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Abstract. In this paper, we consider an extension of the classical location routing and the 

time-dependent vehicle routing problems to introduce the time-dependent fleet size and mix 

location routing problem. We develop the mathematical model for this new challenging 

problem, along with several generic and problem specific valid inequalities. A new powerful 

metaheuristic is proposed to solve different sized instances of the problem which are 

generated from the real traffic data. Our metaheuristic is assessed on a special case of the 

problem from the literature and obtains many new best-known solutions. For the newly 

introduced problem, we provide good solutions and tight bounds. Our computational results 

demonstrate the importance of using a powerful algorithm to solve complex optimization 

problems. 
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1. Introduction

City logistics is faced with several major challenges, among which congestion and tra�c are

of great concern. Finding an e�cient and e↵ective way to transport goods in urban areas has

became the definition of the city logistics itself [26]. This e�cient and e↵ective distribution

within cities is not only related to cost reduction, but it also aims to alleviate and avoid con-

gestion and, consequently, greenhouse gas emissions (GHG). After all, research on green freight

transportation highlights the e↵ect of congestion on fuel consumption and GHG emissions [7].

Besides distribution decisions, there are several other decisions to be considered in a city logistics

context that have a direct impact on the distribution costs and GHG emissions. In this sense,

facility location, routing, and fleet composition are known as the main decisions to be optimized

[19]. Research and practice show that all these decisions are interdependent and, therefore,

must be jointly optimized. Several integrated supply chain optimization problems have been

introduced in the literature that combine decisions from di↵erent levels. Strategic level decisions

such as facility location are combined with the vehicle routing problem (VRP), leading to the

Location Routing Problem (LRP) (see Drexl and Schneider [9]). At the same time, tactical level

decisions for the composition of the fleet, also known as the fleet size and mix, are considered

in several LRP studies [18, 19]. These problems are very applicable to real world situations in

which a fleet of heterogeneous vehicles is available to conduct distribution.

In this paper, we study the time-dependent fleet size and mix location routing problem (TD-

FSMLRP). Our main contribution lies in considering that routing costs depend on the time

of the day, i.e., a time-dependent routing cost. In routing problems, this cost is mainly based

on the distances, arguing that fuel expenses rise as longer distances are traveled. In reality, the

fuel consumption and, consequently, the routing cost depend on the distance traveled, the time

spent in tra�c, and the speed, among other factors. Using a real tra�c database, we estimate

the routing costs considering the travel time.

In addition to introducing the TD-FSMLRP, the contributions of this work are as follows.

We formally define and model the problem and solve it with both exact and approximate

approaches. Several instances of the problem are developed using real tra�c data from Quebec

2

Time-Dependent Fleet Size and Mix Location Routing Problem 

CIRRELT-2020-13



City. These instances are used to show the e↵ectiveness of the proposed solution algorithms.

As they are generated from real data, they also help us in gaining insights on the impacts of

location and routing decisions on city logistics issues.

The remainder of this paper is as follows. In Section 2, we provide an overview of the studies

related to the TD-FSMLRP. In Section 3, we present the formal description of the problem

and its mathematical formulation. Our proposed heuristic is described in Section 4. This is

followed by the computational experiments in Section 5. Finally, we draw the conclusions of

our study in Section 6.

2. Literature review

This paper is closely related to two areas of research: fleet size and mix LRPs and time-

dependent routing problems. In this section, we provide a brief review of the recent state-of-

the-art in these domains.

Since its introduction by Von Boventer [34], LRPs have been broadly studied in the literature

[9, 30]. Particularly, this problem is very applicable within the context of city logistics. In their

recent work, Schneider and Lö✏er [31] use a large composite neighborhood algorithm to solve

large scale LRP instances. As the LRP has become an area of interest in the past ten years,

several new variants have been introduced and studied in the literature: multi-commodity LRP

[2], flexible two-echelon LRP [6], electric LRP [27, 28], and green LRP [10]. Fleet size and

mix LRPs are also among the variants being studied [18]. More generally, the idea of sourcing

from di↵erent locations and pooling inventory to satisfy a given demand with minimum cost

has been shown to be e↵ective [33].

First introduced by Golden et al. [14], fleet size and mix vehicle routing is also a very well

established class of routing problems (see Renaud and Boctor [23], Lahyani et al. [21]). This

problem di↵ers from the heterogeneous VRP as the fleet is considered to be unlimited [19].

Arguing that in many companies a fleet of di↵erent capacities is available, Salhi and Fraser [25]

incorporate heterogeneous vehicles in the LRP context. Wu et al. [35] propose a decomposition

method to solve the multi-depot LRP with a limited fleet of heterogeneous vehicles. In the LRP
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proposed by Ambrosino et al. [1], a heterogeneous fleet of vehicles is considered where location,

fleet assignment, and routing decisions need to be made. The problem is solved by a two-phase

heuristic approach. I Koç et al. [18], time windows are added to the fleet size and mix LRP

where a number of vehicles with di↵erent capacities and costs are available to serve customers

from a set of potential depots. Later, Koç et al. [19] study the impact of depot location, fleet

size and mix, and routing decisions on fuel consumption, emissions, and operational costs, by

solving the problem with an adaptive large neighborhood search metaheuristic.

The common assumption in most fleet size and mix location routing studies is the constant

traveling time. Whereas, in reality, the cost varies with respect to the tra�c behavior. With

unpredictable incidents aside, the traveling time (or speed) can be defined as a function of the

time of the day. Malandraki and Daskin [22] introduce and model the time-dependent VRP

(TD-VRP). For a comprehensive review of the literature, see Gendreau et al. [12]. Despite

the recent interest in time-dependent routing research, studies on the variants of TD-VRP are

very limited and mainly restricted to cases with time windows (e.g., Figliozzi [11], Taş et al.

[32], Heni et al. [16]). In the green vehicle routing and scheduling problem studied in Xiao

and Konak [36], heterogeneous vehicles and time-varying tra�c congestion are considered. The

only paper that studies the time-dependent location routing problem (TD-LRP) is the one of

Schmidt et al. [29] where a limited fleet of homogeneous vehicles is considered and a single

depot must be selected.

The evident lack of the literature in studying TD-LRP with a heterogeneous fleet of vehicles

and multiple depots has inspired this paper, in which fleet optimization is incorporated.

3. Problem description and formulation

In this section, we formally describe the TD-FSMLRP and present its mathematical formu-

lation. The TD-FSMLRP is defined on a directed graph G = (N,A), where N represents the

node set and A is the set of arcs. Let Nd be the set of all the potential depots and Nc be the

set of customers. We also consider a set of dummy nodes called terminals, denoted by Nt, to

be used by each type of vehicle as they return to the depot, such that Nd\Nc = ;, Nd\Nt = ;

and Nc \Nt = ;.
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LetK be the set of |K| type of vehicles, each with a limited capacity Qk. Each terminal is linked

to only one type of vehicle, i.e., for each potential depot i 2 Nd, we define �k(i) as a unique

subset of terminals linked to vehicles of type k 2 K, that is, �k(i) ✓ Nt. Therefore, we have a

terminal v 2 �k(i) for each type of vehicle from the fleet, in each potential depot. This indicates

that each vehicle has to return to the depot it belongs to. Let also Adc, Acc, Act be arc sets

such that each arc (i, j) is given from the Cartesian products as Adc = Nd⇥Nc;Acc = Nc⇥Nc,

i 6= j, and Act = [i2Nd
{Nc ⇥ �(i)} such that A = Adc [ Acc [ Act.

The graph is time-dependent, meaning that as the tra�c condition changes, the time it takes to

traverse any arc (i, j) also changes. We define H as the set of time intervals, where an interval

is a period of time over which tra�c pattern is constant. There is a deterministic travel time

th
ij
associated to each arc (i, j) 2 A and each interval h 2 H.

We consider a single period (i.e., a day) divided intom+1 intervals, where each time interval h 2

H = {0, 1, .., h, ..,m} has the same length of T seconds. Therefore, [hT , (h+1)T �"] represents

the time interval associated with h, where " is a very small positive number representing the

smallest time unit, i.e., one second.

The demand and the service time associated to each customer i 2 Nc are denoted by qi and si,

respectively. The fixed cost for each vehicle of type k 2 K is denoted by Fk. Let Wi be the

capacity of depot i 2 Nd and Oi its opening cost. Finally, C is the coe�cient used to convert

the travel time into its cost equivalent.

We define our formulation based on the following binary variables: xh

ij
indicate whether arc

(i, j) is traversed by a vehicle during interval h; zij take value of 1 if arc (i, j) is traversed by a

vehicle; wi are used to determine if depot i is selected or not; yh
i
take value of 1 if a route leaves

from customer i 2 Nc in time interval h 2 H; and finally, gh
ij
take value of 1 if a route leaves

from depot i 2 Nd toward customer j 2 Nc in interval h 2 H. We also define the following

continuous variables: ai represent the departure time from customer i 2 Nc; bij represent

the departure time from depot i 2 Nd or the arrival time to terminal j 2 Nt; ui represent

a bound on the accumulated deliveries to all customers already visited before departing from

customer i 2 Nc. The minimum value for these variables is the accumulated deliveries and

the maximum value is the capacity of the vehicle used for the delivery. Therefore, if the total
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demand delivered by a vehicle is less than the vehicle capacity, this variable may not represent

the accumulated demand delivered, as the di↵erence between the vehicle capacity and the total

demand of that route represents a slack. Variables lij are used in the same sense, as they

represent the accumulated demand delivered by a vehicle upon its arrival to terminal j 2 Nt.

As before, if the total capacity of the vehicle is not used, there is a slack equal to the unused

capacity. Finally, continuous variables fi take the value of the index of the depot to which the

node i 2 N is linked.

Table 1 summarizes the notation used in our model.

Table 1: Notation used in the model

Parameters
C Routing coe�cient to covert time to cost
Fk Fixed cost of each vehicle of type k 2 K
m+ 1 Number of intervals in the planning horizon
Oi Opening cost of depot i 2 Nd

qi Demand of each customer i 2 Nc

Qk Capacity of each vehicle of type k 2 K
si Service time of each customer i 2 Nc

th
ij

Travel time of arc (i, j) 2 A in interval h
T The length of each interval
Wi Capacity of depot i 2 Nd

Sets
Nc Set of customers
Nd Set of potential depots
Nt Set of terminals
K Set of vehicle types
H Set of time intervals
A Set of arcs
�k(i) Unique subset of terminals linked with each vehicle type k 2 K for each potential depot i 2 Nd

Variables
ai Departure time from customer i 2 Nc

bij Departure time from depot i 2 Nd or arrival time to terminal j 2 Nt where (i, j) 2 A \ Acc

fi The index of the depot to which node i 2 Nd is linked.
gh
ij

If a route exists between depot i 2 Nd and customer j 2 Nc in interval h 2 H
lij A value between the accumulated demand delivered arriving to terminal j 2 Nt and the capacity of the vehicle
ui A value between the accumulated demand delivered departing from customer i 2 Nc and the capacity of the vehicle
wj If depot j is selected
xh

ij
If arc (i, j) is traversed by a vehicle in interval h

yh
i

If a route leaves from customer i 2 Nc in time interval h 2 H
zij If arc (i, j) is traversed by a vehicle
Indices
h Time interval
i, j, v Nodes

The mathematical formulation is as follows:
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min
X

(i,j)2A

X

h2H
Cthijx

h

ij +
X

i2Nd

Oiwi +
X

k2K

X

j2Nc

X

v2�k(i)
i2Nd

Fkzjv (1)

subject to:
X

i2(Nc\{j})[Nd

zij = 1, 8j 2 Nc (2)

X

j2(Nc\{i})[Nt

zij = 1, 8i 2 Nc (3)

X

j2Nc

zij  |Nc|wi, 8i 2 Nd (4)

X

j2Nc

zij =
X

j2Nc

X

k2K

X

v2�k(i)

zjv, 8i 2 Nd (5)

ui � uj +max
k2K

{Qk}zij  max
k2K

{Qk}� qj , 8i, j 2 Nc, i 6= j (6)

qi  ui  max
k2K

{Qk}, 8i 2 Nc (7)

uj �max
k2K

{Qk}(1� zjv)  ljv  uj , 8j 2 Nc, 8v 2 Nt (8)

lij  Qkzij , 8i 2 Nc, 8j 2 �k(v), 8k 2 K, 8v 2 Nd (9)

X

j2Nc

X

v2�k(i)
k2K

ljv Wi, 8i 2 Nd (10)

X

h2H
xhij = zij , 8(i, j) 2 A (11)

xhij  yhi , 8(i, j) 2 A \Adc, 8h 2 H (12)

xhij  ghij , 8(i, j) 2 Adc, 8h 2 H (13)

X

h2H
ghij = zij , 8(i, j) 2 Adc (14)

X

h2H
yhi = 1, 8i 2 Nc (15)

bij + sj + thij � 2T |H|(1� xhij)  aj  bij + sj + thij + T |H|(1� xhij), 8i 2 Nd, 8j 2 Nc, 8h 2 H (16)

ai + sj + thij � 2T |H|(1� xhij)  aj  ai + sj + thij + T |H|(1� xhij), 8i, j 2 Nc, i 6= j, 8h 2 H (17)

aj + thjv � 2T |H|(1� xhjv)  bjv  aj + thjv + T |H|(1� xhjv), 8j 2 Nc, 8v 2 Nt, 8h 2 H (18)
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bij  (T |H|� ")zij , 8(i, j) 2 A \Acc (19)

X

h2H
hTyhi  ai 

X

h2H
hTyhi + (T � "), i 2 Nc (20)

X

h2H
hTghij  bij 

X

h2H
hTghij + (T � "), 8(i, j) 2 Adc (21)

fi = i, 8i 2 Nd (22)

fj = fi, 8j 2 �k(i), 8k 2 K, 8i 2 Nd (23)

fi + |Nd|(zij � 1)  fj  fi + |Nd|(1� zij), 8(i, j) 2 A (24)

wi 2 {0, 1}, 8i 2 Nd (25)

zij 2 {0, 1}, 8(i, j) 2 A (26)

yhi 2 {0, 1}, 8i 2 Nc, 8h 2 H (27)

ghij 2 {0, 1}, 8(i, j) 2 Adc, 8h 2 H (28)

xhij 2 {0, 1}, 8(i, j) 2 A, 8h 2 H (29)

ai, ui 2 R+, 8i 2 Nc (30)

bij 2 R+, 8(i, j) 2 A \Acc (31)

lij 2 R+, 8(i, j) 2 Act (32)

fi 2 R+, 8i 2 N. (33)

The objective function (1) minimizes the sum of routing costs, opening costs of the depots,

and fixed vehicle costs. Constraints (2) and (3) are assignment constraints. They assure

that each customer is visited exactly once. Constraints (4) enforce that vehicles leave only

from the selected depots. The vehicle flow between each depot and its terminals is balanced

by constraints (5). Constraints (6) and (7) are the extensions of the Miller-Tucker-Zemlin

subtour elimination, originally proposed by Kulkarni and Bhave [20]. Constraints (8) control

the accumulated demand delivered and constraints (9) restrict the vehicle capacity. The total
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demand assigned to a depot cannot exceed its capacity as imposed by constraints (10). Each

arc (i, j) is visited in a single interval as imposed by constraints (11). Constraints (12) and (13)

enforce that if an arc (i, j) is traversed by a vehicle in time interval h, then h is the time interval

considered in the departure from the origin i. Constraints (14) and (15) guarantee that only

one time interval h is associated with the departure from node i. We control the departure time

from the first customer of each route using constraints (16). Similarly, constraints (17) control

the departure time from all the other customers. The same control is applied for the arrival time

to the terminals with constraints (18). Constraints (19) ensure that the vehicle performs its

route within the planning horizon. The departure time from each node i is linked to subsequent

time intervals by (20) and (21). Constraints (22)–(24) ensure that each vehicle returns to its

original depot. Finally, constraints (25)–(33) enforce integrality and non-negativity conditions

on the variables.

3.1. Removing integrality constraints for the x variables

Note that constraints (12) and (27), (13) and (28) imply xh

ij
 1. Moreover, as stated in

the next theorem, the non-negativity of the variables xh

ij
already guarantees their integrality,

that is, when we assume the non-negativity of the variables xh

ij
, constraints (29) automatically

become redundant.

Theorem 1. In the model (1)–(33), integrality conditions (29) on variables x can be removed.

Notably, if

xh

ij
� 0, 8(i, j) 2 A, 8h 2 H, (34)

then xh

ij
2 {0, 1}, 8(i, j) 2 A, 8h 2 H.

Proof: Consider (i, j) 2 A and an arbitrary h⇤ 2 H. If gh
⇤

ij
= 0, where (i, j) 2 Adc, then

xh
⇤

ij
= 0 by (13) and (34). Otherwise, by (28), we have gh

⇤
ij

= 1. Therefore, from (14), (26)

and (28), we have that gh
ij
= 0, thus xh

ij
= 0, 8h 6= h⇤

. Similarly, if yh
⇤

i
= 0, where i 2 Nc, then

xh
⇤

ij
= 0, 8(i, j) 2 A \ Adc by (12) and (34). Otherwise, by (27) we have yh

⇤
i

= 1. Therefore,

from (15) and (27), we have that yh
i
= 0, thus xh

ij
= 0, 8h 6= h⇤

. Thus, using (11) and (27), we

obtain xh
⇤

ij
=

P
h2H xh

ij
= zij 2 {0, 1}. Therefore, xh

ij
= 0, 8(i, j) 2 A, 8h 2 H.
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3.2. Valid inequalities from the literature

As suggested in Kara et al. [17] and applied for homogeneous fleet in Schmidt et al. [29],

constraints (6) can be lifted as in (35):

ui � uj +max
k2K

{Qk}zij +
✓
max
k2K

{Qk}� qi � qj

◆
zji  max

k2K
{Qk}� qj, 8i, j 2 Nc, i 6= j. (35)

The problem can be further reduced in size by removing some variables associated with the

departure interval of the vehicles. Based on Schmidt et al. [29], we can remove several arc

traversal variables. We consider two cases as presented by constraints (36) and (37). Any arc

(i, j) can be removed for the interval h, if the sum of the shortest time to traverse any incoming

arc (from the depot or any other customers) to customer i and the service time required in i

exceeds the upper bound of that interval, imposed by constraints (36). This logic is also true if

the time to reach the closest customer to any depot in interval h and the service time required

for the customer i exceeds the the upper bound of interval h, as imposed by constraints (37).

xh

ij
= 0 8i 2 Nc |

✓
min

a2(Nc\{i})[Nd

{th
ai
}+ si

◆
� (h+ 1)T , 8j 2 Nc [Nt, j 6= i, 8h 2 H (36)

xh

ij
= 0 8i 2 Nc |

0

@min
a2Nd
b2Nc

{th
ab
}+ si

1

A � (h+ 1)T , 8j 2 Nc [Nt, j 6= i, 8h 2 H. (37)

Similarly, Schmidt et al. [29] remove some variables related to the terminal nodes. The cases

include when the traveling time of an arc to the depot in the last time interval (m) or when

the sum of the shortest arrival time to a customer, its service time, and the shortest time it

takes to reach a terminal from this customer exceeds the length of the interval:

xm

ij
= 0, 8i 2 Nc, 8j 2 Nt | tmij � T (38)

xm

ij
= 0, 8j 2 Nc |

✓
min

a2Nc\{j}
{tm

aj
}+ sj +min

b2Nt

{tm
jb
}
◆
� T , 8i 2 Nc, i 6= j. (39)

Finally, we improve the routing part of the model by forbidding subtours of sizes two and three:

zij + zji  1, 8i, j 2 Nc, i 6= j (40)
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zij + zji + ziv + zvi + zjv + zvj  2, 8i, j, v 2 Nc, i 6= j, i 6= v, j 6= v. (41)

3.3. New and problem-specific valid inequalities

First, we establish lower bounds for each type of cost from the objective function. By valid

inequalities (42), we set a lower bound on the depot opening costs. Let o0 be the minimum cost

required to open depots. It is obtained as a solution of a variable cost and size bin packing

problem [5], taking into account the demand of customers, the capacity of the depots and their

opening fixed costs.
X

i2Nd

Oiwi � o0. (42)

Furthermore, a lower bound can be established on the fixed cost of using vehicles as in (43). Let

f 0 be the minimum cost required to serve all customers, considering the capacity of di↵erent

types of vehicles available and the demand of customers. It is also obtained as a solution of a

variable cost and size bin packing problem.
X

k2K

X

j2Nc

X

v2�k(i)
i2Nd

Fkzjv � f 0. (43)

We also set a lower bound on the routing costs. Let k0 be the minimum number of vehicles

required to meet all demands considering the maximum vehicle capacity of maxk2K{Qk}, also

obtained as a solution of a bin packing problem.

First considering all intervals, we identify the minimum cost arc leaving each depot to reach

every customer sdi = minh2H{thdi}, 8d 2 Nd, 8i 2 Nc. Second, we do the same for each arc

returning from every customer i to every depot d as rid = minh2H{thid}. Then, we arrange all

the |Nc| values obtained for each depot d for sdi and rid in an increasing order, defining sn
di
and

rn
id
as the sdi and rid values in the nth ordered position. Moreover, for each d 2 Nd, let us define

fn

d
= sn

di
+ rn

id
. Once again, we arrange all the values obtained for fn

d
in an increasing order,

where fn is the value in the nth position. We then establish that at least the first k0 values of

the vector fn will be considered as routing costs to leave and return to any depot. Finally, we

set gc = mina2Nc\{c}
h2H

{th
ca
}, 8c 2 Nd [Nc. We also arrange gc in an increasing order. Therefore,

gn is defined as the value in the nth ordering position. This term allows us to establish a lower
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bound on routing costs for reaching customers.

X

(i,j)2A

X

h2H

Cth
ij
xh

ij
�

k
0X

n=1

Cfn +
|Nc|�k

0X

n=1

Cgn. (44)

The minimum number of vehicles (with the maximum capacity) k0 is set as the lower bound

for all departures from all depots.

X

i2Nd

X

j2Nc

X

h2H

xh

ij
� k0 (45)

X

i2Nd

X

j2Nc

zij � k0. (46)

Finally, we can establish that at least one vehicle must leave from every selected depot:
X

i2Nd

X

j2Nc

X

h2H

gh
ij
� wi. (47)

4. Metaheuristic algorithm

The general structure of our proposed metaheuristic is based on evolutionary search methods.

It is inspired by ideas proposed in Koç et al. [19], but adjusted for a time-dependent problem.

The choice of the solution algorithm is mainly based on its success in dealing with location

decision of depots as tactical/strategical level decisions in a multi-depot context (e.g., Canca

and Barrena [3] and Zhou et al. [37]).

The algorithm encompasses three main phases: initialization, evolution, and intensification. In

the first phase, we generate an initial population of solutions. The second phase deals with

creating new solutions and selecting promising ones among them. The final phase comprises

an additional process applied to improve the quality of the selected solutions. An overview is

presented in Algorithm 1 and detailed as follows.

The initialization consists of creating initial solutions by assigning customers to depots and then

constructing routes to serve them. Then, by using di↵erent operators, we populate the initial

12

Time-Dependent Fleet Size and Mix Location Routing Problem 

CIRRELT-2020-13



solution set until it reaches ⌘ individuals. In the evolution phase, we perform crossover, muta-

tion, and select the surviving population. When the number of iterations without improvement

(�) in the current population is reached, this phase ends and the intensification phase begins.

Exchange operators, based on the demand and service time, are applied and we update the

surviving population. When no further improvements are possible in any of surviving individ-

uals, this step terminates. The final step is to apply an improvement heuristic. To do so, we

select the best # solutions and, if possible, try to improve the departure time of each vehicle

and the sequence of the customers being served on the route. After this improvement phase,

the solution cost is updated and the best solution is saved.

Algorithm 1 General structure of the metaheuristic algorithm
1: Generation of initial solutions. //Initialization: Section 4.1
2: while initial population  ⌘ do
3: Increase the population by using initial solutions.
4: end while
5: while the number of iterations without improvement < � do //Evolution: Section 4.2
6: Select a set of parents from the current generation.
7: Apply crossover operators.
8: Apply directed mutation operators.
9: Update the surviving population.

10: end while
11: while there is an improvement in any current solution do //Intensification: Section 4.3
12: Apply exchange operators.
13: Update the surviving population.
14: end while
15: for each one of the # best solutions do
16: Apply an improvement heuristic.
17: Update the solution cost.
18: end for
19: Return the best solution.

4.1. Initialization phase

The initialization of our algorithm consists of creating a set of initial solutions by assigning

customers to depots, followed by route construction.

The assignment is based on the travel time between each depot and a customer. As the travel

time varies for each interval h 2 H, di↵erent assignments can be generated. Therefore, we gen-

erate four time matrices based on: (i) the traveling time in each interval h 2 H, (ii) maximum

times, (iii) minimum times, and (iv) average travel times.
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Given any of these four time matrices, we assign each customer i 2 Nc to its closest depot.

This is performed based on the shortest travel time between the depot and every customer, for

both departure and return. Then, we list the customers in a descending order of travel time.

From the top of this list, we assign customers to their closest depot, considering the depot

capacity constraints. This procedure continues until all customers are assigned. At this point,

we try to improve the assignment, by closing depots. We first close one depot and try to assign

its associated customers to all the other ones. The same procedure is applied for closing two

depots.

After the allocation phase, we start the routes construction, for which only the largest capacity

vehicles are used. Aiming to diversify the solutions, we apply two heuristics as follows.

In the first heuristics, the routes are constructed sequentially, i.e., once the capacity of the

vehicle is reached for the first route, the second route can be started. For each depot, we

randomly select a customer and insert it at the end of the current route. These selection and

insertion processes are repeated until the route becomes infeasible, either due to exceeding the

planning horizon or violating the vehicle capacity. When this occurs, a new route starts and we

repeat the process until all customers are assigned to a route. This operation is repeated for all

open depots and continues until the complete solution is generated. This process is repeated

for each of the four time matrices.

The second heuristic uses the Clarke and Wright [4] algorithm to generate routes. However,

instead of using a distance matrix, we use the four travel time matrices, as previously described.

Note that the selected time matrix has an e↵ect on the assignment of customers to depots, and

now again, it a↵ects the route generation.

In what we call the intra-route improvement step, a permutation procedure is applied, sequen-

tially and iteratively. Once all the routes are generated, we apply an improvement procedure

using either the full route permutation or partial permutations. In the full route permutation,

all routes containing up to ⌫1 customers are explored, and we determine the best sequence of

customers by enumerating all permutations. Partial permutation, however, is applied to a sub-

group of ⌫2 customers. The position of these customers in this subgroup is modified until the

best sequence is obtained. Then, the position of the first customer in the subgroup is fixed and
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the same procedure is applied to the next ⌫2 remaining customers. This process continues until

all possible improvements for the entire route is taken place. A numerical example is presented

in Figure 1. Assume that we have a route with customers 1, 2, 3, 4 and 5. With ⌫2 = 3, we

first create a subgroup with customers 1, 2 and 3. After checking all 6 possibilities for their

sequence, we identify 3� 1� 2 as the optimal one for the subgroup. Now, we fix the position

of the first customer in the subgroup, i.e., customer 3, and generate another subgroup with

customers 1, 2 and 4. Again, we try all the possibilities for creating an optimal route within

this subgroup. We find 4� 2� 1 as the optimal route for our new subgroup. As before, we fix

the position of the first customer in our subgroup, i.e., customer 4, and continue making a new

subgroup as 2� 1� 5 and find 5� 1� 2 as the optimal route for this subgroup. Now, we create

a new subgroup as 1 � 2 � 3 which turns out to be the optimal route for this subgroup. The

last step, is to generate a subgroup with customer 2 and the first two customers of the route,

customers 3 and 4. All possibilities are checked and the optimal sequence is found as 4� 2� 3.

A full round is complete, therefore, now we add the complete solution to the initial population

set.

Initial route 1 2 3 4 5

Partial optimal 1 3 1 2 4 5

3 1 2 4 5

Partial optimal 2 3 4 2 1 5

3 4 2 1 5

Partial optimal 3 3 4 5 1 2

3 4 5 1 2

Partial optimal 4 3 4 5 1 2

3 4 5 1 2

Local optimal 2 3 5 1 4

Figure 1: A numerical example for the intra-route partial permutations improvement step

In the second phase of the initialization algorithm, new solutions are generated to increase the
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size of the initial population. For this purpose, large neighborhood search operators are applied

to the initial solutions, with the selection of a removal and an insertion operator:

Removal operators:

• Depot swap: Applied by Hemmelmayr et al. [15] and Koç et al. [19], this operator

randomly selects an open depot and closes it and then the operator also opens a closed

depot. All customers assigned to the closed depot are then kept in a removal list Lr.

• Depot opening: This operator is an adaptation of the one used by Hemmelmayr et al.

[15] and Koç et al. [19]. It randomly opens a closed depot. Then n0 customers are removed

from the current solution and added to the list Lr. The removal criterion is based on

the shortest average travel time between the customer and the newly opened depot. To

calculate this time, we consider the time to traverse the respective arcs, in both directions

and for every time interval.

• Random removal: Used by Ropke and Pisinger [24] and Koç et al. [19], this operator

randomly selects n0 customers and adds them into the removal list Lr.

• Depot time exchange: It is based on the first removal operator, but di↵ers from it in

the criterion applied to choose the new open depot. This operator was originally proposed

by Koç et al. [19], but we adapted it to consider the shortest average travel time between

the closed and the open depot. As before, the calculation considers the arc that connects

both depots in both directions and for every time interval.

Insertion operators:

• Greedy insertion: it is an adaptation of the operator applied by Ropke and Pisinger [24].

A customer is randomly selected from the list Lr, its insertion is tested into all possible

positions for each route. The cost is also evaluated for new routes from already opened

depots. We respect the capacity constraints of depots and vehicles so as to maintain

feasibility.

• Improved greedy insert: This operator is based on the previous greedy operator, but

di↵ers from it since the insertion does not take place randomly. We test the position
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that minimizes the insertion cost for all customers, as in Koç et al. [19]. Always ensuring

feasibility, the insertion is conducted on existing and new routes. Then, the customer with

the lowest insertion cost is assigned. After each insertion, the remaining non-assigned

customers are reevaluated.

• Regret insertion: it is also an adaptation of the operator applied by Ropke and Pisinger

[24] and it is performed to avoid a customer being assigned to a bad position in a route.

This operator is more complicated than the previous ones, and requires a higher number

of operations. For each customer, the regret is calculated based on the cost di↵erence

between the insertion in its best and second best positions. Then, the customer with

the highest regret is selected. All possibilities are tested on existing and new routes, as

long as they remain feasible. After an insertion, all customers from the removal list are

reevaluated.

The number n0 of customers removed is randomly chosen from a discrete uniform distribution

from the interval [ninitial

l
, ninitial

u
] that we calculate as percentages of the total number of cus-

tomers in the instance. To create each new solution, we randomly select one of the solutions

generated in the first phase of the initialization. The complete solution is added to the initial

population. This process is repeated until the initial population reaches the size of ⌘.

4.2. Evolution

In this phase, we improve and generate new solutions by using crossover and mutation operators.

The goal is to diversify the search and improve the quality of the solutions created at each

iteration.

To generate solutions by the crossover operator we apply the Partially Mapped Crossover [13].

Initially, two solutions (parents) are randomly selected, P1 and P2. Two-cut o↵ points indicating

the number of genes to be crossed are determined, which refers to the number of customers

to be removed from the sequence. This number is randomly selected from a discrete uniform

distribution from the interval [ncross

l
, ncross

u
], where ncross

l
and ncross

u
are lower and upper bounds

calculated as percentages of the total number of customers of the instance. Once the position

of the first cut-o↵ point is determined, the genes that are between the two points are crossed for
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o↵spring generation. It is probable that during the genetic material exchange, chromosomes

end up having repeated genes. In this case, all those outside the cuto↵ region are replaced

with those on the same locus, but in another chromosome. Having generated the sequence of

customers for each child solution, following the configurations of their parents with respect to

the order of the sequence and the number of customers at the respective routes, these children

are placed in routes. Finally, we check the feasibility of every solution and discard all the

infeasible ones.

Mutation involves creating new children solutions by copying another solution to change one or

more of the current chromosome genes. In order to improve the quality of each new generation,

we use directed mutation, in form of an improvement heuristic. The procedure consists of two

steps: a removal followed by an insertion. In the first step, n0 customers are iteratively allocated

to a removal list Lr. Again, n0 is randomly selected from a discrete uniform distribution from

the interval [nmutation

l
, nmutation

u
], where nmutation

l
and nmutation

u
are calculated as percentages of

the number of customers. During the insertion step, the removed customers are relocated in

the incomplete solution. Both operators are randomly selected from the following ones.

Removal operators:

• Neighborhood removal: This operator is inspired by Ropke and Pisinger [24], Demir

et al. [8], Koç et al. [19]. The general idea is to remove the n0 customers that are “extreme”

with respect to the travel time. We identify these customers by calculating the sum of the

time required to arrive into each customer coming from its previous node and the time

required to go from this customer to the subsequent node in the route. For each customer,

we take into consideration the corresponding interval h associated to each inbound and

outbound arc.

• Worst travel time removal: This operator removes the n0 customers that are “extreme”

with respect to the route insertion cost. By inserting a customer into a route, we change

the costs associated with the new arc added to the route as well as the costs of all the

subsequent arcs. Therefore, here, we define the insertion cost as the di↵erence between

the total execution time of a route with and without adding each customer. A distance-

based version of this operator can be found in Ropke and Pisinger [24], Demir et al. [8],
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and Koç et al. [19].

• Depot removal - e�ciency: Proposed by Koç et al. [19], the aim of this operator is

to calculate the utilization e�ciency of each open depot, which is expressed by the ratio

of the total demand allocated to the depot over its capacity. The depot with the least

e�ciency rate is removed from the solution and its customers are placed in the removal

list Lr.

• Vehicle removal: Similar to the previous one, this operator computes the utilization

e�ciency of each vehicle. This value is expressed by the ratio of the total demand as-

sociated with a vehicle to its capacity. All customers associated with the least e�cient

vehicle are placed in the removal list Lr.

Insertion operators:

• Greedy insertion – lowest cost: This operator iteratively assigns customers to routes,

in a position that minimizes the insertion cost. In this operator, before adding customer to

routes, we try to improve the existing solution. Given a solution, we check the possibility

of serving the routes with a small size vehicle (i.e., lower fixed cost) or of allocating the

routes to an already open depot with no customers. Then for every customer in the Lr

list, we compute its insertion cost, including additional fixed and opening costs. At each

iteration, we identify the customer with the lowest insertion cost and add it to the route.

This process continues until all customers from the list are added to a route.

• Greedy insertion – highest cost: This operator is similar to the previous one. The

only di↵erence is that here we insert the customer with the highest cost into a route.

The evolution and selection procedures are described next.

From the initial population �initial, which has a size ⌘, we randomly select two solutions, P1 and

P2 and apply the crossover operator. If at least one of the two created children is feasible and

new, its cost is computed and the solution is added to the current generation �generation. We

repeat this process until ! new individuals are created. Then, the mutation procedure is used. It

is iteratively applied to the initial population solutions �initial. We randomly select one removal

and one insertion operator and apply them on an individual from the list. If this procedure
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creates a new solution, it is added to the current generation �generation. This procedure is

applied either to the entire initial population or until ⌘ new individuals are created. Then,

we combine �initial and �generation which will make the current population �. This population

is ordered by cost, from the lowest to the highest. Therefore, the current population � can

contain up to 2⌘ ordered solutions, from which a set �parents is selected to constitute the next

generation and play the role of parents in the next iteration of the algorithm.

The parents for the next generation are selected based on the following criterion. Given the

current population �, we select the �1 best solutions, the �3 worst, and among the remaining

solutions, we also randomly select �2 solutions, so that �1 + �2 + �3 = ⌘. We then apply the

crossover and mutation operators to this population, as previously described.

Finally, to select the surviving population, we only save the ⌘ best solutions and the rest is

discarded. To the current population �, we add the new generation �generation. Once again, the

individuals are ordered based on their costs and we repeat the process of selecting parents and

creating a new generation. We continue this repetitive procedure until the stopping criterion

is reached. The process terminates when there is no further improvement to any of the � best

solutions for � consecutive iterations.

The evolution phase is described in Algorithm 2. At the end of this phase, the surviving

population is reordered, and the best solutions are saved for the next phase.

4.3. Intensification

The last phase of our metaheuristic aims to intensify the search for the remaining solutions.

This phase is divided into two main steps. The first one is called intra-route exchanges and

includes an iterative process, similar to the one applied in the evolution phase. It involves two

operators: one associated with customer demands and the other with the service time. The

second step encompasses a heuristic that combines the best departure time for each vehicle

with the most appropriate customer sequence for that moment. Note that we do not change

the customer set that is served by the vehicle, but only its sequence.

Next, we elaborate on the operators for the first step and explain how they are applied.
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Algorithm 2 Evolution
1: �parents  ;; �generation  ;
2: � �parents  �initial //Use the initial population as the first generation
3: while there is no improvement on the � best solutions for � iterations do //Crossover
4: ⌧  0
5: while the number of feasible and new solutions  ! do
6: Randomly select P1 and P2 from �parents and apply the crossover operator.
7: for each new solution do
8: Improve routes with the intra-route improvement algorithm.
9: Add the solution to �generation.

10: ⌧ = ⌧ + 1
11: if ⌧ = ! then
12: Go to line 16.
13: end if
14: end for
15: end while
16: for each solution in �parents do //Mutation
17: Randomly apply a removal and an insertion operator and apply.
18: if the generated solution is new then
19: Improve routes by the intra-route improvement algorithm.
20: Add the solution to �generation.
21: end if
22: end for
23: Order � by the lowest cost and keep the ⌘ best solutions. //Surviving population
24: � �generation; �generation  ;.
25: Update �parents.
26: end while
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• Demand-based exchange: it aims to exchange customers with similar demands from

di↵erent routes.

• Service time exchange: this operator is similar to the previous one except that cus-

tomers are chosen based on similarity in their service time.

First, we apply the demand-based exchange operator to the surviving population � from the

previous phase. The newly generated solutions are added to the population as new individuals.

We order them based on their cost, and only keep the ⌘ best solutions in the population. To

this population, we now apply the service time exchange operator and similarly, we only keep

the ⌘ best solutions. This sequence of procedures is performed repeatedly until no further

improvement can be reached.

When the first step finishes, we apply a departure time improvement procedure with the order-

ing sequence of customers. It is applied to the best # individuals, and works as follows. Each

route from a solution is handled individually. We start from the customer sequence saved during

its generation, which considers the departure time t = 0. The total route duration is calculated

as the di↵erence between the moment the vehicle leaves the depot and the moment it returns to

its terminal. The process is iterative, and at each iteration, we increase the departure time by

�t units. If the time interval h 2 H associated with some customer visits is changed, we apply

the intra-route improvement algorithm. After this, if the route duration decreases, we replace

the original customer sequence with the new one and update the departure time. We repeat

this process until the departure time increase of �t units causes the route to become infeasible,

obtaining then the best departure time and customer sequence. After applying this heuristic

to the best # solutions, we identify the best solution, which is the output of our algorithm.

The intensification phase is described in Algorithm 3. It is the final phase of our metaheuristic

algorithm.

5. Computational experiments

In this section, we provide details of our instances, the setting and parameters of the algorithms

and extensive results along with an elaborated analysis. The algorithms are coded in C++ and
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Algorithm 3 Intensification
1: while number of consecutive iterations without improvement � 0 do //Intra-route exchanges
2: for each solution in � do
3: Apply the demand-based operator
4: if the solution is new then
5: Improve routes by the intra-route improvement algorithm.
6: Insert the solution in �.
7: end if
8: end for
9: for each solution in � do

10: Apply the service time-based operator
11: if the solution is new then
12: Improve routes by the intra-route improvement algorithm.
13: Insert the solution in �.
14: end if
15: end for
16: Order individuals in � by their cost and retain the best ⌘ solutions.
17: end while
18: for each # solution from the best ones do //Departure time improvement
19: for each route from the solution do
20: ⌧0  route execution time, take into account the departure time ts = 0.
21: Seq  Route customers sequence
22: while (ts +�t +

P
8i2Nc

si)  |H|T do
23: ts = ts +�t.
24: Apply the intra-route improvement algorithm, take into account the departure time ts.
25: ⌧1 = route execution time taking into account the departure time ts.
26: if ⌧1 < ⌧0 then
27: ⌧0  ⌧1.
28: Seq  Current route customers sequence.
29: end if
30: end while
31: Update the route sequence to Seq and the time execution to ⌧0.
32: end for
33: Update the complete solution cost.
34: end for
35: Return the best solution.
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we use Gurobi Optimizer 8.1.1 as the mixed integer programming (MIP) solver, in its default

settings. All computational experiments are conducted on an Intel Core i7 processor running at

3.4 GHz with 64 GB of RAM installed, with the Ubuntu Linux operating system. Two threads

are used by the solver and a total time limit of 10800 seconds is imposed for each execution.

Section 5.1 describes our instances and the results of detailed computational experiments are

provided in Section 5.2.

• The initial population size ⌘ is defined as a function of the number customers in the

instance: ⌘ = 30
p
|Nc|. This relation is defined to avoid overpopulating generations in

large instances.

• The number of best solutions is a function of the initial population. Therefore, we set � =

0.1⌘ for instances with 10 and 20 customers, � = 0.15⌘ for instances with 50 customers,

and � = 0.2⌘ for all the other instances. In the intensification phase, we set it equal to

# = 0.05⌘ in all configurations.

• For the intra-route improvement heuristic, we set ⌫1 equal to 10, 8, 7, and 6, respec-

tively, for instances with 10, 20, 50, and 80 or more customers; ⌫2 equals to 3 for all

configurations.

• For the �parents composition, we use �1 = 0.5⌘,�2 = 0.4⌘ and �3 = 0.1⌘.

• The range defined for n0, the number of customers removed, di↵ers for each phase of the

algorithm. In the initialization phase, it is set between ninitial

l
= 0.3|Nc| and ninitial

u
=

0.6|Nc|, while in the evolution phase, the range is defined as ncross

l
= 0.2|Nc| and ncross

u
=

0.4|Nc|. Finally, for the mutation operator, these bounds are defined by nmutation

l
= 0.2|Nc|

and nmutation

u
= 0.5|Nc|.

• The number of individuals created at each iteration is set to ! = 0.02⌘.

We consider that all parameters have integer values. Hence, if necessary, we round the result

to the nearest positive integer.
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5.1. Instance generation

We modify the instances used in Schmidt et al. [29] to fit the fleet size and mix problem

studied here. The instances are based on geographical information from the real road network

and tra�c of Quebec City. A planning horizon of 15 hours (from 6:00 to 21:00) is divided

into three equal-length intervals of 3600, 5400, and 10800 seconds. These three intervals then

di↵erentiate the large, medium, or small instances. The number of customer equals to 10, 20,

50, 80, or 100, and the number of available depots for each instance is either 3 or 5. The

demand and service time for each customer are random numbers chosen from [50, 750] units

and [1000, 10800] seconds, respectively. We modify these instances as follows. We set the

number of di↵erent types of vehicles in the fleet, |K|, to 3 for all instances. For the capacity

Qk of these types of vehicles, we consider 2000, 4000, and 6000 units, and the fixed cost, Fk,

1000, 1500, and 2000 monetary units, respectively. We randomly generate the depot capacity,

Wi, from a discrete uniform distribution from the interval [wi

l
, wi

u
]. We define the lower and

upper bounds as percentages of total customer demand, set at 50% and 85%, respectively. The

opening cost of each potential depot is proportional to its capacity. We round all values to the

nearest integer, if needed. For each unit of travel time, we set the cost of 1 monetary unit. All

instances, solutions, and detailed results area available from https://www. 1.

5.2. Computational results

We now present the results of our extensive computational experiments. We start our analysis

by showing in Section 5.2.1 the results from the basic mathematical model from Section 3. Then,

we compare these results with the ones in which all valid inequalities are added. In Section

5.2.2, we provide detailed results using our metaheuristic presented in Section 4. Finally, we

evaluate the performance of the metaheuristic algorithm to solve also a special case without

departure time optimization, a single depot, homogeneous and limited fleet, and without fixed

costs, the TD-LRP [29], in Section 5.2.3.

1omitted for double blind review
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5.2.1. Results of the mathematical model

We now present the average results obtained by solving the proposed mathematical formulation

of Section 3, when provided with a pool of initial solutions as follow. We save the top ten

solutions obtained at the initialization phase as input (initial solution) for the MIP model

presented in Section 3. However, we provide these solutions to the solver only partially: we

only provide the solver with the the arcs traversed, and not the departure time (variables zij).

Table 2 presents the results for 3 and 5 potential depots. On the first two columns of this

table, we provide information about the instance. Then, for each di↵erent number of depots,

we report information about the best initial solution (Best IS), upper bound (UB), lower bound

(LB), gap calculated as 100(UB �LB)/UB, execution time, and finally the improvement over

the initial solution.

The results on Table 2 show that, typically, the solver is not able to significantly improve the

initial solutions. Even after 3 hours, the improvements are merely marginal. These improve-

ments are 0.68% for instances with 3 and 0.67% in cases with 5 potential depots. This table

also shows a very large di↵erence between the upper and lower bounds, even in instances with

a few customers, with an average gap of over 98% for both sets with 3 and 5 depots. Detailed

results (available online) reveal that without an initial solution the solver is not even able to

obtain any feasible solution for most instances.

In what follows, we analyze the average results from our mathematical model when it is fed

the pool of initial solutions and under the presence of all valid inequalities. Table 3 presents

the results.

The results show that providing valid inequalities does not have any significant e↵ect on the

upper bounds, leading to mostly the same solutions compared to the ones reported in Table

2. An improvement of only 1.25% is obtained for 3-depots instances, whereas it is even lower

(0.22%) for 5-depots instances. However, as expected, adding valid inequalities significantly

improves the lower bounds and consequently reduces the gap. As indicated on the LB gap

(%) in Table 3, the percentage di↵erence between these lower bounds and those presented in

Table 2 is, on average, greater than 7000% for both depot configurations. On columns Gap
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(%), we can observe gap values equal to 14.15% and 11.30%, for instances with 3 and 5 depots,

respectively. These results highlight the importance of the valid inequalities to improve lower

bounds. Detailed results (available online) also show that for instances with 10 customers,

the solver is able to prove optimality in 24 of the 30 test instances in an average execution

time of less than 30 minutes. However, it is obvious that even by providing a pool of initial

solutions and strengthening the mathematical model by a set of valid inequalities, the average

gap still remains very high after three hours of execution for other instances. This reflects the

complexity of the problem and the need to apply approximate methods.

5.2.2. Results of the proposed metaheuristic

Table 4 shows the average results from our metaheuristic algorithm, including the best solution

obtained in each of the three phases. We present the best solution from initialization, evolution,

and intensification phases, followed by the total execution time. Finally, on the last two columns

for each depot configuration, we present the improvement of our metaheuristic over solutions

from the mathematical model with initial solution and valid inequalities (results from Table 3).

Several interesting observations can be drawn from the analysis of the results in Table 4. First,

we observe how each metaheuristic phase improves the quality of solutions. From the first to

the second phases, it is possible to improve the average quality of the solutions by 6.15% and

10.66%, respectively for instances with 3 and 5 potential depots. From the second to the third

phases, this improvement is less important as it represents 0.07% and 0.11%, respectively for

3-depots and 5-depots instances.

These results show that our metaheuristic approach is able to find, on average, better solutions

than the MIP for all configurations. The improvements are very remarkable, 11.66% for the

instances with 3 depots and 8.25% for the ones with 5 depots. Except for the instances with 10

customers in which the average obtained solution slightly worsens (less than 0.01%), we are able

to notably improve the solutions. Compared with the solutions obtained by the mathematical

formulation with valid inequalities, we can observe that the our method is able to improve the

results by more than 27% in some cases (instances with 80 customers, 3 depots and 15 time

intervals).
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Considering the time needed to achieve these improvements, the e↵ectiveness of the proposed

method is even better highlighted. The results from Table 4 show that the metaheuristic

approach is able to provide better solutions considerably faster. For instances with 3 depots,

the average execution time is 1081 seconds, whereas for cases with 5 potential depots it equals

to 1237 seconds, against more than 9000 seconds on average for the MIP. These results highlight

the importance of the metaheuristic approach in both aspects: to find high quality solutions in

significantly lower execution times.

We can however combine the strengths of both methods: high quality solutions from our

metaheuristic and tight lower bounds of the MIP, thanks to our valid inequalities. We present

in Table 5 an aggregated gap by comparing these values.

Table 5: Average results of the metaheuristic solution and lower bound of the MIP

Size |Nc|
3 depots 5 depots

Metaheuristic Lower Gap Metaheuristic Lower Gap
solution bound (%) solution bound (%)

Small

10 19470.98 19468.58 0.01 18729.00 18727.14 0.01
20 21036.27 20764.90 1.29 20550.00 20084.04 2.27
50 26258.13 25441.34 3.11 25577.54 24680.06 3.51
80 31612.37 30108.24 4.76 29246.88 27684.38 5.34
100 35663.62 33675.34 5.58 33886.33 31703.36 6.44

Average 26808.27 25891.68 2.95 25597.95 24575.80 3.51

Medium

10 19212.24 19202.00 0.05 17345.60 17036.62 1.78
20 20173.18 19480.18 3.44 19130.09 18849.30 1.47
50 26916.69 26244.48 2.50 25125.20 24341.82 3.12
80 31122.35 29414.42 5.49 30325.92 28886.62 4.75
100 35109.44 33375.44 4.94 34103.65 32330.12 5.20

Average 26506.78 25543.30 3.28 25206.09 24288.90 3.26

Large

10 19929.82 19927.04 0.01 17903.89 17893.76 0.06
20 20350.94 19857.84 2.42 19595.24 19309.78 1.46
50 26427.48 25987.70 1.66 25474.58 24272.92 4.72
80 31173.14 29491.00 5.40 31363.00 29679.78 5.37
100 36113.08 34329.74 4.94 33475.33 31362.32 6.31

Average 26798.89 25918.66 2.89 25562.41 24503.71 3.58

Global average 26704.65 25784.55 3.04 25455.48 24456.13 3.45

As presented, the resulting average gap for instances with 3 potential depots is only 3.04%, and

it is only 3.45% for instances with 5 potential depots. Combining the information from good

heuristic solutions and tight gaps, we have been able to provide several solutions with a gap of

less than 0.01% for both sets with 3 and 5 depots.
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5.2.3. Metaheuristic algorithm performance on the TD-LRP

We now evaluate the performance of our metaheuristic on the TD-LRP. To this end, we compare

our results with the ones obtained by Schmidt et al. [29]. We consider two situations: first

when all vehicles leave the depot at the beginning of the planning horizon, and second when

the vehicles have flexibility with respect to the departure time. To adapt our proposed method

for the first situation (i.e., fixed departure time), we remove the heuristic allowing the vehicles

to depart at any time from the intensification phase. Thus, all routes start at the beginning

of the time horizon. In the TD-LRP, the vehicle fleet is homogeneous, therefore, no fixed cost

with respect to vehicles is considered and a single depot is chosen to serve all the customers. All

these adaptations are incorporated to respect the original problem definition of the TD-LRP.

Tables 6 and 7 report the average results for instances with 3 and 5 potential depots, respec-

tively. In each table, we compare the performance of our proposed algorithm against the one

proposed specifically for the TD-LRP [29]. In the first two columns of each table, we provide

information about the instances. Then we show their best solution and the execution time.

The next four columns contain the average results of our proposed metaheuristic. We first

present the best solution and the execution time without flexibility in the departure time and

then, for the case with flexibility. Then, we present the improvement gained by our algorithm

with fixed departure time consideration compared to the solutions from the literature, both

in terms of solution quality and processing time. Finally, in the last column, we present the

improvement in the objective function when our metaheuristic considers the flexibility time

departure compared to the one without flexibility.

The results of Table 6 show the superiority of our metaheuristic approach. Better quality

solutions are obtained for all instances, regardless of the number of customers and the size

of the instance. The average improvement is 2.69% for small, 2.37% for medium, and 2.05%

for large instances. This improvement can even go up to 5.45% for small instances with 10

customers. More detailed results (available online) also show that our metaheuristic is able

to find an optimal solution for all instances with 10 customers and 3 depots. In addition,

the required execution time is significantly smaller, providing an average reduction of 49%,

when compared to the matheuristic approach of Schmidt et al. [29]. In addition, results of our
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Table 6: Average results from metaheuristic approach of Section 4 to solve the TD-LRP [29] with
and without flexibility for instances with 3 depots

Size |Nc|
Matheuristic [29] Metaheuristic of Section 4

Best Time Best Time Improvement (%) Solution with Time with Improvement

solution (s) solution (s) UB Time departure flexibility departure flexibility (s) with flexibility (%)

Small

10 7436.00 38 7030.40 8 5.45 79.50 6661.60 6 5.25
20 13182.40 113 12860.80 64 2.44 43.31 12733.20 19 0.74
50 23624.20 739 22955.20 380 2.83 48.63 22672.20 545 1.16
80 33212.80 2710 32714.00 1083 1.50 60.05 32448.80 1113 1.38
100 39759.80 5462 39267.40 2574 1.24 52.87 38671.60 2783 1.10

Average 23443.04 1813 22965.56 822 2.69 56.87 22637.48 893 1.93

Medium

10 7413.40 36 7252.60 15 2.17 58.86 6942.80 19 4.27
20 13248.40 92 12742.80 49 3.82 46.37 12585.00 22 1.51
50 23451.60 883 22710.80 485 3.16 45.01 22380.00 441 1.51
80 34467.20 2512 34004.40 1188 1.34 52.71 33404.60 1294 1.90
100 38704.20 4775 38170.20 1915 1.38 59.91 37169.20 2087 2.41

Average 23456.96 1660 22976.16 730 2.37 52.57 22496.32 772 2.32

Large

10 7378.00 34 7153.00 32 3.05 5.87 6848.00 37 4.26
20 13328.80 89 12934.00 64 2.96 28.09 12550.60 19 3.21
50 23261.60 845 22631.40 503 2.71 40.43 22272.60 532 1.49
80 33240.80 2362 32983.80 815 0.77 65.48 32466.60 932 1.72
100 38691.20 4630 38391.20 2412 0.78 47.91 37373.40 2137 2.50

Average 23180.08 1592 22818.68 765 2.05 37.56 22302.24 731 2.64

Global average 23360.03 1688 22920.13 772 2.37 49.00 22478.68 799 2.29

metaheuristic applied to the TD-LRP with flexible departure time show that it is possible to

improve the travel time by 1.93% for small, 2.32% for medium, and 2.64% for large instances

with 3 depots compared with the results for fixed departure time.

Similarly, the results from Table 7 show that our metaheuristic algorithm can produce better

average solutions for all classes of instances. Improvements of 1.76%, 1.71% and 1.99% are

obtained, for small, medium and large instances, respectively. The detailed results show that

our metaheuristic is also able to find optimal solutions for 14 out of 15 instances with 10

customers. Moreover, for all the other instances our result is better than the one generated

by the proposed matheuristic. With respect to the execution time, we also observe that our

metaheuristic is noticeably faster, an average reduction of 59.40%. Furthermore, by relaxing

the departure time of the vehicles from the depot, the solutions improve further. By using our

metaheuristic to solve the TD-LRP with departure time flexibility, we obtain an improvement

of 2.21% for small, 3.80% for medium, and 2.59% for large instances.

In summary, the results show how our proposed metaheuristic algorithm adapted to the TD-

LRP can produce better quality solutions and require substantially less processing time. Out
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Table 7: Average results from metaheuristic approach of Section 4 to solve the TD-LRP [29] with
and without flexibility for instances with 5 depots

Size |Nc|
Matheuristic [29] Metaheuristic of Section 4

Best Time Best Time Improvement (%) Solution with Time with Improvement

solution (s) solution (s) UB Time departure flexibility departure flexibility (s) with flexibility (%)

Small

10 7767.80 64 7604.00 63 2.11 1.70 7249.20 50 4.67
20 12073.20 200 11771.80 73 2.50 63.72 11454.80 17 2.95
50 23107.40 1354 22700.20 794 1.76 41.33 22530.00 572 0.84
80 30723.00 4169 30213.60 897 1.66 78.49 29733.60 1308 1.50
100 33290.60 9933 33031.80 2195 0.78 77.90 32464.00 2785 1.12

Average 21392.40 3144 21064.28 804 1.76 52.63 20686.32 946 2.21

Medium

10 7833.00 56 7788.40 14 0.57 74.86 6956.20 13 10.69
20 12609.20 160 12176.20 64 3.43 60.04 11963.80 17 2.26
50 22985.40 1543 22598.80 621 1.68 59.79 22171.00 574 1.94
80 30604.20 3082 29890.00 1035 2.33 66.40 29444.00 959 1.49
100 33065.00 9365 32892.80 2434 0.52 74.01 32372.20 1849 2.62

Average 21419.36 2841 21069.24 834 1.71 67.02 20581.44 682 3.80

Large

10 7479.80 56 7355.40 26 1.66 53.64 6624.60 32 10.96
20 12376.60 157 11954.80 76 3.41 51.38 11458.40 17 4.75
50 23406.00 1504 22923.60 849 2.06 43.53 22508.20 701 1.43
80 31151.60 3820 30408.40 1125 2.39 70.55 29814.80 1414 1.84
100 33185.20 9613 33037.00 2530 0.45 73.68 32422.40 2091 1.64

Average 21519.84 3030 21135.84 921 1.99 58.56 20565.68 851 2.59

Global average 21443.87 3005.10 21089.79 853 1.82 59.40 20611.15 827 2.87

of 150 instances, our method is able to provide 5 equal and 131 better solutions.

6. Conclusions

This paper studies the time-dependent location-routing problem with fleet size and mix deci-

sions. Its main contribution is to extend the time-dependent literature to include more real-

world features to this very practical problem. This paper also contributes to the integrated

optimization literature as it presents the first mathematical formulation for the TD-FSMLRP.

Using a commercial solver to solve instances that are generated from the real tra�c data of

Quebec city, we evaluate instances with up to 5 potential depots, 100 customers and 15 time

intervals. We show that adding a pool of initial solutions and considering several problem-

specific valid inequalities is extremely important to obtain and improve the lower bounds for

the TD-FSMLRP. However, to achieve high quality solutions and to reduce the computational

time, we propose a metaheuristic algorithm based on exploring a population of solutions. We

have compared the performance of our proposed algorithm against the exact method. We have

shown the importance of an approximate intricate approach to solve complex problems such as
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the one studied in this paper. Our metaheuristic is able to find high quality solutions for large

size instances, and also to reduce significantly the execution time. Comparing our solutions

with the dual bounds, obtained with the help of our valid inequalities, shows a very tight gap

even for very large instances. We have also evaluated our method on a special case of the

problem from the literature, significantly improving the solution quality and run time.
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