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Abstract. In this paper we introduce the Vehicle Routing Problem with Pauses (VRPP). 

This problem arises when drivers must make pauses during their shift, for example, for 

lunch breaks. Drivers breaks have already been considered in long haul transportation 

when drivers must rest during their travel, but their technical and scientifical aspects have 

been mostly neglected in the less than truckload and last mile distribution contexts up to 

date. In this paper we introduce the first mathematical formulation for the VRPP. This 

linear formulation has the disadvantage of roughly doubling the number of nodes, and 

thus significantly increasing the size of the distance matrix and the number of variables. 

Consequently, standard branch-and-bound algorithms are only capable of solving very 

small-sized instances. In order to tackle large instances, we propose a fast local search-

based heuristic tailored for the VRPP, which is shown to be very efficient. Through a 

series of computational experiments, we show that solving the VRPP without explicitly 

considering the pauses during the optimization can lead to a number of infeasibilities and 

to higher solution costs. These results demonstrate the importance of integrating drivers 

pauses in the resolution process. 
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1 Introduction

In this paper we formally introduce, model and solve the vehicle routing problem with

pauses (VRPP). This problem arises, e.g., in retail delivery, parcel and mail delivery,

waste collection, and home blood sampling collection [27, 28, 22, 18], but we are not

aware of any paper which has considered pauses explicitly. In the VRPP, drivers must

make a pause during their shift to abide to law, union rules, and/or to company-specific

regulations. The VRPP is a generalization of several classes of the well-known VRP

[20]. Pauses are often seen in long-haul transportation, where drives are required to stop

and rest after a given number of driving time to avoid excessively long working hours

[12, 10, 13, 11, 14, 16, 15]. In last mile distribution, pauses are also present, for example,

when drivers have time allotted for lunch breaks. However, although rest time is easily

taken into account in long haul transportation (i.e., by adding the rest time to the trip

duration), it is not the case for less than truckload routing as we will show later on.

Regarding industrial applications of the VRP, only a few works report results based on

real cases and even fewer report industrial implementations. Among them, the food and

soft-drink industries are the most prominent [29, 30, 17, 24, 6]. Other applications arise in

different industries, including lubrification oil distribution [26, 31], waste collection [19, 4],

industrial gases [8, 9], petroleum products [3, 5], and cash [32]. However, even if these

articles deal with real applications, drivers pauses were not considered.

Our study is motivated by the request of an industrial partner facing this problem. Thus,

we model, solve and evaluate drivers pauses as a real-world constraint for the first time.

Despite a large body of research on VRPs, many industrial applications remain open and

in some cases can only be handled with heuristics, due to the lack of a mathematical

formulation capable of handling them. One of these constraints is related to drivers

pauses. To the best of our knoledge, driver pauses have never been integrated into a

mathematical formulation, and they have rarely been considered by existing heuristics.

Nonwithstanding, thousands of miles of drivers routes are often planned every day. In
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practice, routes are planned disregarding the pause, which is later inserted into the final

solution, yielding a poor approximation. This strategy can be applied for problems in

which the pause separates two delivery periods, similar to a multi-period problem [1].

However, in a short planning horizon such as daily delivery in which our problem is

defined, the pause does not lead to a multi-period problem. In fact, this strategy does

not suit the retail industry where many customer deliveries should be done within some

(tight) time windows and where service quality is highly important. In that context the

timing of the pause becomes crucial.

The main contributions of this paper are threefold. First, we provide the first formulation,

as a linear programming model for the VRPP. Second, we develop a fast and efficient

heuristic capable of handling this practical constraint. Third, based on this heuristic

we demonstrate that solving distribution problems with time windows without explicitly

considering drivers pauses can lead to a number of infeasibilities in the final delivery

schedules.

The remainder of this paper is organized as follows. In Section 2 we formally describe

the VRPP. In Section 3 we introduce a linear programming formulation to model the

VRPP. The description of our heuristic is presented in Section 4, which is followed by the

computational experiments in Section 5. Conclusions are presented in Section 6.

2 Description of the problem

The VRPP is defined on a directed graph G = (V ,A), where V = {0, . . . , n} is the vertex

set and A is the arc set. Vertex 0 corresponds to the depot, while the remaining vertices

of V ′ = {1, . . . , n} represent the customers requesting a delivery. Each arc (i, j) ∈ A is

associated with a travel time tij and a travel distance dij. Each customer i is associated

with a service time Si, a delivery weight wi, and a delivery volume vi. The service of a

customer i must start within a time window [ai, bi].
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A heterogeneous fleet of K vehicles is located at the depot. Each vehicle k is associated

with a volume capacity Vk and a weight capacity Wk. Vehicles routes must begin between

[as, bs] and must end before ae and, within these limits, each route must respect a maxi-

mum working time Lk. Vehicles are allowed to wait between two customers, and a lunch

period lasting Sp units of time must be scheduled to start between [ap, bp] in each route.

In this context, the goal is to minimize the total length of the routes in terms of traveling

distance. Achieving reductions in traveling distance should lead to a reduction in the

number of routes, which, in turn, can potentially decrease other important costs related

to driver salaries and to the fixed and variable operating costs of the fleet.

In the next section we propose a mathematical formulation to solve the VRPP. To the

best of our knowledge, this is the first time that such a problem is formulated.

3 Mathematical formulation

Since drivers’ pauses can be taken at a customer site right after the service has been

completed, or at a customer site just before starting the service, distances from the pauses’

sites to the customers locations need to consider both cases. We provide in Sections 3.1

and 3.2 a detailed description of the transformations required to account for a pause in

each route, and in Section 3.3 a mathematical formulation for the VRPP.

3.1 Extended distance matrix

Consider an instance with n customers, and its distance matrix dij defined over V2. The

distance matrix dij contains n+ 1 rows and n+ 1 columns. In order to account for pause

and time windows, we will work with an extended distance matrix d
′
ij containing 2n + 2

rows and columns. For notation purposes, we define a new set W containing all nodes of

V ∪ {n+ 1, . . . , 2n+ 2}. In the extended distance matrix d
′
ij, indices n+ 1 to 2n+ 1 refer

to pause nodes, one for each original node, and node 2n+ 2 indicates the depot.
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dij =


d00 d01 · · · d0n

d10 d11 · · · d1n
...

...
. . .

...

dn0 dn1 · · · dnn



d
′

ij =



d00 d01 · · · d0n d0,n+1 d0,n+2 · · · d0,2n+1 d0,2n+2

d10 d11 · · · d1n d1,n+1 d1,n+2 · · · d1,2n+1 d1,2n+2

...
...

. . .
...

...
...

. . .
...

...

dn0 dn1 · · · dnn dn,n+1 dn,n+2 · · · dn,2n+1 dn,2n+2

dn+1,0 dn+1,1 · · · dn+1,n dn+1,n+1 dn+1,n+2 · · · dn+1,2n+1 dn+1,2n+2

dn+2,0 dn+2,1 · · · dn+2,n dn+2,n+1 dn+2,n+2 · · · dn+2,2n+1 dn+2,2n+2

...
...

. . .
...

...
...

. . .
...

...

d2n+1,0 d2n+1,1 · · · d2n+1,n d2n+1,n+1 d2n+1,n+2 · · · d2n+1,2n+1 d2n+1,2n+2

d2n+2,0 d2n+2,1 · · · d2n+2,n d2n+2,n+1 d2n+2,n+2 · · · d2n+2,2n+1 d2n+2,2n+2



A1 A2 A5

A3 A4 A6

A7

Obviously, the upper-left part of matrix d
′
ij, identified as A1, corresponds to dij:

d
′

ij = dij i, j ∈ V . (1)

In order to model the problem, one needs to represent each location as two different nodes

to adequately account for pauses. The reason is that there is no cost related to traveling

to a pause location, but we must keep track of the last node visited before the pause in

order to compute the appropriate distance to the next node after the pause. Thus, node

n + 1 models a pause made immediately after leaving the depot (node 0); node n + 2

models a pause made immediately after visiting node 1, and so on. Since there is no cost

for traveling to the pause, distances in the submatrix A2 of d
′
ij are modeled as follows:

The Vehicle Routing Problem with Pauses

4 CIRRELT-2014-22



d
′

ij =

0 if j = i+ n+ 1

∞ otherwise

i ∈ V j ∈ W\ (V ∪ {2n+ 2}) . (2)

Then, one needs to model the distance from each pause node back to each customer i ∈ V .

If the vehicle visits the pause node associated with customer i, it cannot go back to i,

thus the associated distance will be infinity. However, the vehicle can travel to any other

customer j with the same original distance dij. Thus, the elements of d
′
ij in the submatrix

A3 are modeled as:

d
′

ij =

∞ if j = i− n− 1

di−n−1,j otherwise

i ∈ W\ (V ∪ {2n+ 2}) j ∈ V . (3)

Submatrix A4 in d
′
ij indicates an arc linking two pause nodes, which is forbidden. Thus,

all its elements are equal to infinity:

d
′

ij =∞ i, j ∈ W\ (V ∪ {2n+ 2}) . (4)

Finally, one needs to model the last row and last column of the extended distance matrix,

which refers to trips from and to the arrival depot node. Submatrix A5 refers to trips

from customers i ∈ V to the depot node 2n+ 2, which are all equal to di0:

d
′

i,2n+2 = di0 i ∈ V . (5)

Submatrix A6 is related to trips from pause nodes to the arrival depot, which have the

same distance as the trips from the original nodes associated with each pause node:

d
′

i+n+1,2n+2 = di0 i ∈ V . (6)

The last row of the extended distance matrix d
′
ij refers to trips from the arrival depot
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node to all other nodes. Since the arrival depot node is a sink, no vehicle is allowed to

leave it, and all the elements in submatrix A7 are equal to infinity:

d
′

2n+2,j =∞ i ∈ W . (7)

Traveling times need to be updated in a similar fashion as the distance matrix.

3.2 Updating time windows and service duration parameters

The creation of the extended distance matrix leads to larger time window and service

duration matrices as well. These updates must take into account according to the node

they refer to (customers, pauses, or depot).

Using the nomenclature defined in the previous section, we now provide the time windows

and service duration information for all nodes in W . Nodes 0 to n refer to the original

depot and customers of the problem, and thus their time windows and service duration

remain unchanged.

All pause nodes are identified by indices n+ 1 to 2n+ 1, and their time windows are all

equal to [ap, bp]. The service duration when these nodes are visited is always equal to Sp.

The last node 2n + 2 indicates the arrival depot, thus its service time is equal to zero.

Each vehicle must return to the depot by ae, so the time window of the returning depot

is [as, ae].

3.3 Linear programming formulation

Using the extended distance matrix, we define an extended arc set Z, with arcs (i, j) ∈ Z,

i, j ∈ W . We formulate the VRPP using the following variables. Binary routing variables

xkij are equal to one if and only if arc (i, j) ∈ Z, is used on the route of vehicle k. Binary

variables yki are equal to one if and only if node i ∈ W is visited by vehicle k. Continuous
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variables ski represent the starting time of the service for customer i by vehicle k. The

problem is then formulated as follows:

minimize
∑

(i,j)∈Z

∑
k∈K

dijx
k
ij (8)

subject to the following constraints:

∑
i∈V ′

viy
k
i ≤ Vky

k
0 k ∈ K (9)

∑
i∈V ′

wiy
k
i ≤ Wky

k
0 k ∈ K (10)

∑
k∈K

yki = 1 i ∈ V ′ (11)

∑
i∈W\(V∪{2n+2})

yki ≤ 1 k ∈ K (12)

∑
i∈W\(V∪{2n+2})

yki = yk0 k ∈ K (13)

nyk0 ≥
∑
i∈V ′

yki k ∈ K (14)

∑
i∈W\{0,2n+2}

xk0i = yk0 k ∈ K (15)

yk2n+2 = yk0 k ∈ K (16)∑
i∈W\{0,2n+2}

xki,2n+2 = yk2n+2 k ∈ K (17)

∑
j∈W

xkij +
∑
j∈W

xkji = 2yki i ∈ W\{0, 2n+ 2} k ∈ K (18)

∑
i∈W

xkij ≤ 1 i ∈ W k ∈ K (19)

∑
i∈W

xkji ≤ 1 i ∈ W k ∈ K (20)

ski + Si + lij −M
(
1− xkij

)
≤ skj i, j ∈ W k ∈ K (21)

ski ≥ ai i ∈ W k ∈ K (22)
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ski ≤ bi i ∈ W k ∈ K (23)

sk2n+2 − sk0 ≤ Lk k ∈ K (24)

xkij, y
k
i ∈ {0, 1} (i, j) ∈ Z i ∈ W k ∈ K. (25)

The objective function (8) aims at minimizing the total vehicle routing costs. Constraints

(9) and (10) impose vehicle capacities with respect to the total volume and weight, respec-

tively. Constraints (11) impose that all customers must be visited by exactly one vehicle.

Constraints (12) impose that at most one pause node is visited by each vehicle, while con-

straints (13) require that a pause node is visited if the vehicle is used. Constraints (14)

impose that the vehicle visits the depot if any customer is assigned to it, and constraints

(15) ensure that the vehicle leaves the depot. Constraints (16) ensure that if a vehicle

leaves the depot node 0 it should return to the depot node 2n+2. Constraints (17) ensure

that if the vehicle should return to the depot, one arc towards it is used. Constraints (18)

are degree constraints, and constraints (19) and (20) ensure that there are at most one

incoming and one outgoing arc for each node. Time windows and subtour elimination are

imposed by means of constraints (21). Bounds on the time windows for the beginning of

the service on every node are imposed through constraints (22) and (23). Shift duration

constraints are imposed through constraints (24). Integrality conditions are imposed by

constraints (25).

4 Heuristic routing algorithm

We will show later that the formulation presented in Section 3.3 is too difficult to be

solved even for small sized instances of VRPP. Thus, we developed an insertion based

heuristic, which will help us to demonstrate the impact of managing driver pauses in

larger instances inspired from real data.

The routing algorithm contains four main procedures, which are repeated a predetermined

number of times (20 in our implementation). We describe the initialization phase in
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Section 4.1, and the procedure to route customers in Section 4.2. A local improvement

procedure is described in Section 4.3, and a route compression phase is presented in

Section 4.4.

An important procedure in our algorithm is related to the way we open new routes. We

describe in Section 4.5 the procedure which opens one or several new routes as required.

In our algorithm, pauses are handled by adding a dummy customer with a time window

[ap, bp] and a service time Sp to each route. The distances between dummy customers and

other customers are set to zero.

It is worth mentioning that because of the practical nature of the problem, and due to the

limited number of vehicles and to tight customer time windows, it may not be possible to

include all customers in a solution. These unserved customers are referred to as exceptions.

In practice, the list of exceptions is handled by the customer service department who will

contact them in order to schedule another delivery date. Such a set of customers not to

be visited has already been treated in the literature [7, 2].

4.1 Initialization

The first phase of the algorithm creates and initializes the different data sets that will be

used during the routing process. Let R be the set of active routes and E be the set of

exceptions, both initially empty. Let C be a set containing all customers. The following

procedure is executed in order to open one or several routes and to sequentially assign

customers in C until all the customers have been assigned to routes or to the set E .

4.2 Routing customers

This step in our algorithm plans visits to customers from C into the existing routes. At

the end of this step, all customers will be assigned to a route or to the exception set E .

For each customer, we use the following procedure to find the best route and to place the
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customer in the best position.

We try to insert each customer in each possible position of all the existing routes. The

insertion between two customers is feasible only when it respects capacity constraints, all

time windows, total route duration, and end of route time. When all the routes and all

the insertion positions have been tested, the procedure returns for each customer the best

insertion position and cost (see line 7 of Algorithm 1). The next customer to be inserted

is obtained by dividing the insertion cost by a random value taken from the interval [α, 1]

(see lines 8–11 of Algorithm 1), where α = 1 − iteration−1
max iterations

, and selecting the customer

with the smallest value. This means that the first iteration is fully deterministic, while

the remaining successive iterations are each more randomized than the previous one.

If an insertion is possible, we remove the selected customer from C, update R, and repeat

the procedure. Otherwise, we try to open a new route using the procedure described in

Section 4.5. If no more vehicles are available, the remaining customers are added to the

exception set E . We provide a sketch of this procedure in Algorithm 1.

4.3 Local improvement

The local improvement phase consists of two neighborhood search heuristics which are

applied to all routes in R in order to decrease their total length. We first apply an

intra-route search, which is described in Section 4.3.1, followed by an inter-routes search,

described in Section 4.3.2.

Two feasibility checks are performed in order to accept a move. First, we evaluate the

vehicle capacity, both in terms of volume and weight, as well as the total route duration.

The second feasibility check concerns the time windows of all the customers in the route.

The Vehicle Routing Problem with Pauses
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Algorithm 1 Routing customers (Section 4.2)

1: best client = 0

2: best ratio = ∞

3: if C = ∅ then

4: Go to 26.

5: end if

6: for i ∈ C do

7: ci ← best feasible insertion for customer i

8: c
′
i ← ci

rand[α,1]

9: if c
′
i < best ratio then

10: best ratio ← c
′
i

11: best client ← i

12: end if

13: end for

14: if best client 6= 0 then

15: Insert best client in its best position

16: C ← C\{best client}

17: Go to 1.

18: else

19: if there are vehicles available then

20: Call open new route(s) procedure (see Section 4.5)

21: Go to 1.

22: else

23: Insert all customers from C in E

24: end if

25: end if

26: Return routes and E .
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4.3.1 Intra-route improvement

The intra-route improvement considers one route at a time. It applies the 3-opt algorithm

of Lin [21] in which we also check for time window feasibility, until no more improvements

can be obtained.

4.3.2 Inter-routes improvement

This procedure considers all routes in R = {r1, . . . , rK} and tries to improve each pair of

routes ri (i = 1, . . . , K−1) and rj (j = i+1, . . . , K) by exchanging customers between

them. As proposed by Renaud and Boctor [25] for the fleet size and mixed vehicle routing

problem, 11 exchanges are evaluated. These exchanges are detailed in the Appendix and

are applied to all possible chains of four consecutive vertices between routes ri and rj.

The depot and the dummy nodes representing the drivers’ pauses are never exchanged.

The first improving move is applied and the procedure continues as long as improvements

are obtained. Once all the possible pairs of routes have been considered, the procedure

restarts by evaluating only the pairs of routes for which at least one of the routes have

been modified during the previous iteration. This procedure can be viewed as a restriction

of the 2-interchange procedure of Osman [23], however we concentrate on more promising

moves yielding a much faster heuristic.

4.4 Route compression

The last phase of our algorithm is a route compression procedure which aims at reducing

the total time duration of a route. All insertion procedures described so far minimize the

traveling distance and try to insert customers as soon as possible along the route, so that

it is possible that some routes include unnecessary waiting times.

The route compression procedure tries to postpone visits as much as possible. It starts

by setting the visit to the last customer as soon as possible in order to finish the workday
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earlier. Then, moving from the back of the route towards its beginning, each visit is

rescheduled to as late as possible, still respecting the time window constraints.

In addition to the potential reduction in the total route duration, this compression pro-

cedure also has two positive side effects. First, the visit to the last customer is performed

as soon as possible, which is usually appreciated by the customers and drivers. Second,

the first visit is performed as late as possible, which besides being appreciated by the

customers also helps drivers avoid the early morning traffic.

4.5 Opening new routes

One important feauture of our algorithm is that, unlike other classic approaches which

open one new route at a time, it can open up to π new routes simultaneously whenever

the existing routes cannot accommodate the remaining customers in C. The motivation

for opening several routes instead of only one is to avoid having very busy routes which

are concentrated in a specific area, which leads to very high costs when customers away

from this cluster need to be visited. Thus, if two or more routes are open, the procedure

tries to initialize them in different directions aiming at a better geographic coverage.

The number of routes to open depends on the number of the remaining customers to

be visited, and on their needs. In particular, the procedure computes an estimation on

the number of routes required to fulfill the deliveries to the remaining customers. This

estimation is based on three ratios regarding the capacity of the vehicles in terms of both

volume and weight, and the traveling and service times. The first two ratios are computed

as the total required volume (weight) of the deliveries divided by the average capacity

of the vehicles. The third one is based on the maximum shift duration, and is equal

to the ratio between the estimation of the total time required to visit all the remaining

customers and the maximum shift duration. The total time required to visit all customers

is estimated as the average traveling time between each unvisited customer i and all the

nodes in C ∪ {0} plus their required service times. The maximum of these three ratios
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provides the number of routes to be opened by this procedure, bounded by the number

of available vehicles and by a parameter indicating the maximum number of routes to be

opened per iteration. New routes are opened using the vehicles with larger capacity.

Each of the new routes is initialized with a pause and by adding a customer to it in the

following manner. If only one route is created, we include in this route the customer in C

the farthest customer from the depot. If two routes are opened, two customers i and j in C

are selected in such a way that the total distance d0i+dij+dj0 is maximized. If three routes

are created, three customers i, j and k are selected such that d0i+d0j +d0k+dij +djk+dki

is maximized. We have limited π to three as per our preliminary numerical experiments.

This way, new routes will tend to cover opposite regions.

Each of the new routes are added to R, and the customers that have been assigned to

them are removed from C.

5 Computational experiments

In this section we describe the results of the computational experiments carried out to

show the relevance of adequately planning drivers’ pauses, and to evaluate the performance

of the proposed mathematical formulation and of the heuristic. First, we show that the

VRPP model cannot be solved even for very small instances. Second, we demonstrate

that driver pauses should be considered in the optimization phase, and that neglecting

this step, for example, by creating vehicle routes without pauses which are reinserted

later, can lead to very poor solutions.

Our heuristic was implemented using VB.net (.net framework 4.0). Numerical experi-

ments were carried out on a desktop equipped with an Intel Core i7-3612QM @ at 2.1

GHz and with 8 GB of RAM running MS Windows x64. The linear programming formu-

lation was implemented in C++ using CPLEX Concert Technology and the experiments

were carried out on a desktop equipped with an Intel i7 running at 3.66 GHz and with 8
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GB of RAM, under a Linux operating system.

We start by comparing the performance of the VRPP formulation proposed in Section 3

to the one of the heuristic presented in Section 4. We have generated 15 small instances

based on a large real-life one obtained from an industrial partner. These instances contain

from five to 20 delivery requests, and were solved by both methods. Table 1 presents av-

erage results, and shows that the branch-and-bound algorithm quickly becomes inefficient

when the size of the instance increases. In particular, we observe that after one hour of

computing time, the branch-and-bound algorithm is not able to find optimal solutions,

nor to provide reasonable gaps for instances containing 20 requests. Given that the real

instances provided by our partner contain at least one hundred requests and can go up

to 400 requests, it becomes clear that the proposed formulation is not suitable for real

applications. Table 1 also shows that the computing time required by our heuristic re-

mains extremely low when the size of the instances increases. Moreover, on these small

instances for which the exact algorithm was able to obtain optimal solutions, our heuristic

performed very well, being able to yield optimal solutions when these are knwon. This

enables us to further evaluate the impact of the pauses in distribution problems.

Table 1: Comparison of the performance of the branch-and-bound algorithm for the VRPP

and of the heuristic (average over five instances inspired by real data)

# requests
B&B algorithm Heuristic

Distance Gap (%) Time (s) Distance Time (s)

5 182.6 0.00 3.2 182.6 0.178

10 282.4 0.00 737.6 282.4 0.497

20 733.6 51.58 3600.0 709.8 1.365

We have shown that explicitly considering drivers pauses greatly increases the size of the

model, so that only very small instances can be solved to optimality. The most intuitive

workaround to adapt classical algorithms to obtain solutions for the VRPP is to solve

the problem in two phases as follows. First, one solves the problem without considering
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the pauses by using well known VRP algorithms. Then, one reintroduces the pause in

the best possible position and adjust the delivery schedules accordingly. We now aim at

showing how this two-phase approach for handling the pauses can lead to major solution

infeasibilities. Moreover, we empirically demonstrate that the number of infeasibilities

rapidly increases when the percentage of deliveries with time windows increases, and also

when time windows are tighter. A real instance with 209 deliveries provided by our

industrial partner is used to support our experiments plan.

First, we removed all time windows from the instance. Then we randomly generated

time windows for 10%, 20%, 30%, 40% and 50% of the deliveries. These time windows

were randomly generated between 8:30 and 15:00. It is worth to mention that, since the

drivers’ pause must be taken between 11:30 and 13:00, morning time windows are not

impacted by the pause, but they still help shape the final solution. We have repeated

this experiment twice, first considering 3-hours time windows, and then tighter 2-hours

time windows. We solved these instances by the two-phase approach just described. To

this end, we first set the pause time duration to zero and reduced the length of the day

accordingly, i.e., drivers should return to the depot one hour earlier. The problem was

then solved without pauses, using the heuristic described in Section 4. In the resulting

solution, a pause with time zero was included in each route. In the second phase, the pause

length was set back to 60 minutes and the driver schedule after the pause was updated.

We also tried to relocate the pause to all possible positions within its time window to

reduce infeasibilities as much as possible. If reinserting the pause leads to an infeasible

solution, the position leading to the fewer violated time windows was selected. If many

feasible positions were available, the one which yielded the shortest route was selected. A

summary of these experiments is provided in Tables 2 and 3, where the column % of TW

shows the percentages of deliveries having a time window, Km and # of routes shows the

number of kilometers and the number of routes in the solution, respectively, the column

# of infeasible routes provides the number of infeasible routes in the solution, and # of

infeasible customers shows the total number of customers that are visited outside of their
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time windows.

Table 2: Impact of driver pauses with three-hour time windows

% of TW Km # of routes # of infeasible routes # of infeasible customers

0 2913 22 – –

10 3290 23 3 6

20 3325 23 3 4

30 3059 23 7 12

40 3044 24 6 8

50 3089 24 10 18

Results reported in Table 2 clearly show the impact of neglecting driver pauses in the

solution process when three-hour time windows are imposed. Even with only 30% of

deliveries having time windows, seven routes out of 23 (30%) are infeasible, with 12 late

deliveries (5.7%). When 50% of the requests contain time windows, 41% of the routes

become infeasible and 18 deliveries are late (8.6%). If we consider that, on average, half

of 209 deliveries are performed in the afternoon, this means in fact that 18 deliveries out

of 104.5 are late, which rise the real percentage of late deliveries to 17.2%.

Table 3 presents results with tighter, two-hour, time windows. As expected, the results

quickly deteriorate. For 30% and 50% of deliveries with time windows, the number of

infeasible deliveries nearly doubled to 20 and 38 customers when comparing instances

with 2- and 3-hour time windows. These results clearly demonstrate that driver pauses

should be directly included in the resolution process and that not doing so yields a bad

approximation which leads to numerous infeasibilities.
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Table 3: Impact of driver pauses with two-hour time windows

% of TW Km # of routes # of infeasible routes # of infeasible customers

0 2913 22 – –

10 2888 23 3 6

20 3031 23 7 8

30 2862 23 11 20

40 3163 23 16 32

50 3235 24 16 38

6 Conclusions

We have formally introduced the vehicle routing problem with pauses (VRPP). We have

proposed the first linear programming formulation for this problem and showed that a

branch-and-bound algorithm applied to it is impractical for real-life applications. We

have also developed an efficient insertion heuristic which is capable of solving instances

containing several hundred customers with time windows, several vehicles, and places the

drivers pauses in the required time window. The results of our computational experiments

confirm that one must solve the problem considering the drivers pauses in the optimization

algorithm, at the risk of not being able to obtain feasible solutions for many situations.

Appendices

Intra-route movements

Let (i1, i2, i3, i4) and (j1, j2, j3, j4) be two chains of four vertices from routes ri and

rj ∈ R. The following 11 moves are considered:

1. Place i2 between j1 and j2.
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2. Place j2 between i1 and i2.

3. Swap i2 and j2.

4. Move i2 and i3 to rj, inserting (i2, i3) between j1 and j2.

5. Move i2 and i3 to rj, inserting (i3, i2) between j1 and j2.

6. Move j2 and j3 to ri, inserting (j2, j3) between i1 and i2.

7. Move j2 and j3 to ri, inserting (j3, j2) between i1 and i2.

8. Swap i2 and j2, swap i3 and j3.

9. Swap i2 and j3, swap i3 and j2.

10. Replace i2 and i3 by j2 and j3, respectively, and replace j2 and j3 by i3 and i2,

respectively.

11. Replace i2 and i3 by j3 and j2, respectively, and replace j2 and j3 by i2 and i3,

respectively.

Moves 1 to 3 correspond to the 1-interchange procedure of Osman [23], and moves 4 to

11 represent a subset of the 2-interchange exchanges tested by Osman [23].
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Figure 1: Representation of the 11 moves evaluated during the intra-route improvement phase
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