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Abstract. The growth of e-commerce has increased demand for last-mile deliveries, 

increasing the level of congestion in the existing transportation infrastructure in urban areas. 

Crowdsourcing deliveries can provide the additional capacity needed to meet the growing 

demand in a cost-effective way. We introduce a setting where delivery requests are fulfilled 

from a single depot by a fleet of professional drivers and a pool of crowd drivers. The 

uncertainty of crowd-driver availability is described by a binomial distribution. We formulate 

a two-stage stochastic model and propose a branch and price algorithm to solve the 

problem exactly. We further develop an analytical method to calculate upper bounds on the 

supply of vehicles that are feasible and an innovative cohesive pricing problem to generate 

columns for the pool of crowd drivers. Computational experiments are carried out on 

modified Solomon instances with a pool of 100 crowd vehicles. The algorithm is able to 

solve instances of up to 100 customers and solves all instances of 25 customers. We show 

that the value of the stochastic solution can be as high as 17% when compared with the 

solution obtained from a deterministic simplification of the model. Significant cost reductions 

of 35 % are achieved by our framework. Finally, we provide interesting insights on the 

compensation of crowd-sourced divers compared with professional drivers. 
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1 Introduction

The growth of on-line retailing has caused significant disruptions to traditional brick and mortar
retailers, and increased the total load on existing transportation infrastructures. At the same
time a new phenomenon called the sharing economy Sundararajan (2016); Ertz et al. (2016), is
allowing individuals in society to use their own vehicles to transport people or perform deliveries.
Ride-sharing platforms like Uber and Lyft, or delivery platforms like Zipments, Deliv, AmazonFlex,
among others, have started utilizing the colossal vehicle fleet made available by “the crowd” to fulfill
transportation requests, a strategy that is often referred to as “crowd-shipping” when delivering
packages. In a recent survey by Sampaio et al. (2019), the authors note that there is no commonly
agreed definition of “the crowd” in the literature. Consequently what we mean by a “crowd-
sourced driver” (CD), in general terms, is an independent individual that has access to a vehicle
and is willing to exchange her time to perform a delivery task for a monetary compensation,
without contracting any obligation to perform any other future task. The term “delivery task”, or
“shipping”, is less contentious, it generally means a requirement to transport an object from one
place to another, by any means (e.g., through pick up and delivery operations, the implementation
of an open or closed route, etc.).

Crowd-sourced drivers decide when to work delivering packages and are not bound to any
company, they can work one day for Uber and another at Deliv or AmazonFlex, or take a long
vacation. They might even have a favorite platform which they prefer over the other ones, even if
the compensation is lower. All the various types of platforms now have to compete for the supply
of crowd drivers that are willing to fulfill delivery requests. This phenomenon represents a big
challenge and opportunity, for logistic companies. When a company has its own fleet of vehicles,
vehicle availability is generally considered to be deterministic,(an exception is vehicle breakdowns
Mu et al. (2011)), but with a fleet of crowd-sourced vehicles (CV), the availability is not a decision
variable that the company can control directly. Vehicle availability depends on the CDs’ behaviour
and willingness to participate in any of the available programs that they have at their disposal,
placing uncertainty (and thus risk of failure) in the entire delivery process (Sampaio et al. (2019)).
Conversely by using CVs to perform delivery tasks the environmental impact could be reduced, as
well as providing flexibility to increase the fleet at peak times throughout the year and decrease it
at low times without having to buy or sell vehicles or hiring more professional drivers, which entails
important additional fixed costs.

In this paper we introduce a setting where a crowd-shipping platform (CSP) has a program
for individual car owners that allows them to become CD if they meet some basic requirements.
More specifically, besides some security requirements the CSP requires that CVs have at least a
standard capacity of Q′, similar to the AmazonFlex program. The CSP program not only allows the
capacity of CVs to be establish in advance but it also allows us to have probabilistic information
that describes the supply of CVs during specific days. Drivers have different preferences, some
might be less likely to deliver packages on rainy days or weekends. In any case, the supply of
CVs on a given day could be described by a binomial distribution where each trial represents the
probability of a CV becoming available during the day. The CSP has to solve the problem of
routing a mixed fleet of company owned professional vehicles (PVs) and a pool of stochastic crowd
drivers to perform closed routes. By returning to the depot, undelivered packages can be easily
rescheduled for future delivery.
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1.1 Related work

The concept of crow-shipping proposed by Walmart, i.e., of customers delivering packages (Barr
and Wohl (2013)), has spawned a series of needed quantitative studies and mathematical models. In
a study done by Archetti et al. (2016), a static deterministic model is introduced called the vehicle
routing problem with occasional drivers (VRPOD). In this variant of the vehicle routing problem
(VRP), the company owns a fleet of professionally driven vehicles (PV) that can only perform
closed routes, and a set of static and deterministic occasional drivers (ODs) that can only visit one
customer before they head to their intended destination, from where they do not return to the depot.
Since then other variants of the VRPOD have been explored. We believe that the branch of research
that includes ODs and a fleet of regular vehicles can be classified as a variant of the heterogeneous
VRP (HVRP), if the fleet size is known, or the fleet size and mix VRP (FSM), if the fleet size is
unknown. In a recent survey dedicated to the HVRP by Koç et al. (2016), it is noted, due to the
difficulty of the HVRP, that most of the work in this field has been done with metaheuristics, and
very limited exact methods exist. Many interesting variants are mentioned that are similar to the
extensions of the homogeneous VRP, (e.g., time windows for customer visits, pickup and delivery
problems, multi depot HVRP, HVRP with transshipment nodes, etc.). An extension similar to the
VRPOD is the open HVRP (OHVRP) Li et al. (2012), where a heterogeneous vehicle fleet does not
have to return to the depot, this problem is different from Archetti et al. (2016) in important ways.
The OHVRP considers that all vehicles have open routes that can end at any customer, and the
only characteristic that is considered to be different is the capacity. Conversely, in the VRPOD,
the regular fleet has to return to the depot completing closed routes and OD can perform open
routes all the way to their destination. Essentially the difference between vehicles goes beyond just
the capacity, and even the compensation can be different. Consequently this leads to a whole new
family of HVRP where various characteristics of heterogeneous vehicles are different, for example
compensation, or specific restrictions for each vehicle type. More concisely the capacity is only one
dimension that can make a fleet heterogeneous.

We divide the literature that extends the work done by Archetti et al. (2016) into two main
categories, studies that consider the dynamic aspects of OD and research that introduce static
deterministic variants. In the latter group Macrina et al. (2020) consider ODs that can deliver
packages to transshipment nodes and regular vehicles can be used to complete deliveries, a mixed
integer programming model is presented and a variable neighborhood search heuristic is develop to
analyse the benefits of a logistical system with ODs, professional drivers and transshipment nodes.
Another deterministic and static variant is the green VRP with OD, presented by Macrina and
Guerriero (2018), where a green VRP is complemented by access to ODs, an integer programming
formulation is developed and the benefits of OD are evaluated.

The dynamic aspects of the problem were first considered by Arslan et al. (2019), where a
pick-up and delivery problem with ad-hoc drivers is introduced. A platform has access to a fleet
of backup vehicles and a set of ad-hoc drivers that can only deviate a certain amount form their
destination. An event-based rolling horizon framework is developed that repeatedly solves the
problem of matching ad-hoc drivers with pickup and delivery tasks. In a similar extension Dahle
et al. (2019) present a setting where pick-up and delivery can be done by OD as well as regular
vehicles from a central depot. A 3-index formulation and symmetry breaking constraints are used to
solve instances of up to 70 customers and 50 ODs, different compensation schemes are considered.
Another interesting dynamic variant was presented by Dayarian and Savelsbergh (2017) where the
dynamic aspects of both customers and OD are introduced. A sample scenario planning approach
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with tabu search is used to derive results for compensation and service quality. The uncertainty
presented by ODs is also noted by Dahle et al. (2017), in the VRP with dynamic ODs. The authors
present a two-stage stochastic model to represent the uncertainty of up to 3 ODs and optimally
solve instances with up to 10 delivery requests utilizing a commercial solver. Each dynamic OD
has a fixed destination and a probability of being available during the planing horizon. A penalty
per customer is added to the objective if the customer is not visited.

Naturally crowd-sourcing a delivery task under any modus operandi would be highly stochastic
due to the uncertainty originating from the drivers’ behaviours and preferences, which can shift
from one day to the next based on different events e.g., rain, requests on other platforms, etc.
(Sampaio et al. (2019)).

The survey by Koç et al. (2016) report many variants of the HVRP, but none with a heteroge-
neous fleet composed of vehicles with deterministic and stochastic supply. The stochastic variants
of the HVRP mentioned just consider the stochastic demandsTeodorovic et al. (1995).

In classical variants of stochastic VRPs, the uncertainty generally originates from the customers.
In a survey by Psaraftis et al. (2016), the nature of uncertainty identified are primarily, stochastic
demands Salavati-Khoshghalb et al. (2019), stochastic customer presence Gendreau et al. (2014),
stochastic travel times Laporte et al. (1992), or stochastic service times Errico et al. (2018).

An interesting study that considers demand uncertainty, is the stochastic fleet composition
problem, presented by Loxton et al. (2012), a company has to decide the quantity of vehicles of
different types it needs in order to satisfy future uncertain demands represented by a binomial
distribution. At each stage the demand for each vehicle type becomes known. There are only
two cases, the chosen fleet is adequate to meet the demand or there is a shortage of vehicles, in
the latter case a penalty for each vehicle type that is missing is added to the cost, the penalty
represents the cost of having to hire an additional vehicle at a later stage. While Loxton et al.
(2012) consider a stochastic “demand” for vehicles, in this paper we consider a stochastic “supply”
of vehicles. It might seem like a trivial difference, but it actually represents a major paradigm shift
in city-logistics caused by the sharing economy. We represent the stochastic supply by a binomial
distribution while the demand is described by a set of delivery requests that must be fulfilled by
CVs, or PVs. The recourse action taken if the supply is less than the demand, is to utilize the
deterministic fleet of PVs to complete the CV routes. A penalty is considered for having to hire or
have access to additional deterministic PVs at the second stage to fulfill the demand. The penalty
is proportional to the length of the routes that are not fulfilled by CVs as well as a fixed cost.

The Vehicle Routing Problem with Stochastic Crowd-Vehicles and Time Windows (VRPSVTW)
is the problem of routing two fleets of vehicles, one deterministic and the other stochastic and
assessing if there is value in the stochastic fleet. The deterministic version of the problem resembles
a heterogeneous VRP with time windows, two vehicle types, fixed and variable costs.

1.2 Our contributions

The main contributions of this paper are the following:

1. We introduce the vehicle routing problem with stochastic supply of crowd-vehicles and time
windows.

2. We formulate a two-stage stochastic set partitioning model and further improve the model
by developing an optimal policy to dynamically assign routes to vehicles and using additional
variables that make the second stage problem linear.
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3. We derive upper bounds on the maximum number of crowd-vehicles that can be used in the
optimal solution, and utilize such bounds to bring valuable insights to the compensation of
crowd-drivers.

4. We develop a branch and price algorithm, and create an innovative cohesive sub-problem that
is capable of generating all the columns needed for the master problem.

5. Finally, we perform extensive computational experiments on modified Solomon instances,
solving problems with 100 delivery requests and show the value of the stochastic solution and
the impact of uncertainty when routing a fleet of stochastic vehicles.

The remainder of this paper is organized as follows. In section 2 we formally describe the
problem and present a set partitioning formulation. In section 3 we present the solution approach.
In section 4 we show extensive computational results and in section 5 we conclude and present some
future research directions.

2 Vehicle Routing with Stochastic Supply of Crowd-Vehicles and
Time Windows

In this section we describe and formulate The Vehicle Routing Problem with Stochastic Supply of
Crowd-vehicles and Time Windows (VRPSVTW) as a two-stage stochastic model.

Figure 1: Stochastic supply of CV

Consider the CSP (Crowd-Shipping Platform), briefly described in the introduction, that has
started a crowd shipping program and standardized the capacity of acceptable crowd vehicles to Q′.
The CSP has to complete a series of deliveries, with access to its own vehicles (PVs) and the pool

5

Vehicle Routing with Stochastic Supply of Crowd Vehicles and Time Windows

CIRRELT-2020-05



of accepted drivers that can easily switch to another platform based on demand and the preference
of drivers on any specific day. Figure 1 represents the crowd-driver market with the pool of CDs
at the center describing the supply and a set of platforms A,B,C, and D, that have a demand for
the same pool, although not all vehicles will participate in all platforms. Some drivers might sign
up in some platforms and not others, therefore we consider that there is some overlap between
the pool of drivers accessible to all platforms. We assume that there is no monopsony or collusion
in the crowd-sourcing market, and all platforms are competitors so that they are not cooperating
with each other e.g., by sharing information. If a single company controlled all the demand for
CVs, crowd drivers would have unfair wages because they would have no other option besides the
only available company. We also assume that there is no labor union or any organized structure of
crowd drivers either, so that the CDs decide what they will do independently of each other based
on their own preferences, without knowing what other CDs are doing.

From the perspective of the CSP, the demand for CVs on other platforms and the quantity
of CDs that will decide to participate at any platform, on any given day, are both unknown.
Resulting in the stochastic supply of crowd vehicles represented by the random parameter ξ. We
assume probabilistic information describing ξ, will be available thanks to the historical data showing
the supply of CVs on each day. The CSP must commit PVs before knowing the total supply of
CVs that will become available throughout the planning horizon. We consider a two stage decision
process described by figure 2.

Figure 2: Two-stage decision process

First the CSP must plan two sets of routes, one set for their own fleet of PVs, and another for
CVs, without knowing the supply of CVs. At the first stage PVs start the routes planned for them.
At the second stage the supply of CV becomes known such that the remaining routes are assigned
to the available CVs. Since the supply is stochastic, sometimes there will be an excess of CVs in
which case all routes are completed without any problems, but conversely, if there are fewer CVs
than required, expensive recourse actions will need to be taken to complete all delivery requests.
Specifically, we will consider the cost of a PVs times a penalty to complete the routes that are not
able to be completed due to a lack of CVs. This recourse action represents the additional cost to
complete a route at the second stage, it could be for example, overtime paid to company drivers to
complete the remaining unfulfilled routes.

2.1 Model

We consider an unlimited fleet of professional vehicles (PVs) with capacity Q, fixed cost F and
variable cost parameter β that multiplies the distance traveled. And a pool of crowd-drivers K ′,
with vehicles that have a capacity of at least Q′ < Q, fixed costs F ′ < F , and variable cost equal
to the distance. Information about the random variable ξ is provided by a binomial distribution
with parameters p and M . The size of the pool of CVs, M = |K ′| is the number of Bernoulli trials,
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and p is the probability of success of each trial. The recourse cost in the second stage is the cost of
a PV times a penalty α, for each additional PV that has to be used to complete unfulfilled routes.

The problem is described by a complete directed graph G(A, V ). Each customer i ∈ N = V \{0}
has a delivery request with demand qi that must be meet within a time window [tei , t

l
i], for earliest

and latest arrival times respectively. The set of vertexes V represents the customers and a central
depot and A is the set of arcs connecting each vertex.

2.1.1 Notation

Sets

V Set of all vertices;
N = V \ {0} Set of customers;
A Set of arcs connecting all customers;
K′ Set of all CVs in the pool;
Ω Set of all feasible routes for PVs;
Ω′ Set of all feasible routes for CVs;
M(λ) ⊆ Ω′ Set of CV routes constructed in the first stage solution λ;
Deterministic Parameters
p Probability of success of each Bernoulli trial in the binomial distribution;
M = |K′| Total size of the pool of CVs;
F and F ′ Fixed cost of PVs and CVs respectively;
Q and Q′ Maximum capacity of PVs and CVs respectively;
α > 1 Penalty for utilizing a PV in the second stage;
β > 1 Factor that multiplies distance to give the variable cost of a PV;
zr Recourse cost of route r ∈M(λ);
qi Demand at customer i ∈ N ;
tli Latest arrival time at i ∈ N ;
tei Earliest arrival time at i ∈ N ;
ti Service time at i ∈ N ;
dij Distance between vertices i, j ∈ A;
cr Total variable and fixed cost of a route r ∈ Ω;
air Equal to 1 if customer i is visited in route r;
Stochastic Parameters
ξ ∼ B(M,p) Stochastic variable representing the supply of CVs;
Variables
λr Binary variable equal to 1 if route r ∈ Ω ∪ Ω′ is part of the optimal solution;
yr Second stage binary decision variables r ∈M(λ);

Table 1: Notation

2.1.2 Set-partitioning

The set-partitioning formulation is a well known model based on the Dantzig-Wolf decomposition
method that has been successfully applied to solve different types of VRPs, combined with a branch
and price solution approach.

Let Ω be the set of all feasible routes for PVs, and Ω′ the set of all feasible routes of CVs. The
fixed and variable cost of a route r ∈ Ω∪Ω′, is equal to cr and the binary variable λr is equal to 1
only if route r is chosen in the solution. Let the parameters ari be equal to 1 if customer i ∈ N is
visited by route r, and M is the size of the pool of CVs. Then the set-partitioning formulation for
the VRPSVTW is the following model:
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min
∑

r∈Ω∪Ω′

crλr + Q(λ) (1)

s.t.
∑

r∈Ω∪Ω′

ariλ
r = 1 ∀i ∈ N (2)∑

r∈Ω′

λr ≤M (3)

λr ∈ {0, 1} ∀r ∈ Ω ∪ Ω′

Constraints (2) ensure that each customer is visited exactly once by only one vehicle. Constraint
(3) restricts the total number of routes that can be assigned to CVs, e.g., the size of the pool M .
The objective (1), is to minimize the total cost of routing plus the expected recourse cost.

2.1.3 Second stage problem

Once first stage decisions are made and the supply of CVs represented by the stochastic parameter
ξ becomes known, the CSP has to make optimal second stage decisions to minimize the recourse
cost.

Let M(λ) ⊆ Ω′ be a set containing all routes constructed in the first stage for CVs for a solution
λ and for all r ∈ M(λ) there is a total distance of the route equal to dr and the recourse cost is
equal to the penalty α times the fixed and variable cost of a PV i.e., α(F +βdr). The cost of route
r ∈M(λ) if a CV is available at the second stage is already considered at the first stage objective
(1) by the coefficient cr with a value equal to the fixed cost of a CV and variable cost i.e., F ′ + d.

Let zr be a second stage coefficient that has to be considered if there is a lack of supply of CVs
such that route r has to be completed by an additional PVs at an extra cost. The second stage
recourse cost coefficient that considers only the additional cost if a PVs completes route r ∈M(λ)
is defined as follows:

zr = αF + αβdr − F ′ − dr

We assume that the CSP decides the assignment of routes to available CVs and that their
corresponding drivers are willing to complete the routes that are assigned to them by the CSP.
This is a reasonable assumption since the most expensive route will have an even higher recourse
cost and will also be the most profitable for CDs. Let yr be binary second stage decision variables
that equal 1 if route r requires a recourse action and 0 otherwise. The problem that the CSP has
to solve to minimize the cost is the following.

Z(λ, ξ) = min

M(λ)∑
r

zryr (4)

s.t.

M(λ)∑
r

yr ≥ |M(λ)| − ξ (5)

yr ∈ {0, 1}, ∀r ∈M(λ)

Constrain (5) bounds the variables below by the amount of routes that have to fail if there is
a difference between routes and available vehicles. The objective (4) is to minimize recourse cost.

8

Vehicle Routing with Stochastic Supply of Crowd Vehicles and Time Windows

CIRRELT-2020-05



Note that ξ and λ are now known parameters since the supply of vehicles becomes known in the
second stage and a set of planned routes that visit all customers were established in the first stage.

When the stochastic variable ξ follows a binomial distribution with probability of success of
each Bernoulli trial equal to p and the quantity of trials equals the size of the pool M then the
recourse function Q(λ), present in the objective of (MP) is equal to the following equation:

Q(λ) = EξZ(λ, ξ) =

M∑
ξ=0

Z(λ, ξ)

(
M

ξ

)
pξ(1− p)M−ξ (6)

Therefore, equation (6) computes the expected recourse cost associated with the decisions of
replacing CV routes with PV ones whenever the available supply of CV is insufficient to implement
the planned routes.

3 Solution approach

In this section we develop a branch and price algorithm to solve the problem described in the
previous section. Firstly in section 3.1 we show the optimal policy to assign routes to drivers in
the second stage. In section 3.2 we describe the master problem. In Section 3.3 we derive upper
bounds on the total number of CV routes that can be planned in the first stage, in section 3.4 we
describe the pricing problem to generate columns to the master problem and finally in section 3.5
we show the branching strategy used to divide a fractional solution into two disjoint problems.

3.1 Optimal policy

In order to find an optimal solution for the second stage problem (4)-(5) given a set of routes
M(λ), it is imperative to develop a policy to assign routes to vehicles and find the routes that need
a recourse action for a realization of the parameter ξ.

Let H(λ) = (r1, . . . , r|M(λ)|) be an ordered set of routes for a first stage solution λ that describes
a sequence of routes r ∈M(λ) such that the recourse cost decreases monotonically i.e., zri ≥ zri+1 .

Proposition 1. For a given realisation of the supply ξ, the solution to problem (4)-(5) is obtained
by assigning the available CVs to the first elements of H(λ).

Proof. Suppose there is a second stage problem Z(λ, ξ∗) for which there exists a better solution
for a realization of the random variable ξ∗ that does not follow the policy described by H(λ). Let
y(λ, ξ∗) be the optimal solution of problem Z(λ, ξ∗). There are at least two routes yrs(λ, ξ

∗) = 1,
yri(λ, ξ

∗) = 0 where s < i and the recourse costs are zrs > zri . Exchanging these routes reduces
the objective value and leads to a contradiction.

Therefore, the optimal policy is to assign the route with the largest recourse cost to the first
available CV.

The two-stage decision process shown in figure 2 which we consider in this paper, is a good
approximation of the dynamic aspects of the supply of CVs. In practice CVs will not necessarily
show up simultaneously, instead they will arrive throughout the day, one by one at different inter-
vals. It is important to note that the policy of assigning the first unfulfilled route in the ordered
set H(λ) to the first available CV is a practical implementation of the policy for the dynamic case
i.e., as CVs become available one by one.
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3.2 Master problem (MP)

With the policy described by proposition 1, it is easy to see that the expected recourse cost of any
route is going to depend on the order in the list H(λ) that it is given. If there are other routes
that have a higher priority in the list then those will be done first. If each route is given a priority
in the first stage then the expected recourse cost can be easily computed.

Let crs be the cost of route r ∈ Ω′, if its priority is s = {1, . . . ,M}, then route r would be
assigned to a CV only after (s − 1) more expensive routes have been performed. Let P (s > ξ) be
the probability that the CV supply ξ is strictly lower than the priority s, then the expected cost
can be computed as follows:

crs = cr + zrP (s > ξ) (7)

Binary variables λr0 and λrs are introduced in the model to formulate the selection of regular
and stochastic vehicles respectively. They are equal to 1 if route r is selected with priority s and 0
otherwise. Then the master problem for the VRPSVTW is defined as follows:

MP = min
∑
r∈Ω

cr0λ
r
0 +

M∑
s=1

∑
r∈Ω′

crsλ
r
s (8)

s.t.

M∑
s=0

∑
r∈Ω∪Ω′

airλ
r
s ≥ 1 ∀i ∈ N (9)∑

r∈Ω′

λrs ≤ 1 ∀s ∈ {1, . . . ,M} (10)

λsr ∈ {0, 1} ∀s ∈ {0, . . . ,M}, r ∈ Ω ∪ Ω′

The objective (8) is to minimize the total cost, which includes the expected costs associated
with the routes that have a specific priority. Constrains (9) guaranty that all customers will be
visited at least once. This set of constraints are part of the well-known set covering formulation
where it is assumed that it will always be cheaper to visit a customer only once and therefore
relaxing the equality (2) still converges to the same solution. Constraints (10) restricts the total
amount of routes that can be designated to a priority to at most one. This ensures that solutions
with multiple routes that have the same priority are excluded.

The solution approach that we use to solve model (8) - (10) is the following:

1. We first improve the model by deriving an upper bound on the total supply of CVs and
reducing the number of constrains and variables.

2. We relax the integrality constraint and create a restricted version of the model with an initial
feasible solution consisting of all PV routes that visit a single customer.

3. The columns are generated by a heuristic DP algorithm. If the heuristic fails to find a single
column with a negative reduced cost then an exact cohesive labeling algorithm is used to find
any NG-routes that have a negative reduced cost if one exists.

4. If the solution is not integer we branch into two disjoint problems that exclude the fractional
solution.

5. We select the active problem with the best bound, and go back to step 2.
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3.3 Upper bound

In equation (10) we can see that there are as many priorities for routes as there are vehicles in
the pool of CVs. Deriving an upper bound on the number of CVs will reduce the number of
variables and constraints, making the model (8) - (10) more computationally tractable. At some
point planning another route for an additional CV will be riskier and thus more expensive than
utilizing a PV in the first stage. This is due to the monotonically increasing probability of failure
with more CVs. When a route has the priority s = 1, it can only fail if the supply of CVs is 0,
otherwise under all other realizations of ξ a route with first priority will not fail. But as the priority
of a route decreases with respect to other routes the probability of failure increases.

Let dr∗ be the total distance traveled in a route r∗ ∈ Ω′ with priority s∗, and let P (s∗ ≤ ξ) be
the probability that the supply of CVs will be greater than or equal to s∗.

F + βdr∗ ≤ P (s∗ ≤ ξ)(F ′ + dr∗) + α(1− P (s∗ ≤ ξ))(F + βdr∗)) (11)

The lhs of inequality (11) is the first stage cost of route r∗ if a PV is assigned the route. The rhs
is the expected second stage cost of route r∗ if it has priority s∗, this cost includes the probability
that the route will need recourse actions.

Lemma 1. If inequality (11) holds, then route r∗ should not be left for the second stage.

Proof. The lhs of this inequality is the first stage cost of a PV, and the rhs is the cost of a CV with
priority s∗. It should be clear that if this was not true then we would reduce the cost by using a
PV in the first stage for route rs∗ .

By lemma 1 we can see that if a route does not meet the condition of inequality (11) then it
should not be assigned to a CVs with a priority of s∗, because of the risk involved with recourse
actions that will be too expensive in comparison to the other option of simply using a PV to
complete the route with no risk. Naturally, this does not mean that the same route with a higher
priority (i.e., with a smaller s index) will not be worth considering for the second stage, since the
risk is smaller if the route is prioritized as establish in the policy described in proposition 1. It
follows that for any route there is a threshold index s̄, such that the route should not be considered
at the second stage unless the index is less than or equal to the threshold i.e., s ≤ s̄. We can
establish a threshold probability from inequality (11) with s̄.

Let P̄ be the threshold probability equal to P (s̄ ≤ ξ) = P̄ for some route r ∈ Ω′. By introducing
P̄ in inequality (11) we obtain the following equation:

P̄ =
α− 1

α− F ′+d
F+βd

(12)

The threshold probability P̄ can be expressed as a function of the distance of any route and the
fixed costs of the vehicles.

Lemma 2. Given a route r∗ ∈ Ω′ with distance d∗ and priority s∗. If P (s∗ ≤ ξ) is strictly smaller
than P̄ , then route r∗ should not be considered for the second stage.

Proof. It follows by moving the probability to the lhs of inequality (11) and from lemma 1 we
obtain the result:

P (s ≤ ξ) ≤ (α− 1)(F + βd)

α(F + βd)− (F ′ + d)
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P (s ≤ ξ) ≤ α− 1

α− F ′+d
F+βd

Lemma 2 links the probability with the distance of any given route. The only element in
equation (12) that is going to vary from one route to another is the distance which depends on
the routing decisions that are made in the first stage. When routes have a longer distance the
variable cost is more important and influences the threshold probability more. Conversely if the
distance is small, the fixed cost has more weight in the cost structure and the threshold probability
is determined by the fixed cost. It follows that we can establish bounds on P̄ with the purpose of
establishing a threshold that will be applicable to all routes. Consider the following ratio:

P̄ =
α− 1

α− 1
β

(13)

Lemma 3. When the distance tends to infinity d→∞, P̄ from equation (12) converges monoton-
ically to (13).

Proof. This result is easily obtained by observing the following fraction in equation (12):

F ′ + d

F + βd

Lemma 3 states that when the distance of a route increases to a sufficiently large value, P̄ tends
to 13. Consider the following ratio:

P̄ =
α− 1

α− F ′

F

(14)

Lemma 4. When the distance tends to zero, d→ 0, P̄ from equation (12) converges monotonically
to (13).

Proof. It follows from the proof of lemma 3.

The ratio in equation (13) provides the bound needed for threshold probability when the distance
is sufficiently large. Conversely the ratio in equation (14) provides the bound when the distance is
equal to zero.

Figures 3 and 4 plot P̄ as the distance grows, for different parameter values. We can also
visualize both ratios (13) and (14). In figure 3, ratio (13) provides a lower bound for P̄ and ratio
(14) provides an upper bound. Conversely, in figure 4, ratio (14) provides a lower bound for P̄
and ratio (13) provides an upper bound. The smallest ratio is the least restrictive, and bounds P̄
below. Note that the ratio that determines the lower bound depends on the parameters for each
instance.

Figures 5 and 6 plot the cumulative probability P (s ≤ ξ) and the priority s for a pool of 100
CVs. We can see on both figures that creating routes with priority greater than or equal to 5 is
not going to be optimal, regardless of the distance of routes.
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Let P−1(x) be the discrete quantile function of P (s ≤ ξ). Let M̄ be defined by:

M̄ = max

[
P−1

(
α− 1

α− 1
β

)
, P−1

(
α− 1

α− F ′

F

)]
(15)

Proposition 2. M̄ is an upper bound of the total CVs in the optimal solution.

Proof. From lemma 3, and lemma 4, we see that the threshold probability converges either to (13)
or (14), depending on the given parameters. The least restrictive of these two values will provide
an upper bound.

The upper bound M̄ can replace M in the MP, reducing the amount of variables and constrains,
thus making the pricing problem computationally less difficult.

It is imperative for the CSP to establish a threshold compensation, i.e., a point at which paying
CDs more would lead to loses and not provide a cost reduction. The fleet of PVs has a known fixed
and variable cost as well as a known penalty α, for hiring a PV in the future. The compensation
that has to be decided upon is the fixed and variable cost for CVs. In any realistic representation
of the problem the upper bound for CVs has to be greater than or equal to one, i.e., M̄ ≥ 1.
Otherwise it should be clear that CVs should not be used. It can be concluded from equations
(13), (14) and (15), that β and F ′ should be fixed in a way such that M̄ ≥ 1.

3.4 Pricing

Generating columns for the linear relaxation of the restricted master problem requires the solution
of a set of sub-problems for each variable of type s in order to find variables with a negative reduced
cost. If no variable with negative reduced cost is found and the solution is integer then the solution
is optimal for the MP.

Let π and µ be the dual variables with respect to constraints (9) and (10) respectively. Then
the pricing problems are the following:

min
r
ĉrs = {crs −

∑
ariπi + µs : r ∈ Ω ∪ Ω′} ∀s ∈ {0, . . . , M̄} (16)

Where crs equals the fixed and variable cost of route r as defined in the MP and the index s = 0
corresponds to the PV routes. From (16) we can see that there are M̄ + 1 problems that are
required to find a negative reduced cost variable. In section 3.4.1 we present a simple exact dynamic
programming algorithm that given the priority s = {0, . . . , M̄} generates columns with negative
reduced cost. In section 3.4.2 we describe an exact cohesive labeling algorithm that generates
columns for any priority s = {0, . . . , M̄}, if one exists. In section 3.4.3 we illustrate how to
implement Ng-routes and decremental state space relaxations to both exact algorithms. Finally,
we outline a heuristic DP algorithm that creates elementary routes.

3.4.1 Dynamic programming

All problems in (16) are elementary shortest path problems with resource constraints (ESPPRC).
Well-known dynamic programming methods called labeling algorithms exist to solve shortest path
problems (Martinelli et al. (2014)). Labels represent partial paths that can return to the depot or
continue visiting additional customers.
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Let Lsp = (ip, wp, tp, dp, π̄p,Vp) be a label for variable of type s that describes path p, with current
customer, load, time, distance, cumulative dual variables, and the set of unreachable customers
respectively. For all possible loads, new labels are created by extending existing labels to feasible
customers such that:

1. The customer is not contained in the set of unreachable customers Vp.

2. Time windows are not violated.

3. Capacity of s is not exceeded, i.e., w ≤ Q′ for s = {1, . . . , M̄}, and w ≤ Q otherwise.

The resource vector is then updated for the newly created label by extending the resources from
its parent label. Columns for the MP can be created by extending the labels back to the depot.
To facilitate the calculation of the reduced cost we define the following parameters that represent
the variable and fixed cost for each sub-problem:

vs =

{
β, if s = 0

1 + P (s > ξ)(αβ − 1), otherwise

Fs =

{
F, if s = 0

F ′ + P (s > ξ)(αF − F ′), otherwise

The reduced cost can be constructed later, when extracting solutions, by extending each label
from its current customer to the depot and adding the corresponding dual variables. The reduced
cost for a path p represented by a label Lsp is equal to:

(dp + cip0)vs − π̄p + µs + Fs (17)

The parameter vs multiplies the distance, and the parameter Fs is the fixed cost depending on the
priority that the path is assigned. The fixed costs in equation (17), i.e., µs and Fs do not alter
the path structure in any way, and can be evaluated when extracting solutions from the labeling
algorithm.

Dominance rules are used to reduce the number of labels such that labels that utilize less
resources and have a smaller cost, dominate the labels that do not. More precisely for each s =
{0, . . . , M̄}:

Dominance rules 3.1. Label Ls1 dominates label Ls2 if the following rules are true:

a) i1 = i2

b) w1 ≤ w2

c) t1 ≤ t2

d) V1 ⊆ V2

e) d1vs − π̄1 ≤ d2vs − π̄2

16

Vehicle Routing with Stochastic Supply of Crowd Vehicles and Time Windows

CIRRELT-2020-05



Condition a) confirms that the current customer is the same for both labels and the remaining
conditions guaranty that all customers that can be reached by label Ls2 can also be reached with a
smaller cost by the dominant label Ls1. The dominated label Ls2 is then removed form the algorithm
and it is no longer considered. Dominance rules improve the performance of the labeling algorithm
by significantly reducing the amount of labels.

Algorithm 1 describes the exact method to find the cheapest label w.r.t., equation (17) that
follows dominance rules 3.1 for all s from 0 to the upper bound of crowd drivers. It builds a matrix
M(w, i) that contains all labels in customer i ∈ N with load w for all the possible loads. The first
step is to create labels that extend to each customer from the depot. The procedures feasible and
Dominance are simple procedures that verify the feasibility of an extension and the dominance
rules respectively. The algorithm terminates by returning the cheapest column by iterating trough
all labels in M that were not dominated and checking the cost.

Algorithm 1: Exact S-DP
Input : πi, µs, s ∀i ∈ N,
Output: Column with smallest reduced cost Ls
M(w, i)← ∅, ∀i ∈ N,w ∈ {0, . . . , Qs} ;
M(qi, i)← {(i, qi,max(tei , d0i) + ti, d0i, πi, {i})}, ∀i ∈ N : feasible(0, i) ;
for w = 1 to Qs do

for i ∈ N do
if w − qi > 0 then

for j ∈ N \ {i} do
for l ∈M(w − qi, j) do

if feasible(j,i) then
if i 6∈ Vl then

Create new label:
g ← (i, w,max(tei , dji + dl) + ti, dl + dji, π̄l + πi, {i} ∪ Vl);
dominated← false;
Dominance← rules 3.1;
for h ∈M(w, i) do

Check dominance:
if Dominance(h, g) then

dominated← true;
Break;

else if Dominance(g, h) then
Delete dominated label:
M(w, i) \ {h};

end
end
if not dominated then
M(w, i)←M(w, i) ∪ {g};

end

end

end

end

end

end

end

end
return Cheapest label from M

3.4.2 Cohesive pricing

Solving the sub-problems separately can be time consuming. Furthermore, most labels that are
created are the same, the dominance rules 3.1 vary for each sub-problem only for rule e), i.e., the
variable cost, but all others are the same.
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Dominance rules 3.2. Label L1 dominates label L2 if the following rules are true:

a) - d)

f) d1vs − π̄1 ≤ d2vs − π̄2 ∀s ∈ {0, . . . , M̄}

Dominance rules 3.2 guaranty that the label L2 is eliminated only if label L1 is dominant for
all possible values of the parameter vs for each sub-problem. Therefore if a label is created in one
of the sub-problems then it will also be created in the cohesive pricing problem. Let Lc be the set
containing all labels created in the cohesive sub-problem following dominance rules 3.2, and Ls be
the set of labels created in sub-problem ∀s ∈ {0, . . . , M̄} applying rules 3.1 then it is easy to see
that:

Lc =

M̄⋃
s=0

Ls

In fact the parameters vs can be ordered from smallest to largest. Let v and v̄ be the smallest and
largest values of parameters vs respectively.

Proposition 3. If condition d1v̄ − π̄1 ≤ d2v̄ − π̄2, and condition d1v − π̄1 ≤ d2v − π̄2 are true for
any two labels L1 and L2, then all following conditions are also true:

d1vs − π̄1 ≤ d2vs − π̄2 ∀s ∈ {0, . . . , M̄}.

Proof. By contradiction suppose there exist some s∗ ∈ {0, . . . , M̄} for which:

d1vs∗ − π̄1 > d2vs∗ − π̄2

The cases where vs∗ = v̄ or vs∗ = v are trivial since this is stated to be true in the proposition.
Therefore the value vs∗ is strictly larger than v and strictly smaller than v̄ because by definition
they are the smallest and the largest value in the vector vs respectively. So there exists two values
f1 > 0 and f2 > 0 such that vs∗ = v̄ − f1 and vs∗ = v + f2

(d1v̄ − π̄1)− (d2v̄ − π̄2) > (d1 − d2)f1 ⇒⇐ (d1v − π̄1)− (d2v − π̄2) > (d2 − d1)f2

By proposition 3 we can now describe a new set of dominance rules that are simpler than rules
3.2, by reducing the the number of rules. Furthermore, they allows the solution of all sub-problems
in a single one.

Dominance rules 3.3. A label L1 dominates L2 if:

a) - d)

g) d1v − π̄1 ≤ d2v − π̄2

h) d1v̄ − π̄1 ≤ d2v̄ − π̄2

Algorithm 2 shows the exact method for the cohesive pricing strategy. This simple algorithm
is able to generate all the columns for the master problem by applying the improved dominance
rules. When the load is higher than the CV capacity Q′, it is no longer necessary to use domi-
nance rules 3.3 because the only possible vehicle is a PV. Dominance rules 3.1 are then applied
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only for a PV and all labels that are dominated for s = 0 are removed from future extensions.

Algorithm 2: Exact C-DP
Input : πi, µs, s ∀i ∈ N,
Output: Column with smallest reduced cost Ls
M(w, i)← ∅, ∀i ∈ N,w ∈ {0, . . . , Qs} ;
M(qi, i)← {(i, qi,max(tei , d0i) + ti, d0i, πi, {i})}, ∀i ∈ N : feasible(0, i) ;
for w = 1 to Qs do

for i ∈ N do
if w − qi > 0 then

for j ∈ N \ {i} do
for l ∈M(w − qi, j) do

if feasible(j,i) then
if i 6∈ Vl then

Create new label:
g ← (i, w,max(tei , dji + dl) + ti, dl + dji, π̄l + πi, {i} ∪ Vl);
if w > Q′ then

Dominance← rules 3.1 for s = 0;
else

Dominance← rules 3.3;
end
dominated← false;
for h ∈M(w, i) do

Check dominance:
if Dominance(h, g) then

dominated← true;
Break;

else if Dominance(g, h) then
Delete dominated label:
M(w, i) \ {h};

end
end
if not dominated then
M(w, i)←M(w, i) ∪ {g};

end

end

end

end

end

end

end

end
return Cheapest label from M

3.4.3 Ng-routes and decremental state-space relaxation (DSSR)

Dominance rule d) imposes the elementary constraints on the considered paths, which make the
subproblems considerably more complex to solve. A common relaxation is to drop rule d) and
allow cycles, where customers can be present multiple times on the paths obtained. Columns
with cycles are always more expensive and are eliminated in the optimal solution. Therefore, the
relaxation improves the time complexity of the pricing problems but weakens the bound of the
master problem. A compromise between the two is achieved by ng-routes relaxation proposed by
Baldacci et al. (2011). For each customer an ng-set of nearest customers including the current
customer, Ni ⊆ N for all i ∈ N , is kept. Dominance rule d) is relaxed by only applying it to the
customers that are contained in the ng-sets.

Let Lp be a label of path p = (0, i1, . . . , ip) that starts at the depot and visits a sequence of
customers and ends at the current customer ip, let Vp be the set of prohibited customers and ip+1
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be a feasible customer that can be reached form label Lp such that ip+1 6∈ Vp. To extend label Lp
to customer ip+1 and create label Lp+1 the set of prohibited customers are updated in the following
way:

Vp+1 =
{
Vp ∩Np+1

}
∪ ip+1

The initial set of unreachable customers is empty since from the depot all customers are feasible.
It is clear that if the ng-set contains all customers then we end up with elementary routes. As the
ng-sets become smaller non necessarily elementary routes can be formed as long as they are not
in the ng-sets. In our implementation we use the 10 nearest customers from each customer such
that the set |Ni| = 10 for all i ∈ N . Decremental state space relaxations (DSSR), further improve
the performance of the pricing algorithms by starting with empty ng-sets and adding customers as
needed until the cheapest route has no cycles that violate the ng restrictions. For a more detailed
description of the implementation of ng-routes and DSSR the reader is referred to Baldacci et al.
(2011), and Martinelli et al. (2014).

3.4.4 Heuristic DP

At every iteration, it is not necessary to find the best column to add to the restricted master
problem. The search can be sped up by applying a heuristic method to find a column with a
negative reduced cost. The heuristic implementation of S-DP, and C-DP is done by dropping the
difficult rule d completely while only allowing elementary paths to be formed. Labels are extended
to unvisited customers and can be deleted by following dominance rules a)−c), and f) so that only
a few paths remain. This simple heuristic creates most columns for the algorithm and only when
this heuristic fails to find a negative column the exact method is used.

3.5 Branching

The branching strategy chosen in this implementation is the most fractional value first. Branching
is done primarily in two ways:

1. Total number of PV and CV;

2. The arcs that connect each note can either be 1 or 0.

When the total number of vehicles is fractional we branch up and down so that the fractional
solution is excluded. If the number of vehicles is integer then we branch on the variables that
traverse through an arc. The sum of variables that pass through an arc (i, j), in any feasible
solution, must be either 1 or 0. If the sum of variables is fractional then we branch on the sum of
such variables.

The DP algorithm can be easily modified for both branching strategies. The first branching
strategy does not affect the paths. The second branching strategy requires that we check at each
extension whether it is possible. If the current problem in the branching tree has the condition
that the arc (i, j) = 0, or at any parent node, then the extensions in the pricing problem that go
from i to j are not allowed, otherwise the extension is allowed.
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4 Computational results

To evaluate the impact of a stochastic fleet on traditionally deterministic problems, we modify the
well-known Solomon instances C1, R1, and RC1 with 25, 50 and 100 customers by including an
additional fleet of CVs.

Parameters Description Value

Q Capacity of PV 200
Q′ Capacity of CV 100
F PV fixed cost 100
F ′ CV fixed cost 50
α Second stage penalty 2.0
1
β

CV variable cost ratio 0.5

p Probability of success in binomial distribution 0.05
M Size of the pool of CVs 100
p×M Average number of CVs 5
M̄ Upper bound on CVs 4

Table 2: Parameters for the base case

Table 2 shows the values for the parameters in the base case. PVs have the same capacity
for the Solomon instances of 200, but we added a fixed cost of 100 and a variable cost β = 2.0.
The pool of crowd vehicles has a total size of 100, with an average value of 5 vehicles. The fixed
and variable costs (F ′ = 50, 1

β = 0.5) for CVs are half of the cost for PVs to be consistent with

the capacity of 100. Finally the upper bound M̄ = 4 is calculated by replacing the values for the
parameters in equation (15).

In the remainder of this section, we present the computational results of the branch and price
algorithm. In section 4.1, we evaluate the value of the stochastic solution for our model, compared
with a deterministic model that simplified the stochastic elements by replacing the stochastic pa-
rameter ξ with its expected value. In section 4.2 we report the cost savings that can be achieved by
implementing CVs. In section 4.3 we compare the improvements by cohesive pricing compared to
the exact DP algorithm that solves each subproblem independently. Furthermore we present result
for all instances with up to 100 customers and report times and cost obtained. Finally, in section
4.4 we show how the bound obtained in section 3.3 can be used to derive interesting insights on
the compensation of CDs. The algorithms were all implemented in Java SE 1.8.0 and executed in
a Linux-CentOS 7 system with an Intel core E5-2683 at 2.1GHz, and 16GB of ram. The solver
CPLEX 12.9 was used for the linear problems.

4.1 Value of the stochastic solution (VSS)

A naive solution approach to problems with uncertainty is to simply get the expected value of
the random variable and solve the deterministic model, i.e., assuming that the random variable is
always equal to its expected value; this problem is called the expected value problem (EVP). In
reality variations occur in the random variable and expensive recourse actions need to be taken.
The problem that considers the variations of the random variable based on probabilistic information
is the recourse problem (RP), which minimizes the routing cost and the cost of recourse actions.
To construct the EVP for the base case, we simply set the number of crowd vehicles to 5, which
is the expected supply of CV. The expected value of the objective function for the EVP solution
is then evaluated by considering the variations of the random variable and the recourse cost. The
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value for the RP solution is obtained by simply solving model 8-10. The value of the stochastic
solution (VSS), which is what is gained by solving the stochastic problem, is simply the difference
of these two values:

V SS = Eξ[EV P ]−RP

In table 3 we assess the value of the stochastic model (RP) compared to the EVP by performing a
sensitivity analysis on the parameters. We solved all instances with 25 customers and report the
average values in each row. The first column of the table show the parameter change from the base
case. For the EVP and the RP we present on each column the total average cost, excluding the
recourse cost, next column shows the average recourse cost Q(λ) for the solution obtained. Next
column reports the total average cost with the cost of recourse actions, and the last two columns
shows the average CVs and PVs used in all instances, for EVP and RP.

The last three columns of table 3 report the average VSS, the average percentage of the VSS
and the standard deviation of the average percentage of the VSS for all instances respectively. We
can see that the VSS is more significant as the solution for the EVP utilizes more CVs and it
becomes less important when few CVs are utilized in the EVP. If the CSP plans on replacing the
deterministic fleet with the pool of stochastic vehicles then it is imperative to solve the stochastic
model. The VSS is a non trivial amount for all cases, but the largest changes are caused by
variations in the variable cost and the recourse penalty.

Table 3: Value of the stochastic solution for 25-customer instances
EVP RP VSS

Ins Cost Q(λ) Total c. CV PV Cost Q(λ) Total c. CV PV Value % σ
Base 715.75 213.93 929.7 4.45 0.45 763.81 85.68 849.5 2.8 1.3 80.2 11.33 11.0
α = 1.5 715.75 142.63 858.37 4.45 0.45 738.11 78.66 816.78 3.31 1.0 41.59 6.26 6.88
α = 2.5 715.75 285.25 1001.0 4.44 0.44 821.23 54.32 875.54 2.31 1.76 125.46 17.03 15.18
1
β

= 0.25 787.72 402.14 1189.86 4.52 0.45 893.02 215.29 1108.35 3.48 0.97 81.51 8.57 8.84
1
β

= 0.75 668.25 78.55 746.8 2.51 1.41 689.92 44.9 734.81 2.0 1.76 12.0 1.37 2.29
F ′

F
= 0.25 604.31 232.69 837.0 4.48 0.45 673.6 104.15 777.74 3.21 1.14 59.26 9.41 9.55

F ′

F
= 0.75 813.98 124.29 938.26 3.07 1.14 834.56 72.77 907.33 2.24 1.62 30.93 3.03 4.39

Q′ = 75 804.23 159.12 963.35 3.0 1.41 859.14 45.55 904.69 1.86 2.03 58.66 6.77 7.29
Q′ = 125 655.47 230.52 885.99 4.41 0.17 693.52 126.17 819.69 3.69 0.59 66.31 7.53 11.11

4.2 Value of crowd vehicles (VCV)

To determine whether implementing CVs produces any cost savings, we compare the objective
value of the solution obtained by our model, with the solution value of the problem without CVs
(PVP), i.e., PV only. When PVs are used exclusively, there is no risk considered, hence no recourse
actions, and no additional cost. Conversely, when CVs are included in the set of options that the
CSP has, risk of not having enough supply is considered leading to additional cost. To evaluate
how much cost savings is achieved by implementing CVs in the routing problem, we compare the
solution value of a problem with PVs only, with the solution value of our framework.

The value of crowd vehicles is defined as the difference between the solution value of the PVP
problem, and the solution value of the solution of RP as defined in section 4.1.

In table 4, we solve the same instances of table 3, described in section 4.1, with the two relevant
problems, i.e., PVP and RP. The last three columns report respectively, the average VCV for the
instances, the average percentage of the VCV w.r.t. the PVP value, and the standard deviation of
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the percentage. For the PVP problem, we report the average total cost (Total c.) and the average
PV used in the solution. For the RP problem, we report the total average cost, average CV, and
average PV.

Table 4: Value of CVs for 25-customer instances
PVP RP VCV

Ins Total c. PV Total c. CV PV Value % σ
Base 1082.57 3.86 849.5 2.8 1.3 233.08 19 13
α = 1.5 1082.57 3.86 816.78 3.31 1.0 265.8 21.44 14.6
α = 2.5 1082.57 3.86 875.54 2.31 1.76 207.02 16.75 11.5
1
β

= 0.25 1778.94 3.86 1108.35 3.48 0.97 670.62 35.12 14.4
1
β

= 0.75 849.29 3.86 734.81 2.0 1.76 114.76 11.86 9.3
F ′

F
= 0.25 1082.57 3.86 777.74 3.21 1.14 304.82 25.90 12.8

F ′

F
= 0.75 1082.57 3.86 907.33 2.24 1.62 175.24 13.62 11.9

Q′ = 75 1082.57 3.86 904.69 1.86 2.03 177.88 13.39 12.8
Q′ = 125 1082.57 3.86 819.69 3.69 0.59 262.89 22.22 10.6

The parameters that have the greatest impact on the VCV are the variable cost of CV, fixed
costs of CV, and the capacity CV. Naturally, as CV have more capacity available, they can perform
longer routes, and hence are more efficient.

4.3 Performance

We solved all instances with the branch and price algorithm and tables 3-5 show the results for
instances with 25, 50 and 100 customers respectively. All 29 instances were solved for 25 customers,
19 out of 29 for 50 customer instances, and 5 were solved optimally for instances with 100 customers.

We can see that CVs are a part of all solutions, some requiring only 1 CV and other instances
the maximum number allowed. In smaller instances PVs are replaced completely since only a few
vehicles are needed to complete the delivery requests. Larger instances require more vehicles to
complete all deliveries and the upper bound becomes more restrictive.
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Table 5: Results for 25-customer instances
Instance Cost Time (s) CV PV Total
C101 617.18 10.7 3 1 4
C102 615.03 422.55 3 1 4
C103 611.12 282.87 1 2 3
C104 606.29 1402.25 1 2 3
C105 617.18 16.17 3 1 4
C106 617.18 11.29 3 1 4
C107 604.55 3.5 1 2 3
C108 604.55 9.63 1 2 3
C109 604.55 20.97 1 2 3
R101 1622.97 1.3 4 4 8
R102 1396.0 16.8 4 3 7
R103 884.12 61.1 4 0 4
R104 794.14 35.6 4 0 4
R105 1134.28 3.26 4 1 5
R106 993.09 40.4 4 1 5
R107 802.75 51.19 4 0 4
R108 781.71 240.3 4 0 4
R109 850.89 4.61 4 0 4
R110 835.08 41.55 4 0 4
R111 815.67 65.51 4 0 4
R112 778.83 442.77 4 0 4
RC101 1038.62 4.2 2 2 4
RC102 947.16 17.64 2 2 4
RC103 924.54 30.44 2 2 4
RC104 875.52 17.0 2 2 4
RC105 964.10 4.72 2 2 4
RC106 942.34 22.14 2 2 4
RC107 881.70 41.76 2 2 4
RC108 874.25 71.12 2 2 4

Table 6: Results for 50-customer instances
Instance Cost Time (s) CV PV Total
C101 1174.76 408.65 3 3 6
C102 1174.54 58788.3 3 3 6
C105 1174.76 1641.46 3 3 6
C106 1174.76 925.42 3 3 6
C107 1172.0 1966.2 3 3 6
R101 2815.28 35.96 4 7 11
R102 2384.16 221.15 4 6 10
R103 1920.78 1547.54 4 4 8
R105 2235.7 708.19 4 5 9
R106 1879.46 980.6 4 3 7
R107 1639.01 6375.52 4 2 6
R109 1839.67 6251.07 4 3 7
R110 1682.27 4169.51 4 3 7
RC102 1883.5 26295.2 4 3 7
RC103 1745.9 2891.95 2 4 6
RC104 1555.68 495.23 2 4 6
RC106 1741.59 2649.08 2 4 6
RC107 1613.1 3624.5 2 4 6
RC108 1551.1 16914.6 2 4 6
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Table 7: Results for 100-customer instances
Instance Cost Time (s) CV PV Total
C101 2626.65 7157.37 3 8 11
C105 2617.93 16851.2 3 8 11
C107 2617.58 44567.4 3 8 11
R101 4723.86 152.21 4 15 19
R102 4203.5 272.12 4 13 17

Instances with 25 customers were tested with both pricing algorithms S-DP and C-DP. Table
8 shows a comparison between the two and reports the number of columns (col.) and time at the
root node (T(s)), and the total number of columns and total time to find the optimal solution.
The last two columns show the difference in total time and the percentage of improvement in time
respectively when using C-DP. Both algorithms create roughly the same number of columns, but
C-DP is much faster since it does not create labels redundantly.

Table 8: Comparison of DP algorithms for 25-customer instances
S-DP C-DP

Root Total Root Total

Ins col. T(s) col. T(s) col. T(s) col. T(s) ∆T(s) %T
C101 444 4.13 1525 18.4 374 0.83 1475 4.57 13.83 75.16
C102 512 13.59 11841 674.76 453 2.49 10083 277.57 397.19 58.86
C103 477 26.82 4704 347.39 479 6.96 4108 129.59 217.8 62.70
C104 500 43.98 14965 2926.87 499 16.7 14624 1455.51 1471.36 50.27
C105 436 4.07 2036 34.63 399 0.8 2114 8.4 26.23 75.74
C106 471 4.75 1442 18.92 370 0.78 1319 4.6 14.32 75.69
C107 475 5.2 706 10.48 374 0.87 648 1.56 8.92 85.11
C108 596 12.5 1062 25.50 492 1.76 966 4.82 20.68 81.10
C109 498 14.61 1272 35.11 427 3.15 1155 11.64 23.47 66.85
R101 246 2.66 246 2.7 219 0.54 219 0.55 2.15 79.63
R102 310 17.04 419 39.07 293 1.53 435 5.29 33.78 86.46
R103 455 58.36 1396 187.61 461 5.19 1199 33.95 153.66 81.90
R104 396 71.1 444 96.0 434 8.46 560 16.21 79.8 83.12
R105 369 6.01 541 11.14 303 0.75 418 1.28 9.86 88.51
R106 359 28.66 1493 88.01 357 3.73 1086 16.97 71.04 80.72
R107 485 68.26 1011 150.61 452 10.54 827 24.54 126.07 83.71
R108 458 65.8 3461 894.5 481 13.37 3448 184.76 709.74 79.34
R109 346 17.42 346 17.44 422 2.29 422 2.3 15.14 86.81
R110 326 32.68 1139 108.15 432 5.6 933 18.12 90.03 83.25
R111 400 49.35 864 105.97 427 8.08 799 23.91 82.06 77.44
R112 428 66.69 4606 1291.1 425 14.88 5044 370.19 920.91 71.33
RC101 392 3.66 992 10.23 332 0.75 1222 4.1 6.13 59.92
RC102 417 9.05 934 30.78 359 1.47 991 6.76 24.02 78.04
RC103 471 16.93 1798 91.76 411 2.73 1692 20.15 71.61 78.04
RC104 455 19.94 643 32.55 415 4.77 624 9.52 23.03 70.75
RC105 387 6.88 596 10.24 389 1.47 512 2.42 7.82 76.37
RC106 424 7.45 1611 37.92 364 1.45 1260 7.82 30.1 79.38
RC107 423 21.94 1995 93.11 338 3.92 1396 21.61 71.5 76.79
RC108 375 33.83 1732 147.75 327 7.98 960 41.74 106.01 71.75

4.4 Compensation

The compensation can have a significant impact in the supply of vehicles. Based on the well-known
laws of supply and demand, the more the CSP compensates drivers, the more likely it is they will
be available. Conversely, the less CV are paid, the smaller the supply and the more uncertain
the delivery process will be. Table 9 shows the maximum number of CV (i.e., M̄) that is feasible
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for any delivery problem as the compensation changes represented as a ratio of the cost of a PV.
Columns show different values for the probability of success in a binomial distribution with 100
CVs. The parameter α = 2.0 and equation (15) are used to compute the upper bound. We can
see that the more expensive CVs are, the less likely they will be used in a solution. This table can
provide insights to the compensation of CV when probabilistic information is known as well as the
sensitivity of the supply and compensation. For example, when the compensation of a CV is equal
to 50% of the PV cost and p = 0.05, the CSP can plan on using only 5 CVs before incurring in
a loss. However, if the CSP increases the compensation to 60% and as a consequence the supply
shifts to p = 0.07, then the CSP can feasibly plan to use up to 7 CVs.

CV cost
PV cost

Probability of success for a pool of 100 CVs

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.9 1 1 2 3 4 5 5 6 7
0.8 1 2 3 4 5 5 6 7 8
0.7 1 2 3 4 5 6 7 8 9
0.6 2 3 4 5 6 7 7 8 9
0.5 2 3 4 5 6 7 8 9 10
0.4 2 3 4 5 6 7 8 9 10
0.3 2 3 4 5 6 7 8 9 10
0.2 2 3 4 5 7 8 9 10 11
0.1 2 3 5 6 7 8 9 10 11
0 2 4 5 6 7 8 9 10 11

Table 9: Upper bound on the number of CVs for different compensation levels

5 Conclusions and future research

Crowd-shipping is a new phenomenon that is still at a conceptual stage requiring quantitative
studies to help evaluate the feasibility of different approaches. In this paper, we presented the
problem of routing a mixed fleet of deterministic company vehicles and stochastic crowd vehicles
and formulated a set partitioning model improved by adding variables that enable the solution of the
second-stage problem. We developed a policy to dynamically allocate routes to crowd drivers as they
become available throughout the day. We derived upper bounds that strengthen the formulation
and gave interesting insights into the compensation of drivers. We presented a branch and price
algorithm that is able to solve large instances with 100 customers and a pool of 100 CVs. The
cohesive pricing dynamic programming algorithm was compared with the traditional DP algorithm
and it was shown to be much faster because it avoids creating redundant labels at every extension.
We computed the VSS and showed that it can be quite significant for small problems with 25
customers, it can be as large as 17% of the total delivery cost. Finally, we showed that there can
be significant cost savings of 35 % by implementing crowd drivers.

Future research is needed to gain additional insights in the effect that uncertain vehicle prop-
erties have in routing problems in contrast to traditional models where uncertainty originates from
customers or road conditions. In this paper we have studied the uncertain supply of vehicles, but
many other problems remain unsolved. We assumed that CDs accept the assignment of routes by
the CSP, since the most expensive and thus more profitable routes are assigned to the first avail-
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able drivers. Nevertheless not all drivers are solely motivated by profit, some might have specific
preferences such as smaller routes, duration of routes or even the neighborhood in which routes
are could influence the drivers choices of routes. Accounting for these preferences is an interesting
avenue of research to consider. There are many opportunities to extend this study and explore
different vehicle properties as well, e.g., the capacity of vehicles could be stochastic, drivers might
also have stochastic destinations and so on. As the sharing economy becomes more ubiquitous in
society, mathematical models that provide quantitative results will be more important to evaluate
different delivery concepts.
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