

Séminaire conjoint CIRRELT / CIMMUL

Alain Hertz

Département de mathématiques et de génie industriel Polytechnique Montréal

DETERMINING OPTIMAL MOLECULES VIA A POLYHEDRAL DESCRIPTION OF CHEMICAL GRAPHS

Numerous scientific papers have been published with the primary objective of characterizing chemical graphs that optimize (maximize or minimize) one of these degree-based topological indices. Restricting our attention to chemical graphs with maximum degree at most 3, we show that whatever the degree-based topological index (more than fifty have already been defined, and new ones are proposed regularly), it is sufficient to evaluate at most 16 chemical graphs to determine an optimal one. This follows from a complete polyhedral description of all chemical graphs with n vertices, m edges and maximum degree at most 3. Our main results is that whatever n and m, the associated polytope has at most 16 extreme points, and at least one of them corresponds to the structure of an optimal molecule.

Short Biography: Alain Hertz graduated in mathematical engineering and obtained a Ph.D in operations research at the École Polytechnque Fédérale de Lausanne. Since 2001, he is professor at the department of mathematics and industrial engineering at Polytechnique Montréal, Canada. He is also member of the multi disciplinary GERAD research group that includes nearly sixty researchers and experts in operations research and discrete mathematics. He is the author of around 200 scientific publications and 4 detective novels. His main research domains are combinatorial optimization, graph theory, algorithmics, and the development of decision aid systems for scheduling and distribution problems.

ZOOM: https://ulaval.zoom.us/j/62680136430?pwd=eldBYjdNTG5QR2VxTTFqbVM4UGVRZz09

JEUDI / THURSDAY 23 octobre / October 23rd, 2025 14:00

Université Laval
Pavillon Adrien Pouliot
Salle / Room 2510

Responsable / Organizer:
Pierre Miasnikof

Ouvert à tous / Open to all

