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Abstract. This paper considers a three-objective location-transportation problem for 
disaster response. The location problem aims at determining the number, the position and 
the mission of required humanitarian aid distribution centers (HADC) within the disaster 
region. The transportation problem deals with the distribution of aid from HADCs to 
demand points. Three conflicting objectives are considered. The first objective minimizes 
the total transportation duration of needed products from the distribution centers to the 
demand points. The second objective minimizes the number of agents (first-aiders) 
needed to open and operate the selected distribution centers. The third objective 
minimizes the non-covered demand for all demand points within the affected area. We 
propose an adaptive epsilon-constraint method for this problem and prove that it 
generates the exact Pareto front. The proposed algorithm can be applied to any three-
objective optimization problem provided that the problem involves at least two integer and 
conflicting objectives. The results obtained in our experimental study show that the 
computing time required by the proposed method may be large for some instances. A 
slight modification of our algorithm yielded, however, good approximation of the Pareto 
front in relatively short computing times. 

Keywords. Emergency response, location-transportation problems, multi-objective 
combinatorial optimization, exact method, epsilon-constraint method. 
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1. Introduction  
Recent years have seen a significant growth in human life losses and material damages 

caused by anthropogenic and natural disasters such as earthquakes, flooding, tsunamis 

and terrorist attacks. In its December 2011 news release, the reinsurer Swiss Re reported 

that “2011 will be the year with the highest catastrophe-related economic losses in 

history, at USD 350 billion”. This has prompted researchers in different fields to 

intensively address the problems of emergency management. Emergency Management is 

commonly divided into four main phases: mitigation, preparedness, response and 

recovery (Altay and Green, 2006; Haddow et al., 2008). The mitigation and preparedness 

phases are pre-crisis. They aim to define the necessary measures to reduce, mitigate or 

prevent the impacts of disasters and to develop action plans that will be implemented 

upon the occurrence of a disaster. When the crisis occurs, the phases of response and 

recovery take place. The response phase, or intervention, is the mobilization and 

deployment of emergency services within the affected area in order to protect people and 

reduce the human and material damages. The recovery phase defines the measures 

leading to the return to normal, that is, a standard of living of the same quality as it was 

before the disaster occurs. 

This paper focuses on the logistics aspect of the response phase and more precisely on 

two important related problems: location and transportation.  The location problem aims 

at designing a network for distributing humanitarian aid (e.g., water, food, medical goods 

and survival equipment). It mainly consists in determining the number, the position and 

the mission of required humanitarian aid distribution centers (HADC) within the disaster 

region. The transportation problem deals with the distribution of humanitarian aid from 

HADCs to demand points. When both problems are solved simultaneously, we speak 

about a location-transportation problem.  

Decision-making in the context of humanitarian aid distribution requires careful trade-

offs between a number of conflicting objectives. For example, opening a large number of 

HADCs would allow distributing supplies in relatively short times. However, such a 

solution would require considerable human and material resources to operate the 
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network. Bringing more rescuers into the disaster zone increases the need for 

coordination, as well as the potential risk to these people's lives.  

This paper deals with a multi-objective location-transportation problem in disaster 

situations. Three objectives are considered.  The first objective is to minimize the total 

transportation duration of needed products from the distribution centers to the demand 

points. The second objective is to minimize the number of agents (first-aiders) needed to 

open and operate the selected distribution centers. The third objective minimizes the non-

covered demand for all demand points within the affected area.  

We propose an adaptive epsilon-constraint ( -constraint) method and prove that it 

generates the exact Pareto front of the multi-objective location-transportation problem 

addressed. We prove, through a computational experiment, that this exact method 

requires a relatively large computing time in some cases. Thus, we propose an 

approximate method that imposes a number of stopping criteria on the exact method.  

Our experimental study proves that the approximate method reduces solution time, when 

compared to the exact method, while generating a relatively good approximation of the 

Pareto front.  

The remainder of the paper is organized as follows. A literature review focusing on 

emergency logistics is presented in Section 2. Section 3 defines the multi-objective 

location-transportation problem considered and proposes a mathematical formulation for 

it.  Section 4 recalls some key concepts of multi-objective optimization problems and 

briefly summarizes the main solution approaches proposed for them. In Section 5, we 

describe the solution method we propose and prove that it generates the exact Pareto front 

of the multi-objective location-transportation problem considered. Section 6 presents the 

problem tests generated for our experimental study and explains how the exact algorithm 

of Section 5 can be slightly modified to generate approximate solutions. It also reports 

and compares the results obtained by both the exact and the approximate solution 

approaches. Section 7 summarizes our findings and opens on future research avenues.   
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2. Literature review 

Altay and Green (2006) report that, although emergency management problems fit 

perfectly into the discipline of operations research and management science (OR/MS), 

the research conducted by the OR/MS community on the subject is still limited especially 

in the response phase. However, during the past five years, the literature related to 

emergency logistics has greatly expanded treating both the location and the distribution 

problems either separately or simultaneously.  Balcik et al. (2010) and de la Torre et al. 

(2012) showed that disaster relief presents unique logistics challenges and is a good 

example of research and practice integration. In the following, we briefly review recent 

works on location and distribution problems in emergency situations. A more complete 

literature review on the optimization models proposed for emergency logistic problems is 

presented in Caunhye et al. (2012). 

Özdamar et al. (2004) addressed the problem of planning vehicle routes to collect and 

deliver products in disaster areas. To handle the dynamic aspect of supply and demand, 

the authors proposed to divide the planning horizon into a finite number of intervals and 

solve the problem for each time interval, taking into account the system state. Jia et al. 

(2007) propose a maximal covering location model to determine facilities location in 

response to large-scale emergencies. The objective of their model is to maximize the 

population coverage. Yi and Kumar (2007) proposed an ant colony meta-heuristic for 

relief distribution. The proposed approach decomposes the original emergency logistics 

problem into two sequential phases of decision making: a vehicle route construction and 

a multi-commodity dispatch. Sheu (2007a) proposed an approach to plan aid distribution 

that includes three phases: 1) forecasting the demand of the affected regions, 2) grouping 

the affected areas based on the estimated severity of the damage, and 3) determining the 

priorities for aid distribution to affected areas. Balcik et al. (2008) studied delivery of 

relief supplies from local distribution centers to beneficiaries affected by disasters. They 

minimized the sum of transportation costs and penalty costs for unsatisfied and late-

satisfied demands for two types of relief supplies. Berkoune et al. (2012) studied a 

complex multi-vehicle, multi-depot and multi-product transportation problem in disaster 

response operations. They proposed a mathematical model and a genetic algorithm to 
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solve realistic sized instances. The genetic algorithm has been useful not only to produce 

solutions of good quality but also to generate many alternative solutions to the emergency 

managers. Naji-Azimi et al. (2012) studied the case where people are required to get to 

some satellite distribution centers in order to get the survival goods, provided that these 

centers are not too far from their domiciles. These satellite distribution centers are 

supplied from a central depot using a heterogeneous and capacitated fleet of vehicles. 

They modeled this situation as a generalization of the covering tour problem and 

introduce the idea of split delivery. Rawls and Turnquist (2011, 2012) proposed an 

allocation model to optimize pre-event planning for meeting short-term demands for 

emergency supplies. They consider uncertainty about what demands will have to be met 

and where those demands will occur. Murali et al. (2012) considered a facility location 

problem to determine the points in a city where medicine should be handed out to the 

population. They consider locating capacitated facilities in order to maximize coverage, 

taking into account a distance-dependent coverage function. 

Although location-routing problems (LRP) have been intensively studied in the literature 

in the context of business logistics (See Min et al. (1998) for an exhaustive literature 

review on LRP), a few papers addressed simultaneously the location and the 

transportation problems in emergency contexts. Dessouky et al. (2006), for example, 

propose two models for solving facility location and vehicle routing problems in the 

context of a response to a large-scale emergency. The first model minimizes the total 

distance between the demand points and the selected facilities. The second model 

minimizes the unmet demands over all the demand points. Yi and Özdamar (2007) 

propose an integrated location-distribution model for coordinating logistics support and 

evacuation operations in disaster response activities in a multi-period planning horizon. 

The proposed model aims to coordinate the transportation of commodities from major 

supply centers to distribution centers in affected areas and the transport of wounded 

people from affected areas to temporary and permanent emergency units. The goal is to 

minimize the delay in the arrival of commodities at aid centers and in the provision of 

healthcare for the injured. When compared to classical business LRPs, location-routing 

problem in emergency contexts have particular characteristics. For example, emergency 

LRPs focus on people safety and minimum delivery times rather than monetary costs. 
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Sheu (2007b), Kovács and Spens (2007) and Balcik et al. (2010) identified a number of 

challenging issues proper to emergency logistics problems which may not be addressed 

as easily as in business logistics. 

In their review on business LRPs, Min et al. (1998) pointed out that although the multi-

objective nature of LRP problems is well recognized, a few papers (five in their study) 

addressed multi-objective LRPs.  Since then, still a relatively small number of papers 

addressed such challenging problems (Averbakh and Berman, 2002; Cappanera et al., 

2004).  In the same trend, a few papers consider multi-objective emergency logistics 

problems. Tzeng et al. (2007) proposed a humanitarian aid distribution model that uses 

multi-objective programming. Three objectives are considered: minimizing costs, 

minimizing travel time and maximizing the satisfaction of demand points (or minimizing 

unsatisfied demand). The authors handle the dynamic data by considering a multi-period 

model in which most of parameters and variables are time-related. The goal of the model 

is to determine the transfer (i.e., distribution) centers to be opened and the quantities of 

products to be transported from collection points to transfer points and from transfer 

points to the final demand points. A fuzzy multi-objective programming method is used 

to solve the problem. Chern et al. (2009) proposed a multi-step heuristic to solve a 

transportation problem. The solution is evaluated over three objectives to be minimized: 

delay, flow time and the total cost of transportation set-up. Nolz et al. (2010) studied a 

multi-objective covering tour problem for distributing aids to a population. They 

considered three criteria : a minisum facility criterion, a tour length criterion and minmax 

routing criterion. The proposed a  -constraint method and a memetic solution approach. 

Vitoriano et al. (2011) proposed a flow model for humanitarian aid distribution. They 

used a goal programming model to deal with eight criteria which correspond to cost, 

time, equity, priority, reliability (two criteria) and security (two criteria).  

The problem we consider in this paper is quite similar to that addressed by Tzeng et al. 

(2007). However, while the work of Tzeng et al. (2007) focuses on the multi-period 

aspects, we mainly concentrate on a detailed modeling of the location-transportation 

problem. We also consider different objective functions and propose a different approach 

to solve the problem.  
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3. Problem description 

In disaster situations, the main goals of the authorities are to ensure the safety of people 

concerned and to support the major infrastructures. A number of humanitarian activities 

need to be deployed in this case such as evacuating injured people to hospitals or health 

care centers, supplying isolated areas of water and food or restoring power lines. This 

paper addresses the logistics part of humanitarian aid deployment. More precisely, once a 

disaster occurs, one must decide on the number of humanitarian-aid distribution centers 

(HADC) to open, their location and their assigned resources. Beyond this network design 

problem, we must also decide how the humanitarian aid should be distributed from 

HADCs to demand points within the affected region.  

This paper addresses an integrated location-transportation problem with three conflicting 

objectives. The first objective minimizes the total transportation duration (including 

travel, loading and unloading times) of needed products from open HADCs to demand 

points. The second objective minimizes the set-up costs of open HADCs measured by the 

number of agents (first-aiders) required to make a site operate as a HADC. The third 

objective minimizes the total uncovered (unsatisfied) demand. Obviously, the demand 

could be totally covered and deployment time minimized by locating a large number of 

humanitarian aid distribution centers in the affected region. However, opening many 

HADCs would require considerable human and material resources to operate them, which 

may be not appreciated and sometimes even impossible. In practice, nobody wants to 

bring more people (e.g., drivers, policemen, technicians) into the disaster zone than 

necessary because more people would require more food and water and would increase 

the need for coordination, as well as the potential risk to these people's lives.  

In this paper, the multi-objective emergency location-transportation problem (MOELTP) 

is considered in a static environment since the decisions to be made are taken 

immediately after the disaster (i.e., a few hours later). 

3.1. Emergency context and assumptions 

In disaster situations, it makes sense thinking that each particular house or building 

within the affected region could require relief or humanitarian aid, thus becoming a 

potential demand point. In this paper, we assume that requests for products are estimated 
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by homeland security organizations or their experts based on their experience and their 

evaluation of the disaster's seriousness. Demand is therefore assumed deterministic 

throughout the planning horizon. In the following, the set of demand points and required 

products are denoted, respectively, I and J. The request for each demand point  for each 

product is denoted by dij.   

To decide on the location of HADCs, it is assumed that a set of candidate sites already 

exists. This set is denoted by L in the following. In disaster situations, one wants to 

ensure that every demand point is accessible (can be covered) from at least one HADC in 

a time less than or equal to a maximum covering time, denoted . We denote til the time 

needed to travel from site Ll  to demand point Ii , which takes into account the state 

of roads (e.g., broken, damaged, intact). We also define for each demand point Ii , a 

subset Li of potential sites that are within the maximum covering time, i.e.,       

        . 

We assume that we know in advance the number of people needed to make a candidate 

site operate as a HADC. This number is denoted          Moreover, each potential site 

has a global and a per product capacity that fixes the maximum quantity that can be 

stored within the site. The global capacity of a site l is denoted    and its capacity for 

product j is denoted    .  

In addition, it is assumed that at each potential site l, there are ml vehicle types, h=1 … 

ml, and uhl vehicles of each type h. Since all potential sites may not be equally equipped 

for receiving a particular vehicle type, different docking times, hl, are considered, one for 

each vehicle type h and the corresponding site l. 

The vehicles available at candidate sites have different characteristics. Indeed, some 

vehicles may have certain handling equipment that makes them more efficient at 

manipulating some products. The time needed for loading and unloading one unit (for 

example, a pallet) of product j into a vehicle of type h is defined as jh, where jh =  if 

product j cannot be loaded into a type-h vehicle. There are also some restrictions on the 

total weight and the total volume associated with vehicles. These restrictions depend on 

the vehicle type used. Formally, a loaded vehicle of type h must not weigh more than Qh 

An Exact Solution Approach for Multi-Objective Location-Transportation Problem for Disaster Response

CIRRELT-2012-26 7



 
 

weight units nor have a volume over Vh volume units. To determine the total weight (the 

total volume) corresponding to a given vehicle's load, the weight wj in weight units (the 

volume vj in volume units) of each product j is assumed to be known with certainty.  

Finally, a maximum daily work time, Dh (in time units) for each vehicle type h is 

imposed. A given vehicle can perform as many trips as needed during a day as long as the 

corresponding work time limit is respected. As requested quantities are generally large in 

terms of vehicle capacity (in weight and/or volume), each vehicle trip is assumed to visit 

only one demand point at a time. In other words, only back and forth trips are considered. 

Obviously, a demand point may be visited many times. However, because of the 

maximum daily work time, the number of trips performed to delivery point i by a specific 

vehicle will be limited to a maximum value r. In our experimental study, we set r = 2. 

3.2. Mathematical model 

The definitions of parameters and decision variables used in the proposed mathematical 

model are summarized as follows: 

Parameters 

  Set of demand points;            

  Set of products;            

  Set of candidate sites;             

   Capacity of  site   for all products 

    Capacity of  site   for product   

   Number of required agents at site   

  Maximum covering time  

    Time needed to travel from demand point   to site   

   Set of candidates sites     which can cover demand point   within the 

maximum covering time  ,                

    Docking time for a vehicle of type   at site l 

   Weight capacity of a vehicle of type   

   Volume capacity of a vehicle of type   

    Time of loading and unloading one unit of product   into a vehicle of type   
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   Maximum daily work time for a vehicle of type   

   Weight of one unit of product    

   Volume of one unit of product    

 

Decision variables 

   Equal to   if a      is open at site  ,    otherwise. 

       Equal to   if demand point    is visited from        with the     vehicle of 

type   on its     trip to  . 

        Quantity of product   delivered to point   from        with the     vehicle of 

type   on its     trip to  . 

    Quantity of product   provided at site  . 

 

The MOELTP can be modeled as follows:  

       ∑∑∑ ∑ ∑(                 ∑          

 

   

)

 

   

   

   

  

   

 

   

 

   

                           

       ∑    
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The three objectives are given by equations (1)-(3). The objective function (1) minimizes 

the sum of all vehicles trip durations. In fact, the duration of the vth trip of the kth vehicle 

of type h from site l to demand point i is given by (                     

∑           
 
   ), where the first part (    ) represents the back and forth travel times, the 

second part (hl) is the docking time, and the last part  (∑           
 
   ) is the loading 

and unloading time of all the products delivered from site l to point i. Objective function 

(2) minimizes the number of agents needed to operate the opened HADCs. The third 
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objective function (3) minimizes the total uncovered demand. Constraints (4) ensure that 

the quantity of product j delivered for each demand point i does not exceed its demand. 

Constraints (5) ensure that the total quantity of a given product j delivered from a HADC 

l does not exceed the quantity of product j available in this HADC. Constraints (6) 

express the maximum daily work time restrictions associated with each vehicle k of type 

h located at a HADC l. These constraints also prohibit trips from unopened sites. 

Constraints (7) and (8) impose the vehicle capacity constraints for each trip, in terms of 

weight (  ) and volume (  ). Constraints (9) and (10), respectively, insure that the 

global, respectively, the per product, capacity of each HADC is satisfied. Constraints (11) 

- (14) express the nature of decision variables used in the model.  

 

4. Multi-objective optimization problems  

4.1. Concepts and definitions 

In general, a multi-objective optimization problem, in a minimization case, is formulated 

as: 

                               

        s.t         ; 

where m (m≥2) is the number of objectives,                 is the vector representing 

the decision variables, and   is the set of feasible solutions. 

A multi-objective optimization problem usually has not a unique optimal solution, but a 

set of solutions known as the Pareto-optimal set. Each Pareto optimal solution represents 

a compromise between different objectives, and the components of the corresponding 

vector of objectives cannot be all simultaneously improved. Comparing two solutions in 

multi-objective optimization is more complex than in the single-objective optimization 

case. Two concepts are indeed of a great importance in multi-objective optimization: 

Pareto dominance and Pareto optimality. In a minimization case, Pareto dominance and 

Pareto optimality are defined as follows. 

Definition 1 (Pareto dominance): A given vector     dominates a vector     in the 

Pareto sense, if and only if   is partially less than         , i.e. 
 

 

{
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Definition 2 (Pareto optimal solution): A solution      is a Pareto-optimal solution, 

if and only if there is no     such that   dominates  . Pareto-optimal solutions are also 

called efficient or non-dominated solutions. 

Definition 3 (Pareto optimal set): The Pareto optimal set or the efficient set is defined 

as                                            . 

Definition 4 (Pareto front): The Pareto front is defined as                     , 

where   is the Pareto optimal set. 

 

4.2. Multi-objective solution methods 

Different solution approaches, either exact or heuristic, have been proposed in the 

literature to solve multi-objective optimization problems (MOP). Exact approaches 

compute the entire Pareto front whereas heuristic methods search for good solutions that 

are relatively close to Pareto-optimal solutions but with no guarantee of their Pareto-

optimality. Exact methods such as branch-and-bound algorithms, branch-and-cut 

algorithms and dynamic programming have been proposed to solve bi-objective 

optimization problems. They show good performances for problems of small size.  For 

larger problems or problems including more than two objectives, heuristic methods are 

generally used. The object of this section is to give a brief idea on the most common and 

traditional approaches proposed for MOPs. We refer the reader to the book of Talbi 

(2009), for example, for an interesting classification of heuristics for MOPs.  

A multitude of heuristic approaches exist for MOPs. Scalar approaches, the most 

common, consist in transforming a MOP into one or more mono-objective problems. 

There is, for example, the weighted (or aggregation) method which reduces a MOP to a 

mono-objective problem by considering a weighted sum of all objective functions (Das 

and Dennis 2007). The performance of this method strongly depends on the choice of the 

weighting coefficients. Its main drawback is that it does not generate all Pareto optimal 

solutions for MOPS with a concave Pareto front.  
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Unlike weighted methods, the well-known  -constraint method (another scalar approach) 

works well for non-convex MOPs. This method has been widely used in the literature and 

consists in solving a sequence of constrained mono-objective problems.  In Chankong 

and Haimes (1983), it is proven that for general MOP, the exact Pareto front can be found 

by the  -constraint method, as long as we know how to modify the parameters of the 

method. Recently, Bérubé et al. (2009) consider a bi-objective traveling salesman 

problem with profits and propose an  -constraint method to generate the exact Pareto 

front for the problem. 

The sequential, also called lexicographic, approach (Fishburn, 1974) is another traditional 

approach for solving MOPs. It consists in solving a sequence of mono-objective 

problems; the sequence being defined according to a given preference order of the 

objectives defined by the decision maker. The method starts with optimizing the most 

important objective function.  Then, if this first problem has multiple optimal solutions, a 

second problem is solved where the second objective is optimized while imposing 

(through adding an equality constraint) that the first objective keeps its optimal value. 

The process is re-iterated until a problem in the sequence yields a unique optimal solution 

or the last objective function is treated.   The solution obtained when the stopping criteria 

is met is a Pareto optimal solution. 

The fuzzy multi-objective linear programming, introduced by Zimmermann (1978), is 

another solution method of multi-objective linear optimization problems which has been 

used in several studies (Chen et al. 1999; Tzeng et al. 2006). The procedure starts by 

computing the upper bound (  
 ) and lower bound (  

 ) of each objective   
 
). Then, a 

mono-objective problem maximizing the minimum normalized deviation with respect to 

the upper bound (  
 ), that is      

 

  
    

   , is solved.  

While two-objective optimization problems have been intensively studied in the 

literature, only a few papers tackle problems with more than two objectives. The 

MOELTP addressed in this paper is a non-convex three-objective combinatorial 

optimization problem. In the next section, we propose a solution approach for MOELTP 

based on the  -constraint method and prove that it generates the exact Pareto front. 
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Although the proposed approach is presented for MOELTP, it can apply to other three-

objective optimization problems presenting some characteristics that will be discussed at 

the end of Section 5.  

 

5.  Exact solution method for MOELTP 

The  -constraint method solves a set of constrained single-objective problems        

                        obtained by choosing one objective    as the only 

objective to optimize and incorporating inequality constraints for the remaining 

objectives of the form                          The set of problems       is 

obtained by assigning different values to the components of the  -vector.  

In our context, the MOELTP is a three-objective combinatorial optimization problem for 

which we proposed the mathematical formulation (1)-(14) (see Section 3.2). The three 

objectives            defined by equations (1)-(3), consist in minimizing, respectively, the 

total vehicles trip duration (including travelling time as well as products’ loading and 

unloading times),  the number of agents needed to operates the opened HADCs and the 

total uncovered demand. In the proposed  -constraint-based solution approach, we 

choose as objective function to optimize, the one taking non-integer value, that is 

objective   . As will be shown in the proof of Theorem 1, this choice is necessary to yield 

the exact Pareto front. Although objective    may also take non-integer value in theory, 

we make the assumption in the following that both demand and   variables take integer 

values yielding thus an objective function    with only integer values as well. Such an 

assumption is realistic in emergency contexts since products are generally packaged in 

boxes and transported in pallets.  

Hence, the constrained single-objective problem           considered in the proposed  -

constraint-based solution approach is defined by:  

       )              

                       s.t 

                      { 
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where             denotes the set of variables defined in the mathematical model (1)-

(14) (Section 3.2); and   is the feasible region defined by equations (4)-(14).  

The proposed approach consists in defining a sequence of  -constraint problems based on 

a gradual variation of parameters    and    . We will prove that the optimal solutions of 

some of these  -constraint problems are Pareto optimal. We will also prove that the 

identified Pareto optimal solutions generate the exact Pareto front of MOELTP. 

Algorithm 1 hereafter describes the way parameters     and     are fixed to yield the 

exact Pareto front. In this algorithm, an optimal solution to a problem        ) is 

denoted by                                  and                    for      . 

We also define    as the set of the different values, denoted      that can be taken by 

objective   ; these values being sorted in an increasing order. Observe that set    is finite 

since the set of candidate sites L is finite and objective function    takes only integer 

values. Set    can be simply determined by enumerating the different combinations of 

potential sites (   ) and computing the corresponding total number of required agents 

      

The main steps of Algorithm 1 are as follows. We assign to parameter    defining the 

inequality constraint          the different integer values that can be taken by 

objective   , starting from the minimum value (    ) and ending with the maximum value 

(   
    ). For each value     of   , we assign to parameter    defining the inequality 

constraint          the maximum value that could be taken by    (    . The value of 

parameter    is decremented by one as long as the resulting problem        
    ) is 

feasible. If for a given value of   , problem        
    ) is infeasible, the value of    is 

incremented to       and the process is reiterated. A pair    
    

   for which the resulting 

problem     
    

 ) is feasible is solved to optimality and yields an optimal solution X* 

=          
    

   .  Solution X* is Pareto optimal if          
  and there is no Pareto 

optimal solution X’ already identified in the previous iterations such that     
   

    
           

       
  .  
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Algorithm 1. Adaptive  -constraint method for MOELTP 

1:       

2: for       to         do 

3:               
   and       

  

4:           while          has a feasible solution  do 

5:                    
                 

     

6:                              
    

    

7:                  if     
     

  and            
       

          
       

   then 

8:                                  

9:                 end if  

10:                         

11:             end while     

12: end for 

 

 

Theorem 1.  The set S of solutions produced by Algorithm 1 generates the exact Pareto 

front of the three-objective emergency logistics problem MOELTP. 

Proof: 

The proof is divided in two parts. In the first part, we prove that each solution in S is Pareto 
optimal. In the second part, we prove that                  gives the exact Pareto front. 
 
Part 1: Each solution in S is Pareto optimal 
 

Consider      with             
    

  . Let   be a feasible solution in   that is different from 
  . The cases for which   could dominate    are: 

(1)              
    and   

(2)              
     

 
Notice that since     ,          

    
   for a given                 

 
Case 1:             

   
Two cases must be discussed: the case where             

   and the case where       
     

  . 
            

  :  
One can easily prove that   is a feasible solution for     

    
 )             

     
     

  and             
     

 ). Since   is an optimal solution of     
    

 ) 
then             

  . Hence, either             
   and in this case X and X* yield 

the same objective vector (            
  ,              

   and               
    ; 

or             
   and in this case X* dominates X.  Notice that the case where X and 

X* yield the same objective vector is the case where problem     
    

 )  has multiple 
optimal solutions. 
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            
  :  

We show in the following that in this case             
  . 

  is a feasible solution for     
    

 )                  
     

  and       
      

     
 ). Since   is an optimal solution of     

    
 ) then             

  . 
Hence, either             

   and in this case X* dominates X or             
  .  

Next, we prove by contradiction, that       cannot be equal to       .  
            

   implies that there exist a              such that         
  and 

    . Consider problem        
    

  . Clearly, X is a feasible solution for      
  

    
   (    and            

     
 ). Thus        

    
   is feasible. Since 

      
    

    
  , then according to Algorithm 1, problem        

    
   is solved 

before problem     
    

 ).  If             
  , X is also an optimal solution for problem 

    
    

 ).  Problem     
    

 ) is a relaxation of        
    

   (since             
     

     
 ) and its optimal solution X is feasible for        

    
  . Thus X is an 

optimal solution for        
    

  .  
X is an optimal solution for a problem        

    
   such that             If     , 

then there is no      such that                              . However      
and              and             . Thus X cannot be in S. X is an optimal 
solution for a problem        

    
   such that             

    
    

  and   
 . Thus, there exist a solution      such that                                
with             . This X’ is in fact an optimal solution for a problem     

  
          

   that is solved before problem     
    

 ) (since   
                 

    
     

 ). Solution      is such that                  
              

          
  . Which is in contradiction with the fact that     . Hence       

     
  . 

 
Case 2:              

   
  In this case, X would dominate     if and only if             

   and             
  . 

We prove in the following that if              
   and             

   then 
necessarily            

  .  
If             

   and             
   then   is a feasible solution for     

    
 )     

             
     

  and             
     

 ). Since   is an optimal solution of 
    

    
 ) then             

  . Hence, either             
   and in this case X* 

dominates X or             
  .   

In the following, we prove by contradiction, that       cannot be equal to        . The basic 
idea is to prove that if             

   then X* cannot be an optimal solution for     
    

 ).  
Recall that solutions X and     are feasible solutions for model (1)-(14) and could thus be 
represented by tuples  (                      ) and    

        
    

          
  , respectively. 

If             
   then ∑              ∑                               ∑        

 
              

∑     
 
            

On another hand,             
   implies that ∑                          ∑   

                 .  
Consider a vector X’=   

        
    

          
   that is deduced from X as follows:  

     , 
     , 
     , 
      except for one component (i’,j’,l’,h’,k’,v’) such that           for which the 

quantity delivered to demand point i’ is decreased by one unit for X’ with respect to 
X. Consequently, ∑   

                  ∑                        ∑                   .  
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One can verify that     . Moreover,                   
     

 . Since, 
∑   

                  ∑                     ; ∑                          ∑   
                  and 

variables Q take integer values (by assumption), then 
∑   

                  ∑   
                 . Thus,              

     
 .  Hence X’ is a 

feasible solution for     
    

 ). Furthermore,        ∑                       

∑                ∑ (            ∑     
 
        )                    

  . Which 
contradicts the fact that    is an optimal solution for     

    
 ). 

 
Notice that if all non-null components of vector Q in X are such that           and if 
each HADC l delivers only one demand point i, then one cannot construct a solution X’ 
from X with the same HADC  (i.e., such that     ). In this case, X’ will be defined as 
previously except that for one HADC     such that      (chosen arbitrarily), we fix 
the corresponding      . The same conclusions proved previously still apply in this 
case since              ,  ∑   

                  ∑                      and 
∑                        ∑                       (one trip is missing in X’ with respect to X). 

 
In both cases (            

                   
  , we prove that X does not dominate X*. 

Hence,        ,              such that                .  
 
Let PF denote the exact Pareto front of MOELTP. In the following, we prove that      
            is the exact Pareto front. Part 1 of the proof permits us to assert that           
In part 2, we prove that        .  

 

Part 2:      is the exact Pareto front 
 
One needs to prove that a vector       will be either dominated by a solution      or will 
yield an objective vector      that is equal to       for     .  
Let        ,   

       
    and    

       
  . 

Clearly,     is a feasible solution for     
    

 ). Let     be an optimal solution for     
    

 ). 
Thus,           

       
  ,      

      
       

   and      
         

  . That is,     
dominates   . 

 If      , the proof is done. 
 If     , then according to Algorithm 1, either          

        
    or          

  
and there exit already      such that             

   and             
  .  

o If             
   then one can easily prove that    is an optimal solution for 

       
     

 ) (the same proof established in part 1).  Since     , then there is 
necessarily      such that              

         
   ,              

    
     

     , and             
         

    .  
o If             

  . Since     , then there is necessarily      such that 
     

        
        

  ,     
        

        
    and     

   
     

        
   .  

In both cases, we prove that       such that              
   ;             

  .  
and             

   . The case for which    does not dominate     is when         
     

   ;             
    and             

  . That is when problems        ) have 
multiple optimal solutions.□ 
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Corollary 1.  If problems        ) solved in Algorithm 1 have unique optimal solutions 

then the set S of solutions produced by Algorithm 1 defines the Pareto optimal set of the 

three-objective emergency logistics problem MOELTP. 

 

Proof. 
 

The result is straightforwardly deduced from the proof of Theorem 1 (part 2). □ 
 
 
One can straightforwardly prove that Theorem 1 can be generalized to any three-

objective optimization problem provided that the problem involves at least two objectives 

which take integer values (in our case f2 and f3) and a third objective that is conflicting  

with at least one of the first two ones (in our case f1 and f3). 

Moreover, Algorithm 1 can be slightly modified to act as an approximate method in case 

the exact approach requires a relatively long computing time.  This can be done by 

imposing stopping criteria when solving problems         . A stopping criterion could 

be for example a time limit or a non-null tolerance on the gap value.       

6. Computational experiments 

The proposed algorithm is implemented in VB.NET, and the MIP models are solved with 

CPLEX 12.2.  Our experiments were performed on an IBM x3550 with an Intel Xeon 

E5420 running at 3.2 GHz with 4 Gig RAM. 

6.1. Problem tests 

In order to test the performance of the algorithm, we generate three sets of instances. 

Each set is defined by a pair           , where     is the number of candidate sites and     

is the number of demand points. The three sets correspond to the following           

pairs: (3, 15), (4, 15) and (4, 20). For all sets, we consider a single product (family of 

products) and the loading time of a product depends on its compatibility with the vehicle 

used. Ten instances are generated for each set          . These instances are obtained by 

randomly generating a demand between a minimum and a maximum values for each 
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demand point.  We fix the maximum covering time to the same value (50 time units) for 

all sets. 

To each distribution center is associated a number of available vehicles and an open cost 

which represents the number of required agents to open this center. We fixed for each 

vehicle type the weight and volume capacity, the maximum daily work time and the 

docking time at each of the distribution centers. In our problem, we considered two 

vehicle types and one vehicle of each type is available at each distribution center. 

Problems are available from the authors upon request. 

6.2. Results for exact Pareto fronts 

To generate the exact Pareto front for each instance, we let CPLEX run as long as needed 

to find an optimal solution for each problem         . Table   displays the results 

obtained for all the 30 generated instances. Column    indicates the total computing time 

in seconds to find the exact Pareto front. Column     gives the computing time required 

on average for solving each problem           Column    gives the number of  -

constraint problems solved and column     displays the size of the exact Pareto front. The 

        line refers to the average values of each column for the 10 instances of each set.  

Table 1 shows that the proposed algorithm finds the exact Pareto front for all the 

instances in almost two hours (7593.43 seconds) on average. Computing time varies a lot 

from an instance set to another. The average time required to identify the Pareto front for 

instance set (3, 15) does not exceed 22 minutes (1300.01 seconds) on average. This 

average time reaches 83 minutes (4944.47 seconds) for instance set (4, 15) and exceeds  

4,5 hours (16 535.59 seconds) for instance set (4, 15). This variation in computing times 

between the three instance sets is mostly due to the variation in the number of the  -

constraint problems solved for each set. In fact, as displayed in column   , identifying 

the exact Pareto front for instances in set (3,15) required solving 1732 problems on 

average, whereas this number reaches 5059 for instance set (4,15) and 7144 for instance 

set (4,30). The computing time required for solving an instance in each set remains 

however small for all sets (between 0.64 and 4.80 seconds). 
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Table1. Results for exact Pareto fronts 

          N° inst.      
         

(3,15) 

1 1114.44 0.66 1664 766 

2 1713.00 1.01 1681 659 

3 1323.44 0.72 1814 828 

4 1160.00 0.64 1803 1238 

5 1254.90 0.73 1714 1025 

6 1106.37 0.66 1654 965 

7 1824.23 0.94 1932 902 

8 1241.42 0.70 1772 981 

9 1134.15 0.70 1616 917 

10 1128.18 0.67 1677 912 

Average  1300.01 0.74  1732.7  919.3 

(4,15) 

1 4300.44 0.85 5056 1199 

2 8049.18 1.44 5569 2008 

3 5175.87 1.00 5173 1234 

4 3982.09 0.72 5473 2028 

5 4282.01 0.81 5242 2399 

6 4166.93 0.86 4840 1166 

7 6278.75 1.26 4980 1238 

8 4492.58 0.97 4624 1135 

9 4743.29 1.03 4583 1109 

10 3975.58 0.78 5051 1318 

Average 4944.67 0.97  5059.1  1483.4 

(4,30) 

1 14621.37 2.06 7067 1656 

2 6784.73 1.13 5984 1463 

3 5325.01 0.85 6232 1293 

4 37437.57 4.80 7784 1938 

5 24016.19 3.25 7387 1875 

6 28168.05 3.21 8761 4279 

7 11512.75 1.72 6678 1421 

8 15527.07 1.77 8763 2567 

9 11868.87 1.87 6342 1416 

10 10094.30 1.56 6447 1426 

Average 16535.59 2.22  7144.5  1933.4 

 
6.3. Results for approximate Pareto fronts 

In order to reduce computing times, we modify algorithm 1 and make it act as an 

approximate method by imposing a non-null tolerance on the relative gap (as computed 

by the CPLEX solver) when solving problems         . Notice that the relative gap 

computed by CPLEX is the relative gap between the best upper bound (a feasible solution 

value) and the best lower bound (the linear relaxation value of the best node remaining). 
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We consider three tolerance values for this gap: 10%, 5% and 1%  For example, a 

tolerance of 5% implies that if the value of the relative gap falls below 5% during the 

branch-and-bound procedure of CPLEX, the optimization is stopped and the solution 

output by CPLEX is the one corresponding to the best upper bound. 

Given that the approximation approach generates an approximate Pareto front (denoted 

hereafter    , one needs to evaluate the performance of the approximation approach 

with respect to the exact one. To this end, we consider two performance measures, used 

in Bérubé et al. (2009) and originally proposed by Cryzak and Jaszkiewicz (1998), as 

follows: 

      
 

   
∑{    

      
       }

   

 

         
   

     
      

          

Where   denotes the exact Pareto front,              {    (  
  
    

  
)            }   

and    denotes the value of the kth objective (          in our case). 

The first performance measure       gives information on the average distance from the 

exact Pareto front   to the approximate front   . The lower this value is, the better set 

   approximates  . The second performance measure       gives information on the 

worst case which corresponds to the largest distance between the two sets.  

Tables  ,   and   display the results obtained for the tolerance gap values    ,    

and   , respectively. In each table, column    recalls the total computing time in 

seconds for finding the exact Pareto front (see Table 1). Column     gives the average 

computing time in second required to solve to optimality the  -constraint problems for 

each instance. Column     gives the total computing time in seconds for the approximate 

Pareto front and    
  reports the average computing time needed to solve  -constraint 

problems with the gap stopping criterion. As explained above, columns       and       

give respectively the average and the maximum distances between the exact Pareto front 

  and the approximate Pareto front   . Finally, column      
        

   
 is another 

performance measure which displays the percentage of elements belonging to both sets  
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  and    . The         line refers to the average results for the 10 instances of each 

instance set.  

Table2. Approximate Pareto front with tolerance=10% 

          N° inst.      
         

   Dist1 (%) Dist2 (%)    (%) 

(3,15) 

1 1114.44 0.66 985.93 0.59 0.25 3.40 67.36 

2 1713.00 1.01 894.60 0.53 0.54 5.11 44.61 

3 1323.44 0.72 1065.38 0.58 0.33 4.70 57.24 

4 1160.00 0.64 1081.86 0.60 0.29 3.70 61.14 

5 1254.90 0.73 1007.27 0.58 0.27 3.74 59.70 

6 1106.37 0.66 931.80 0.56 0.32 4.67 58.13 

7 1824.23 0.94 1069.28 0.55 0.42 3.43 52.77 

8 1241.42 0.70 927.39 0.52 0.36 9.05 60.65 

9 1134.15 0.70 843.14 0.52 0.38 4.76 52.56 

10 1128.18 0.67 965.52 0.57 0.27 5.38 68.85 

Average  1300.01 0.74 977.21 0.56 0.34 4.79 58.30 

(4,15) 

1 4300.44 0.85 3069.55 0.60 0.52 5.66 53.54 

2 8049.18 1.44 3380.28 0.60 0.43 7.47 55.82 

3 5175.87 1.00 3094.42 0.59 0.34 5.96 61.26 

4 3982.09 0.72 3312.80 0.60 0.48 7.25 49.06 

5 4282.01 0.81 3138.55 0.59 0.53 7.53 59.89 

6 4166.93 0.86 2908.25 0.60 0.61 7.10 53.00 

7 6278.75 1.26 3176.09 0.63 0.58 8.49 52.10 

8 4492.58 0.97 2858.82 0.61 0.61 7.34 49.07 

9 4743.29 1.03 2789.95 0.60 0.61 6.06 47.88 

10 3975.58 0.78 3094.85 0.61 0.49 8.18 55.15 

Average 4944.67 0.97 3082.35 0.60 0.52 7.10 53.67 

(4,30) 

1 14621.37 2.06 4218.63 0.59 0.72 3.86 22.94 

2 6784.73 1.13 3280.59 0.54 0.62 6.00 31.10 

3 5325.01 0.85 3471.02 0.55 0.98 7.20 32.63 

4 37437.57 4.80 4571.90 0.58 0.75 5.65 21.15 

5 24016.19 3.25 4651.95 0.62 0.89 4.00 20.53 

6 28168.05 3.21 5636.75 0.64 0.77 4.54 26.10 

7 11512.75 1.72 3575.31 0.53 0.92 7.57 27.44 

8 15527.07 1.77 5403.03 0.61 0.53 4.01 30.30 

9 11868.87 1.87 3510.14 0.55 0.72 4.74 29.30 

10 10094.30 1.56 3417.08 0.53 0.87 7.00 28.33 

Average 16535.59 2.22 4173.64 0.57 0.77 5.45 26.98 
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Table3. Approximate Pareto fronts with tolerance=5% 

          N° inst.      
         

  Dist1 (%) Dist2 (%)    (%) 

(3,15) 

1 1114.44 0.66 1082.36 0.65 0.12 1.78 79.37 

2 1713.00 1.01 1065.92 0.63 0.16 1.89 68.58 

3 1323.44 0.72 1209.56 0.66 0.09 2.11 77.77 

4 1160.00 0.64 1104.39 0.61 0.09 1.63 79.40 

5 1254.90 0.73 1157.29 0.67 0.10 1.94 79.02 

6 1106.37 0.66 1017.70 0.61 0.10 2.18 77.30 

7 1824.23 0.94 1240.19 0.64 0.13 2.35 71.61 

8 1241.42 0.70 981.75 0.55 0.11 2.58 77.77 

9 1134.15 0.70 891.98 0.55 0.19 2.72 64.77 

10 1128.18 0.67 1076.21 0.64 0.08 2.72 83.22 

Average  1300.01 0.74 1082.73 0.62 0.11 2.19 75.88 

(4,15) 

1 4300.44 0.85 3382.47 0.66 0.20 3.44 67.88 

2 8049.18 1.44 4197.99 0.75 0.17 4.17 76.29 

3 5175.87 1.00 3389.08 0.65 0.11 2.31 76.01 

4 3982.09 0.72 3668.70 0.67 0.18 4.04 70.95 

5 4282.01 0.81 3967.04 0.75 0.15 3.77 80.07 

6 4166.93 0.86 3281.37 0.67 0.20 3.15 70.49 

7 8628.93 1.73 3958.50 0.79 0.17 3.91 71.97 

8 4322.81 0.85 3400.52 0.73 0.25 3.44 65.19 

9 4081.54 0.89 3336.03 0.72 0.25 3.07 67.26 

10 3975.58 0.78 3506.82 0.69 0.19  4.75 74.20 

Average 5096.53 0.99 3608.85 0.70 0.18 3.60 72.03 

(4,30) 

1 14621.37 2.06 5583.05 0.79 0.24 1.61 41.00 

2 6784.73 1.13 3823.56 0.63 0.36 2.22 42.17 

3 5325.01 0.85 4020.69 0.64 0.26 2.51 55.37 

4 37437.57 4.80 5595.67 0.71 0.30 2.25 38.95 

5 24016.19 3.25 6886.66 0.93 0.26 1.83 38.93 

6 28168.05 3.21 6477.35 0.73 0.37 2.70 40.21 

7 11512.75 1.72 4160.22 0.62 0.42 3.60 38.49 

8 15527.07 1.77 6133.77 0.69 0.24 1.64 47.48 

9 11868.87 1.87 4150.15 0.65 0.35 2.09 42.01 

10 10094.30 1.56 3981.94 0.61 0.38 2.94 39.41 

Average 16535.59 2.22 5081.30 0.70 0.31 2.33 42.40 
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Table4. Approximate Pareto fronts with tolerance=1% 

          N° inst.      
         

  Dist1 (%) Dist2 (%)    (%) 

(3,15) 

1 1114.44 0.66 1100.53 0.66 4.5 E
-03

 0.58 98.30 

2 1713.00 1.01 1535.55 0.91 4.3 E
-03

 0.46 97.87 

3 1323.44 0.72 1280.42 0.70 4.4 E
-03

 0.75 98.18 

4 1160.00 0.64 1152.87 0.63 3.6 E
-03

 0.71 98.54 

5 1254.90 0.73 1206.74 0.70 1.9 E
-03

 0.40 98.73 

6 1106.37 0.66 1098.84 0.66 4.4 E
-03

 0.77 98.34 

7 1824.23 0.94 1756.17 0.90 1.8 E
-03

 0.58 99.00 

8 1241.42 0.70 1235.65 0.69 7.5 E
-03

 0.89 97.75 

9 1134.15 0.70 1095.15 0.67 2.3 E
-03

 0.42 98.14 

10 1128.18 0.67 1115.85 0.66 2.6 E
-03

 0.49 98.90 

Average  1300.01 0.74 1257.77 0.71 3.7 E
-03

 0.60 98.37 

(4,15) 

1 4300.44 0.85 4221.94 0.83 9.6 E
-03

 0.79 96.91 

2 8049.18 1.44 7299.63 1.31 5.6 E
-03

 0.70 98.05 

3 5175.87 1.00 4702.28 0.9 4.4 E
-03

 0.69 98.13 

4 3982.09 0.72 3975.11 0.72 2.8 E
-03

 0.63 98.61 

5 4282.01 0.81 4141.73 0.79 5.3 E
-03

 0.91 98.70 

6 4166.93 0.86 4104.17 0.84 5.2 E
-03

 0.88 98.45 

7 8628.93 1.73 8236.60 1.65 0.05 0.70 79.48 

8 4322.81 0.85 3974.34 0.85 0.06 0.78 78.67 

9 4081.54 0.89 3991.81 0.87 0.07 1.19 78.99 

10 3975.58 0.78 3907.37 0.87 7.7 E
-03

 0.71 97.11 

Average 5096.53 0.99 4855.49 0.96 0.02 0.79 92.31 

(4,30) 

1 14621.37 2.06 10382.46 1.46 0.01 0.83 89.07 

2 6784.73 1.13 5919.84 0.98 0.02 0.74 89.13 

3 5325.01 0.85 5309.25 0.85 5.3 E
-03

 0.46 97.13 

4 37437.57 4.80 20459.69 2.62 0.02 0.70 87.77 

5 24016.19 3.25 14452.85 1.95 0.02 0.65 87.46 

6 28168.05 3.21 14417.57 1.64 0.03 0.75 84.83 

7 11512.75 1.72 8384.05 1.25 0.02 0.62 85.99 

8 15527.07 1.77 8536.72 0.97 0.02 0.54 91.07 

9 11868.87 1.87 7985.92 1.25 0.01 0.52 89.33 

10 10094.30 1.56 7494.74 1.16 0.02 0.61 87.02 

Average 16535.59 2.22 10334.30 1.41 0.01 0.64 88.88 
 

 

 

 

 

One can see from Tables 2, 3 and 4 that computing times required for the approximate 

approach considerably decrease when the tolerance on the gap increases. On the counter 

part, the greater the value of the tolerance is the worse is the quality of the Pareto front. 

For example, when considering a tolerance of 10%, the approximate approach is 3.9 

times faster than the exact approach for instance set (4, 30). In this case, the approximate 

algorithm locates only 26.9% of non-dominated points on average, the average distance 
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between the approximate front and the exact front is of 0.77, which is relatively small but 

the average maximum distance exceeds 5.45 (it reaches 7.57 for instance n°7). If we take 

the same set and a small tolerance on the gap equal to 1%, 88.88% of non-dominated 

points are found by the approximate algorithm and both average and maximum distances 

are small. However, the total computing time remains large on average reaching almost 3 

hours (10334.3 seconds).  Finally, when considering an intermediate value for the 

tolerance, that is 5%, results are relatively balanced with regard to the quality of the 

approximate front and computing times. In this case, the approximate algorithm is 3.2 

faster than the exact algorithm and locates 42.4% of the non-dominated points. The 

average distance is of 0.31 and the maximum distance does not exceed 2.33 on average. 

Notice that in our result analysis we focus on the instance set (4, 30) since it includes the 

largest and more complex instances (as depicted in Table 1). The same conclusions apply 

however for the two other sets.  

 

7. Conclusion 

We proposed an adaptive epsilon-constraint method and prove that it generates the set of 

exact Pareto front of a complex three-objective location-transportation problem. The 

proposed algorithm can be applied to any three-objective optimization problem provided 

that the problem involves at least two integer and conflicting objectives. The results 

obtained in our experimental study show that computing time may be relatively large. A 

slight modification of our algorithm (as already proposed by other authors) yielded lower 

computing times without drastically deteriorating the quality of the solutions found. 

Although we are aware that the proposed exact algorithm may requires large computing 

times for large instances, we believe that it consists in a good tool to evaluate the quality 

of other approximate algorithms for three-objective optimization problems.   
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