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Abstract. This paper addresses a multi-activity shift scheduling problem in a continuous 

and flexible environment including a heterogeneous workforce. Given days-off schedules 

associated with each employee, our objective is to construct and assign admissible multi-

activity shifts to employees on their work days in a way that minimizes under-staffing and 

over-staffing with a restricted budget on workforce cost. A hybrid heuristic which combines 

tabu search and a branch-and-bound procedure is proposed to solve the problem. The 

computational experiments prove that our method provides good schedules in relatively 

short computing times. 
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1. Introduction

For many companies, constructing admissible and optimized schedules for

employees is a difficult task. This is mostly due to the multiple and conflicting

scheduling constraints defining work environments. Schedules must indeed

guarantee a certain number of employees to be present at different periods

of the planning horizon to ensure a minimally acceptable service quality.

At the same time, over-assigning employees to work periods would yield

monetary losses. Schedules must also satisfy collective agreement rules and

other constraints related to employees qualifications and preferences. The

scheduling task becomes even more complex for work environments operating

24 hours a day, seven days a week and offering a high level of flexibility in

schedules definition.

Nowadays, the industrial landscape is moving towards diversification of

commodities and services. Consequently, recent studies in personnel schedul-

ing field consider multi-activity rather than single-activity operating environ-

ments. In this case, schedules are no longer constructed by specifying only

the work and rest hours for employees over the planning horizon but also

by defining the activities assigned to them during their work periods. When

compared to single-activity environments, multi-activity contexts incorpo-

rate additional constraints related to employees qualifications, minimum and

maximum activity durations within worked shifts, transitions between activ-

ities within a shift, etc.

This paper addresses a multi-activity shift scheduling problem in a con-

tinuous and flexible environment including a heterogeneous workforce. Given

days-off schedules associated with each employee, our objective is to construct

and assign admissible multi-activity shifts to employees on their work days in

a way that minimizes under-staffing and over-staffing costs. Workforce cost

is implicitly handled by adding a constraint on the total budget allocated to

it. A heterogeneous workforce means that employees have different qualifi-

cations and cannot work all activities. In this case, a schedule is admissible
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for an employee if all the activities composing it are those for which the em-

ployee is qualified. Considering continuous environments implies that shifts

are permitted to overlap on two consecutive days of the planning horizon.

To the best of our knowledge, there are a few papers that addressed the

personnel scheduling problem in a multi-activity context. The proposed ap-

proaches generally separate multi-activity shift scheduling problems into two

sub-problems: shift construction and activity assignment. The first problem

determines work start and end times where as the second one assigns activi-

ties to the shifts already defined. In this paper, we propose a hybrid heuristic

to solve both problems simultaneously. The proposed heuristic combines the

well-known tabu search technique and the exact branch-and-bound procedure

of CPLEX. We prove through a large set of experiments that our heuristic

gives near-optimal solutions in relatively short computing times.

The remainder of this paper is organized as follows. Next section is an

overview of the personnel scheduling literature in multi-activity contexts.

Section 3 defines the multi-activity shift scheduling problem addressed and

proposes a generalized set covering formulation to model it. Section 4 de-

scribes in detail the proposed hybrid heuristic. In section 5, we report and

discuss the experimental results obtained for a large set of generated in-

stances. Section 6 concludes the paper and opens on possible extensions.

2. Literature review

Personnel scheduling problems are widely studied in the literature (Ernst

et al., 2004). Two main approaches can be underlined: the explicit and the

implicit approaches. The explicit approach uses a generalized set covering

formulation (Dantzig, 1954) in which a binary decision variable is defined

for each feasible schedule. This decision variable is equal to 1 if the cor-

responding schedule is chosen, 0 otherwise. Unlike the explicit approach,

the implicit approach does not enumerate all feasible schedules explicitly. It

models some forms of flexibility in an implicit way. The most common exam-
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ple is the use of forward and backward constraints to model break placement

flexibility (Bechtold and Jacobs, 1990). Recently, Rekik et al. (2010) gen-

eralize the concept of forward and backward constraints to model minimum

and maximum pre- and post-break work stretch duration restrictions.

The explicit approach has the advantage of modelling scheduling prob-

lems with complex constraints. However, when the level of flexibility is rel-

atively high, the number of feasible schedules increases considerably making

the resulting set covering formulation impossible to solve to optimality in

reasonable times. On the opposite, the implicit approach results in smaller

models that can be efficiently handled with exact solution approaches. Such

an approach can however be used only in restricted contexts having specific

properties. Rekik et al. (2004, 2010) define the contexts in which forward

and backward constraints can be used in personnel scheduling problems.

To the best of our knowledge, all the published work on multi-activity

personnel scheduling considers only explicit models. This is in part due to

the complexity of the constraints to be handled in these contexts.

Jin (2009) considers a problem where a number of tasks and activities

must be assigned to personalized pre-scheduled shifts in a work environment

including a heterogeneous workforce. Tasks must start within specific time

windows, have constant durations and are not pre-empted; whereas activi-

ties are interruptible, may start at any period and have variable durations.

The proposed solution approach involves two stages. The first stage aims

at allocating tasks and activities to pre-defined shifts with a first objective

of minimizing tasks under-staffing and a second objective of minimizing ac-

tivities under-staffing. In the second phase, tasks are assigned to shifts as

suggested in the first phase and the activities assignment is re-optimized.

Lequy et al. (2010) addressed a multi-activity assignment problem similar

to that of Jin (2009), but in which only interruptible activities are considered.

Three integer programming models are proposed and solved with mathemat-

ical programming based solution approaches: an exact branch-and-bound,
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a truncated branch-and-bound heuristic and a column generation heuristic.

All these models consider a weighted sum objective function which minimizes

under-staffing, over-staffing and transition costs. A rolling horizon procedure

is proposed to tackle large-size instances.

Demassey et al. (2005) propose a hybrid constraint-linear programming

approach to solve the multi-activity shift scheduling problem. Column gener-

ation is used to solve the linear relaxation of the problem. In each iteration, a

subset of valid schedules are generated by a constraint satisfaction model and

added to the master problem. The authors introduce a new optimization con-

straint, the cost-regular global constraint, within the constraint satisfaction

model to generate only the negative reduced cost schedules. Later,Demassey

et al. (2006) propose a variable-value ordering heuristic based on cost-regular

constraints to solve the constraint satisfaction model. Instead of computing

the minimal reduced cost as in Demassey et al. (2005), the authors compute

near optimal solutions with low reduced costs.

Quimper and Rousseau (2010) use regular languages and context-free

grammars to model a number of scheduling rules. From these languages they

derive two large neighbourhood operators and use them in a large neighbour-

hood search process to solve the the multi-activity shift scheduling problem.

Considering the same context, Côté et al. (2007) introduce MIP regular con-

straints. They use a global regular constraint and a network flow problem to

model a number of union rules. Then, the MIP version of the regular con-

straint is used to transform a classical MIP model to a MIP regular model.

Experimental results show good computational times. Later, Côté et al.

(2011) introduce the MIP grammar constraint for the multi-activity shift

scheduling problem. Context-free grammars are used to model union rules

defining admissible shifts.

Recently, Côté et al. (2010) propose a branch-and-price algorithm to solve

a personalized multi-activity shift scheduling problem. The restricted master

problem is a set covering model. For each employee, a pricing sub-problem
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is formulated using the MIP grammar constraint, and solved with dynamic

programming. The branching rule is adapted from the B&P algorithm of

Barnhart et al. (2000).

3. Problem description

3.1. Context and assumptions

We consider a multiple-day planning horizon divided into periods of equal

length. Let J denote the set of all days of the planning horizon and I be the

set of all its periods. We also denote by Ij the set of periods corresponding

to day j.

The scheduling environment we consider includes multiple activities a ∈
A, for which a target demand needs to be satisfied at each period of the

planning horizon. Formally, we assume to know for each activity a ∈ A and

each period i ∈ I, the number of employees, denoted da,i, needed to maintain

a target activity level. Under-covering and over-covering are permitted but

are penalized in the objective function. We denote by cα,a, respectively, cβ,a,

the unit penalty cost paid for under-covering, respectively, over-covering, a

one unit demand of activity a during a period. Notice that the definition of

these costs can straightforwardly be generalized to be dependent not only on

the activity type but also on the period i in which under-covering or over-

covering occurs. In service companies like call centres, banks, or retail stores,

under-covering costs can be set according to the loss of service quality (the

dissatisfaction of customers due to the waiting time, for example). Over-

covering costs can be seen as a penalization related to unproductive time.

Generally, companies aim at having schedules that avoid under-covering first

and then over-covering, if possible.

Employees are assumed heterogeneous in the sense that they are not all

qualified to perform all the activities. In the following, we denote by E the

set of all employees and by Ae the set of activities for which employee e ∈ E
is qualified. We also define Ea as the subset of employees that can work
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activity a. Each employee is assumed to have a pre-assigned sequence of

work and rest days over the planning horizon. We denote by Je the set of

work days of employee e.

The scheduling environment considered includes a high level of flexibility

in shifts definition. Different shift types are considered. We denote by T

the set of all shift types. A shift type t ∈ T is defined by a starting time,

a duration, a break duration and a break window during which the break

must begin. Explicit shifts must be generated from the set T of shift types.

Furthermore, when assigning shifts to employees, one must ensure a minimum

rest duration Dmin between two consecutive work days.

Besides, the assignment of activities to admissible shifts must respect

minimum and maximum duration restrictions on activities work stretch. The

minimum, respectively, maximum, duration restriction of an activity a, de-

noted respectively Lmina and Lmaxa , implies that an employee cannot work

activity a less than Lmina periods, respectively, more than Lmaxa periods, con-

secutively within a shift. The minimum duration restriction is used to limit

the number of transitions between activities within a shift avoiding thus a

loss of productivity. The maximum duration restriction yields better qual-

ity shifts for employees especially when activities require great physical or

mental efforts and are stressful.

In the following, we denote by Qj
e the set of all explicit shifts with assigned

activities that are admissible for employee e on day j. A shift q is admissible

for e on day j if: (1) its starting and ending times and the break it includes

derive from a shift type in T , (2) the activities assigned respect the minimum

and maximum duration restrictions, and (3) employee e is qualified for each

of the activities composing the shift.

Finally, different objective functions can be considered in practice when

designing multi-activity shifts such as workforce costs, under- and over-

covering costs, transition costs between activities within a shift, etc. In

our case, we consider an objective that minimizes under-covering and over-
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covering costs. For labour costs, we assume that there is a maximum budget

Gmax that cannot be exceeded. In the following, we denote by cq the labour

cost of shift q ∈ ∪e∈E ∪j∈Je Qj
e. This cost may depend on the shift length,

the employee identity, the activities covered by the shift, etc.

3.2. Mathematical formulation

The proposed formulation uses a generalized set covering model. For each

employee e ∈ E, each work day j ∈ Je of employee e and each explicit shift

q ∈ Qj
e, we define a binary decision variable xe,j,q that equals 1 if shift q is

assigned to employee e on day j; and xe,j,q = 0; otherwise. We also define for

each activity a ∈ A and each period i ∈ I, two integer decision variables αa,i

and βa,i that represent the under-covering and over-covering, respectively, of

activity a in period i.

The model also uses constant binary parameters δq,a,i defined for each

shift q ∈ ∪e∈E ∪j∈JeQj
e, each activity a ∈ A and each period i ∈ I to indicate

whether activity a is covered by shift q in period i (in this case, δq,a,i = 1),

or not (δq,a,i = 0, in this case). Finally, to model the minimum rest duration

restrictions (Dmin), we denote by sq and fq, the starting and finishing times

of a shift q.

The mathematical model (GSCM) can be written as follows:

min
∑
a∈A

∑
i∈I

(cα,aαa,i + cβ,aβa,i) (1)

s.t.
∑
e∈Ea

∑
j∈Je

∑
q∈Qje

δq,a,ixe,j,q + αa,i − βa,i = da,i ∀ a ∈ A, i ∈ I (2)

∑
q∈Qje

xe,j,q = 1 ∀ e ∈ E, j ∈ Je (3)

∑
q′∈Qj+1

e

sq′xe,j+1,q′ −
∑
q∈Qje

fqxe,j,q ≥ Dmin ∀ e ∈ E, (j, j + 1) ∈ J2
e (4)
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∑
e∈E

∑
j∈Je

∑
q∈Qje

cqxe,j,q ≤ Gmax (5)

xe,j,q ∈ {0, 1} ∀ e ∈ E, j ∈ Je, q ∈ Qj
e (6)

αa,i, βa,i ≥ 0 and integers ∀ a ∈ A, i ∈ I (7)

Objective function (1) minimizes the total under-covering and over-covering

costs. Demand constraints (2) ensure that the total number of qualified em-

ployees performing each activity a during each period i of the planning hori-

zon must be equal to the required number (the target demand) subject to

some adjustments related to under- and over-covering. Constraint (3) en-

sures that an admissible shift is assigned to each employee e ∈ E on every

work day j ∈ Je. Constraint (4) ensures the respect of the minimum rest

duration restriction between two shifts assigned to two consecutive work days

for each employee schedule. Constraint (5) ensures that the total workforce

cost is less than the maximum budget allowed. Finally, constraints (6) and

(7) define the nature of the decision variables used in the model.

As already mentioned, considering a model that explicitly enumerates all

admissible shifts may be intractable in practice with exact solution meth-

ods like those embedded in commercial solvers. The major contribution of

this paper is to propose a heuristic that provides good-quality solutions in

acceptable computing times for the personnel scheduling problem described

above.

4. Hybrid heuristic

This section presents our solution approach. It is based on a hybrid

heuristic that combines an adaptation of the well-known tabu search meta-

heuristic (Glover and McMillan, 1986) with a branch-and-bound procedure

(B&B).
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4.1. Overview of the hybridization scheme

Tabu Search (TS) is known to be one of the most popular meta-heuristic

for approximatively solving large problems. Like other local search methods,

at each iteration t, TS moves from a current solution St to a next one St+1

by exploring a neighbourhood of St. A neighbourhood is generated by a

move operator that performs a local perturbation to the current solution St.

The next solution St+1 is the best neighbour of St, even if this neighbour

is not improving St. This non-improving move permits the search to escape

from local optimum but can lead to cycling. TS uses thus the well-known

concept of tabu lists to band revisiting previous solutions for a given number

of iterations defined by the tabu list size.

In addition to the tabu list, two other memory techniques, operating in a

complementary way, are introduced in TS: intensification and diversification.

Both techniques are used to store some information collected during the

search process. While intensification is used to give the priority to good

attributes of elite solutions, diversification is used to discourage considering

visited attributes in order to direct the search to unexplored areas of the

search space. We refer the reader to the book of Talbi (2009) for more

details on tabu search methods.

When designing our heuristic, one of the major challenges we faced is

managing the trade off between neighbourhood sizes and neighbourhood ex-

ploration complexity. Indeed, considering large neighbourhoods certainly

leads to large improvements in solution quality but at the same time requires

large computing time to find the best neighbour. To overcome this difficulty,

we use the B&B procedure of the commercial solver CPLEX to efficiently

explore large neighbourhoods. The hybridization scheme we propose belongs

in fact to a class of hybrid methods known as Low − LevelRelayHybrid

(Talbi, 2009). Figure 1 describes the main steps of the proposed hybridiza-

tion scheme. As one can see, the B&B algorithm is embedded into the

TS at three stages: the neighbourhood exploration, the intensification, and
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the diversification stages. Next subsections give explicit details on how the

hybridization is done.
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Figure 1: Hybridization scheme

4.2. Initial solution

To start the tabu search process, one needs a feasible initial solution

that respect minimum and maximum activity work stretch restrictions, break

placement constraint and minimum time separation between shifts on con-

secutive work days. To this end, we consider the following constructive algo-

rithm:
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Algorithm 1 Constructive algorithm

FOR each employee e ∈ E
FOR each working day j ∈ Je
IF (j is the first day of the planning horizon) or ((j − 1) is a day-off)
THEN:

STEP 1 : Choose randomly a shift type t ∈ T . Go to STEP 2.
STEP 2 : Place randomly the break within the time window of
the shift type t. Go to STEP 3.
STEP 3 : Choose randomly a sequence of activities (a(1), ..., a(m)).
Start the first activity a(1) at the beginning of the shift.
Let p = 1. Go to STEP 4.
STEP 4 Enumerate all admissible end times for activity a(p)
IF (no admissible end time exists) THEN Go to STEP 6.
ELSE, Go to STEP 5.

STEP 5 : For each end time obtained for a(p)
IF (p < m), THEN start the next activity a(p + 1) at the current

end time. p = p + 1. Go to STEP 4.
ELSE, go to STEP 6.

STEP 6 : IF (a subset of admissible shifts is obtained)
THEN choose randomly an eligible shift qj,e,
ELSE
IF (all possible break placements are tested),
THEN choose another shift type and go to STEP 2.

ELSE choose another break placement and go to STEP 3.
ELSE
IF ((j − 1) is a day-on), THEN

Determine the set T (qj−1) of admissible shift types for the shift qj−1,e

assigned to employee e on day (j − 1), (a shift type is admissible for
qj−1,e if its starting time and the ending time of qj−1,e respect
the minimum separation rest duration restriction).
Replace the set of all shift types T by the subset T (qj−1) (in STEP

1).
Repeat the steps (1)-(6).

4.3. Neighbourhood definition and exploration

In our case, a solution H corresponds to a set of |E| personalized feasible

schedules over the planning horizon, one schedule for each employee e ∈ E.

Formally, H = (he)e∈E where he is defined by a tuple of explicit shifts (qj)j∈Je .
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Since under-covering is generally much less likeable (results in higher costs)

than over-covering, our primary objective when designing our heuristic is to

ensure that the target demand is satisfied (i.e., under-covering is minimized).

Hence, a neighbourhood of a solution Ĥ is defined by a subset of feasible

schedules that minimize the largest under-covering yielded by Ĥ, denoted α̂

in the following.

More specifically, we first determine the activity-period couple (â,̂i) for

which the under-covering in Ĥ is maximum. We denote by ĵ, the day of

the planning horizon to which period î belongs. Then, a pre-processor is

used to generate for each employee e working on day ĵ (according to its pre-

assigned days-off schedule) a set Qĵ
e(Ĥ) ⊂ Qĵ

e of all admissible shifts on day

ĵ in which activity â is worked during î. Finally, complete schedules for each

employee e are enumerated by considering all possible combinations of a shift

in Qĵ
e(Ĥ)∪{q̂ĵ} and the shifts already assigned to employee e in solution Ĥ for

the remaining work days (that is,(q̂j)j∈Je\{ĵ}). This set of complete schedules

is denoted Se(Ĥ). Notice that including shift {q̂ĵ} implies that the schedule

of employee e in the current solution Ĥ is kept as an alternative schedule

avoiding thus to impose to all employees to work activity â on period î. The

neighbourhood of solution Ĥ, denoted N(Ĥ), is then defined by all possible

combinations of employees schedules Se(Ĥ), that is, N(Ĥ) =
∏

e∈E Se(Ĥ).

To find the best neighbour of Ĥ in N(Ĥ), we consider a restricted set

covering model (as the one described in section (3)) in which we limit the

sets of personalized shifts associated with employee e and day j to Qĵ
e(Ĥ)

if j = ĵ and {q̂j} for all j ∈ Je. The resulting model is much smaller than

the one yielded by all admissible schedules and is expected to be solved to

optimality by the classical B&B procedure of CPLEX. However, in case the

resulting restricted model is still difficult to solve to optimality in reasonable

times, we reduce its size by randomly considering subsets of Qĵ
e(Ĥ), e ∈ E.
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4.4. short, medium and long-term memories

4.4.1. Tabu list (short-term memory)

To avoid cycling, tabu search employs an adaptive memory that stores

recent moves to be banned for a finite number of iterations. In our case,

we define a tabu list, denoted CT , as a FIFO queue which stores the last

activity-period couples considered in neighbourhoods definition. A dynamic

tabu list size is used to improve the robustness of the heuristic. To this end,

we define a parameter, denoted ψ, and randomly change its value during the

search process. This parameter is used to update the tabu list by removing

the tabu status for all couples (a, i) ∈ CT that are present in CT for more

than ψ successive iterations. More details on the value considered for the ψ

parameter are given in Section 5.2.

4.4.2. Intensification (medium-term memory)

The intensification is used to exploit promising regions by storing good

properties in a medium-term memory (Talbi, 2009). A property is considered

good when it often appears in the best neighbour solutions (called also elite

solutions). In our case, an intensification is employed when the number of

iterations without improvement reaches a pre-fixed number, denoted Nint.

To perform intensification, we define a three-dimensional matrix (called

the recency matrix) R = (re,a,i), where coefficient re,a,i gives the maximum

number of successive iterations in which employee e performs activity a dur-

ing period i in the best neighbour solutions. The intensification we propose

consists in constructing schedules that keep active as much as possible a pre-

specified number ∆int of triplets (e, a, i) that have the highest re,a,i values.

A triplet (e, a, i) is active in a solution if employee e is assigned activity a on

period i. Notice that ∆int is a parameter of our heuristic that depends on

the size of the recency matrix R. In the following, we denote Kint the set of

∆int triplets (e, a, i) retained for intensification.

To construct schedules that keep as much as possible triplets in Kint

active, we partition Kint into subsets Kint(e), one subset of each employee
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e such that (e, a, i) ∈ Kint. A pre-processor is then used to generate for

each employee e a subset of personalized shifts Qint
e (⊂ ∪j∈JeQj

e) for which

employee e is assigned activity a on period i for the largest possible number

of couples (a, i) in Kint(e). Notice that some pairs (a, i) in Kint(e) may

be incompatible because of the minimum and maximum activity duration

restrictions. The size of sets Qint
e is restricted to a pre-specified value (a

parameter of our heuristic).

Intensification is performed by solving a restricted set covering model

(see Section 3) in which only shifts in Qint
e , e ∈ E are considered. Notice

that since Kint(e) may be empty for some employees, we add to the subset

of shifts Qint
e , e ∈ E the best solution identified so far to ensure feasibility.

4.4.3. Diversification (long-term memory)

Diversification allows the search to move towards unexplored regions of

the feasible space. This technique uses a long-term memory, called frequency

memory, which stores the number of times a component appears in the visited

solutions. In our case, we apply the so-called restart diversification meaning

that we consider a new initial solution and restart the search process (Talbi,

2009). We perform diversification when a pre-specified number of iterations,

denoted Ndiv, is reached without improvement of the best solution.

To obtain a new diversified solution, we construct a random feasible solu-

tion (with Algorithm 1) and make changes on it so that it includes properties

that appear the least in the best neighbour solutions identified during the

search process. This is done by considering a three-dimensional frequency

matrix F = (fe,a,i) where coefficient fe,a,i gives the total number of itera-

tions such that employee e performs activity a during period i in the best

neighbour solutions. As for intensification, we define a parameter ∆div to

determine the number of triplets (e, a, i) that are retained in the frequency

matrix F . Then, we determine the set Kdiv of the (e, a, i) triplets that have

the ∆div lowest values fe,a,i. Observe that Kdiv defines the triplets (e, a, i)

that are active the least in the best visited solutions. The diversification we
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propose consists in defining schedules that forces as much as possible these

triplets to be active.

To this end, we define for each employee e ∈ E, a set Kdiv(e) of pairs (a, i)

such that (e, a, i) ∈ Kdiv. A pre-processor is designed to generate for each

employee e a subset of personalized shifts Qdiv
e (⊂ ∪j∈JeQj

e) in which em-

ployee e performs activity a on period i for the largest possible number of

couples belonging to Kdiv(e). A restricted set covering model (see Section 3)

in which only the subsets of shifts Qdiv
e , e ∈ E are considered is then solved.

Notice that since Kdiv(e) may be empty for some employees, we add to the

subset of shifts Qdiv
e , e ∈ E a feasible solution randomly generated by the con-

structive algorithm (Algorithm 1) to ensure model feasibility. The solution

of this model is taken as a new initial solution and tabu search is restarted.

5. Computational experiments

The objective of this section is to evaluate the performance of the pro-

posed heuristic in terms of computing time and solution quality. To this end,

216 problem tests are generated by varying a number of work environment

features (shift types, number of activities, number of employees, etc.). Next

section describes the problems tests considered in our study.

5.1. Problem tests

Nine instances sets are generated by varying the number of employees

|E| (15, 20 and 30) and the set of activities A (a combination of 2, 3 and

4 activities). More precisely, the set of activities is set equal to {a1, a2},
{a1, a2, a3} or {a1, a2, a3, a4}. Activities a1, a2, a3 and a4 are ordered accord-

ing to their stressful level, this stressful level being reflected by the maximum

work stretch duration permitted for the activity within a shift. Hence, ac-

tivity a1 is the most stressful and imposes a maximum work stretch that is

smaller than activity a2, a2 is more stressful than a3, etc. The minimum,

respectively, maximum, work stretch duration of activities are set between 1

and 2 hours, and 2 and 4 hours, respectively.
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For each instance set (A, |E|), 24 instances are generated by varying de-

mand profiles and shift types yielding 216 instances in total. Six demand

profiles, p = 1, . . . , 6 are considered. These demand profiles differ on the

degree of demand fluctuation throughout the planning horizon. More pre-

cisely, the demand profile p = 1 is characterized by a relatively low standard

deviation implying that the demand variation across time periods tend to be

very close to the mean demand. On the opposite, for demand profile p = 6,

demand values are spread out over a large range with respect to the mean

value.

On another hand, 120 shift types are generated by considering starting times

at each hour of the day and 5 different durations (6, 7, 8, 9 and 10 hours).

Break windows are defined in the middle of the shift work interval and the

break duration is taken equal to one or two hours depending on the shift

type length. These shift types are generated and stored in a pool. For each

instance set (A, |E|) and each demand profile p, four instances are generated

by randomly selecting 36, 54, 96 or 120 shift types within the pool of shift

types. Notice, that shift types are selected in a way to ensure that all periods

of the day are covered.

For all generated instances, we consider a continuous 7-day planning hori-

zon divided into periods of 60-minutes each (|I| = 7 × 24 = 168 periods).

We also assume that all employees are qualified for all activities. Finally,

under-covering and over-covering costs are taken equal to 1 for all activities.

Notice that ,to evaluate the performance of the proposed heuristic, the

216 instances we generate are designed so that the corresponding optimal

solution is known. More precisely, data are fixed in a way that ensures

that a solution with no under-covering and no over-covering exists for each

instance (that is the optimal solution yields a null objective value). This is

done by conveniently tuning some parameters such as pre-assigned days-on

sequences, demand profiles and activities work stretch restrictions.
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5.2. Parameters settings

As already explained, the hybrid heuristic we propose considers a number

of parameters related to short, medium and long-term memories that need

to be fixed. After performing a number of tests with different values of these

parameters, we find that the best trade off between solution time and solution

quality is on average obtained with the following settings.

The tabu list size ψ is first set to ψ0 and this value is randomly modified

every 5 iterations within the interval [ψ0(1 − ν), ψ0(1 + ν)] with ν ∈ {0, 1}.
The value of ψ0 is set to 6×|A| (recall that |A| denotes the number of activities

in the instance set). An intensification is performed when the number of

successive iterations without improvement exceeds 3 (i.e., Nint = 3). A

diversification is performed when the number of successive iterations without

improvement exceeds 6 (i.e., Ndiv = 6). The algorithm is stopped when two

diversifications are performed. The best solution identified is the solution

output by the heuristic.

Table 1 reports the average, minimum and maximum size of the tabu

list recorded for each instance set over the 24 instances it includes (Col-

umn “Tabu list size”). It also reports the average, minimum and maximum

number of intensifications (Column “IntBest”), respectively, diversifications

(Column “DivBest”) required by the heuristic to locate the best solution.

Av. Tabu list size # Int.Best # Div.Best
(|A|, |E|) Av. Min Max Av. Min Max Av. Min Max
(2. 15) 7.44 6.23 8.97 3.29 0 13 0.79 0 2
(2. 20) 7.73 6.21 8.76 3.88 0 9 0.83 0 2
(2. 30) 7.91 6.38 9.08 4.46 1 8 1.04 0 2
(3. 15) 9.15 7.00 11.32 4.33 0 11 0.83 0 2
(3. 20) 9.13 6.49 12.13 3.79 1 10 0.58 0 2
(3. 30) 10.12 7.35 13.03 4.13 1 9 0.71 0 2
(4. 15) 10.42 7.69 12.40 4.79 1 11 1.13 0 2
(4. 20) 10.68 6.46 15.10 5.75 1 14 0.96 0 2
(4. 30) 11.39 8.08 15.86 5.17 1 9 0.96 0 2

Table 1: Short, medium and long-term memories’ parameters

Table 1 shows that the intensification phase is necessary to improve the

quality of the heuristic solution. In fact, the average number of intensifi-
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cations needed to reach the best solution varies from 3.29 (instance set (2,

15)) to 5.75 (instance set (4, 20)). Even if for some instances the best solu-

tion is reached without intensification, 14 intensifications are needed in some

cases (instance set (4, 20)). One can also observe that the number of inten-

sifications needed to identify the best solution increases with the number of

employees and the number of activities defining the scheduling environment.

Regarding the diversification phase, the number of diversifications re-

quired to identify the best solution is lower than 1 for almost all instances

sets. Recall that the heuristic stopping criteria is defined with respect to a

maximum number of diversifications which is set to 2 for all instances. More

precisely, over the 216 instances considered in this study, 39% locate the

best solution with no diversification, 34% required one diversification and

26% needed the two diversifications.

5.3. Solution quality

This section presents the solutions obtained with the proposed algorithm

with the parameters settings described in Section 5.2. In order to evaluate

the quality of the solution obtained, we consider a number of performance

indicators (P.I.) defined as follows.

5.3.1. Performance indicators

Two P.I., denoted respectively ϕα and ϕβ, are defined to measure the total

under-covering, respectively, over-covering, of all activities over all periods

with respect to the total demand. That is,

ϕα =

∑
a∈A

∑
i∈I αa,i∑

a∈A
∑

i∈I da,i
(8)

ϕβ =

∑
a∈A

∑
i∈I βa,i∑

a∈A
∑

i∈I da,i
(9)

where, αa,i, respectively, βa,i, denotes the number of employees lacking, re-

spectively in excess, for activity a on period i yielded by the heuristic solution.
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Obviously, the lower the value of these P.I. is, the better the solution output

by the heuristic meets the total target demand.

Two other P.I. are defined at the activity level to measure the average

under-covering, denoted Γ
under

, respectively, the average over-covering, de-

noted Γ
over

, of the demand per activity and per period yielded by the heuristic

solution. These P.I. are computed as follows:

Γ
under

=
1

|A||I|
∑
a∈A

∑
i∈I

αa,i (10)

Γ
over

=
1

|A||I|
∑
a∈A

∑
i∈I

βa,i (11)

Unlike ϕα and ϕβ which give an idea on the total uncovered and over-

covered demand for all activities and all periods, Γ
under

and Γ
over

give details

on under-covering and over-covering on both the activity and the period

levels.

5.3.2. Results

Table 2 reports the min, max and average values of the four P.I. de-

fined in Section 5.3.1 for the nine generated instances sets. Recall that each

instance set (|A|, |E|) includes 24 instances. Each line in Table 2 displays

thus the minimum, maximum and average value over the 24 instances of the

corresponding instance set.

Table 2 shows that our heuristic provides good quality solutions for all

instances set. In fact, the total under-covering ϕα ranges between 0% and

5.30% but does not exceed 0.78% on average (for all the 216 instances).

The local under-covering P.I. (Γ
under

) confirms the good performance of our

heuristic since the average under-covering per activity per period is very

small (between 0.0% and 0.02%) reaching 0.10% for the worst instance.

In terms of over-covering, the solutions output by the heuristic remain

also satisfactory ranging between 0% for the best case and 6.50% for the
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ϕα(%) ϕβ(%) Γ
under

Γ
over

(|A|, |E|) Av. Min Max Av. Min Max Av. Min Max Av. Min Max
(2, 15) 1.23 0 5.04 1.16 0.00 3.29 0.02 0 0.07 0.02 0 0.04
(2, 20) 0.92 0 3.15 0.58 0.00 1.57 0.02 0 0.06 0.01 0 0.03
(2, 30) 1.59 0 3.63 1.30 0.00 3.78 0.04 0 0.10 0.04 0 0.10
(3, 15) 0.31 0 2.76 0.40 0.00 2.55 0.00 0 0.03 0.00 0 0.02
(3, 20) 0.60 0 2.53 0.66 0.00 2.48 0.01 0 0.03 0.01 0 0.03
(3, 30) 0.20 0 1.79 0.24 0.00 1.45 0.00 0 0.03 0.01 0 0.03
(4, 15) 1.06 0 2.85 1.08 0.00 3.11 0.01 0 0.02 0.01 0 0.02
(4, 20) 0.96 0 5.30 1.19 0.16 6.50 0.01 0 0.05 0.01 0 0.06
(4, 30) 0.15 0 0.54 0.22 0.00 0.97 0.00 0 0.01 0.00 0 0.01

Table 2: Quality of the solutions obtained with the proposed hybrid heuristicp

worst case for the global over-covering P.I. (ϕβ ) and 0% and 0.07% for the

local over-covering P.I. (Γ
over

).

Table 2 also reflects the robustness of our hybrid heuristic since the quality

of the solutions it yields is insensitive to the input data and the instances

size.

5.3.3. Heuristic versus optimal solutions

The performance of a heuristic method is generally evaluated by measur-

ing the minimum, the average and the maximum deviation of the heuristic

solution with respect to the optimal solution if it is known, to an estimator

of the optimal solution or to a pre-specified bound. In our case, our problem

tests are generated in a way that the optimal solution is known and yields

null under-covering and null over-covering of all activities and all periods.

Hence, the deviation of our heuristic solution to the optimal solution can be

straightforwardly derived from global P.I. ϕα and ϕβ.

Figure 2 gives the percentage of instances for which our heuristic yields

a deviation (ϕα) to the optimal under-covering and a deviation (ϕβ) to the

optimal over-covering that is less than or equal to a certain number Π (Π

ranges between 0 and 6% with an incrementation step of 0, 1%).

Figure 2 shows that the proposed heuristic identifies a solution that is

1.5% far from the optimal solution in terms of under-covering for 80% of

the instances. For 33.8% of the instances (73 over the 216 considered), the
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Figure 2: The percentage of instances for which ϕα, respectively, ϕβ is 6 Π

heuristic identifies the optimal solution in terms of under-covering. The

maximum deviation with respect to the optimal under-covering solution does

not exceed 5.3%.

When considering over-covering, the optimal solution is identified for

23.61% of the instances (51 over the 216 considered). The under-covering

yielded by our heuristic solution is below 1.4% for 80% of the instances and

does not exceed 6.5% for the worst instance.

As a conclusion, our heuristic computes good quality solutions. Although

the resulting schedules are not optimal for all instances, the deviation to the

optimum remains relatively small for both under-covering and over-covering.

Furthermore, in practice, it is difficult to determine with certainty the number

of employees required for each activity and each period. There is generally

a margin of error in demand forecasting of about 2% making our heuristic
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solutions almost optimal in practice.

5.4. Solution time

This section reports the computational performance of the proposed heuris-

tic in terms of solution times. Table 3 displays two time values: (1) the total

computational time in minutes, CPUTot, required by the heuristic (the time

required to reach the stopping criteria of two diversifications) and (2) the

computational time in minutes needed to reach the best solution (CPUBest).

CPU + Tot(min) CPUBest(min)
(|A|, |E|) Av. Min Max Av. Min Max
(2, 15) 5.59 0.29 12.61 3.37 0.29 12.61
(2, 20) 8.94 1.70 16.75 5.57 0.34 16.04
(2, 30) 12.36 3.04 33.65 8.22 0.68 20.94
(3, 15) 13.46 0.83 31.42 10.71 0.83 30.98
(3, 20) 20.87 2.54 46.95 10.75 1.76 31.76
(3, 30) 28.68 3.73 68.41 18.13 3.73 46.98
(4, 15) 28.16 2.98 62.65 19.85 2.97 55.21
(4, 20) 40.21 12.71 85.72 25.40 3.42 45.79
(4, 30) 38.93 9.34 71.96 28.00 5.66 70.68

Table 3: Computational Time of the hybrid heuristic

Table 3 shows that the total time required by the proposed heuristic

to perform two diversifications varies between 5.59 minutes on average for

instances set (2, 15) to 38.93 minutes on average for instances set (4, 30).

This average total time is about 21.91 minutes when considering the 216

instances. The best-case instance requires 0.29 minutes (almost 18 seconds)

in total whereas the worst-case instance needs more than 85.72 minutes. In

all cases, one can assert that this total computing time remains reasonable

for handling a multiple-day (one week in our case) shift scheduling problem

given the quality of the resulting solutions.

Furthermore, the results displayed under the ′′CPU ′′Best column show that

identifying the best solution does not necessarily require all this computing

time (no need to perform two diversifications). The average time required

to locate such best solutions ranges between 0.29 and 70.68 minutes with an

average of 14.44 minutes for all the 216 instances. In sum, the algorithm
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could be stopped after about 40% of the total CPU and would yield a good

quality solution. For example, for the worst case instance in terms of total

CPU (85.72 minutes), the best solution was identified in less than 32.15

minutes.

As a conclusion, our experimental study proves that the proposed heuris-

tic shows good performances in terms of solution quality and solution time.

We believe that it can be implemented in real-life contexts and results in

appreciable schedules for both employees and managers.

It is worth mentioning that we tested the relevance of the proposed neigh-

bourhood and compare the performance of the heuristic with a neighbour-

hood as defined in Section 4 and a neighbourhood where couples (a, i)) are

randomly selected. The results we obtained prove that considering the couple

(a, i) that yields the maximum under-covering gives better results for both

solution quality and solution times.

6. Conclusion and futures extensions

This paper considers a continuous personnel scheduling problem in multi-

activity work environments with heterogeneous workforce. To the best of

our knowledge, there are a few papers that addressed the personnel schedul-

ing problem in a multi-activity context. The proposed approaches generally

separate the problem into shift construction and activity assignment. The

major contribution of this paper is to propose an efficient hybrid heuristic to

solve both problems simultaneously on relatively long planning horizons (a

week). It is assumed that days-off schedules associated with each employee

are known and our objective is to construct and assign admissible multi-

activity shifts to employees on their work days in a way that minimizes

under-staffing and over-staffing with a budget restriction on total workforce

cost.

The proposed heuristic combines the well-known tabu search technique

and the exact branch-and-bound procedure of CPLEX. Branch and bound is
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used at three stages: neighbourhood exploration, intensification and diversi-

fication. Neighbourhoods are defined based on the couples (activity, period)

for which under-covering is maximized. We prove through a large set of ex-

periments that our heuristic gives near-optimal solutions in relatively short

computing times.

Many research directions can be explored in the future. As already men-

tioned, the few papers that addressed multi-activity scheduling problems

consider generalized set covering formulations. However, implicit modelling

was proven to be efficient in solving single-activity scheduling problems hav-

ing a particular structure (Bechtold and Jacobs, 1990; Aykin, 2000; Rekik

et al., 2004). It results in smaller models especially when a high degree of

flexibility has to be handled. A future trend would be to consider implicit ap-

proaches to solve multi-activity shift scheduling problems. We are currently

working on that.
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