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Abstract.  This article concerns the location of satellite distribution centers (SDCs) to 

supply humanitarian aid to the affected people throughout a disaster area. In such 

situations, it is not possible for the relief teams to visit every single home. Instead, the 

people are required to go to a satellite distribution center in order to obtain survival goods, 

provided that these centers are not too far from their homes. The SDCs are usually within 

walking distance. However, these SDCs need to be supplied from a central depot, using a 

heterogeneous and capacitated fleet of vehicles. We model this situation as a 

generalization of the covering tour problem, introduce the idea of split delivery, and 

propose an efficient heuristic approach to solve it. Numerical experiments on randomly-

generated data show that, first, only very small instances can be solved efficiently using 

the mathematical model and, second, our heuristic produces high-quality solutions and 

solves real-size instances in a reasonable computing time. 
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1. Introduction 

Given the growing number of natural disasters in recent years and the enormous damage 

that these disasters have caused, the interest of the scientific community in emergency 

logistics has literally exploded in the last ten years (Altay and Green, 2006). A 

humanitarian crisis is a vast, extremely complex situation. Although they are a small part 

of general crisis management, emergency networks are difficult to design and manage, 

but their impact on the efficiency of aid delivery is crucial. Emergency logistics is a 

broad field, which includes such tasks as establishing a rescue command center, 

collecting information about the disaster area, identifying appropriate sites for shelters, 

determining the best evacuation routes, delivering relief material, and installing the 

medical, fire-prevention and emergency construction facilities, as well as setting up 

evacuation transportation. Thus, these activities may involve both the inflow and outflow 

of goods and people.  

This paper focuses in the inflow logistics and concerns the distribution of survival goods 

(e.g., food, water, medicine) to the people in the disaster area. Distribution networks for 

humanitarian aid are often compared to classic industrial distribution networks, replacing 

suppliers with humanitarian agencies and distribution centers with public sites that are 

temporarily adapted to store and handle goods (Tzeng et al., 2007). The last link in the 

industrial supply chain – the retailers – is replaced by mobile distribution booths, which 

are located in any parking lot or any major street intersection so that people can have easy 

access. Finally, while the objective of general distribution systems is to maximize profit, 

relief distribution systems try to provide a fair, efficient distribution of aid. 

In practice, a logistics network is composed of several central depots (CD), which have 

been deployed over the affected area, with each CD being responsible of the needs of a 

given region. In this paper, we will focus on one of these regions, where we assume that a 

CD has been opened. Thus, the CD location is out of the scope of this paper. However, 

the interested reader can consult, for example, Rekik et al. (2011) for more details 

concerning the design of such networks.  
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In the Canadian province of Quebec, the Civil Protection Act (CPA) was adopted by the 

government and went into effect on December 20, 2001. According to this CPA, each 

municipality must develop and update its own emergency preparedness plan, which 

includes all topics related to emergency logistics. Thus, we assume that the emergency 

managers have identified several potential distribution sites in the targeted region, where 

several non-interchangeable products can be made available. 

In response operations, the emergency managers must decide which of these potential 

sites will be used as satellite distribution centers (SDCs), depending on the situation. 

Since the victims have to travel from their homes (i.e., the demand points) to the satellite 

distribution centers, these SDCs must be chosen so that the maximum distance traveled 

does not exceed a maximum distance set by the emergency managers. In the rest of this 

paper, we will refer to this maximum distance as the covering distance. A demand point 

(DP) is covered if its distance to an open SDC is shorter than the covering distance. 

The SDCs are supplied by a fleet of heterogeneous vehicles located at the central depot. 

The SDC demand, which corresponds to the demand of the victims assigned to it, may be 

split and transported in different vehicles. The problem is how to select the locations of 

the SDCs and how to supply them from the CD using the available vehicle fleet to its 

best, while covering all the demand points. Figure 1 shows a network consisting of one 

central depot, 13 potential satellite distribution centers and 42 demand points (i.e., the 

victims’ homes) to be relieved. The illustrated solution uses two vehicle routes and opens 

five satellite distribution centers in order to cover all demand points. 

The objective of this paper is to provide a tool that supports the emergency managers in 

designing and operating a satellite distribution center network. To this end, we propose a 

mathematical model that determines the number and the location of the SDCs, as well as 

the supply operations plan (i.e., truck route design and the quantities to deliver to each 

SDC). The rest of this paper is structured as follows. Section 2 defines the problem and 

proposes a mathematical model. Section 3 reviews and classifies previous studies 

relevant to the category of covering routing problems. Section 4 presents our heuristic 

approach. Section 5 reports the results of our extensive numerical experiments to evaluate 

both the limitations of the mathematical model to solve real-size instances and the quality 
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of the results produced by our heuristic approach. Section 6 offers our conclusions and 

closes the paper.  

 

Figure 1: Example of the studied network  

2. Problem definition and mathematical model  

The problem discussed in this paper may be defined as follows. Let   (   ) be a 

complete directed graph in which V represents the vertices and A is the arc set. In the case 

in question,   * +     , 0 is the central depot;   *     + is the set of demand 

points, where the people affected are located; and   *     +is the set of potential 

satellite distribution centers. The number of elements of J that may be visited is free. 

However, all the demand points of I must be covered. The arc set is defined as   

{(     )         }, and a distance matrix cij is defined over A. The amount of aid of 

type s (s = 1, …, t) required at demand point iI is dis and the weight of each aid unit s is 

ws.  A fleet of l vehicles is available; Qk represents the capacity (in units) of vehicle k=1, 
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…, l. Finally,   {   } is a n * m matrix, in which ij is equal to 1 if demand point i is 

within the covering distance  from SDC j, and 0, otherwise. Let us also define the 

following decision variables: 

Disjk  quantity of demand type s at demand point i supplied by vehicle k while visiting 

SDC j; 

xijk equals 1 if arc (i,j) is used by vehicle k, and 0, otherwise;  

yjk equals 1 if SDC j is visited by vehicle k, and 0, otherwise; and 

uik a free variable used in the sub-tour elimination constraints. 

The model is formulated as follows: 

Min 
  

m

i

m

j

l

k
ijkij xc

0 0 1  
 (1) 

Subject to: 

∑         
 
           *       +   *       +                (2) 

∑         
 
          *       +   *       +     (3) 

∑       
 
             *       +    (4) 

∑       
 
               *       +  (5) 

∑ ∑             
 
   

 
                *       +   *       +      (6) 

∑ ∑              
 
   

 
         *       +   *       +           (7) 

∑ ∑ ∑           
 
   

 
   

 
            *       +   (8) 

        (   )                         *       +   *       +     (9) 

     *   +                *       +   *       +    (10) 

    *   +       *       +   *       +        (11) 

             *       +   *       +     (12) 

                                                *       +   *       + 

    *       +   *       +      (13) 
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The objective (1) is to minimize the total distance traveled by the vehicle fleet. 

Constraints (2) and (3) insure that, for each SDC j and for each vehicle k, there are either 

both incoming and outgoing arcs or no arcs at all. Constraints (4) and (5) insure that, for 

each vehicle of type k, there are two arcs connected to the depot. Constraints (6) state that 

demand type s of demand point i may come from various SDCs j and be delivered with 

one or more vehicles. Constraints (7) link the distribution variables Disjk to the use of 

vehicle k for a delivery to demand point j. For each vehicle k, constraints (8) impose the 

capacity threshold, and constraints (9) are the classic sub-tour elimination constraints 

(Miller, Tucker & Zemlin, 1960). (Please note that the right-hand side is m, and not m –

 1, because the starting point is 0). The remaining constraints are the decision variable 

definitions.  

The following sub-tour elimination constraints can be used as well, since they are 

equivalent to the constraints in Kara et al. (2004), considering that ∑ ∑   
 
   

 
         is 

the demand of SDC j: 

                  ∑ ∑   
 
   

 
                 *       + 

    *       +      (14) 

Clearly, this model may lack efficiency for solving medium to large instances. This is the 

reason why we developed a heuristic approach that will be presented in Section 4.  

3. Literature review 

As defined, our problem is closely related to a family of covering problems, such as the 

covering salesman problem, the covering tour problem and the median cycle problem, 

among others. In this section, we review the most important covering problems and 

outline the differences between them. 

In the Covering Salesman Problem (CSP), the objective is to identify the minimum cost 

tour of a subset of p cities so that every city not on the tour is within some predetermined 

covering distance of a city that is on the tour. Current and Schilling (1989) used the CSP 

to elaborate the routes for healthcare teams in developing countries, where the team has 

to visit a subset of the villages and the rest of the population have to be within a walking 
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distance of the visited sites. tour of a subset of p cities so that every city not on the tour is 

within some predetermined covering distance of a city that is on the tour.  

Current and Schilling (1994) introduced two bi-criteria variants of the CSP, called the 

Median Tour Problem (MTP) and the Maximal Covering Tour Problem (MCTP). In both 

problems, the tour must visit only p of the villages, and the length of this tour must be 

minimized. In the MTP, the second objective is to minimize the total distance between 

each unvisited village and the nearest visited village. For the MCTP, the second objective 

is to maximize the total demand within some prespecified maximal travel distance from a 

tour stop. Golden et al. (2011) defined and developed a generalization of this problem 

and referred to some of the real applications in which satisfying the demand of some 

customers cannot be met by visiting or covering them for just once and each city i has to 

be covered ki times. 

Gendreau et al. (1997) studied the Covering Tour Problem (CTP) in which the vertices 

are divided as follows: W1 is a set of vertices that can be visited;  ̅     is a set of 

vertices that must be visited, including the depot; and W2 is a set of vertices that must be 

covered. The objective of the CTP is to minimize the length of the Hamiltonian cycle 

over a subset of W1 in such a way that the tour contains all vertices  ̅, and every vertex 

of W2 is covered by the tour (i.e., it lies within a specified distance from a vertex of the 

tour). Jozefowiez et al. (2007) studied the Bi-Objective Covering Tour Problem 

(BOCTP), in which the second objective consists of minimizing the greatest distances of 

the covered nodes. Hachicha et al. (2000) has studied the multi-vehicle CTP. 

Nolz et al. (2010) propose a Multi-Objective Covering Tour Problem (MOCTP) in which, 

given a central depot and a set of identical vehicles, the demand of each node has to be 

satisfied by exactly one vehicle. The goal of the problem is to minimize the following 

objectives: (1) the combination of the mini-sum facility location criterion (i.e., the sum of 

distances between all nodes and their nearest open facility) and the maximal covering 

location criterion (i.e., the number of nodes unable to reach a facility within a predefined 

maximum distance), (2) the total tour length, and (3) the latest arrival time at a node. 

They solve a bi-objective problem by considering the objectives (1) and (2) and then the 

objectives (1) and (3). 
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The covering tour problem is related to the Prize-Collecting Traveling Salesman Problem 

(PCTSP) and to the Selective Traveling Salesman Problem (STSP). In these problems, a 

non-negative profit pi is associated with each vertex i. In the PCTSP, the objective is to 

minimize the tour length through a subset of the vertices so that the profit pi collected on 

the subtour is at least equal to a given value (Fischetti and Toth, 1988). On the contrary, 

in the STSP, the objective is to search for a subtour with the highest profit, and a length 

not exceeding a preset value (Laporte and Martello, 1990). 

Another related problem is the Median Cycle Problem (MCP), which is studied in two 

versions. In the first version (Moreno Pérez et al., 2003), called MCP1, the sum of 

routing distance of the cycle and the assignment distance of the vertices not in the cycle 

to their nearest vertex in the cycle are minimized. This also called the ring star problem 

(Kedad-Sidhoum and Hung Nguyen, 2010). In the second version (Renaud et al., 2004), 

called MCP2, the routing distance is minimized, subject to an upper bound on the 

assignment distance. 

Table 1 presents the characteristics of the major related problems appearing in the 

literature. To the best of our knowledge, none of the published papers integrates 

simultaneously all the characteristics of the situation studied in this paper. Our problem 

extends the multi-vehicle covering tour problem to include multiple commodities, 

heterogeneous capacitated fleet, and split deliveries. These characteristics are needed to 

model humanitarian aid distribution more accurately. 

4. A multi-start heuristic 

This section presents our heuristic approach for solving the defined problem. The 

procedure starts by running a Preprocessing step on the problem data in order to identify 

whether or not one or several SDCs need to be opened at specific locations to guarantee 

that a feasible solution can be reached. After running the preprocessing step, an initial 

feasible solution is produced by the Initialization step, and then a Local Search (LS) is 

conducted. This local search searches several neighborhoods and uses several procedures 

that try to avoid the search being trapped by the local optima. The LS was embedded into 

a multi-start mechanism so that, for a specific number of times, a solution is constructed
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Table 1. Characteristics of major related problems 
Nb. of vertices Covering Nodes Nodes Nb. of Nb. of

Problem name Authors Objective function in the subtour Kinds of node distance with demand with profit products vehicles

Covering Salesman Problem - CSV Current & Schilling, (1989) Minimize distance Fixed, p One Yes No No 1 1
Median Tour Problem - MTP Current & Schilling (1994) Minimize distance and 

assignment cost
Fixed, p One No No No 1 1

Maximal Covering Tour Problem - MCTP Current & Schilling (1994) Minimize distance and 
maximize demand within a 
covering distance

Fixed, p One Yes Yes No 1 1

Covering Tour Problem - CTP Gendreau et al. (1997) Minimize distance while 
covering nodes of W 2

Free W 1 can be visited, 
some must be 
visited and W 2 

must be covered

Yes No No 1 1

Bi-Objective Covering Tour Problem - BOCTP Jozefowiez et al. (2007) Minimize distance of visited 
nodes and the maximum 
distance of covered nodes

Free W 1 can be visited, 
some must be 
visited and W 2 

must be covered

No No No 1 1

Multi-Objective Covering Tour Problem - MOCTP Nolz et al. (2010) Combination of two 
objectives choosen between 
three

Free Yes Yes No 1 m

Multi-Vehicle Covering Tour Problem - m -CTP Hachicha et al. (2000) Minimize distance while 
covering nodes of W 2, 
subject to maximum number 
of nodes and maximum 
distance per route 

Free W 1 can be visited, 
some must be 
visited and W 2 

must be covered

Yes No No 1 m

Prize Collecting Traveling Salesman Problem - PCTSP Fischetti & Toth (1988) Minimize distance subject to 
a minimum profit collected

Free One No No p i 1 1

Selective Traveling Salesman Problem - STSP Laporte & Martello (1990) Maximize profit subject to a 
maximum distance

Free One No No p i 1 1

Median Cycle Problem - MCP1 Moreno Pérez et al. (2003) 
Kedad-Sidhoum & Hung 
Nguyen (2010)                
Renaud, Boctor & Laporte 
(2004)

Minimize distance and 
assignment cost

Free One No No No 1 1

Median Cycle Problem - MCP2 Moreno Pérez et al. (2003) 
Renaud, Boctor & Laporte 
(2004)

Minimize distance subject to 
a maximum assignment cost

Free One No No No 1 1

Current contribution Minimize distance Free I  can be visited 
and J  must be 
covered

Yes Yes No Many m
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and improved iteratively. The goal of this mechanism is to increase the robustness of the 

LS, with respect to the initial solution, as well as to improve its ability to explore non-

visited regions of the solution space. The algorithmic structure of our heuristic approach 

is shown in Figure 2, and the details of each procedure are given in the following 

subsections. 

Preprocessing 
For r = 1 to #_restarts 
 Initialization 
 For i = 1 to # _iterations 
  For j=1 to #_LocalSearch_iterations 
   Delete-Redundant-SDC 
   Swap 
   Drop&Add 
   Extraction-Insertion 
  next j 
  Diversification 
 next i 
next r 
end 

Figure 2: Algorithmic structure of our heuristic 

4.1 Preprocessing  

This first step of the algorithm is executed only once, although of the number of restarts 

(#_restarts) selected may be more. The goal of preprocessing is to identify demand points 

(DPs) that have a single SDC within the maximum covering distance . In other words, it 

seeks for DPs that can only be covered from one single SDC and selects these SDCs to be 

in any feasible solution. These SDCs will be denoted “essential” in the rest of the paper. 

For each SDC j, the subset Tj, including all the demand points within a distance  of j, is 

constructed.  

4.2 Initialization 

The Initialization step finds an initial feasible solution. At the beginning of this step, all 

the demand points i I are tagged as “unassigned”, and the remaining capacity of each 

vehicle k K, denoted Rk, is set to Qk. The Initialization step randomly draws a vehicle k 

and a SDC j from the lists of available vehicles and potential SDCs, respectively. Then, a 

demand point i Tj is randomly selected. If the weight of the total demand of DP i for 
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every type of demand s (i.e., s siswd ) is less or equal than Rk, then the demand point i is 

“assigned” to SDC j. Rk is decreased appropriately, and another unassigned DP in Tj is 

considered. If all the DPs in Tj are assigned, then the next SDC in route k (i.e., j+1) is 

selected as the closest SDC to j for which Tj+1 contains at least one unassigned demand 

point. The DPs, and therefore the SDCs, are added to the current route k as long as Rk 

remains positive. 

If Rk is not enough to totally satisfy the volume required by the incumbent DP, the 

algorithm assigns as many products as possible (the order in which products are assigned 

is irrelevant), and the route k is completed by returning the vehicle to the depot. Then, a 

new vehicle k+1 is randomly selected from the vehicle list, the current SDC being its first 

stop, and the unsatisfied demand of the incumbent DP is assigned to it. As a result, the 

demand of this DP is split. The algorithm assigns demand points, adds SDC and builds 

new routes (i.e., selects new vehicles) until all the DPs have been assigned. The feasible 

solution produced by the initialization step is then used as the initial solution for the local 

search. (Please note that, in the rest of this paper, we use "routes" and "vehicles" as 

synonyms because only active vehicles are considered and each route is performed by a 

single vehicle.)  

4.3 Local Search  

The Local Search contains several mechanisms procedures that have been designed to 

tackle specific parts or characteristics of an incumbent solution. In particular, the search 

process executes consecutively the following procedures: 

1. the Delete-Redundant-SDC procedure, which tries to eliminate unnecessary 

SDCs (or stops) on the routes; 

2. the Swap procedure, which tries to reduce the route length by applying a 2-Opt 

exchange on each route and between different routes;  

3. the Drop&Add procedure, which tries to replace an opened SDC by one or 

more SDCs that are not visited in the current solution;  

4. the Extraction-Insertion procedure, which tries to move a SDC from its current 

route to another one, with the goal being better use of the vehicle capacity. 
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The procedure is repeated for a given number of iterations (#_LocalSearch_iterations).  

The following subsections are devoted to the comprehensive description of each 

procedure. 

4.3.1 Delete-Redundant-SDC procedure 

An SDC j is called redundant if, after removing it from a route, the solution remains 

feasible, meaning that all the demand points currently satisfied by j can be reassigned to 

another open SDC on the same route. This procedure is particularly useful because the 

Initialization step tends to produce solutions that contain too many SDCs. The Delete-

Redundant-SDC procedure considers the routes in the current solution consecutively, and, 

for each route, evaluates whether or not the solution remains feasible after removing each 

SDC. As the triangle inequality holds true, removing a SDC from a route reduces the 

route’s length; in the worst case, the route's length will remain the same. 

Please note that the feasibility after removing a specific SDC j can be tested by verifying 

if all the DPs served by j are within the covering distance () of the other SDCs visited in 

the same route. If not, this SDC cannot be removed. Once a SDC j is selected, the 

algorithm tries to assign as many demand points as possible to the closest SDC to SDC j. 

If any of the DPs covered by SDC j remain uncovered, then the algorithm tries the second 

closest SDC to j, and so on until all the DPs originally assigned to j are assigned to the 

other SDCs on the same route, in which case j may be removed, or until all the SDCs on 

the route have been tested, in which case the algorithm concludes that j can’t be removed.  

4.3.2 Swap Procedure 

The Swap procedure tests whether or not a different SDC visiting sequence will lead to a 

shorter route. First, the procedure considers exchanging positions between two SDCs on 

the same route. Once all the possible exchanges have been examined, it considers 

exchanges involving SDCs on two different routes.  These exchanges are repeated as long 

as the solution improves. 

Swapping SDCs within a single route is rather simple as the resulting route is always 

feasible and the assignment of demand points to the SDC remains unchanged. Each pair 
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of SDCs on a given route is considered, and the positions of these two SDCs are 

exchanged. The resulting tour lengths are calculated, and the exchange producing the 

largest improvement, if any, is implemented.  Figure 3 illustrates a swap between j1 and j2 

on route k2, where j2 is visited simultaneously by routes k1 and k2. The procedure is 

repeated for each route as long as the total routes length is improved.  

 

Figure 3: Swapping with a SDC visited by two routes 

 

Swapping SDCs belonging to two different routes is slightly more complicated because 

the vehicle capacities and the demand delivered at the studied SDCs need to be taken into 

account. In fact, each SDC serves different sets of demand points, thus entailing different 

demands for each product type, so the required vehicle capacity is also different. It 

follows that swapping two SDCs on different routes is not always possible due to vehicle 

capacity.  

To better illustrate this point, let us consider the swap between SDC j1 and SDC j2 visited 

currently by vehicles k1 and k2, which have remaining capacities R1 and R2, respectively. 

Let us also consider the capacity required to satisfy demand served by j1 and j2, denoted 

d1 and d2 respectively (  skisj wDd
111  and  skisj wDd

222 , for all s and i ).  A 

swap between j1 and j2 is only possible if the following swap feasibility condition is 

satisfied: min(R1 + d1 – d2 ; R2 + d2 – d1) ≥ 0. 

Split delivery causes another difficulty to deal with. If a SDC considered for a swap is 

visited by n different routes (i.e., a split SDC), then n different swaps are possible. Let's 

assume that j1, which is visited by vehicle k1, is selected to be swapped with j2, which is 
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visited by vehicles k2 and k3. In this case, two possible exchanges are possible: 1) j1 is 

visited by k2, with j2 being visited by k1 and k3, and 2) j1 is visited by k3, with j2 being 

visited by k1 and k2. This situation is shown in Figure 4, in which a) illustrates a feasible 

solution before the swap, and b) and c) illustrate the two possible swaps described above. 

 

Figure 4: Possible swaps when one of the selected SDCs is visited by two routes 

 

It follows that, if j1 is visited by n vehicles and j2 is visited by m vehicles, then n*m 

different possible swaps need to be evaluated. Taking into account all these 

particularities, the swaps between SDCs on the different routes is done as follows:  

1. The algorithm starts by choosing arbitrarily the first route (or vehicle) k1, and its 

first stop on the route, j1.  

2. The algorithm builds a list containing the  SDCs closest to j1, but not on the same 

route. Restricting the number of SDC to be swapped limits the computational 

effort required to evaluate the potential swaps.  

3. The algorithm evaluates all the swaps between j1 and each of the SDCs in the list. 

To this end, the feasibility test is performed. If the test is satisfied, the total length 

of the two routes concerned, before and after swap, are computed and stored. If 

the SDC being considered in the swap is visited by more than one route, all the 

potential swaps need to be evaluated.  

The procedure is repeated for all the stops in route k, and then applied in the exact same 

way to the other routes in the solution. The parameter , which defines the size of the 

neighborhood to explore, needs to be set carefully by the decision-maker. In fact, as  
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increases, more potential swaps are evaluated. However, as  increases, the SDCs that are 

at a greater distance are considered, but their chances of reducing the total distance 

decreases.  

4.3.3 Drop&Add Procedure 

It could happen that, for a current non-optimal route, visiting more and different SDCs 

leads to a shorter route length. In addition, when considering a SDC visited by two or 

more routes, replacing this SDC by one or more neighboring SDCs that are not in the 

current solution may also improve the solution's total route length. These two situations 

are illustrated in Figure 5. In Figure 5a, SDC j1 is replaced by j2 and j3, thus reducing the 

total length of the route in Figure 5b. In Figure 5c, j1 is visited by k1 and k2, but after the 

Drop&Add procedure. In Figure 5d, j1 is replaced by j2 and j3, thus reducing the total 

distance of k1 + k2.   

 

Figure 5: Examples of potential improvements by Drop&Add 

The goal of the Drop&Add procedure is to remove a SDC and replace it with a subset of 

unvisited SDCs that decrease the route length. To this end, a visited SDC is selected and 

removed from the current solution. Thus, some DPs will eventually become uncovered, 

so the algorithm tries to assign them to other closest SDCs visited on the same route. 

Still, if demand points remain uncovered, the algorithm tries to cover them by adding one 

or more unvisited SDCs to the solution. The algorithm considers unvisited SDCs to add 

according to their increasing distance to SDC j, which has been removed. If the closest 

SDC j’ is able to cover at least one uncovered DP, j’ is added to the route so that the new 
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route’s length is minimized; then, as many uncovered DPs as possible are assigned to j’. 

The algorithm adds unvisited SDCs until the solution becomes feasible again.   

This procedure is performed for every SDC in the current solution. The replacement 

leading to the shortest total length is implemented, even if the total length of the current 

route is increased with the less damaging exchange.  

4.3.4 Extraction-Insertion Procedure 

The Extraction-Insertion procedure moves one SDC from one route to another. To this 

end, the algorithm selects a SDC j, currently visited by vehicle k, and tries to evaluate if j 

could be served by another vehicle k’. This is done by checking if the remaining capacity 

of each of the other vehicles Rk’ is equal or greater than the volume required to transport 

the total demand covered by SDC j, denoted dj ( 
i s

sisjkj wDd ). If transferring j from 

route k to route k’ is possible, then the algorithm inserts j into k’ so that k’’s route length 

increase is minimized. For each SDC, the algorithm evaluates every possible transfer and 

implements the one resulting in the lowest route length, if it improves the current 

solution.  The procedure is repeated as long as improvements are found.  

4.4 Diversification Procedure 

The goal of the Diversification procedure is to perform a soft diversification of the 

incumbent solution by adding r unvisited SDCs to the solution. The rationale behind this 

procedure is to give the solution some flexibility that will, hopefully, allow the local 

search to perform changes in the solution structure at the following iteration. To this end, 

each time the local search loop is finished, the Diversification procedure selects randomly 

 unvisited SDCs and inserts each of them into the routes of the current solution so that 

the insertion cost (i.e., the increasing route length of the solution) is minimized.  

This is done in the following manner. After selecting an unvisited SDC j1 with uniform 

probability, the procedure identifies j2, the closest SDC to SDC j1 already used in the 

current solution. Then, the algorithm evaluates the insertion of j1 before and after j2, and 

the solution that minimizes the total route length of the solution is retained. If j2 is visited 

by several vehicles, then j1 will be visited by the same vehicles and, for each of these 
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vehicles, the relative position of j1 with respect to j2 is given by the minimal cost insertion 

rule. Finally, the algorithm tries to reallocate as many demand points as possible from 

their current assignment to j1.  

The Diversification procedure completes the main search algorithm (Figure 2). Thus, 

assuming that the predefined number of iterations (#_iterations) has not yet been reached, 

the next procedure to be executed will be the Delete-Redundant-SDC procedure, which 

may eliminate the SDC just added by the Diversification procedure. To prevent the 

algorithm from doing so, the r newly SDC are put a kind of tabu-list for the next 

application of the Delete-Redundant-SDC procedure.  

5. Computational results 

 
This section has three objectives: 1) identify the parameter combination that produces the 

best results, 2) identify the limits of the mathematical model, and 3) evaluate the quality 

of our heuristic approach in terms of both computational time and objective function. To 

this end, we built a set of numerical experiments based on randomly-generated data. The 

instances are characterized by the number of demand points (n), the number of potential 

SDCs (m), the number of different products to distribute (t), and the number of vehicles 

available (l). For each DP and each potential SDC, the coordinates were uniformly 

generated within a [0,100] square. Distances between each pair of sites cij were computed 

as the Euclidean integer distance. All the models were coded in Java, and the branch-and-

bound algorithm of CPLEX  11.0 (with its default parameters) was used to solve the 

instances on a 3.00 GHz Intel Core 2 Duo PC with a 4.00 Go RAM. All the computation 

times in the rest of this paper are reported in seconds. 

5.1 Setting the heuristic's parameters  

Our heuristic is based on the parameters that influence the quality of the final solution. In 

order to evaluate the impact of these parameters, we generated 20 instances with n = 100 

demand points, m = 20 satellite distribution centers, t = 2 types of product and l = 2 

vehicle types.  We fixed the number of restarts to 3000 and considered the following 

parameter combinations: 
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 Number of iterations (#_iterations) : 10, 20 

 Number of local search iterations (#_LocalSearch_iterations): 10, 15, 20 

 Number of SDCs considered in the swap (): 4, 6, 8 

 Number of SDCs considered in the diversification (): 3, 5, 7 

Table 2: Heuristic parameters setting 

   #_iterations       #_LocalSearch_iterations                                          
   4 6 8 
  3 1283.95 1274.45 1277.35 
 10 5 1278.50 1272.15 1268.90 
  7 1284.30 1276.00 1274.20 
  3 1285.25 1274.20 1273.45 

10 15 5 1280.35 1279.45 1270.85 
  7 1277.00 1273.75 1275.95 
  3 1283.85 1277.80 1279.20 
 20 5 1278.55 1278.55 1271.85 
  7 1279.35 1276.90 1273.75 
  3 1288.15 1270.10 1272.35 

 10 5 1277.30 1270.10 1265.00 

  7 1278.45 1278.75 1276.55 
  3 1280.70 1277.50 1274.70 

20 15 5 1279.40 1277.70 1277.20 
  7 1286.05 1273.20 1272.40 
  3 1273.05 1282.45 1272.00 
 20 5 1270.70 1277.60 1270.40 
  7 1277.30 1279.10 1272.60 

*The numbers in bold face correspond to the best average solution. 

Table 2 presents the numerical results associated to the 54 combinations that we used to 

calibrate the parameters. Our heuristic is not too sensitive to the parameters, since the 

worst average solution over 20 instances was 1288.15, and the best average solution was 

1265.00. The most important parameter seems to be the number of iterations (i.e., the 

number of times that the global loop, including the diversification, is applied). The 

performance does not seem to be linked to the number of local search iterations, which 

means that the best solution may be obtained early on. Consequently, in all the 

forthcoming tests, we used the following parameters: #_iteration = 20, 

#_LocalSearch_iterations = 10,  = 5 and  = 8. 

5.2 Computational results 

In this sub-section, our heuristic's performance is compared to the performance of Cplex 

in order to evaluate the optimality gap produced by the heuristic. We generated some 

other instance sets in order to establish independence from the instances used to calibrate 
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our parameters. These new instances are smaller so that they can be managed by Cplex. 

For these new instances, four categories of vehicles are considered. Their capacities are 

{50, 75, 100, 150} units, respectively. The instances with different vehicle types (l=2, l=3 

and l=4) have vehicle capacities of {50, 75}, {50, 75, 100}, and {50, 75, 100, 150} units, 

respectively. For a given instance, the vehicles are added until their total capacity is equal 

or greater than the total demand, multiplied by a factor of 1.2.  

Table 3 shows the results obtained for these small instances, with only n = 20 demand 

points. We generated five instances for each combination of the number of SDC (m = 4, 

6, 8 and 10), the number of products (t = 2, 3 and 4), and the number of vehicles (l = 2, 3 

and 4). This lead to 36 sets of five instances each, for a total of 180 instances. Each line 

in Table 3 reports the average cost over 5 instances.  

The results of the mathematical model (Section 2) are provided under the header, Exact, 

and our heuristic approach (Section 4) under the header, Heuristic. Column Gap (%) 

refers to the average cost percentage of the heuristic solution over the exact solution (or 

the best integer solution, if proof of optimality was not obtained). For these small 

instances, Cplex was allowed to run for up to 1800 seconds.  Within this time limit, it was 

able to give proof of optimality in 152 out of 180 cases. The average computational times 

range from only a fraction of a second up to more than 1600 seconds, but, overall, Cplex 

is efficient solving these kinds of instances. 

The figures in Table 3 confirm the excellent performance for our heuristic. In fact, for 26 

out of 36 sets, the heuristic average gap was 0%, which means that, for the five instances 

in each of these 26 sets, the heuristic found the best known solutions. For the other 6 sets 

(in bold face in Table 3), the average gap of the heuristic was negative, meaning that the 

heuristic produces a better solution than Cplex in the allotted time. Globally, the heuristic 

average gap is -0.11, with an average computing time of 7.8 seconds. 
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Table 3: Numerical results for the small instances (n=20 DPs) 

Set SDC Products Vehicles            Exact                                 Heuristic                       
    Cost Seconds Cost Gap (%) Seconds 

1 4 2 2 284.00 0.31 284.00 0.00 3.29 
2 4 2 3 226.20 0.22 226.20 0.00 3.30 
3 4 2 4 212.60 0.57 212.60 0.00 3.43 
4 4 3 2 464.80 8.57 465.60 0.17 6.51 
5 4 3 3 417.60 1.98 421.60 0.96 5.29 
6 4 3 4 313.60 1.37 317.00 1.08 4.05 
7 4 4 2 813.60 52.58 813.60 0.00 12.19 
8 4 4 3 628.00 19.30 628.00 0.00 9.12 
9 4 4 4 497.40 5.08 497.40 0.00 6.79 
10 6 2 2 208.60 5.22 208.60 0.00 4.59 
11 6 2 3 183.80 8.77 183.80 0.00 4.62 
12 6 2 4 134.40 2.89 134.40 0.00 4.32 
13 6 3 2 435.60 100.87 435.60 0.00 8.03 
14 6 3 3 347.40 46.48 347.40 0.00 6.73 
15 6 3 4 265.80 10.23 265.80 0.00 5.88 
16 6 4 2 694.40 734.94 694.40 0.00 15.20 
17 6 4 3 564.00 746.87 564.00 0.00 12.26 
18 6 4 4 444.20 266.69 444.20 0.00 9.79 
19 8 2 2 301.40 367.82 301.40 0.00 5.49 
20 8 2 3 265.40 363.98 265.40 0.00 5.11 
21 8 2 4 228.60 31.01 228.60 0.00 5.08 
22 8 3 2 430.60 783.29 430.60 0.00 10.06 
23 8 3 3 356.00 469.30 355.80 -0.06 8.84 
24 8 3 4 286.80 313.87 286.80 0.00 8.04 
25 8 4 2 722.80 942.80 713.40 -1.30 15.12 
26 8 4 3 542.80 805.38 538.20 -0.85 12.16 
27 8 4 4 432.20 731.40 432.20 0.00 10.00 
28 10 2 2 265.40 364.25 265.40 0.00 5.09 
29 10 2 3 230.20 42.76 230.20 0.00 5.25 
30 10 2 4 218.60 41.76 218.60 0.00 5.72 
31 10 3 2 355.00 1180.55 354.80 -0.06 9.95 
32 10 3 3 296.00 426.89 296.60 0.20 8.31 
33 10 3 4 245.80 488.41 245.80 0.00 8.09 
34 10 4 2 624.40 1672.34 616.40 -1.28 14.31 
35 10 4 3 517.60 1156.36 516.60 -0.19 11.70 
36 10 4 4 406.60 813.56 406.60 0.00 9.72 

Average  361.35  -0.11 7.87 
Minimum  0.22  -1.30 3.29 
Maximum  1672.34  1.08 15.20 

 

In Tables 4, 5 and 6, we report the results of the larger instances in order to evaluate the 

ability of our heuristic to solve real problems efficiently. We generated 24 new sets of 

five instances each, with different combinations of numbers of DP, SDC, products and 

vehicle types. The instances – which had up to 50 DP, 20 SDC, 4 products and 4 vehicle 

types – were solved by running Cplex for up to 7 200 seconds for each instance. For these 

new 120 instances, Cplex was only able to find 8 proven optimal solutions, all of them 
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for n = 30 DP instances, shown in Table 4. However, the average optimality gap of Cplex 

was 27.66%. For Tables 4, 5 and 6, the gap for the heuristic was computed against 

Cplex's best-known integer solution. Table 4 shows that the heuristic improves Cplex 

results by 1.37%, using an average of only 23 seconds of computing time. 

Table 4: Results for instances with n = 30 DP 

Set SDC Products Vehicles                       Exact                                           Heuristic                       
    Cost Gap 

(%) 
Seconds Cost Gap 

(%) 
Seconds 

1 9 3 3 528.20 14.45 4924 526.40 -0.34 17.72 
2 9 3 4 925.60 34.83 5829 906.00 -2.12 31.53 
3 9 4 3 421.40 7.37 3127 421.20 -0.05 15.14 
4 9 4 4 665.80 28.31 5784 675.60 1.47 24.29 
5 12 3 3 504.80 28.49 7200 503.20 -0.32 18.83 
6 12 3 4 903.80 50.90 7200 857.20 -5.16 32.31 
7 12 4 3 419.20 17.90 6002 418.00 -0.29 15.97 
8 12 4 4 691.60 39.02 7200 662.60 -4.19 24.92 

Average  27.66 5908  -1.37 22.59 
 

Results with n = 40 and 50 clients are presented in Tables 5 and 6. For these instances, 

Cplex always reaches the maximum time limit of 7 200 seconds per instance, resulting in 

optimality gap of 56.86 for 40 DP and of 71.94% for 50 DP. Clearly, Cplex has become 

inefficient at solving these instances. 

Table 5: Results for instances with n = 40 DP 

Set SDC Products Vehicles                       Exact                                           Heuristic                       
    Cost Gap 

(%) 
Seconds Cost Gap (%) Seconds 

1 12 3 3 655.80 47.58 7200 632.20 -3.60 31.76 
2 12 3 4 1191.80 59.86 7200 1120.80 -5.96 54.74 
3 12 4 3 503.60 53.34 7200 487.20 -3.26 26.90 
4 12 4 4 1011.80 57.81 7200 961.00 -5.02 46.34 
5 16 3 3 652.60 58.88 7200 478.00 -26.75 30.75 
6 16 3 4 976.00 65.74 7200 931.00 -4.61 60.65 
7 16 4 3 463.60 46.78 7200 384.00 -17.17 26.55 
8 16 4 4 791.80 64.89 7200 769.00 -2.88 50.29 

Average  58.86 7200  -8.66 41.00 
 

For the 40-DP instances, our heuristic improves the Cplex results by 8.66% in only 41.00 

seconds. The results for the 50-DP instances are reported in Table 6: the average 

improvement is 10.06% in only 64 seconds of computing time. These results clearly 

demonstrate that the heuristic produces high-quality solutions in very short computing 

times. 
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Table 6: Results for instances with n = 50 DP 

Set SDC Products Vehicles                     Exact                                       Heuristic                      
    Cost Gap (%) Seconds Cost Gap (%) Seconds 

1 12 3 3 843.60 67.35 7200 775.80 -8.04 50.00 
2 12 3 4 660.60 63.70 7200 582.20 -11.87 41.89 
3 12 4 3 1432.00 75.01 7200 1350.40 -5.70 90.86 
4 12 4 4 1089.60 73.08 7200 996.00 -8.59 69.22 
5 16 3 3 807.80 71.23 7200 720.80 -10.77 57.29 
6 16 3 4 627.00 63.74 7200 561.40 -10.46 49.10 
7 16 4 3 1310.00 81.67 7200 1146.40 -12.49 88.42 
8 16 4 4 984.80 79.77 7200 861.40 -12.53 72.74 

Average  71.94 7200  -10.06 64.94 
 

6. Conclusions 

This article tackles the location of satellite distribution centers (SDCs) used to deliver 

humanitarian aid to the population in a disaster area. We model this situation as a 

generalization of the covering tour problem. Our numerical experiments on randomly-

generated data confirm that only very small instances can be solved efficiently using the 

mathematical model. We proposed a heuristic approach to solve instances whose size 

could be of practical interest. Our multi-start heuristic produces high-quality solutions 

and solves realistic instances in reasonable computing times. Both in small and large 

instances, our heuristic produced better average results than Cplex in only a fraction of 

the computing time. 
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