submitting bids on shippers’ transportation

contracts. A number of decisional problems need be addressed during the CA process.

Our paper focuses on the so-called Bid Construction Problem (BCP) also known as the

bid generation problem.

A BCP must be solved by each carrier participating in the auction. When combinatorial

bidding is allowed, it consists in determining the subsets of auctioned contracts to bid on
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and the price to ask for serving all the contracts in each bid. The majority of published

papers on the BCP for the procurement of transportation services do not explicitly address

the bids’ pricing problem. They rather focus on determining the set of profitable contracts

to incorporate in the carrier’s pre-existing network. The pricing part is either ignored or

simplistically handled a posteriori once the contracts to bid on are determined (Song and

Regan (2003, 2005); Wang and Xia (2005); Lee et al. (2007); Ben Othmane et al. (2019);

Hammami et al. (2019)). Moreover, almost all research on the BCP for combinatorial TL

transportation procurement auctions consider a deterministic context (Hammami et al.,

2019; Ben Othmane et al., 2019; Rekik et al., 2017; Lee et al., 2007; Chen et al., 2009;

Chang, 2009; Song and Regan, 2005; Wang and Xia, 2005).

To the best of our knowledge, only Triki et al. (2014) consider a stochastic BCP where

bids’ clearing prices are assumed uncertain. The authors propose a mathematical model

in which all the package bids are enumerated and the corresponding clearing prices are

defined as random variables with known probability distributions. The proposed formu-

lation generates only a single combinatorial bid and uses chance constraints to model

clearing price uncertainty. The authors report that their model was not tractable and

propose two heuristics to solve the problem.

To the best of our knowledge, no exact method for the BCP with stochastic clearing prices

exists. Integrating contracts selection and pricing problems to simultaneously generate

multiple bids under prices uncertainty has never been addressed in the literature neither.

Our paper aims to fill these gaps. It proposes a novel non-enumerative solution approach

that enables generating both single and multiple bids depending on auction rules and

the carrier’s preferences. The proposed solution approach can either act as an exact or

a heuristic method depending on parameters tuning. The heuristic form includes two

phases. The first phase, referred to as the Contract Selection Problem (CSP), aims to

reduce the number of contracts to consider when solving the integrated selection and

pricing problem of the second phase by preselecting promising contracts based on their

uncertain clearing prices. Uncertainty in CSP is modeled by considering the equivalent
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deterministic problem of a scenario-based two-stage stochastic model. In the second phase,

combinatorial bids composition and associated ask prices are optimally and simultaneously

determined using a non-linear model. This problem is referred to as the Contract Selection

and Pricing Problem (CSPP). Uncertainty in CSPP is modeled using chance constraints

that, contrarily to Triki et al. (2014), cannot be linearized given that the contracts covered

by the bids are not known in advance (not enumerated). The first phase, which makes

the approach a heuristic one, is not mandatory and can be ignored when the number of

auctioned contracts or the contracts in which the carrier is interested is relatively small.

In such case, the problem can be solved using only the exact algorithm proposed for the

CSPP.

Our experimental study reports the results obtained for the proposed solution approach

in both its exact (CSPP only) and heuristic (CSP + CSPP) forms. The heuristic required

on average less than one hour to reach the best solutions. The exact algorithm proved

optimality for several instances and the average time required to find either the optimal

or the best solutions is less than four hours on average. For 72% of the instances, the

two-phase heuristic identified either the same or better solutions than the exact approach.

For the remaining instances, the loss in solution quality yielded by the heuristic does not

exceed 0.68% on average while it offered large savings in computing times.

The remainder of this paper is organized as follows. Section 2 defines the problem and

how the uncertainty is modeled. In Section 3, we describe our overall solution algorithm.

Section 4 describes the two-stage stochastic model and the two solution methods proposed

for the CSP. In Section 5, we present the mathematical model and the exact solution

algorithm introduced for the CSPP. Extensive computational results are reported and

discussed in Section 6. Section 7 concludes the paper.
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2 Problem definition

We consider a BCP with stochastic clearing prices where the carrier seeks to maximize

its expected net profit by bidding on new contracts while taking into account its existing

commitments, its fleet capacity, and a number of operational constraints. The carrier has

then to decide on the number of bids to submit, the contracts covered by each bid, and

the associated ask price knowing that other competing carriers are participating in the

auction and may propose better bids. On one hand, the carrier has to increase its chances

of winning the bids with attractive prices for the shipper compared to its competitors.

On the other hand, it aims to achieve large profits. The problem is even more complex

because of the uncertainty characterizing clearing prices: no carrier knows in advance the

prices at which contracts will be allocated when the auction is cleared.

The stochastic BCP addressed in this paper considers two sets of contracts: a set Ke =

{1, ..., |Ke|} containing the carrier’s existing contracts (contracts it must serve due to

previous commitments), and a set Kn = {|Ke|+ 1, ..., |Ke|+ |Kn|} composed of the newly

auctioned contracts. The set of all contracts is denoted by K = Ke ∪Kn. Each contract

k ∈ K is defined by an origin and a destination, denoted respectively by ok and dk. Given

the TL context, all the volumes picked up at an origin location of a given contract must

be driven directly to its destination.

The BCP described above can be represented using a directed graph G = (V,A) in which

V denotes the set of vertices and A represents the set of arcs. V = O ∪D ∪ {0, N} where

0 and N are respectively the start and end point of each route and represent the depot.

Set O = {ok; k ∈ K} (D = {dk; k ∈ K}) denotes the origins (destinations) associated

with contracts in K. The set of arcs is defined as: A = Ae ∪ {(ok, dk), k ∈ K}, where Ae

represents the empty traveling arcs as follows: Ae = {(0, i) : i ∈ O} ∪ {(i, j) : i = dk ∈

D, j = ok′ ∈ O : k, k′ ∈ K, k 6= k′}∪ {(j,N), j ∈ D}. To each arc (i, j) ∈ A are associated

a traveling cost cij and a traveling time tij.

A first-price combinatorial auction is considered implying that if a bid is won, then the
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carrier must be paid exactly the price asked in this bid. The carrier’s expected profit

is thus computed as the difference between the revenue for ensuring existing and newly

selected contracts and the total cost for serving them. The revenue corresponds to the

prices already guaranteed and known for serving the existing contracts plus the prices

asked in the generated bids. The latter are determined taking into account uncertainty

on auctioned contracts’ clearing prices. Formally, a price pk is associated with each

existing contract k ∈ Ke and is assumed to be known with certainty. For newly auctioned

contracts, clearing prices are random variables p̃k, k ∈ Kn and, as in Triki et al. (2014),

are assumed to follow a normal distribution N(pk, σ
2
k).

We assume that the carrier has a homogeneous fleet and each contract can be serviced

by any vehicle l ∈ L = {1, ..., |L|}. Each vehicle route must start and end at the depot.

Each vehicle has a maximum route duration Tmax and a fixed cost f .

When solving the BCP, the carrier is offered the possibility to generate a single bid or

multiple OR bids. OR bids imply that there is no guarantee that all the submitted

bids will be allocated to the carrier (Nisan, 2010). However, if all these bids are won, the

carrier must have the internal capacity to serve them. OR bids are assumed to not overlap

avoiding the case where the same contract is present in two OR bids. We also consider

the case where the number of generated OR bids is limited. The maximum number of

generated bids is denoted by γ. Similarly, the number of contracts submitted in a bid

could be restricted to a given value denoted by η. As reported in Rekik et al. (2017),

such constraints may be imposed by the shipper or considered by the carrier to increase

its chances to win when multiple OR bids are submitted.

3 Solution methods: overview

As already mentioned, the proposed solution method can either act as an exact method

or a heuristic depending on whether the CSP phase is performed or not. In what follows,

we describe the more general two-phase heuristic approach. One should keep in mind that
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the exact approach corresponds to the CSPP (phase 2) with the whole set of auctioned

contracts. In the first phase, we address the CSP to preselect a subset of profitable

contracts K∗n ⊆ Kn to bid on without tackling the pricing problem. A restricted CSPP is

then solved at the second phase considering only the contracts in K∗n to generate the final

bids. In what follows, we briefly explain the modeling and solution approaches proposed

for each phase. Details and formal descriptions are provided in Section 4 for the CSP and

in Section 5 for the CSPP.

A scenario-based two-stage stochastic model is proposed to formulate the CSP with

stochastic prices. The objective is to maximize the carrier’s expected profit taking into

account routing constraints. It is assumed that the probability distributions of the un-

certain clearing prices are available and can thus be used to generate plausible future

scenarios. A representative sample Ω of plausible scenarios is then determined to obtain

the equivalent deterministic model, referred to in the following as MCSP .

Two solution methods are proposed to solve MCSP . The first method consists in running

the branch-and-cut procedure of a commercial solver on MCSP . The second approach

decomposes the problem into a series of deterministic sub-problems, one sub-problem for

each scenario. Based on the output of each sub-problem, a winning ratio is computed

for each auctioned contract k ∈ Kn to measure the percentage of times it was selected

in the different scenarios. A deterministic CSP is then considered in which contracts

with larger winning ratios are prioritized. The resulting deterministic model is solved by

branch-and-cut to determine the set of preselected contracts K∗n.

In the second phase, package bids and associated ask prices are simultaneously deter-

mined by solving the CSPP. A non-linear mathematical formulation is proposed where

uncertainty on clearing prices is modeled with probabilistic constraints. The latter are

defined for the generated bids to ensure that the probability of the bid ask price (a deci-

sion variable) being lower than the bid clearing price is greater than a given value (to be

specified by the carrier depending on its risk tolerance). As will be explained in Section

5, probabilistic constraints cannot be linearized as in Triki et al. (2014) given that bids
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composition are not known in advance. However, if the contracts covered by the bid are

known, linearizing such constraints is simple. Based on this observation, we propose an

iterative exact solution algorithm to solve the CSPP. More details are given in Section 5.

4 Contract selection problem

Section 4.1 presents the two-stage stochastic model proposed for the CSP. In Section 4.2,

we describe the heuristic proposed to solve it.

4.1 Two-stage stochastic model

We first present a deterministic model for the CSP in which contracts clearing prices pk

are assumed to be known with certainty. We consider the following decision variables:

� yk = 1 if contract k is selected, yk = 0, otherwise; ∀k ∈ Kn.

� xlij = 1 if arc (i, j) ∈ A is traversed using vehicle l ∈ L, xlij = 0, otherwise;

∀(i, j) ∈ A, l ∈ L;

� Bi ≥ 0 and integer indicating the order of visit of node i ∈ V .

The deterministic CSP is formulated as follows:

max
∑
k∈Ke

pk +
∑
k∈Kn

pkyk −
∑
l∈L

∑
(i,j)∈A

cijx
l
ij −

∑
l∈L

∑
j∈O

fxl0j (1)
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s.t.
∑
l∈L

xlokdk = yk ∀k ∈ Kn (2)

∑
l∈L

xlokdk = 1 ∀k ∈ Ke (3)

xlokdk ≤
∑
j∈O

xl0j ≤ 1 ∀l ∈ L, k ∈ K (4)

xlokdk ≤
∑
i∈D

xli,N ≤ 1 ∀l ∈ L, k ∈ K (5)

xlokdk ≤
∑

k′∈K,k′≤k

x
(l−1)
ok′dk′

∀k ∈ K, l ∈ L \ {1} (6)

∑
j∈O

xl0j ≤
∑
j∈O

x
(l−1)s
0j ∀l ∈ L \ {1} (7)

x1
o1d1

= 1 (8)∑
j:(j,i)∈A

xlji =
∑

j:(i,j)∈A

xlij ∀l ∈ L, i ∈ V \ {0, N} (9)

∑
(i,j)∈A

tijx
l
ij ≤ Tmax ∀l ∈ L, (10)

Bi +
∑
l∈L

xlij − |V |

(
1−

∑
l∈L

xlij

)
≤ Bj ∀(i, j) ∈ A (11)

B0 = 0 (12)

xlij ∈ {0, 1} ∀(i, j) ∈ A, l ∈ L (13)

0 ≤ Bi ≤ |V | ∀i ∈ V (14)

yk ∈ {0, 1} ∀k ∈ Kn. (15)

The objective function (1) maximizes the carrier’s net profit defined as the difference

between the revenues collected from serving the contracts, the fixed costs associated with

the use of the vehicles, and the traveling costs. Constraints (2) ensure that if selected,

a new contract must be served by a single vehicle. These constraints also ensure the

link between y and xlij variables. Constraints (3) ensure that all pre-existing contracts

are served exactly once. Constraints (4) and (5) imply that each route starts and ends

at the depot. Constraints (6)–(8) are symmetry breaking constraints. Constraints (6)

impose an order for serving contracts. Constraints (7) impose that vehicle l is used if
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and only if vehicle l − 1 is already used. Constraint (8) arbitrarily and without loss of

generality forces the first pre-existing contract to be assigned to the lowest indexed vehicle.

Network connectivity is ensured via constraints (9). Constraints (10) impose maximum

tour length. Constraints (11) impose an order for visiting nodes. Constraints (12) ensure

that each route starts from the depot. Constraints (13)–(15) define the domain of the

decision variables.

Contracts clearing prices p̃k, k ∈ Kn are not known. We propose hereafter a two-stage

stochastic model in which the first-stage variables are the contract selection variables

(yk) and the recourse variables are the routing decisions (xlij and Bi). As mentioned

in Section 2, it is assumed that the probability distributions of the clearing prices are

available and can thus be used to generate plausible future scenarios. More precisely, p̃k

follows a normal distribution N(pk, σ
2
k). A scenario is defined as a compound event which

is the result of the juxtaposition of random processes related to the different contracts.

Given these stochastic process and using a Monte Carlo procedure, we define a scenario

by generating independent pseudo-random numbers uniformly distributed on the interval

[0, 1], and use them to compute the inverse of the normal distributions of all the random

variables. All the generated scenarios are equiprobable.

Due to the fact that all random variables have continuous probability distributions, the

number of plausible scenarios is infinite. Thus, the Monte Carlo procedure is employed to

generate samples of future scenarios, denoted Ω. For a scenario ω ∈ Ω, the instance of the

contracts clearing prices is denoted pωk ,∀k ∈ Kn. The equivalent deterministic problem

associated with the two-stage stochastic model for a sample Ω is modeled as:

MCSP : max
y,x

∑
k∈Ke

pk +
1

|Ω|
∑
ω∈Ω

 ∑
k∈Kn

pωk yk −
∑
l∈L

∑
(i,j)∈A

cijx
lω
ij −

∑
l∈L

∑
j∈O

fxlω0j

 (16)

The Combinatorial Bid Construction Problem with Stochastic  Prices for Transportation Services Procurement

CIRRELT-2020-03 9



s.t.
∑
l∈L

xlωokdk = yk ∀k ∈ Kn, ω ∈ Ω (17)

∑
l∈L

xlωokdk = 1 ∀k ∈ Ke, ω ∈ Ω (18)

xlωokdk ≤
∑
j∈O

xlω0j ≤ 1 ∀l ∈ L, k ∈ K,ω ∈ Ω (19)

xlωokdk ≤
∑
i∈D

xlωi,N ≤ 1 ∀l ∈ L, k ∈ K,ω ∈ Ω (20)

xlωokdk ≤
∑

k′∈K,k′≤k

x
(l−1)ω
ok′dk′

∀k ∈ K, l ∈ L \ {1}, ω ∈ Ω (21)

∑
j∈O

xlω0j ≤
∑
j∈O

x
(l−1)s
0j ∀l ∈ L \ {1}, ω ∈ Ω (22)

x1ω
o1d1

= 1 ∀ω ∈ Ω (23)∑
j:(j,i)∈A

xlωji =
∑

j:(i,j)∈A
xlωij ∀l ∈ L, i ∈ V \ {0, N}, ω ∈ Ω (24)

∑
(i,j)∈A

tijx
lω
ij ≤ Tmax ∀l ∈ L, ω ∈ Ω (25)

Bω
i +

∑
l∈L

xlωij − |V |

1−
∑
l∈L

xlωij

 ≤ Bω
j ∀(i, j) ∈ A,ω ∈ Ω (26)

Bω
0 = 0 ∀ω ∈ Ω (27)

xlωij ∈ {0, 1} ∀(i, j) ∈ A, l ∈ L, ω ∈ Ω (28)

0 ≤ Bω
i ≤ |V | ∀i ∈ V, ω ∈ Ω (29)

yk ∈ {0, 1} ∀k ∈ Kn. (30)

By solving MCSP , we obtain the set of profitable contracts to bid on as: K∗n = {k ∈ Kn :

yk = 1} where the vector (yk)k∈Kn represents the values of the first-stage variable y in the

final solution.

Observe that generated samples should be large enough to be representative of prices’

uncertainty without impacting the solvability of the associated model. When the number

of scenarios in Ω is relatively small, the equivalent deterministic problem formulated with

MCSP can be solved to optimality by a branch-and-cut procedure available in commercial

solvers. However when the sample size gets large, MCSP becomes intractable. In the

following, we propose a heuristic approach to tackle it.
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4.2 Heuristic solution approach

In the first step, |Ω| CSP deterministic models (1)–(15), denoted Mω
1 , ω ∈ Ω, are solved in

parallel by branch-and-cut. When solving model Mω
1 , ω ∈ Ω, the price pk considered for

a contract k ∈ Kn is the one generated in scenario ω. The objective here is to determine

for each scenario ω ∈ Ω the set of profitable contracts to bid on. Based on these solutions,

we determine for each contract k ∈ Kn, a winning ratio θk ∈ [0, 1] as follows:

θk =

∑
ω∈Ω y

∗
k(ω)

|Ω|
,

where y∗(ω) is the optimal solution value for the contract selection variables of model

Mω
1 , ω ∈ Ω. The winning ratio gives the percentage of times a contract k ∈ Kn was

selected for all the scenarios in Ω.

The second step of the proposed heuristic considers a deterministic model, denoted M2,

including the same constraints as the deterministic CSP (2)–(15) but with an objective

function that prioritizes the selection of auctioned contracts with higher winning ratios:

max
∑
k∈Ke

pk +
∑
l∈L

∑
k∈Kn

(1 + θk)pkx
l
okdk
−
∑
l∈L

∑
(i,j)∈A

cijx
l
ij −

∑
l∈L

∑
j∈O

fxl0j. (31)

By solving this model, we obtain the subset K∗n of preselected contracts that are likely to

be profitable to bid on. Observe that a contract k ∈ Kn with a null winning ratio still

has a chance to be considered in the second step of our approach. Such a contract could

be selected, for example, if not all the contracts with a non-null winning ratio could be

served by the carrier because of fleet size or other operational constraints.

5 Contract selection and pricing problem

Given the set of preselected contracts K∗n obtained from the first phase, the objective

of CSPP is to determine the number of bids to submit, the contracts covered by each
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bid and the associated ask price given the uncertainty on contracts’ clearing prices. As

mentioned before, CSPP is formulated so that multiple non-overlapping OR bids could

be generated and all the contracts they cover served by the carrier (in case it wins all of

them). The proposed modeling and solution approaches could however be easily adapted

to the case where a unique bid is requested through the parameter γ that limits the

number of generated bids.

Let B represent the set of bids that could be generated. Given our assumptions, |B| =

min{γ, |K∗n|}. A bid b ∈ B is defined by a pair (Kb, pb) where Kb ⊂ K∗n includes the set of

contracts covered by b and pb is the price asked for serving all the contracts in Kb. As will

be detailed in the following, Kb and pb are determined by solving a chance-constrained

mathematical model. The proposed model is presented in Section 5.1. An exact approach

to solve it is described in Section 5.2.

5.1 Chance-constrained model

We consider the following parameters and decision variables. Let wb equal to 1 if bid b is

generated, wb = 0, otherwise; zkb = 1 if contract k is covered by bid b, zkb = 0, otherwise;

and pb ≥ 0 represents the ask price for bid b, ∀b ∈ B. Let also C̃b represent the clearing

price of bid b, ∀b ∈ B. The parameters of our model are α ∈ [0, 1] indicating the risk

accepted by the carrier to loose a bid, γ indicating the maximum number of generated

bids and η indicating the maximum number of contracts covered by a bid.

The chance-constrained model is given by:
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max
∑
k∈Ke

pk +
∑
b∈B

pbwb −
∑
l∈L

∑
(i,j)∈A

cijx
l
ij −

∑
l∈L

∑
j∈O

fxl0j (32)

s.t. (3)–(14), and to

P (pbwb ≤ C̃b) ≥ 1− α ∀b ∈ B (33)

wb ≤
∑
k∈K∗n

zkb ∀b ∈ B (34)

zkb ≤ wb ∀k ∈ K∗n, b ∈ B (35)∑
b∈B

zkb ≤ 1 ∀k ∈ K∗n (36)

∑
k∈K∗n

zkb ≤ η ∀b ∈ B (37)

wb ≤ wb−1 ∀b ∈ B \ {1} (38)

pb ≤ pb−1 ∀b ∈ B \ {1} (39)∑
l∈L

xlokdk =
∑
b∈B

zkb ∀k ∈ K∗n (40)

zkb ∈ {0, 1} ∀b ∈ B, k ∈ K∗n (41)

wb ∈ {0, 1} ∀b ∈ B (42)

pb ≥ 0 ∀b ∈ B. (43)

The objective function (32) maximizes the carrier profit defined as the difference between

the pre-existing contracts revenues, the bidding prices and transportation costs. Con-

straints (3)–(14) guarantee that if a contract k is covered by the generated bids, a feasible

routing solution is ensured for this contract in the carrier’s network. Chance constraints

(33) express a winning probability of (1− α) for each generated bid b (P refers to the

probability function). Constraints (34) and (35) link wb and zkb variables so that a bid is

generated if and only if it covers at least one contract. Constraints (36) ensure that each

auctioned contract is allocated to at most one bid. Constraints (37) are inspired from the

business side constraints considered in Rekik et al. (2017) and impose an upper bound

on the number of auctioned contracts per bid. Constraints (38) and (39) are symmetry
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breaking constraints. Constraints (40) link routing variables xlij to zkb variables. Finally,

constraints (41)–(43) define the domain of the decision variables.

Although objective function (32) is non-linear (because of the product pbwb), it can be

easily linearized by adding a continuous variable ζb ≥ 0,∀b ∈ B (to replace the product

pbwb) and appropriate linking constraints as follows:

ζb ≤Mwb ∀b ∈ B (44)

ζb ≤ pb ∀b ∈ B (45)

pb +M(wb − 1) ≤ ζb ∀b ∈ B, (46)

where M is a big-M parameter.

Then the CSPP can be formulated as:

Mp : max
∑
k∈Ke

pk +
∑
b∈B

ζb −
∑
l∈L

∑
(i,j)∈A

cijx
l
ij −

∑
l∈L

∑
j∈O

fxl0j (47)

s.t. (3)−(14), (34)−(43), (44)−(46), and to

P (ζb ≤ C̃b) ≥ 1− α ∀b ∈ B (48)

ζb ≥ 0 ∀b ∈ B. (49)

Model Mp is still non-linear because of chance constraints (48). In Triki et al. (2014),

similar probabilistic constraints were proposed in which all possible 2|Kn|−1 bid packages

were enumerated. This becomes intractable when the number of contracts |Kn| increases.

Assuming that contracts prices follow a normal distribution and given that the package

of contracts covered by each enumerated bid is known, linearizing such constraints was

possible in Triki et al. (2014). In our case, similar linearization is not possible since one

must determine the auction clearing price C̃b for bid b without knowing the contracts it

covers. To handle this, we first express the bid clearing price C̃b, b ∈ B as follows:

C̃b =
∑
k∈K∗n

zkbp̃k.
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Since auctioned contracts’ prices are independent and normally distributed (p̃k =N(pk, σ
2
k),

k ∈ Kn), their sum is also normally distributed and we have:

C̃b ≡ N

∑
k∈K∗n

zkbpk,
∑
k∈K∗n

z2
kbσ

2
k

→ Zb =
C̃b −

∑
k∈K∗n

zkbpk√∑
k∈K∗n

z2
kbσ

2
k

∀b ∈ B,

where Zb is the standardized variable associated with C̃b.

This implies that chance constraints (48) can be written as:

P

ζb −∑k∈K∗n
zkbpk√∑

k∈K∗n
z2
kbσ

2
k

≤ Zb

 ≥ 1− α↔ P

Zb ≤ ζb −
∑

k∈K∗n
zkbpk√∑

k∈K∗n
z2
kbσ

2
k

 ≤ α ∀b ∈ B.

Using the inverse cumulative distribution function for a standard normal distribution,

denoted Φ−1, we have:

ζb −
∑
k∈K∗n

pkzkb ≤ Φ−1(α)

√∑
k∈K∗n

z2
kbσ

2
k, ∀b ∈ B. (50)

As constraints (50) cannot be handled by common commercial solvers, an exact solution

approach is proposed in the following section to solve the chance-constrained model.

5.2 Exact solution approach

Our solution approach is based on two main observations. First, the difficulty in linearizing

chance constraints (50) is essentially due to the fact that the contracts covered by a bid

are not known in advance. If the associated package of covered contracts Kb (i.e., zkb

values) was known, then the corresponding chance constraint (50) reduces to a bounding

constraint on the ζb variable. So, one way to obtain relatively good quality solutions is

to generate interesting contracts packages and to restrict Mp to bids composed of these

packages so that Mp becomes linear and could be solved by branch-and-cut. Solving this
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restricted model results in a lower bound for the CSPP.

Second, non-linearity in chance constraints (50) is due to the right-hand side expression

Φ−1(α)
√∑

k∈K∗n
z2
kbσ

2
k. So, if one is able to bound this non-linear expression, the resulting

model is linear and is a relaxation of Mp. Solving it gives a valid upper bound to Mp

but not necessarily a feasible solution. Infeasibility, if any, would be due only to the bid

ask prices that may violate original chance constraints (50). Although infeasible, such

solutions are interesting: they respect all the other constraints of Mp and one knows the

contracts covered by each generated bid. Thus, one could keep only the information on

the contracts and solve a restricted model as explained before. Furthermore, the upper

bound of the relaxed model could be improved by adding to the relaxed model new bid

variables for which the covered contracts are known (but not the price) and incorporate

the corresponding chance constraints which have the property to be linear. The restricted

and the relaxed problems are explained in details next.

5.2.1 Relaxed problem

In what follows, it is assumed that α ≤ 1
2

implying that the chance of winning a bid is

equal to or larger than 50% which is more likely to be considered by a carrier.

Let σmin = min{σk, k ∈ K∗n}. Then, ∀b ∈ B, we have
√∑

k∈K∗n
z2
kbσ

2
min ≤

√∑
k∈K∗n

z2
kbσ

2
k.

Since
√∑

k∈K∗n
z2
kbσ

2
min = σmin

√∑
k∈K∗n

z2
kb and

√∑
k∈K∗n

z2
kb =

√∑
k∈K∗n

zkb (zkb ∈

{0, 1}), then σmin
√∑

k∈K∗n
zkb ≤

√∑
k∈K∗n

z2
kbσ

2
k.

Given constraints (34), it follows σminwb ≤
√∑

k∈K∗n
z2
kbσ

2
k. Since α ≤ 1

2
→ Φ−1(α) ≤ 0,

then, Φ−1(α)σminwb ≥ Φ−1(α)
√∑

k∈K∗n
z2
kbσ

2
k.

Replacing chance constraints (50) with the following constraints:

ζb −
∑
k∈K∗n

pkzkb ≤ Φ−1(α)σminwb, ∀b ∈ B (51)

results in a Mixed Integer Linear Programming model that is a relaxation of model Mp.
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We refer to it as Mp.

5.2.2 Restricted problem

A restricted problem is obtained by considering a particular set of partial bids, denoted

by B, for which the set of contracts covered by each bid is known but not the associated

price.

Let δkb be a binary parameter defined for each contract k in K∗n and each bid b ∈ B such

that δkb = 1, if bid b covers contract k, and δkb = 0, otherwise. Assume also that bids in

B are indexed in an ascending order and that the bid with the lowest index is denoted

by bmin. The restricted model, denoted by Mp, can be formulated as follows:

Mp : max
∑
k∈Ke

pk +
∑
b∈B

ζb −
∑
l∈L

∑
(i,j)∈A

cijx
l
ij −

∑
l∈L

∑
j∈O

fxl0j (52)

s.t. (3)−(14), (44)−(46), and to

ζb ≤
∑
k∈K∗n

pkδkb + Φ−1(α)

√∑
k∈K∗n

δkbσ2
k ∀b ∈ B (53)

∑
b∈B

δkbwb ≤ 1 ∀k ∈ K∗n (54)

wb ≤ wb−1 ∀b ∈ B \ {bmin} (55)

pb ≤ pb−1 ∀b ∈ B \ {bmin} (56)∑
l∈L

xlokdk =
∑
b∈B

δkbwb ∀k ∈ K∗n (57)

wb ∈ {0, 1} ∀b ∈ B (58)

pb, ζb ≥ 0 ∀b ∈ B. (59)

As will be detailed in Section 5.2.3, the proposed solution approach is iterative. At each

iteration, both a restricted and a relaxed problem are solved by considering a different

set B that is iteratively updated. In what follows, the restricted (relaxed) model defined

with respect to a set B is referred to as Mp(B) (Mp(B)).
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5.2.3 Solution algorithm

The general structure of the proposed approach is illustrated in Algorithm 1. At each

iteration, valid lower and upper bounds (denoted respectively LB and UB) are updated by

solving appropriate restricted and relaxed problems. The process iterates until LB = UB

or a time limit is met.

Algorithm 1 General structure of the exact solution approach for CSPP

1: B← ∅, b← |B|, LB ← 0, UB ← +∞.
2: while a time limit is not met and LB < UB do
3: UB ← Solve Mp(B) by branch-and-cut
4: for each optimal solution of Mp(B) do
5: for each generated bid b ∈ B, do

6: if
(
ζb −

∑
k∈K∗n

pkδkb > Φ−1(α)
√∑

k∈K∗n
δkbσ2

k

)
then

7: b← b+ 1
8: for each k ∈ K∗n do
9: if (δkb = 1) then

10: δkb ← 1
11: else
12: δkb ← 0
13: end if
14: end for
15: B← B ∪ {b}
16: Add to M r

p (B ∪B) no-good cuts to forbid the bid b

17: Add to M r
p (B ∪B) the chance constraint corresponding to bid b ∈ B

18: end if
19: end for
20: end for
21: LB ← Solve Mp(B) by branch-and-cut
22: end while

The relaxed model Mp(B) – at a given iteration – is similar to model Mp except that:

(i) in addition to set B, it incorporates a set B of partially defined bids b for which the

set of covered contracts Kb is known but not the ask price, (ii) chance constraints (50)

for bids in B are linear and formulated as in (53), (iii) chance constraints (50) for bids

in B are replaced by relaxed constraints (51), (iv) it includes the so-called no-good cuts

(defined later in (66)) to forbid generating bids that are already in B.
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Solving the relaxed model at a given iteration with branch-and-cut results in a solution

(w0, p0, z0, ζ0) that is not necessarily feasible for Mp (because of the chance constraints

relaxation). For each generated bid b deduced from (w0, p0, z0, ζ0) (i.e., b : w0
b = 1), we

know the contracts it covers (k : z0
kb = 1) and the associated price (p0

b). If bid b violates

the chance constraint (50), a bid b covering the same contracts as b and for which no price

is fixed is added to the set of partially defined bids B. The relaxed model considered

at the next iteration includes chance constraints (50) for the bids newly added to B as

well as no-goods cuts to forbid generating a bid that covers the same contracts as those

covered in B.

The relaxed model Mp(B) is formulated as:

Mp(B) : max
∑
k∈Ke

pk +
∑

b∈B∪B

ζb −
∑
l∈L

∑
(i,j)∈A

cijx
l
ij −

∑
l∈L

∑
j∈O

fxl0j (60)

s.t. (3)−(14), (34)−(35), (37)−(39), (41), (48), and to

ζb ≤
∑
k∈K∗n

pkδkb + Φ−1(α)

√∑
k∈K∗n

δkbσ
2
k ∀b ∈ B (61)

ζb −
∑
k∈K∗n

pkzkb ≤ Φ−1(α)σminwb ∀b ∈ B (62)

∑
b∈B∪B

wb ≤ γ (63)

∑
b∈B

zkb +
∑
b∈B

δkbwb ≤ 1 ∀k ∈ K∗n (64)

∑
l∈L

xlokdk =
∑
b∈B

zkb +
∑
b∈B

δkbwb ∀k ∈ K∗n (65)

∑
k∈K∗n:
δkb′=0

zkb +
∑
k∈K∗n:
δkb′=1

(1− zkb) ≥ 1 ∀b ∈ B,∀b′ ∈ B (66)

ζb ≤Mwb ∀b ∈ B ∪B (67)

ζb ≤ pb ∀b ∈ B ∪B (68)

pb +M(wb − 1) ≤ ζb ∀b ∈ B ∪B (69)

wb ∈ {0, 1}, pb ∈ {0, 1}, ζb ≥ 0 ∀b ∈ B ∪B. (70)
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6 Computational results

The proposed solution methods are coded in Java and OPL and the mathematical models

solved using the branch-and-cut of CPLEX 12.9.0. The experiments are conducted on

computers mounted in parallel and equipped with Intel(R) Xeon(TM) Gold 6148 proces-

sors clocked at 2.40 GHz with up to 32 threads and 186 Gigabyte of RAM.

We start by describing the instances and parameters setting in Section 6.1. Detailed

computational results assessing the solution quality and the computational time of our

two-phase solution approach are presented in Section 6.2 for the CSP phase and in Section

6.3 for the CSPP phase. In Section 6.4, we compare the performance of the two-phase

heuristic approach (CSP+CSPP) to the exact approach (CSPP only).

6.1 Problem instances and parameters setting

Several tests were conducted to assess the performance of the proposed solution methods.

We consider 50 instances inspired from the ones proposed by Hammami et al. (2019).

These instances are obtained by varying the number of pre-existing and auctioned con-

tracts, the number of vehicles and their fixed costs. Contracts’ origin-destination pairs are

randomly selected from real locations in USA and Canada. Traveling costs (cij) and times

(tij) associated with arcs (i, j) ∈ A are computed using Google Maps. The maximum tour

duration Tmax is set to 1500 minutes for each instance. The mean pk of the normal dis-

tribution function associated with contract k ∈ Kn is uniformly generated within the

interval [2 × cokdk , 4 × cokdk ]. The standard deviation σk, k ∈ Kn is set to 15%pk. Table

1 reports for each instance, the fleet size (|L|), the vehicles fixed cost (f), the number of

existing contracts (|Ke|), and the number of auctioned contracts (|Kn|). The maximum

number of bids γ is set to 5 and the maximum number of contracts per bid η is set to⌈
|K∗n|
|B|

⌉
. The risk α accepted by the carrier to loose a bid is fixed to 5%.

A time limit of 7,200 seconds is fixed for CPLEX to solve the equivalent deterministic
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Table 1: Characteristics of the instances

Instance |L| f |Ke| |Kn|
1 2 500 10 20
2 2 1000 10 20
3 3 500 10 20
4 3 1000 10 20
5 4 500 10 20
6 4 1000 10 20
7 3 500 15 15
8 3 1000 15 15
9 4 500 15 15
10 4 1000 15 15
11 5 500 15 15
12 5 1000 15 15
13 4 500 15 20
14 4 1000 15 20
15 5 500 15 20
16 5 1000 15 20
17 5 500 20 15

Instance |L| f |Ke| |Kn|
18 5 1000 20 15
19 6 500 20 15
20 6 1000 20 15
21 4 500 15 25
22 4 1000 15 25
23 5 500 15 25
24 5 1000 15 25
25 6 500 15 25
26 6 1000 15 25
27 5 500 20 20
28 5 1000 20 20
29 6 500 20 20
30 6 1000 20 20
31 7 500 20 20
32 7 1000 20 20
33 5 500 20 25
34 5 1000 20 25

Instance |L| f |Ke| |Kn|
35 6 500 20 25
36 6 1000 20 25
37 7 500 20 25
38 7 1000 20 25
39 6 500 25 20
40 6 1000 25 20
41 7 500 25 20
42 7 1000 25 20
43 8 500 25 20
44 8 1000 25 20
45 6 500 20 30
46 6 1000 20 30
47 7 500 25 25
48 7 1000 25 25
49 9 500 25 25
50 9 1000 25 25

problem MCSP . Besides, a time limit of 3,600 seconds is considered to solve each of the

Mω
1 models, ω ∈ Ω and model M2 when considering the heuristic proposed for CSP. A

time limit of 43,200 seconds is fixed for the exact solution method proposed for the CSPP.

For each instance, 25 independent and equiprobable scenarios are generated to solve CSP

using the Monte Carlo procedure. A size of 25 was validated through a preprocessing

procedure where we have first fixed the sample size so that at least half of the instances

could be solved to optimality with the branch-and-cut of CPLEX within 7,200 seconds.

With |Ω| = 25, 19 instances were solved to optimality. Then, for each of these instances,

we have generated 10 samples of size 25 each and have solved the corresponding equivalent

deterministic problem MCSP to optimality. We have then calculated, for each instance,

the average and standard deviation of the optimal objective values over the 10 samples.

We observed that the standard deviations were small. Detailed results obtained for each

instance are reported in the online supplement.

6.2 Results of the first-phase contract selection problem (CSP)

In order to evaluate the performance of the heuristic proposed for the CSP, we compare the

expected profit yielded by the first-stage solution values output by our heuristic (contracts
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in K∗n) to that obtained when applying a branch-and-cut procedure to solve model MCSP .

To this end, we solve for each scenario ω ∈ Ω, the following deterministic model:

Mω
3 : max zω =

∑
k∈Ke

pk +
∑
k∈K∗n

pωk −
∑
l∈L

∑
(i,j)∈A

cijx
l
ij −

∑
l∈L

∑
j∈O

fxl0j

s.t. (3)−(15), and to∑
l∈L

xlokdk = 1 ∀k ∈ K∗n.

The expected profit yielded by our heuristic, denoted by LBh, is given by: LBh =
∑

ω∈Ω z
ω

|Ω| .

The expected profit yielded by the branch-and-cut procedure of CPLEX is the optimal

solution of model MCSP .

Table 2 reports for each instance, the lower bound (LBc) and the upper bound (UBc)

obtained with CPLEX, the gap between LBc and UBc in percentage (Gap = UBc−LBc

UBc ),

and the CPU time (in seconds) required by CPLEX to identify an optimal solution within

a time limit of 7,200 seconds. Table 2 also reports, for each instance, the expected profit

LBh obtained with our heuristic, the required computing time (in seconds), the gaps

in percentage between our expected profit and the upper bound of CPLEX (GaphUB =

UBc−LBh

UBc ) and its lower bound (GaphLB = LBh−LBc

LBc ).

The results of Table 2 show that our heuristic outperforms CPLEX on different levels.

Indeed, CPLEX was able to solve to optimality only 19 of the 50 instances with an

average computing time of 1, 287 seconds. It was unable to provide a feasible solution for

7 instances within the time limit of 7, 200 seconds. For the remaining 24 instances for

which only feasible solutions were obtained, the average gap to the upper bound exceeds

21%. Our heuristic solves to optimality all the 19 instances solved by CPLEX in only

448.93 seconds, on average. Either an optimal or a feasible solution was identified for

all the instances with an average gap equal to 5.49% with respect to the best upper

bound CPLEX obtained within 7,200 seconds. For the 24 instances for which CPLEX

identifies only feasible solutions, our heuristic generally yields a better expected profit
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Table 2: Computational results for the CSP

Instance
CPLEX Our heuristic

LBc UBc CPU Gap LBh CPU GaphUB GaphLB
1 5057 5057 36.24 0.00 5057 1.29 0.00 0.00
2 4120 4120 41.30 0.00 4120 1.31 0.00 0.00
3 6749 6749 191.96 0.00 6749 9.77 0.00 0.00
4 5555 5555 191.60 0.00 5555 37.33 0.00 0.00
5 6506 6506 181.85 0.00 6506 25.74 0.00 0.00
6 5925 5925 323.62 0.00 5925 33.71 0.00 0.00
7 5517 5517 59.47 0.00 5517 2.86 0.00 0.00
8 4813 4813 121.92 0.00 4813 1.99 0.00 0.00
9 7330 7330 238.62 0.00 7330 161.77 0.00 0.00
10 8183 8183 143.45 0.00 8183 67.32 0.00 0.00
11 11747 12037 7200.00 2.41 11747 3946.57 2.41 0.00
12 9833 9833 5143.62 0.00 9833 2375.32 0.00 0.00
13 8497 8497 590.49 0.00 8497 249.67 0.00 0.00
14 9068 9068 480.96 0.00 9068 254.53 0.00 0.00
15 11781 12199 7200.00 3.43 11725 4253.66 3.89 -0.48
16 8683 8832 7200.00 1.69 8718 2837.15 1.29 0.40
17 10633 10633 5080.28 0.00 10633 2008.19 0.00 0.00
18 9199 9199 5805.61 0.00 9199 1764.84 0.00 0.00
19 - 13135 7200.00 - 12485 6653.41 4.95 -
20 6333 10945 7200.00 42.14 9951 6852.30 9.08 57.13
21 - 9440 7200.00 - 8897 6.00 5.75 -
22 - 7167 7200.00 - 5883 6.61 17.92 -
23 5386 14239 7200.00 62.17 11454 168.42 19.56 112.65
24 3372 13249 7200.00 74.55 9194 115.39 30.60 172.66
25 14423 14883 7200.00 3.09 14423 1143.97 3.09 0.00
26 11114 11643 7200.00 4.54 11114 1776.99 4.54 0.00
27 8818 12237 7200.00 27.94 10371 25.83 15.25 17.61
28 7772 7772 505.80 0.00 7772 77.09 0.00 0.00
29 12271 13133 7200.00 6.56 12406 2124.90 5.54 1.10
30 11648 13035 7200.00 10.64 11648 2895.32 10.64 0.00
31 17940 18328 7200.00 2.12 17940 5935.96 2.12 0.00
32 13175 13767 7200.00 4.30 13209 7200.00 4.06 0.25
33 11201 11201 742.90 0.00 11201 139.04 0.00 0.00
34 7626 7626 819.54 0.00 7626 121.82 0.00 0.00
35 12298 13938 7200.00 11.77 13291 1317.58 4.64 8.08
36 9594 10874 7200.00 11.77 10428 2500.01 4.10 8.69
37 16380 16928 7200.00 3.24 16380 2527.57 3.24 0.00
38 10891 11390 7200.00 4.38 10891 6862.75 4.38 0.00
39 - 12801 7200.00 - 12208 970.21 4.63 -
40 - 10650 7200.00 - 10369 782.57 2.63 -
41 - 15123 7200.00 - 14497 1754.45 4.14 -
42 - 13414 7200.00 - 12966 6847.10 3.34 -
43 5381 20860 7200.00 74.20 16307 6670.56 21.83 203.05
44 12174 12842 7200.00 5.20 12261 7064.75 4.52 0.72
45 13861 14307 7200.00 3.12 14043 2797.19 1.85 1.31
46 9322 9322 3594.60 0.00 9322 1196.23 0.00 0.00
47 14712 14742 7200.00 0.20 14712 2956.28 0.20 0.00
48 11866 13062 7200.00 9.16 12196 6672.02 6.63 2.78
49 7852 23581 7200.00 66.70 17660 7200.00 25.11 124.91
50 3914 21596 7200.00 81.88 12378 7200.00 42.68 216.25

Average 9268 11346 4949.88 12.03 10493 2371.91 5.49 21.56
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(GaphLB varies between −0.48% and 216.25% for these instances) in shorter computing

times (3, 876 seconds on average).

6.3 Results for the second-phase contract selection and pricing

problem (CSPP)

Table 3 reports, for each instance, the number of auctioned contracts considered in the

CSPP (|K∗n|) as output by the first phase, the LB, the UB, the relative gap (in percentage)

Gap = UB−LB
UB

, the CPU time (in seconds) required to identify the best feasible solution

(CPU∗), the total CPU time (in seconds) required to run the exact method described in

Section 5.2.3 (CPU), and the number of cuts generated during the solution process.

The results of Table 3 show that, for the second phase, optimal solutions were identified for

46 over the 50 instances. The average gap is equal to 0.42% and the average computational

time reaches 8, 847.31 seconds. Optimality was proven for the 46 instances with an average

computational time of 5, 860.12 seconds. For the four instances not solved to optimality,

the gap varies between 2.08% and 8.96% with an average value of 5.29%. Although these

gaps are relatively large for instances with |K∗n| ≥ 16, we observed during our experiments

that the LB value tends to stabilize quickly while the UB value keeps slowly decreasing

as the size of K∗n increases. This is further confirmed when comparing the CPU time

required to find an optimal solution (CPU∗ for the 46 instances where Gap = 0%) and

the time required to prove its optimality (CPU). For the 46 instances solved to optimality,

only 361.70 seconds were required in average to find the optimal solutions compared to

5, 860.12 seconds to prove it.

The performance of the exact method proposed for the CSPP is indeed closely dependent

on the number of pre-selected contracts |K∗n|. When this number increases, the number of

generated cuts gets large and Mp becomes more difficult to solve. For example, instances

with fewer than 10 pre-selected contracts are solved to optimality in less than 950 seconds

on average and the average number of generated cuts is equal to 137. Instances solved
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Table 3: Computational results for the CSPP

Instance |K∗n| LB UB Gap CPU∗ CPU Cuts
1 9 4383 4383 0.00 0.34 13.84 70
2 9 3501 3501 0.00 0.21 44.41 51
3 17 5884 6109 3.68 13.69 43200.00 1410
4 15 4569 4569 0.00 121.25 6532.51 2852
5 18 5711 6104 6.43 34.62 43200.00 1831
6 16 4969 5075 2.08 33.61 43200.00 3650
7 2 5048 5048 0.00 0.35 0.81 1
8 2 4324 4324 0.00 0.36 0.82 1
9 7 6238 6238 0.00 110.25 221.72 205
10 6 6916 6916 0.00 7.11 35.45 35
11 12 9992 9992 0.00 58.00 10532.65 425
12 12 8311 8311 0.00 1106.52 21314.06 327
13 8 7540 7540 0.00 77.23 220.71 39
14 9 8102 8102 0.00 5.55 34.85 285
15 12 10226 10226 0.00 302.02 1324.03 329
16 13 7183 7183 0.00 137.10 1914.69 830
17 7 9566 9566 0.00 189.42 477.44 114
18 7 8262 8262 0.00 53.88 433.39 83
19 12 11182 11182 0.00 3006.30 12601.71 327
20 12 8747 8747 0.00 1506.61 7030.67 326
21 4 8073 8073 0.00 0.51 1.46 6
22 4 5176 5176 0.00 0.33 0.88 5
23 8 10101 10101 0.00 11.49 63.68 339
24 9 7917 7917 0.00 15.88 87.12 134
25 12 12575 12575 0.00 208.78 13441.67 344
26 13 9368 9368 0.00 57.56 599.90 4116
27 3 9909 9909 0.00 15.70 35.62 2
28 3 7324 7324 0.00 15.02 33.39 2
29 8 11115 11115 0.00 174.72 4291.02 128
30 8 10192 10192 0.00 1.53 262.53 42
31 12 16222 16222 0.00 93.17 10701.13 391
32 12 11586 11586 0.00 215.29 7817.58 366
33 8 9625 9625 0.00 50.11 213.06 174
34 8 6100 6100 0.00 1.59 1451.06 268
35 12 11488 11488 0.00 38.50 4721.88 289
36 14 8588 8588 0.00 934.17 14576.88 512
37 16 13911 13911 0.00 239.57 16737.05 655
38 16 9243 9243 0.00 4.76 16007.13 643
39 7 10951 10951 0.00 24.84 7138.29 58
40 7 9021 9021 0.00 46.12 277.32 81
41 9 12651 12651 0.00 66.20 871.73 226
42 11 11417 11417 0.00 548.66 18448.22 261
43 14 14331 14331 0.00 1069.44 7050.13 504
44 15 10485 10485 0.00 1645.39 6391.92 451
45 14 12043 12043 0.00 143.52 10088.40 494
46 15 7594 7594 0.00 248.41 13089.84 515
47 15 13272 13272 0.00 214.41 13688.07 501
48 12 10801 10801 0.00 917.19 14835.39 332
49 20 15621 17160 8.96 2851.01 43200.00 5523
50 16 10718 10718 0.00 2952.65 23909.59 726
Average 9161 9206 0.42 391.42 8847.31 626
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to optimality and for which the number of pre-selected contracts is between 11 and 16

required between 599.90 and 23, 909.59 seconds. The three instances for which |K∗n| ≥ 17

were not solved to optimality, or at least optimality was not proven for the obtained

solutions, within 43, 200 seconds. However, as previously observed, our approach quickly

located optimal solutions but required more time to prove their optimality.

The results reported in Table 3 are for the 50 instances described in Section 6.1 in which

a number of problem parameters were fixed to pre-specified values. A sensitivity analysis

was conducted to evaluate the impact of certain parameters on the computational perfor-

mance of the proposed exact method. Three parameters were tested: the risk accepted by

the carrier to lose a bid: three values are considered α = 1%, 5% and 10%; the maximum

number of generated bids: three values are considered γ = 3, 4 and 5; and the maximum

number of contracts covered by a bid: three values are considered η = 3, 4 and 5. When a

parameter value is varied, all the other parameters are kept fixed. Table 4 summarizes our

results. It reports for each parameters’ combination the percentage of instances for which

optimality was proven, the average gap over the 50 instances, and the average CPU time

(in seconds). Detailed results for each instance are presented in Table 6 in the appendix.

Our results first prove that varying the value of the α parameter has almost no impact

on computing times. The exact method identifies optimal solutions for 46 instances over

the 50 considered independently of the value of α. Second, as the value of η increases,

the number of instances for which optimality is proven decreases and average CPU times

increase. Finally, increasing the value of γ allows to prove optimality for more instances

and reduces the average computational time of the algorithm.

Table 4: Summary of the sensivity analysis for the exact method

Parameters

(
γ = 5, η =

⌈
|K∗n|
|B|

⌉)
(γ = 5, α = 5%) (η = 5, α = 5%)

α = 1% α = 5% α = 10% η = 3 η = 4 η = 5 γ = 3 γ = 4 γ = 5
Optimality (%) 92 92 92 86 80 72 27 66 72

Average gap 0.54 0.42 0.33 0.75 0.82 1.34 1.66 1.36 1.34
Average CPU 9,134.52 8,847.31 9,027.54 11,577.08 17,335.69 21,936.36 25,350.59 23,484.59 21,936.36
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6.4 Heuristic versus exact approach

As already mentioned, by dropping off the first-phase and considering all auctioned con-

tracts (Kn) in the CSPP, our solution approach becomes exact. The object of this section

is to measure the relevance of considering the CSP phase on computing times and solution

quality. To do this, we compare the performance of the heuristic and exact approaches

over all the instances described in Section 6.1 in which we fix γ = 5, η = 3, and α = 5%.

Recall that for the heuristic approach a time limit of two, respectively, 12 hours was fixed

for the first, respectively, the second, phase. Then, we fix a time limit of 14 (=2+12)

hours for the exact approach.

Table 5 reports the results obtained for each instance and each solution approach with

regard to: the best solution found (LBe and LBh, for the exact and heuristic approaches,

respectively), the time required to reach the best solution (CPU∗e and CPU∗h) and, the

total CPU time (CPU e and CPUh). For the exact approach, we additionally report

the best upper bound (UBe), and the relative gap between the lower and upper bounds

(Gape = UBe−LBe

UBe ). The last two columns display: the relative difference (in percentage)

between the best solutions found by the heuristic versus the exact approach (GapLB =

LBh−LBe

LBe ), and the absolute difference in seconds in the CPU times required to identify

the best solutions (GapCPU∗ = CPU∗h − CPU∗e). Observe that a value in bold under

the columns LBe and LBh indicates that it corresponds to the best solution found. A

positive value for GapLB indicates that the heuristic identifies a better solution than the

exact approach. A negative value for GapCPU∗ implies that the heuristic was faster to

identify its best solution than the exact method to identify its own.

The results of Table 5 prove that the proposed heuristic offers the best trade-off between

solution quality and computing times. Both approaches identify the same solutions for

26 instances over the 50 considered. However, the exact approach requires much more

time than the heuristic to find these solutions: CPU times vary between 142 and 49, 188

seconds with an average of 10, 223 seconds for the exact approach. They range between

3 and 8, 358 seconds for the heuristic with an average of 1, 839 seconds. Moreover, four
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Table 5: Heuristic vs exact approach

Ins
Exact approach Heuristic Saving/loss

LBe UBe Gape CPU∗e CPU e LBh CPU∗h CPUh GapLB GapCPU∗

1 4511 4692 3.86 120.30 50400.00 4489 37.30 57.22 -0.49 -83.00
2 3610 3781 4.52 326.72 50400.00 3610 75.22 244.08 0.00 -251.50
3 5748 6325 9.12 267.58 50400.00 5670 129.58 43209.77 -1.38 -138.00
4 4570 5316 14.03 388.91 50400.00 4570 158.58 6569.84 0.00 -230.33
5 5467 6025 9.26 240.86 50400.00 5425 123.78 43225.74 -0.77 -117.08
6 4782 5274 9.33 357.91 50400.00 4782 192.78 43233.71 0.00 -165.13
7 5178 5178 0.00 208.52 208.52 5178 3.86 3.93 0.00 -204.66
8 4459 4459 0.00 189.19 189.19 4459 3.20 3.20 0.00 -185.99
9 6407 6848 6.44 1795.95 50400.00 6407 262.93 262.93 0.00 -1533.02
10 7140 7507 4.89 152.28 50400.00 7140 84.01 258.59 0.00 -68.27
11 9814 10870 9.71 26564.72 50400.00 9992 4004.57 14479.22 1.78 -22560.15
12 8181 8453 3.22 10273.58 50400.00 8311 3481.84 23689.38 1.56 -6791.74
13 7712 8201 5.96 10844.08 50400.00 7673 275.78 646.70 -0.51 -10568.30
14 8299 8810 5.80 10875.40 50400.00 8299 293.96 6370.84 0.00 -10581.44
15 10226 10325 0.96 13132.05 50400.00 10226 4555.68 5577.69 0.00 -8576.37
16 7176 7253 1.06 20789.75 50400.00 7183 2974.25 4751.84 0.10 -17815.50
17 9734 10317 5.65 11956.07 50400.00 9740 6595.70 6595.70 0.06 -5360.37
18 8377 8874 5.60 11178.59 50400.00 8411 7213.27 7213.27 0.40 -3965.32
19 11077 12253 9.60 8976.96 50400.00 11182 8659.71 19255.12 0.94 -317.25
20 8747 9649 9.35 37925.51 50400.00 8747 8358.91 13882.97 0.00 -29566.60
21 8361 8361 0.00 142.49 142.49 8361 9.20 9.20 0.00 -133.29
22 5415 5415 0.00 755.76 755.76 5415 11.40 11.40 0.00 -744.36
23 10305 10522 2.06 368.35 50400.00 10305 291.47 701.43 0.00 -76.88
24 8157 8955 8.91 488.39 50400.00 8157 205.18 325.04 0.00 -283.21
25 12575 13935 9.76 1743.82 50400.00 12575 1352.75 14585.64 0.00 -391.07
26 9379 10663 12.04 21684.91 50400.00 9368 1834.55 2376.89 -0.12 -19850.36
27 10087 10087 0.00 1736.59 1599.61 10087 45.08 45.08 0.00 -1691.51
28 7492 7492 0.00 801.26 1755.99 7492 99.62 156.98 0.00 -701.64
29 11305 11919 5.15 4062.01 50400.00 11305 2474.96 11337.06 0.00 -1587.05
30 10405 11092 6.19 4689.07 50400.00 10405 3197.14 33588.80 0.00 -1491.93
31 16223 16397 1.06 25036.16 50400.00 16223 6029.13 16637.09 0.00 -19007.03
32 11586 11662 0.65 49188.41 50400.00 11586 7415.29 15017.58 0.00 -41773.12
33 9988 10873 8.14 384.69 50400.00 9897 197.30 3225.47 -0.92 -187.39
34 6364 6887 7.59 298.98 50400.00 6364 216.06 2562.86 0.00 -82.92
35 11488 12889 10.87 7871.52 50400.00 11488 1356.08 6039.46 0.00 -6515.44
36 8534 8792 2.93 40259.17 50400.00 8588 3434.18 17076.89 0.63 -36824.99
37 13480 15780 14.58 28762.95 50400.00 13488 2705.48 45727.57 0.06 -26057.47
38 8814 10062 12.40 20393.56 50400.00 8763 10383.46 50062.75 -0.58 -10010.10
39 11112 11866 6.35 10959.46 50400.00 11129 1226.36 1226.36 0.15 -9733.10
40 9219 9817 6.09 35489.24 50400.00 9219 927.51 1595.67 0.00 -34561.73
41 12971 13975 7.18 31059.57 50400.00 12971 2470.71 17012.62 0.00 -28588.86
42 11392 12624 9.76 42395.44 50400.00 11417 7395.76 25295.32 0.22 -34999.68
43 14331 15890 9.81 36719.21 50400.00 14331 7740.00 13720.69 0.00 -28979.21
44 10452 11876 11.99 27971.49 50400.00 10485 8710.15 13456.68 0.31 -19261.35
45 12007 13600 11.71 25296.46 50400.00 12043 2940.71 12885.59 0.30 -22355.75
46 7526 8397 10.37 3333.63 50400.00 7594 1444.65 14286.08 0.90 -1888.98
47 13155 14201 7.37 4001.59 50400.00 13272 3170.69 16644.35 0.88 -830.90
48 10393 11364 8.54 12463.82 50400.00 10801 7589.21 21507.41 3.78 -4874.61
49 14520 16092 9.77 19958.25 50400.00 14524 14769.07 50400.00 0.03 -5189.18
50 10061 11650 13.64 45357.96 50400.00 10376 15861.83 50400.00 3.04 -29496.13

Average 9166 9870 6.67 13404.78 44445.03 9190 3259.80 13948.99 0.21 -10144.99
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solutions were proved to be optimal (Gape = 0%) by the exact method. All these solutions

were obtained with the heuristic in much less time. For 17 instances, the heuristic found

better solutions than the exact method. The improvement in solution value varies between

0.06% and 3.78%. For the seven instances where the solution obtained with the exact

method was better, the variation in solution values ranges between 0.12% and 1.36% at

the expense of an average increase in computing times of 5, 851 seconds. Finally, the

average results obtained for the 50 instances show that the heuristic slightly decreases

solution value (a loss of 0.21% on average) but considerably reduces computing times

with an absolute gain of 101,44 seconds on average.

7 Conclusion

In this paper, we have addressed the BCP with stochastic prices for combinatorial trans-

portation procurement auctions. A two-phase solution approach was proposed in which

two problems were sequentially solved. The first problem is a contracts’ selection problem

(CSP) with stochastic prices that helps the carrier pre-select a set of interesting contracts

to bid on. The second problem is a stochastic contracts’ selection and pricing problem

(CSPP) which allows the carrier to simultaneously generate contracts packages and as-

sociated ask-prices. The first phase, although not mandatory, allows reducing the size of

the CSPP so that it could be tackled by the exact solution approach we proposed.

To the best of our knowledge, our paper is the first to address and solve a BCP with

stochastic prices with an exact solution method that cleverly handles non-linearity in

chance constraints without exhaustively enumerating all contracts combinations. It is

also the first to address a stochastic BCP in which multiple OR bids are generated. A

future research avenue would be to develop acceleration strategies to faster improve upper-

bounds and reduce the computing time required to solve relaxed problems through the

algorithm iterations.
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Table 6: Sensivity analysis for the exact method

Ins

(
γ = 5, η =

⌈
|K∗n|
|B|

⌉)
(γ = 5, α = 5%) (η = 5, α = 5%)

|K∗n|α = 1% α = 5% α = 10% η = 3 η = 4 η = 5 γ = 3 γ = 4 γ = 5
Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU

1 0.00 7.24 0.00 13.84 0.00 6.72 0.00 55.93 0.00 155.15 0.00 120.89 0.00 807.15 0.00 297.82 0.00 120.89 9
2 0.00 123.03 0.00 44.41 0.00 41.69 0.00 242.77 0.00 208.88 0.00 589.92 0.00 1516.26 0.00 432.84 0.00 589.92 9
3 3.90 43200.00 3.68 43200.00 4.72 43200.00 6.09 43200.00 3.68 43200.00 7.91 43200.00 0.47 43200.00 3.49 43200.00 7.91 43200.00 17
4 0.00 7239.25 0.00 6532.51 0.00 6778.92 0.00 6532.51 5.04 43200.00 2.54 43200.00 3.15 43200.00 3.11 43200.00 2.54 43200.00 15
5 4.94 43200.00 6.44 43200.00 4.32 43200.00 6.80 43200.00 6.44 43200.00 9.03 43200.00 2.35 43200.00 2.75 43200.00 9.03 43200.00 18
6 6.34 43200.00 2.09 43200.00 2.95 43200.00 3.94 43200.00 2.09 43200.00 2.99 43200.00 5.66 43200.00 3.17 43200.00 2.99 43200.00 18
7 0.00 1.26 0.00 0.81 0.00 1.32 0.00 1.07 0.00 1.07 0.00 0.99 0.00 0.49 0.00 0.56 0.00 0.99 2
8 0.00 1.07 0.00 0.82 0.00 1.32 0.00 1.21 0.00 1.42 0.00 1.05 0.00 0.88 0.00 0.97 0.00 1.05 2
9 0.00 39.25 0.00 221.72 0.00 65.98 0.00 101.16 0.00 249.57 0.00 568.56 0.00 1241.59 0.00 805.72 0.00 568.56 7
10 0.00 32.87 0.00 35.45 0.00 78.49 0.00 191.27 0.00 359.43 0.00 54.07 0.00 81.72 0.00 35.18 0.00 54.07 11
11 0.00 11036.51 0.00 10532.65 0.00 10506.82 0.00 10532.65 0.00 35892.04 0.00 41588.02 3.13 43200.00 0.00 42892.71 0.00 41588.02 12
12 0.00 20894.20 0.00 21314.06 0.00 19569.27 0.00 21314.06 0.00 27869.01 0.00 30336.71 0.00 41966.71 0.00 40009.48 0.00 30336.71 12
13 0.00 301.84 0.00 220.71 0.00 301.47 0.00 397.03 0.00 990.02 0.00 1488.64 0.00 4892.07 0.00 3167.27 0.00 1488.64 8
14 0.00 861.93 0.00 34.85 0.00 486.05 0.00 6116.31 0.00 1729.08 0.00 2584.12 0.00 7836.84 0.00 5416.13 0.00 2584.12 9
15 0.00 1059.20 0.00 1324.03 0.00 1914.78 0.00 1324.03 0.00 12207.95 0.00 35697.05 3.56 43200.00 5.02 43200.00 0.00 35697.05 12
16 0.00 3702.51 0.00 1914.69 0.00 1898.61 0.00 1914.69 0.00 37504.77 0.00 39571.09 3.71 43200.00 0.00 42099.42 0.00 39571.09 13
17 0.00 1060.90 0.00 477.44 0.00 1428.39 0.00 4587.51 0.00 10831.68 0.00 1685.25 0.00 3727.25 0.00 1112.29 0.00 1685.25 13
18 0.00 744.26 0.00 433.39 0.00 308.22 0.00 5448.43 0.00 8165.60 0.00 11555.42 0.00 8111.20 0.00 8092.03 0.00 11555.42 7
19 0.00 12883.69 0.00 12601.71 0.00 13003.87 0.00 12601.71 0.00 18504.94 0.00 22408.24 0.00 34589.08 0.00 33157.05 0.00 22408.24 12
20 0.00 5933.24 0.00 7030.67 0.00 8521.24 0.00 7030.67 0.00 15479.22 0.00 34995.07 2.46 43200.00 0.00 37004.82 0.00 34995.07 12
21 0.00 1.84 0.00 1.46 0.00 2.17 0.00 3.20 0.00 12.04 0.00 7.41 0.00 6.98 0.00 5.87 0.00 7.41 4
22 0.00 1.64 0.00 0.88 0.00 1.99 0.00 4.79 0.00 103.37 0.00 7.06 0.00 4.95 0.00 5.14 0.00 7.06 4
23 0.00 251.51 0.00 63.68 0.00 159.20 0.00 533.01 0.00 131.05 0.00 485.00 0.00 1063.71 0.00 579.54 0.00 485.00 8
24 0.00 27.37 0.00 87.12 0.00 33.46 0.00 209.65 0.00 71.43 0.00 1028.74 0.00 2689.04 0.00 1895.50 0.00 1028.74 9
25 0.00 13548.17 0.00 13441.67 0.00 13265.05 0.00 13441.67 0.00 19983.71 0.00 20489.10 2.89 43200.00 0.00 32377.61 0.00 20489.10 12
26 0.00 925.21 0.00 599.90 0.00 537.29 0.00 599.90 1.56 43200.00 3.50 43200.00 3.24 43200.00 4.23 43200.00 3.50 43200.00 13
27 0.00 4.05 0.00 35.62 0.00 4.15 0.00 19.25 0.00 49.45 0.00 18.97 0.00 21.85 0.00 109.08 0.00 18.97 3
28 0.00 20.55 0.00 33.39 0.00 17.09 0.00 79.89 0.00 79.80 0.00 79.51 0.00 25.15 0.00 76.93 0.00 79.51 5
29 0.00 4857.29 0.00 4291.02 0.00 4897.11 0.00 9212.16 0.00 13047.87 0.00 10060.75 0.00 18210.18 0.00 5594.66 0.00 10060.75 8
30 0.00 3139.81 0.00 262.53 0.00 301.91 0.00 30693.48 0.00 10384.15 0.00 8425.77 0.00 24891.27 0.00 1465.91 0.00 8425.77 8
31 0.00 11463.10 0.00 10701.13 0.00 10253.69 0.00 10701.13 0.00 25192.25 0.00 34801.53 2.21 43200.00 0.00 41662.81 0.00 34801.53 12
32 0.00 8036.51 0.00 7817.58 0.00 6924.61 0.00 7817.58 0.00 21342.56 0.00 39523.07 1.84 43200.00 0.00 42930.01 0.00 39523.07 12
33 0.00 422.08 0.00 213.06 0.00 645.52 0.00 3086.43 0.00 615.14 0.00 1936.06 0.00 3049.21 0.00 2433.71 0.00 1936.06 8
34 0.00 845.25 0.00 1451.06 0.00 518.06 0.00 2441.04 0.00 2145.47 0.00 1173.49 0.00 2934.28 0.00 1193.28 0.00 1173.49 8
35 0.00 4788.95 0.00 4721.88 0.00 4503.80 0.00 4721.88 0.00 7056.44 0.00 31489.92 5.09 43200.00 5.44 43200.00 0.00 31489.92 12
36 0.00 15026.41 0.00 14576.88 0.00 13982.05 0.00 14576.88 0.00 18028.17 0.00 29740.47 0.00 38995.42 0.00 36091.51 0.00 29740.47 14
37 0.00 16259.08 0.00 16737.05 0.00 16251.02 2.40 43200.00 0.00 16737.05 1.45 43200.00 0.59 43200.00 0.06 43200.00 1.45 43200.00 16
38 0.00 17056.27 0.00 16007.13 0.00 16852.61 3.97 43200.00 0.00 16007.13 7.90 43200.00 6.25 43200.00 6.29 43200.00 7.90 43200.00 16
39 0.00 149.73 0.00 7138.29 0.00 155.51 0.00 256.15 0.00 6169.82 0.00 1241.58 0.00 2884.84 0.00 2589.47 0.00 1241.58 7
40 0.00 185.89 0.00 277.32 0.00 311.61 0.00 813.10 0.00 1753.80 0.00 1898.89 0.00 5493.13 0.00 3483.20 0.00 1898.89 7
41 0.00 300.52 0.00 871.73 0.00 217.62 0.00 15258.17 0.00 3720.50 0.00 12253.74 0.00 27634.44 0.00 13555.07 0.00 12253.74 9
42 0.00 17537.61 0.00 18448.22 0.00 16357.18 0.00 18448.22 0.00 17593.05 0.14 43200.00 3.84 43200.00 1.35 43200.00 0.14 43200.00 11
43 0.00 9334.42 0.00 7050.13 0.00 10064.27 0.00 7050.13 2.86 43200.00 3.68 43200.00 0.61 43200.00 5.55 43200.00 3.68 43200.00 14
44 0.00 8025.69 0.00 6391.92 0.00 9001.05 0.00 6391.92 8.25 43200.00 3.62 43200.00 5.48 43200.00 5.32 43200.00 3.62 43200.00 15
45 0.00 9572.68 0.00 10088.40 0.00 10362.25 0.00 10088.40 1.34 43200.00 5.96 43200.00 6.15 43200.00 5.99 43200.00 5.96 43200.00 14
46 0.00 14486.04 0.00 13089.84 0.00 16009.82 0.00 13089.84 0.00 33610.04 0.00 35710.66 0.00 41253.73 0.00 39256.07 0.00 35710.66 15
47 0.00 20536.29 0.00 13688.07 0.00 20728.21 0.00 13688.07 0.00 26891.06 0.00 38400.94 5.52 43200.00 5.32 43200.00 0.00 38400.94 15
48 0.00 15204.11 0.00 14835.39 0.00 16258.14 0.00 14835.39 1.08 43200.00 3.68 43200.00 3.64 43200.00 3.43 43200.00 3.68 43200.00 12
49 11.60 43200.00 8.97 43200.00 4.31 43200.00 7.99 43200.00 8.97 43200.00 8.40 43200.00 6.56 43200.00 1.56 43200.00 8.40 43200.00 20
50 0.00 25995.79 0.00 23909.59 0.00 25047.29 6.57 43200.00 0.00 23909.59 6.09 43200.00 4.78 43200.00 6.05 43200.00 6.09 43200.00 19

Average 0.54 9134.52 0.42 8847.31 0.33 9027.54 0.75 11577.08 0.82 17335.69 1.34 21936.36 1.66 25350.59 1.36 23484.59 1.34 21936.36 -

A
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