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Abstract. This paper proposes an iterative time-decomposition matheuristic for solving the 
biomedical sample transportation problem (BSTP), which is a routing problem with multiple and 
interdependent visits in the context of healthcare services. In this problem, each healthcare or 
specimen collection center collects biomedical samples from individuals. Because the lifespan of 
a specimen lasts only a few hours from collection to analysis, several collection centers must be 
visited more than once a day to collect the specimens and ensure that they are analyzed before 
perishing. Setting a maximum time to analyze the samples imposes a time interdependency 
between visits to the same center and the maximum duration of their corresponding routes. This 
is a complex routing problem, and commercial solvers have been inefficient at solving it. Hence, 
we propose an algorithm that uses a time-decomposition technique to reduce the 
interdependency and apply a Fix-&-Optimize technique to solve the problem efficiently. The 
matheuristic proves to be efficient in solving a set of real-life instances with high interdependency 
requirements from the Quebec laboratory network under the management of the Ministère de la 
Santé et des Services sociaux (Ministry of Health and Social Services). 
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1 Introduction
Healthcare providers must usually deploy large facility networks to ensure proximity to patients.
However, the increase in facilities leads to several challenges from a managerial perspective,
especially when involving high-tech and expensive equipment, because demand consolidation and
return to scale opportunities are reduced. Therefore, healthcare managers should be careful when
designing services to balance the requirements of proximity and system costs.

The management of biomedical samples facing these challenges requires the planning of logistic
activities from the collection of a specimen to its analysis. Managers intend to multiply the
collection points over the territory to facilitate service access for individuals. Moreover, they
intend to minimize the cost of deployable laboratory equipment and maximize its usage. Both
goals are achievable by planning adequate networks that collect and transport samples from the
various service points to a reduced number of laboratories in which they are analyzed. However,
having a decentralized collection and centralized analysis requires complex logistics that must
maintain costs as low as possible and respect a set of practical restrictions, the short lifetime of
biomedical samples, being one, if not the most difficult restriction, among them.

The Biomedical Sample Transportation Problem (BSTP) arising in the Province of Quebec,
Canada inspired our study. It was first introduced in Anaya-Arenas et al. (2016) as a vehicle
routing problem aimed at planning multiple and independent visits at collection centers (SCCs) to
ensure that samples are transported to designated regional analysis centers (or Labs) within strict
time limits given by the short lifespan of the samples. Our study considers a more realistic version
that differs from that described in Anaya-Arenas et al. (2016) in two essential points. First, we
assume that each SCC is flexible in deciding its opening time, although the total collection time
is fixed and known a priori. Second, unlike in Anaya-Arenas et al. (2016), which hypothesizes
that samples begin perishing once they leave the collection facility, we acknowledge that a sample
begins deteriorating as soon as it is collected, resetting the latest time at which it can be analyzed
at a Lab. As in Anaya-Arenas et al. (2016), samples are accumulated until a transport gathers
and brings them to the lab. Because several SCC are intended to be visited sequentially in a
route, the short lifespan of the samples implies that 1) a single SCC requires more than one visit
on the same day and 2) the time that samples can be accumulated at the SCC waiting to be
transported, and the time required by a vehicle to transport them to a Lab are limited and linked.

This study focuses on the interlaced routing and schedule decisions of BSTP and proposes an
iterative time-decomposition matheuristic for efficiently solving real instances of the problem.
The classical rolling horizon (RH) strategy inspired the matheuristic to separate the problem into
a collection of sets of smaller, easier to solve subproblems at each iteration. The subproblems
are solved using the mathematical formulation of BSTP combined with effective Fix -&-Optimize
(F&O) strategies that speed up the search while guaranteeing an efficient exploration of the
solution space associated with each subproblem.

The remainder of this paper is organized as follows. Section 2 summarizes relevant studies
and discusses this research with respect to their contributions. Section 3 identifies the modelling
differences between the biomedical context studied here and previous works dealing with the
specimens and blood transports, and then adapts the mathematical formulation of BTSP to
address such differences. Section 4 describes the matheuristic, and Section 5 reports the numerical
results. Finally, Section 6 summarizes the main contributions of this study and suggests future
research directions.
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2 Literature Review
The transportation of blood and other specimens is a classical logistic problem related to the
delivery of health services at the local, regional, and national levels (Brailsford & Vissers, 2011).
Strong time restrictions and/or precedence constraints characterize these problems, which are at
least partially also present in other healthcare logistics cases. The next paragraphs review the
first contributions in home-care planning problems that address synchronization and/or time
interdependencies on visits to patients. The second part of this section reviews the contributions
to specimen and blood transportation.

Interdependency in the visit schedule is appropriate for many service applications in which
some type of synchronization (or temporal precedence) constraint must be imposed. The problem
has been study under the name vehicle routing problem with time windows and synchronization
(VRPTW-Syn) (refer to Bredström & Rönnqvist, 2008; Dohn et al., 2011; Drexl, 2012; Afifi
et al., 2016, for more details). This problem has been applied in the context of forestry, the
technician routing problem, and home healthcare, among others (e.g., Bredström & Rönnqvist,
2008; Rousseau et al., 2013; Euchi et al., 2021; Melachrinoudis et al., 2007). In this problem,
synchronization restrictions have often been studied to either limit or exceed the time between
two visits to the same node (e.g., a patient must be simultaneously visited by two independent
specialists or requiring that the cleaning service (first visit) be scheduled one hour before the
medical service (second visit)). Owing to the complexity of the problem, past contributions to
VRPTW-Syn have primarily proposed heuristic algorithms whose performance have often been
tested over the test set of Bredström & Rönnqvist (2008). This test bed contains up to 80 visit
instances with fixed and independent time windows, and in 10% of them a type of synchronization
is requested.

An important healthcare application for VRPTW-Syn is the routing of resources for home
healthcare (HHC). For example, Ait Haddadene et al. (2016) proposed a GRASPxILS metaheuristic
that includes budgetary restrictions. Kergosien et al. (2014) analyzed the routing of nurses
considering drop-off of samples. Liu et al. (2013) proposed the pickup and delivery of goods, but
the lifespan was longer than a day (single visit per customers without a time limit). Decerle
et al. (2018) proposed a memetic algorithm for solving an HHC problem in France, and Frifita
& Masmoudi (2020) proposed metaheuristics to solve the problem, including several specialties
in the scheduling . Melachrinoudis et al. (2007), in particular, set a dial-a-ride problem for a
healthcare organization in Boston (USA), and proposed a tabu search algorithm to solve real-life
instances of up to 5 (independent) transportation requests. BSTP shares the synchronization
challenge of said problems, but in the case of BSTP, a visit to one SCC impacts its next visit well
as the whole collection route in which it will be done by imposing the latest arrival time to the
lab. Moreover, our problem does not consider any time windows for the visits, which increases
the complexity and interdependency in the decision-making.

Furthermore, a series of logistic problems with strict temporal restrictions have been studied in
the blood supply chain (BSC) literature because of the perishability of products (see Osorio et al.,
2015; Pirabán et al., 2019; Baş et al., 2016 for comprehensive reviews). Since the first studies in
the 1960’s, over 200 papers have been published in the field (Pirabán et al., 2019). Recent studies
have analyzed the design of the entire BSC network, considering the multi-echelon aspect of the
problem, as it includes the collection, production, inventory, and distribution of blood products
with a lifespan of a few days (e.g., Yousefi Nejad Attari et al., 2019; Ghandforoush & Sen, 2010;
Baş et al., 2018; Araújo et al., 2020). However, such contributions rarely include transportation
planning, or (if planned) it uses shuttles that execute several trips to a single collection point
without routing.

Considering the collection stage of the BSC, some studies aim to plan collection routes to
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maximize the number of processed samples and minimize transportation costs (e.g., Yücel et al.,
2013), whereas others, such as Mobasher et al. (2015) coordinate the appointment schedule with
the transportation planning to maximize platelet production. Şahinyazan et al. (2015) proposed a
two-stage IP based heuristic to simultaneously determine the sequence and the length of stops at
mobile clinics over a week, while shuttles bring samples to the lab at the end of each day. Zahiri
et al. (2018) included the freshness of delivered products in their objective (maximizing the active
shelf life after delivery) and specifically tracked the moment at which samples were collected.
Nonetheless, all these studies assume the lifespan of produces are one day or longer, removing the
need for more than one visit per day and, therefore, the dependency between routes.

Anaya-Arenas et al. (2016) introduced BSTP inspired by the needs of Ministry of Health and
Social Services of Quebec to transport samples from the SCCs to the labs. The short lifespan of
the samples was addressed using independent hard time windows and a limited route duration.
Naji-Azimi et al. (2016) planned the de-synchronization of trucks arrivals to the lab in the same
context, and Zabinsky et al. (2020) presented the same problem but applied a case study from
Washington Medical Center. In these three studies, temporal constraints were present, but only
one visit was required per customer. Therefore, no precedence or synchronization is necessary
between visits.

Doerner et al. (2008) were one of the few to explicitly present the interdependency created by
the deterioration of the samples, including the time restrictions and the precedence constraints. In
their study, a savings and greedy construction heuristic was proposed to solve instances involving
up to 15 customers. Elalouf et al. (2018), studied a similar problem and solved cases of up
to 11 customers. Assumingly, when interdependency is considered, the current state-of-the-art
heuristics focus on solving instances of less than 20 customers with more than a single visit.
Finally, Anaya-Arenas et al. (2021) proposed an iterative local search algorithm to solve BSTP.
In their study, the lifespan of the samples was divided by the maximum waiting time at each SCC
(∆max) and maximum routing time (Tmax). This study proposes a more realistic accountability
of the lifespan from the moment a sample is drawn until the sample arrives at the Lab. The ILS
algorithm of Anaya-Arenas et al. (2021) uses the ∆max parameter to impose fictive time windows
and then uses concatenation techniques to solve the problem. However, this is inapplicable
to the generalization of the problem presented. Therefore, this study proposes an iterative
time-decomposition matheuristic addressing the challenges of timing and routing interdependency
in a new way.

3 Problem Modelling and Formulation
This section describes the characteristics of BTSP and proposes its mathematical formulation.
Section 3.1 formalizes the problem, emphasizing how the short lifespans of samples require the
planning of several visits to the same SCC and the resulting intertwined links between them.

Subsequently, Section 3.2 presents a mathematical formulation of the problem.

3.1 Problem statement
The addressed BSTP is defined over an administrative region that contains a set C = {c1, c2, . . . , cn}
with n SCCs in which samples are drawn from individuals and accumulated. At defined moments,
the SCC is visited by a vehicle that collects the drawn samples and transports them to the
corresponding laboratory, referred to as the Lab, where the samples will be analyzed. Different
parameters characterize every SCC cg (g ∈ [1, . . . , n]). First, the collection period of an SCC
cg is described by its length Og and time window for the opening time ag, defined as [eg, lg].
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Each SCC draws biomedical samples from individuals from opening time ag until closing time
bg = ag +Og.

We now examine the samples. The maximum time allowed is from the moment a sample is
drawn until its arrival at the Lab. Parameter T g

max presents the shortest useful lifetime of the
samples taken at SCC cg.

Concerning logistic activities, τg denotes the time required for the truck driver to collect the
samples at cg by τ0.

The limitation imposed by T g
max may require visiting some SCCs several times during their

opening hours. The minimum number of visits required by cg can be estimated as |Pg| =
⌈
Og

T̂g

⌉
,

where Pg denotes the set of visits to perform, and T̂g is the longest time allowed between two
consecutive visits at cg, assuming the samples are brought directly to the Lab. Given tg0, the
travelling time from cg to the Lab, T̂g can be computed as T̂g = T g

max − tg0 − τg. Note that,
because no sample can stay at the SCC overnight, the last visit must be planned at every SCC cg
after closing time. The staff of that center define φg, which is the maximum amount of time they
can wait for the last visit after closing.

Despite the previous estimates, the number of times that cg must be visited depends on its
opening and closing times and on the decisions made, particularly on the time at which cg receives
the first visit. Indeed, as soon as the first sample is drawn, it sets 1) the latest arrival time at the
Lab and 2) the latest time at which cg must be visited again. Similarly, when a second visit is
planned (no later than the latest time set by the previous visit), a bound is set on the next visit,
and so on, until the last visit is planned after the closing time of cg.

v1

Time

SCC C1

6h10 8h45 12h4510h10

Lifespan = 4 hours

x x
v2

11h30 15h30

!! = 1ℎ00

14h40

K1 time left= 1 hour and 25 min.
K2 time left = 1 hour 15 min.

K3 time left = 50 min.

SCC C2 v4

6h30 9h00 9h30

Lifespan = 3 hours

x

!! = 5ℎ

x

!" = 1ℎ00

11h30

K1 time left= 30 min. K4 time left = 30 min.

14h10

12h00
Time

a)

b)

!" = 8ℎ

v5

Figure 1: Feasible solution for BSTP. Part a) SCC c1 and Part b) SCC c2

To better illustrate the intertwined relationships between routes visiting the same SCC, consider
the feasible solution for SCC c1 in Figure 1, part a). In this example, c1 has a maximum time
T g
max of 4 hours and opens at 6:10 am. The first visit v1 is scheduled for 8:45 a.m. to obtain all

accumulated samples. Hence, vehicle K1 has until 10:10 a.m. (1:25 hours) to bring the samples
to the Lab. Moreover, the timing decision of v1 sets that the second visit at SCC c1 (i.e., v2)
must be scheduled in time to bring samples to the Lab before 12:45 p.m.

Note that the bound on the latest time for the next visit is set based on the assumption that
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the vehicle will travel directly and immediately to the Lab right after leaving cg. Therefore,
this bound on the latest time imposes a restriction on the end of the route for the vehicle that
performs the next visit. Consequently, a single visit at cg affects both the rest of the first vehicle’s
route and the end of the route of the vehicle performing the next visit to cg. For instance, if
vehicle K1 in Figure 1, part a) travels to visit SCC c2 (Figure 1, part b), the routing time reduces
by one hour and arrives at the Lab before 9:30 a.m. with respect to the time restrictions of c2.

This planning process is challenging. Planning visits too close to their latest time reduces
the flexibility to construct future routes. However, planning visits too early pulls the timing of
future visits, which must be performed earlier, and eventually more visits than necessary might
be performed at the same SCC. The BSTP decides the most efficient transportation to bring all
samples collected at the SCCs in time to be analyzed at the Lab. Note that the managers force
lifespans to be respected (set as a constraint) and seek to minimize transportation costs. To this
end, the BSTP minimizes the route duration.

The next subsection proposes a formulation adapted from Anaya-Arenas et al. (2021) addressing
this new method of considering the perishability of samples.

3.2 Mixed Integer Linear Programming Model formulation
The BSTP is modelled on an extended graph G = (V,A) in which each SCC cg is represented
by |Pg| nodes representing the visits required during the day. Without loss of generality, and to
reduce symmetries, visits are labeled in such a manner that the first |P1| nodes in V correspond
to the visits to c1, {v1, . . . , v|P1|}; then, {v|P1|+1, . . . , v|P1|+|P2|} are the ones visiting c2, and so
on. Specifically, defining the set of indexes is possible for visits at c1 as I1 = {1, 2, . . . , |P1|} and
are analogous for a general SCC cg Ig =

{
1 +

∑g−1
h=0 |Ph|, 2 +

∑g−1
h=0 |Ph|, . . . , |Pg|+

∑g−1
h=0 |Ph|

}
,

where |P0| is set to 0.
Additionally, the graph’s set of arcs can be specified as A =

{
(vi, vj) : vi, vj ∈ V, i ̸= j, i, j ∈

{0, . . . , |P |}
}

where each arc (vi, vj) is characterized by transportation time tij . As the graph
models real routes, we assume that tij ̸= tji,∀i, j ∈ P, i ̸= j. To present the mathematical
formulation of the problem, we used the sets and parameters presented in Section 3.1. The sets,
parameters, and decision variables of the program, along with their domains and meanings, are
grouped in Table 1.

The notation (A)n is used to indicate the n-th element of the ordered set A. We also set a global
maximum time Tmax = maxg∈[1,...,n] T

g
max, which is driven by the less restrictive SCC of the

network. Given this, we can consider for each SCC the difference δg = Tmax − T g
max, which is a

quantity in the range [0, Tmax]. The formulation is as follows:

Objective:

Min

|P |∑
i=1

di (1)
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Sets

C Specimen Collection Centers (SCC)
P Visits scheduled for all SCCs
Pg Visits required by the single SCC cg
Ig Indices for visits required by SCC cg

Parameters

n Total number of SCC in the network
Og Length of the collection period at SCC cg
eg Earliest opening of SCC cg
lg Latest opening of SCC cg
φg Maximum waiting time after shutting for the last pickup at SCC cg

T g
max Maximum time limit within production and arrival to the Lab, for cg

Tmax Maximum T g
max over all SCC

δg Difference among Tmax and T g
max

τg Loading time at SCC cg
τ0 Unloading time at the Lab
tij Transportation time between centers i and j

T̂g Maximum time between two consecutive pickups at SCC cg

Decision variables

xij {0, 1} is 1 if node i is visited immediately before node j, and 0 otherwise;
ui R+ time at which visit i is performed;
di R+ duration of the route starting with visit i;
fi R+ longest remaining time at node i to complete the route;
ag R+ opening time of SCC cg;
bg R+ closing time of SCC cg

Table 1: Notation

Subject to:
|P |∑
i=0

xij −
|P |∑
i=0

xji = 0; j = 0, ..., |P | (2)

|P |∑
i=0

xij = 1; j = 1, ..., |P | (3)

eg ≤ ag ≤ lg; g = 1, ..., n (4)
ag +Og = bg; g = 1, ..., n (5)
uj ≥ ui + τi + tij −M(1− xij); i = 0, ..., |P |; j = 1, ..., |P |; (i ̸= j) (6)
uk ≥ ag; g = 1, ..., n; k = (Ig)1 (7)
uk ≥ uk−1; g = 1, ..., n s.t. |Pg| > 2; k ∈ Ig s.t. (Ig)1 < k (8)
bg ≤ uk ≤ bg + φg; g = 1, ..., n; k = (Ig)|Pg| (9)

Tmax − fi +M(1− xi0) ≥ ti0 + τi; i = 1, ..., |P | (10)
fj − fi +M(1− xij) ≥ uj − ui; i, j = 1, ..., |P | (i ̸= j) (11)
fi − (ui − ag) ≥ δg; g = 1, ..., n; i = (Ig)1 (12)
fi − (ui − ui−1) ≥ δg; g = 1, ..., n; s.t. |Pg| ≥ 2; i ∈ Ig s.t. i > (Ig)1 (13)
di ≥ Tmax − fi + t0i + τ0 −M(1− x0i); i = 1, ..., |P | (14)

ui, fi, ag, bg, di ∈ R+; i = 1, ..., |P |; g = 1, ..., n (15)
xij ∈ {0, 1}; i, j = 1, ..., |P | (i ̸= j) (16)
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The objective function (1) aims to minimize the total duration of all routes in the solution. This
objective function assumes that transportation is routed by third-party logistics such that there is
no fixed cost of vehicles (Anaya-Arenas et al., 2016). Constraint (2) ensures flow conservation in
every node of the graph, whereas constraint (3) ensures that all visits are performed by requiring
all nodes to have a predecessor in the solution. Constraints (4) and (5) control the flexible opening
window of the SCCs; in particular, Constraint (4) ensures that each SCC cg opening time is
within its time opening window [eg, lg], and (5) defines the closing hour of the SCC.

Constraints (6)–(9) define the time at which each visit is performed. Constraint (6) sets uj ,
which is the time of each visit j, to ui, which is the time of the visit to its predecessor in the
route (i such that xij = 1), plus the loading time at i (τi) and the travelling time from i to j
(tij). Constraint (6) also forces sub-tour elimination. Constraint (7) states that no visit can be
performed at any SCC cg before its opening time. Constraint (8) requires visits to be performed in
chronological order and avoids visit symmetries. Finally, Constraints (9) states that the last visit
at each SCC g is performed after its closing hour, bg, within φg units of time, with k =

∑g
h=1 |Ph|,

or, equivalently, k = (Ig)|Pg|.
Constraints (10)–(14) also relate to time but model time as a resource consumed during the

route. Constraint (10) states that every visit i, which is performed immediately before the vehicle
returns to the Lab (that is, xi0 = 1), must have its resource variable reduced by the collection
and transportation times between i and 0. Constraint (11) relates the resource and visit time
variables for any pair of consecutive nodes (i, j). Indeed, if arc (i, j) is included in the route (that
is, xij = 1), then the difference in time consumption must match the time variables of the visits.
Constraints (12) and (13) ensure that the samples do not perish by requiring that the sum of
the time the samples stay at the SCC, plus the time required to bring them to the Lab, do not
exceed the lifespan of the samples. Constraint (14) defines the duration of a route starting at
node i. Indeed, if arc (0, i) is in the solution, a route starting from node i exists, and its duration
equals the travel time t0i plus the unloading time at the laboratory τ0 and the time consumed
from i back to the Lab, that is(Tmax - fi). If no route starts from i, i.e., x0i = 0, di is set to zero
owing to the objective function structure.

Finally, Constraints (15) and (16) state the domains of the decision variables, as they are
reported in Table 1.

4 The Matheuristic
To address the challenges raised by the BSTP, we conceived a matheuristic that combines two
ideas. The first one comprises an iterative temporal-decomposition algorithm. Inspired by the
rolling horizon (RH) approach, the algorithm separates the problem at each iteration into a
different set of smaller, easier to solve subproblems that are solved using the mathematical
formulation proposed in Section 3.2. The second idea lies in the use of some Fix -&-Optimize
(F&O) strategies that speed up the search while guaranteeing an effective exploration of the
solution space associated with each subproblem. Figure 2 depicts the algorithmic frame of the
proposed matheuristic.

Subsections 4.1 and 4.2 present the “outer loop”, which divides the problem into several
subproblems. They explain how the RH scheme is applied to the BSTP and how an iterative
algorithm produces different time decompositions, respectively. Then, the “inner loop” is explained,
which focuses on solving each subproblem and improving the solution. Subsection 4.3 details
how the mathematical formulation extends to solve subproblems within the RH scheme, whereas
Subsection 4.4 describes the considered F&O techniques. Finally, Subsection 4.5 overviews the
complete matheuristic.

9

Iterative Time-Decomposition Matheuristic for the Biomedical Sample Transportation Problem

CIRRELT-2022-11



Outer 
Loop

Inner
Loop

Inner stop criterion met?No

Yes

Outer stop criterion met?

End

Start

Several strategies are used to split the problem into a set of 
subproblems following a Rolling Horizon approach

Adapts the proposed mathematical formulation to solve
subproblems. 
F&O techniques are used to speed up the solving process

No

Yes

Figure 2: Algorithmic structure of the matheuristic

4.1 A Rolling Horizon scheme to solve the BSTP
Rolling horizon techniques are commonly used to approach complex problems that can are
decomposable over time. In our scheme, decomposition is performed by choosing specific times,
referred to as “cutting points”, which divide the planning horizon [0,T] into a set of N consecutive
periods. A subset of visits to perform (to SCCs) is then assigned to each period such that each
period becomes a subproblem.

Subproblems are solved in a sequential manner, starting with the first one and proceeding to
subproblem |N |, in such a manner that when solving subproblem κ, information on the previous
subproblems is known. In addition, when solving subproblem κ, looking-ahead and simultaneously
solving one or more visits from forthcoming subproblems may be considered.

Given a subproblem or period κ, the following periods or subproblems can be formalized:

• Frozen Period corresponds to subproblems already solved. The problem variables that
fall within this range are known and can be set (or not, as Section 4.3 explains) to the
previously computed values ;

• Central or current Period states the current subproblem κ to optimize. Variables associated
with subproblem κ are free and must be set; and

• Look-ahead Period in which variables associated with forthcoming periods must be consid-
ered to guarantee the feasibility of the entire solution.

In the RH scheme, the central period κ becomes a frozen period when solving subproblem κ+1,
whereas the look-ahead period becomes the central period. This process repeats until the entire
planning horizon is covered.

The next section explains how a BTSP is split into consecutive periods to apply an RH scheme.
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4.2 An iterative algorithm to generate alternative decompositions to the
BSTP

The application of an RH approach is not straightforward for the BSTP. Unlike classical RH
applications in which a given decomposition is given by the nature of the problem or set arbitrarily
by the users. In our case, neither clear indications on the adequate strategy to “split” the original
problem, the number of sub-problems to create, nor their length/size exist. Indeed, the time
at which visits will be done, which depends on the actual routes and previous visit decisions, is
unknown a priori such that evident manners to set cutting points or to assign visits to the periods
do not exist. Therefore, instead of producing a single decomposition, we elected to conceive
an algorithm that adapts the time decomposition at each iteration to produce different sets
of subproblems. Starting from an initial solution, the first-integer feasible solution produced
by solving the formulation given in Section 3.2, the algorithm encompasses four decomposition
methods, referred to as DM1 to DM4, that are alternatingly used until reaching the stopping
criterion of the algorithm. The four decomposition methods are as follows:

• DM1 - Parametric decomposition scheme. This is controlled by three parameters: R,α,
and β. R sets the number of visits to be considered in the central period; thus, fixing its
length and size. α sets the length of the frozen period that contains the earliest ⌈α×R⌉
visits. Finally, β defines the look-ahead horizon by setting the number ⌈β ×R⌉ for future
visits to be included in the subproblem. The values of the parameters are adjusted from
one iteration to the next to produce different subproblems.

• DM2 - Period extension. Each time a subproblem is solved in the inner loop, we evaluate
whether the current solution can be locally improved by including visits that are currently
planned in the look-ahead period in the central period. If true, the extended cutting points
are recorded. When the DM2 decomposition method is called, the best cutting points in
memory are used to define the new decomposition.

• DM3 - Estimated times for route ends. This method tracks the moments at which routes
end in the previously explored solutions and proposes cutting points that match the route
ending times with the highest frequency.

• DM4 - Fixed number of periods. This simply splits the entire horizon into the required
number of periods. All the periods have the same length (number of visits).

Considering the specific characteristics of each decomposition method, we decided to use them
in the following order. The first decomposition was provided by a parametric scheme. DM1
is used while it improves the best solution found in the previous iteration. In addition, the
parameters of DM1 are adjusted such that if the produced subproblems are too difficult to solve
(i.e., they require too much time), then R is reduced; otherwise, α is reduced and, β is increased,
aiming to provide more freedom to variables in the problem and to look ahead farther, respectively.
DM2 is then applied using the information in memory (best cutting points thus far) to generate
a new decomposition. Then, assuming that several solutions were explored, DM3, the estimated
times for end-of-routes method, is applied to produce another decomposition of the problem.
The last method, DM4, is used to hard diversify the search because it produces subproblems
that can significantly differ from the ones explored thus far. Figure 3 at the end of this section
illustrates how the different splitting strategies are used within the search algorithm. Note that
the decomposition approach can produce different sequences of subproblems by changing the
initial sequence of the visits to perform. This is a diversification technique of our algorithm.
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4.3 Adapting the BSTP formulation to solve periods within the Rolling
Horizon scheme

The interdependency between routes makes it inappropriate to solve a part of the problem without
considering those previous and forthcoming. Moreover, in a given decomposition, a route may
span two or more subproblems. Therefore, when solving a subproblem, extending the original
formulation proposed in Section 3.2 is necessary to ensure the feasibility and continuity of the
routes over the entire horizon.

The first modification to be applied to the original formulation concerns the information
originating from the frozen period. Although was previously mentioned that the frozen variables
are set to the values found when solving previous periods, in practice, we relax part of this
information to focus on the initial arcs of the routes. Hence, when solving period κ, we force all
existing routes to start at the same nodes that were selected as starting nodes in the previous
period κ−1 while leaving complete freedom to the construction of new routes. This choice ensures
the feasibility between frozen and central periods because we allow changes in the frozen solution,
if necessary, in terms of the timing and parts of the routes (beyond the first visit). Formally, the
freezing strategy can be expressed as Equation (17):

xκ
0,i ≥ xκ−1

0,i ∀ i (17)

where subscripts κ− 1 and κ indicate the period or subproblem solved and to solve, respectively.
Although this strategy progressively increases the computational time required to solve subprob-
lems, it exploits that the first visit in a route plays a crucial role in defining the structure of the
route while leaving the solver freedom to produce feasible solutions.

The second modification concerns the “future” visits that should be completed in future periods.
Equation (18) provides a lower bound on the visit time at node k to avoid performing the last
visit at SCC g included in the sub-problem too early (visit k, k = (Ĩg)|P̃g|) such that completing
this partial solution and obtaining a feasible solution to the entire problem is always possible.
That sis, all feasible solutions of the subproblem represent partial feasible solutions for the entire
problem.

uk ≥ bg − (|Pg| − |P̃g|)T̂g; g = 1, ..., ñ; k = (Ĩg)|P̃g| (18)

The complete mathematical formulation for solving each subproblem is provided in the Ap-
pendix.

4.4 Fix–and–Optimize (F&O) strategies
To reduce the computational time required to solve the BSTP formulation, we propose F&O
strategies to reduce the space of solutions to explore in the inner loop and use them as intensification
mechanisms. We implemented two F&O strategies, referred to as Keep groups and Change arcs.

Given a current solution s, the Keep groups strategy imposes that at least a given number
of the visits must be maintained on the same route in the new solution s̄, although their order
and visiting times may change. Subsequently, we guarantee that, from one solution to the next,
the composition of the routes will differ (in sequence) while maintaining the structure (set of
visits), reducing the computational time. Formally, this strategy can be expressed by the following
constraint: ∑

i∈r

∑
j∈r j ̸=i

xij ≥ |r| − 1 ∀ route r (19)

where r represents the route, i and j ∈ r the nodes to be visited by route r, and |r| the cardinality
of the route (i.e., the number of centers visited by route r).
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The Change arcs strategy, which was inspired by probabilistic approaches such as granular
tabu search, requires that, in the new solution, at least a certain number of arcs ∆ are taken from
a subset of “promising arcs” Ā. Subset Ā is built and managed as the research advances, keeping
in memory the number of times that each arc is inserted into a solution. Subsequently, the solver
has limited freedom in the choice of the arcs to use, controlled by parameter ∆. This type of
strategy can be formalized using the following constraint:∑

(i,j)∈Ā

(1− xij) +
∑

(i,j) ̸∈Ā

xij ≥ ∆ (20)

where Ā =
{
(i, j) : x̄ij = 1

}
is the set of promising arcs.

The strategies described show two different levels of intensification, which are complementary.
Indeed, while the Keep groups strategy seeks to group visits without regarding the structure of
the routes, the Change arcs strategy intends to encourage the presence of parts of routes that
were deemed appealing. Therefore, their use must be carefully chosen. The following principles
guided their implementation in the inner loop.

• The first iteration of the inner loop runs without a strategy;

• Any time a new best solution is found, the Keep groups strategy is used; otherwise use
Change arcs;

• Stop if itM consecutive iterations are executed and no solution improvement is reached.

Choosing a low number of iterations without improvement as a stop criterion guarantees that,
given a limit on the computational time, the matheuristic explores more partitions of the problem,
but at the price of a less thorough exploration of each.

4.5 The complete Matheuristic
Figure 3 illustrates the algorithmic structure of the proposed matheuristic. Using an initial
solution, decomposition method DM1 is applied using the initial parameters (R0, α0, β0) to
produce an initial problem decomposition that is transferred to the inner loop (the rolling horizon
RH-solving method). The RH is then used to solve the set of subproblems yielded by the first
decomposition, first without any F&O strategy, and, if no improvement is reached with respect
to the best solution found thus far (in this case, the initial solution), then the F&O strategies
are used. The algorithm iterates between the outer and inner loops (i.e., the left and right parts
of the figure, respectively), producing different decompositions of the problem until the stop
criterion is reached; in our case, the total number of outer-loop iterations IM .

5 Results
The aim of this section is twofold. First, it assesses the performance of the proposed matheuristic
in terms of the quality of the solutions it produces and required computational time. Second,
it analyzes the results produced by the matheuristic to highlight the specific contribution and
added value of the different mechanisms and algorithmic strategies in the proposed matheuristic.

5.1 Description of the test instances and setting of the algorithm’s
parameters

We first describe the characteristics of the 32 instances used in our numerical experiments.
Instances were categorized into 17 medium and 15 large size instances, according to the cardinality
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Figure 3: Algorithmic structure of the matheuristic

of the set of collection centers to deserve |SCC| and the number of visits to perform |P |. In the
group of medium instances, the |SCC| ranged from 4 to 24, which corresponds to the number
of visits |P | varying from 11 to 28. To measure the interdependency level of an instance, we
calculated the synchronization percentage as the percentage of SCCs in an instance that required
two or more visits in a single day. Medium instances present a synchronization percentage between
23 and 100%, with nine instances requiring synchronization above 80%. In the large size instances,
the |SCC| ranged from 11 to 50, and the number of visits |P | varied between 29 and 74. In
large instances, the synchronization percentage increased from 63% to 100%, with 11 instances
requesting a synchronization above 80%.

Moreover, the demographic and topological aspects are as relevant as the size of the instance
to understand the richness and diversity of the testbed. Indeed, some instances consider vast
territories with a low population density and a rather light network of routes. We refer to the
17 instances matching this description as “rural” (11 medium and six large instances). The 15
remaining instances are much denser; thus, the distances between SCCs are shorter, and the
number of arcs connecting them is much higher. We refer to these as “urban” instances (six
medium and nine large instances).

The proposed matheuristic has some parameters that must be set adequately. To this end,
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preliminary tests were conducted to help us elect parameter values. We arbitrarily fixed itM = 2
and IM = 7 to ensure that various time decompositions were considered for each instance. As
mentioned in Section 4.4, the number of inner iterations was dynamically addressed by limiting
the number of consecutive iterations without improvement to itM .

We also limited the computational time required to solve each subproblem to 90 s, which was
sufficiently large to solve most of the subproblems.

Based on the preliminary experiments, we set the initial values for the parameters of the outer
loop to (R0, α0, β0) = (7, 0.5, 0.5).

Then, for subsequent iterations, these values were updated as follows. If the time required to
solve the complete set of subproblems was shorter than a given threshold (350 s), then α0 was
decreased and β0 increased.

Otherwise, we assumed that the decomposition method produced subproblems requiring too
much time to solve, and, to reduce the computational time, R was decreased to R − 2 visits.
Finally, we set parameter ∆, which defines the number of arcs to be selected from the promising
arc set Ā in the inner loop, to ∆ = ⌈0.8|Ā|⌉.

All tests were executed on a multi-user server with 64GB of RAM and am Intel(R) Xeon(R)
Gold 6130 CPU @ 2.10GHz, with 8GB of RAM. The MILP formulation was solved using CPLEX
12.8.

5.2 Numerical results
To assess the performance of the proposed matheuristic, we used the best results produced by the
mathematical formulation presented in Section 3.2 as a baseline, referred to as MILP, within a
time limit of 36 000 s (10h). Table 2 lists the results. The leftmost part lists the instances and
describes their main characteristics, starting with the number of collection centers |SCC| and
the number of visits to perform |P |. The results produced by the mathematical formulation are
then reported, including the value of the objective function (OF ), computational time in seconds
(column sec.), and optimality gap reported by the solver (GAP ). Note that in several cases, the
optimality gap was not closed before exhausting the allotted computational time (36 000 s). In
other cases, however, the computer memory limit (8GB) was reached, stopping the search. An
asterisk (∗) identifies the cases for which the search aborted in the computational time column.

The last two columns in Table 2 report the matheuristic results. Column %MILP yields the
difference in percentage between the best solutions produced by the two methods computed as
%MILP= (OFMatheu −OFMILP )/OFMILP . Therefore, the negative values of %MILP indicate
that the matheuristic produced a solution better than that of MILP. Finally, column sec. reports
the computational time required by the matheuristic to solve each instance.

Let us first look at the results produced by the MILP for the medium size instances (instances
1 to 17). Table 2 confirms the difficulty of solving this problem. Indeed, CPLEX was able prove
optimality only for instances 2, 3, and 13, and, in the case of instance 13, doing such required
more than 26 000 s. For the five cases in which the allotted computational time was exhausted,
the optimality gaps were greater than 40%. Such large optimality gaps do not allow us to confirm
the quality of the best solution found thus far by the solver. Finally, in nine cases, the search
was aborted after the computer’s memory limit was reached. The heuristic produced the same
objective value as the MILP in 10 of 17 instances and improved the best solution of the MILP in 4
of 17 instances, although the MILP performed better in three cases. Per the computational time,
most instances required between 1500 and 3300 s, with an average computational time of 2167 s,
confirming that the heuristic was able to reach solutions as good as CPLEX in less than 40 min.

If we examine the results produced for large size instances (instances 18 to 32), CPLEX
produced solutions that, in the best case, showed an optimality gap of 71%. In 11 cases, the
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MILP Matheuristic
Ins. |SCC| |P | Dem OF sec. Gap %MILP sec.

1 4 17 R 1870 * 100% -0.05% 1535
2 6 11 R 502 5 0% 0.00% 59
3 7 14 R 1137 467 0% 0.00% 279
4 8 24 R 2606 * 100% 0.49% 2632
5 9 16 R 1252 36000 40% 0.00% 981
6 9 26 R 1847 36000 100% 0.00% 2901
7 12 18 R 1407 * 77% 0.00% 1973
8 17 24 R 2009 * 100% -0.15% 2906
9 19 22 R 1581 * 90% 0.00% 2961

10 23 27 R 2020 * 89% 0.00% 2838
11 24 28 R 2019 * 91% 0.00% 2044

12 8 15 U 516 36000 49% 0.00% 1602
13 9 14 U 439 26112 0% 0.00% 1570
14 10 24 U 812 36000 100% -1.48% 3195
15 11 25 U 811 * 100% 2.10% 2875
16 12 26 U 913 * 100% -0.66% 3297
17 13 28 U 908 36000 100% 1.98% 3188

0.13% 2167

18 11 29 R 2490 * 100% -0.12% 2768
19 14 36 R 2453 * 100% -2.60% 3751
20 26 31 R 2193 * 93% 0.00% 3292
21 40 63 R 3987 36000 100% 4.82% 4126
22 46 70 R 5017 36000 100% 0.79% 4750
23 50 74 R 5289 * 100% 1.68% 4002

24 17 29 U 1905 * 89% -6.51% 2900
25 17 33 U 924 * 100% -1.19% 3301
26 18 35 U 1860 * 100% 0.16% 3708
27 19 33 U 1898 * 100% -0.16% 3646
28 19 33 U 1898 * 90% -0.84% 3500
29 19 35 U 2208 36000 94% -1.90% 3422
30 27 32 U 3095 * 71% -0.85% 3095
31 28 33 U 3131 * 76% 0.00% 3332
32 35 40 U 3746 36000 87% 0.27% 3960

-0.43% 3570

Table 2: Numerical results produced for the medium and large size instances
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search tree exhausted the memory of the available computer, aborting the search. The matheuristic
improved the results of the MILP in 8 of 15 cases and produced the same objective value in 2
more cases, whereas the MILP was better in five cases. The matheuristic produced an average
improvement of 0.43% over the large size instances, which is encouraging when considering the
computational time required to reach these solutions. Indeed, the computational times required
by the heuristic to solve large instances remained within the same order of magnitude as those
for medium instances, ranging from 2 768 to 4 750 s (46 to 80 min). This confirms the good
scalability of the matheuristic and its potential for efficiently handling even larger instances.

Previous experiments demonstrated the effectiveness and efficiency of the proposed matheuristic.
The next section analyzes how the different mechanisms and search strategies that form the
matheuristic contribute to its performance. We begin with inner-loop strategies. As described
in Section 4.4, two fixed & optimization strategies were proposed in the inner loop: the Keep
Groups, which plays a route intensification role; and the Change arcs, which aims to focus on the
search considering promising solutions. To assess the extent to which these strategies work in an
intertwined manner, the left part of Figure 4 shows the usage of the two strategies in the inner
loop, whereas the right part shows the number of times that the best solution was produced using
each strategy. Because the considered instances show distinct topological natures (i.e., rural vs.
urban), our analysis explicitly considered this.

0

0.2

0.4

0.6

0.8

Urban Rural Urban Rural

% usage % best

Keep groups Change arcs

Figure 4: Portion of times the algorithm uses different inner loop strategies, among rural
and urban instances

In our case, the left part of Figure 4 (over title %usage) shows that although the Change arcs
strategy is used more frequently than the Keep groups strategy, the latter is still used more than
1/3 of the times. Evidently, the use of these strategies depends on the type of instance. Denser
urban instances perform fewer Change arcs iterations (approximately 66% of the total) than rural
instances (74% of the total iterations). This suggests that the dynamic mechanism allowing to
switch between them works adequately. Moreover, the right part of Figure 4 (over title %best)
reports the portion of times that the matheuristic produced its best solution during an iteration
using the Keep groups or the Change arcs strategy. In the case of urban instances, the best
solution was produced in 80% of the cases using the Keep groups strategy, and this percentage
reduces to only 47% when solving rural instances. This makes sense; as the routes produced for
urban instances have more visits, Keep groups force the solver to focus on the route configuration
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to determine the best timing for the visits. The complementarity of the proposed strategies and
their contribution to the effectiveness of the matheuristic are confirmed.

Let us now focus on assessing the extent to which the proposed outer-loop (i.e., diversification)
strategies can split the problem into effective subproblems. To this end, we identified the problem
decomposition for each of the 32 instances for which the best solution was reached. Figure 5
reports the number of times each problem decomposition method led to the best solution for
rural and urban instances.

0

2

4

6

8

Urban Rural

(𝑅0; α0 ; 𝛽0) DM1 DM2 DM3 DM4

Figure 5: Number of times each problem decomposition method led to the best solution
for rural and urban instances

The initial problem-splitting with parameters (R = 7, α = 0.5, β = 0.5) produced the largest
number of best solutions (13), confirming that the empirically chosen values were quite effective.
Note that mechanism DM1, which updates the values of parameters (R,α, β), allows for problem
partitions that led to eight best solutions, whereas the problem decomposition produced by DM2,
the period extension method, allowed five best solutions to be reached. Finally, the last two
splitting approaches, DM3 and DM4, contributed to six best solutions, although DM4 did
not produce any best solution for urban instances. We conclude that all the strategies used
contributed to the effectiveness of the matheuristic, and that their different principles enhance its
robustness.

Finally, we inquired about the time at which the best solutions were found. In an attempt
to demonstrate the value of the time invested and the strategies used during the search, we
normalized the computational time across the instances to present in Figure 6: the number of
times that the best solution was reached during the first 20% of the total computational time,
between the 20% and the 40% of the total computational time, etc.

The largest number of best solutions (20) was produced during the first part of the search
within 40% of the time, which is consistent with the success of the initial splitting strategy, as
previously discussed. Nevertheless, up to 10 best solutions were reached during the 40% to 80%
quartile of the total computation time. Unsurprisingly, only two best solutions were obtained at
the end of the experiment.

To summarize, the proposed matheuristic proposes an adequate combination of strategies and
mechanisms that allow it to effectively tackle the difficulties and challenges raised by the BSTP,
as the decomposition is not straightforward. In particular, the iterative approach that exploits
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Figure 6: Number of best solutions produced within each quartile of the computational
time

different time decompositions produced encouraging results and reveals is a promising approach
for addressing routing problems with dependency or synchronization constraints between routes.

6 Conclusions
This paper presents an efficient matheuristic for solving the complex routing problem of transport-
ing products with short lifespans and in which visits to customers are interdependent. The real
challenges of the biomedical sample transportation problem (BSTP) inspired this study, which is
a present problem in Quebec (Canada). The problem studied relates to VRPTW-Syn and blood
transportation, but with a strong interdependence in the decisions concerning visits to customers
and route schedules. It extends previous formulations for the BSTP by realistically considering
the lifespan of samples.

To tackle the complex MILP formulation and shortcomings of commercial solvers, this paper
proposes an efficient matheuristic that combines an iterative time-decomposition approach and
two Fix-&-Optimize (F&O) techniques. The iterative matheuristic proposes a novel method
of reducing interdependency by applying different strategies to divide the problem into shorter
horizons with different visit structures. By solving these subproblems, the algorithm allows the
solver to efficiently explore the solution space. Four decomposition mechanisms were proposed
and tested, which provided good performances and contributed to the search. Moreover, the
two F&O techniques act as intensification mechanisms, thereby increasing the efficiency of the
algorithm. We tested the matheuristic on real-life instances with up to 50 customers, 74 visits,
and a requested synchronization average of 80%, which is much larger than the synchronization
percentage requested in previous studies. The matheuristic provides good quality solutions,
as good or better than CPLEX, but in only a fraction of the time, making it suitable for
implementation in a decision support tool for planners in healthcare logistics.

Despite these encouraging results, additional research is required to assess the effectiveness
of the iterative time-decomposition scheme on other problems and instances. In addition, we
believe that the use of a heuristic approach rather than the adapted mathematical formulation
for solving the subproblems generated by the time decomposition would allow us to solve larger
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subproblems, thus improving the effectiveness of the method.
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Appendix
This appendix is devoted to the mathematical formulation that must be used when dealing with
only a portion of the full problem, a sub-problem.
Given a network, consider the subproblem given by the pickup requests that must be performed
in the morning. When excluding the second part of the day, a new problem is built that cannot be
solved as if a second part of the day was nonexistent. Thus, an enriched formulation is required
when coping with subproblems.

Following the same pattern as in Section 3, a formalization of a subproblem is first given
before the mathematical program formulation.

Formalization of sub-problems
As anticipated, when excluding a part of the instance, not all requests of the original problem are
contained. To address this, we can redefine all sets described in Section 3, those marked with a
tilde, to state that they are related to this subproblem.
In particular,

C̃ = {c1, c2, . . . , cñ} (21)

is the set of SCCs with at least one request included in the subproblem.
Moreover,

P̃g ⊂ Pg (22)

is the set of requests for SCC g that are part of the subproblem.
Given this, it suffices to define

P̃ =
⋃
g

P̃g (23)

to obtain the set of all requests related to the considered Lab.
Following the same reasoning, it is possible to define:

Ṽ = {v0, v1, . . . , v|P̃ |} (24)

Ã =
{
(vi, vj) : vi, vj ∈ V, i ̸= j, i, j ∈ {0, . . . , |P̃ |}

}
(25)

Ĩg =
{
1 +

g−1∑
h=0

|P̃h|, 2 +
g−1∑
h=0

|P̃h|, . . . , |P̃g|+
g−1∑
h=0

|P̃h|
}

(26)

where |P̃0| is set to 0. Their meaning is absolutely analogous to the that for the entire problem,
as presented in 3.

Mixed Integer Programming formulation of sub-problems
Once the new sets and parameters are defined, the considered subproblem can be formulated.
The formulation uses the same variables presented in Table 1 and inherits Constraints (2)-(8)
and (10)-(16), with the only difference being that for each set or parameter, its analogy with the
tilde must be used.
Also concerning the objective function, it is totally analogous to (1).

min

|P̃ |∑
i=0

di (27)
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In terms of constraints, in addition to the inherited constraints, these two must be added:

bg ≤ uk ≤ bg + φg; g = 1, ..., ñ; k = (Ĩg)|P̃g| only if |P̃g| = |Pg| (28)

uk ≥ bg − (|Pg| − |P̃g|)T̂g; g = 1, ..., ñ; k = (Ĩg)|P̃g| (29)

In particular, Constraint (28) substitutes (9) of the standard formulation. It states that in
every SCC g, the last pickup is performed after the closing hour, bg, within φg units of time. Evi-
dently, when dealing with a subproblem, this must be stated only if in the considered subproblem
the “real” last pickup of the SCC is included.

Constraint (29) is not included in the original formulation. It is added to ensure that all solutions
of the subproblem present partial, feasible solutions for the original subproblem. Therefore, this
constraint excludes the feasible region of the subproblem all solutions that are impossible to
complete to obtain a full feasible solution. In particular, it is required that, for each center
cg, the last pickup included in the subproblem (u|P̃g|) is performed not before the closing time
bg is reduced by the maximum time that can elapse between two consecutive pickups at cg
(T̂g) multiplied by the number of pickups excluded from the subproblem (|Pg| − |P̃g|). Hence,
Constraint (29) provides a lower limit for the pickup visit time k. If this limit is not satisfied, a
way to build the next routes is nonexistent without allowing some specimens collected by SCC g
to perish.
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