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These issues are related to the formulation of the winner determination problem, the expression of 

combined bids, the design of progressive combinatorial auctions that require less information 

revelation, and the need for decision support tools to help participants make profitable bidding 

decisions. For each issue, we survey the existing literature and propose avenues for further 

research. 

 

Keywords. E-commerce, mechanism design, combinatorial auctions, bidding languages, iterative 

auctions, advisors. 

 
Acknowledgements. This project has received financial support from the Bell Canada University 
Laboratory (LUB), the Natural Sciences and Engineering Research Council of Canada through its 
Basic Research and Collaborative Industry-University Research grant programs, and the FQRNT 
research development fund of the Province of Québec. 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 
 
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
_____________________________ 

* Corresponding author: Teodor-Gabriel.Crainic@cirrelt.ca 

This document is also published as Publication #1293 by the Department of Computer Science 
and Operations Research (DIRO) of the Université de Montréal. 

Dépôt légal – Bibliothèque nationale du Québec, 
                      Bibliothèque nationale du Canada, 2007 

© Copyright  Abrache, Crainic, Gendreau, Rekik and CIRRELT, 2007 



1 Introduction

Auctions are important market mechanisms, used since the earliest of times
for the allocation of goods and services. Public and private institutions gener-
ally prefer them to other common trading processes (lotteries, price-posting,
etc.) because they are open, quite fair, generally easy to understand by
participants, and often lead to economically efficient outcomes. However, a
real surge in their popularity has only been observed during the last decade,
due in part to the emergence of e-business and the increasing tendency to
shift important business activities to the Internet, as well as to a deregu-
lation wave that led to the privatization of several industries. While the
well-publicized Federal Commission for Communications (FCC) auctions of
spectrum licenses (McMillan, 1994) remain the most striking example, auc-
tions have been used for a variety of other purposes. These include the
allocation of airport take-off and landing time slots (Rassenti et al., 1982;
Ball et al., 2006), course registration (Graves et al., 1993), private and pub-
lic procurement (Davenport and Kalagnanam, 2001), sale of online seats
(Eso, 2001), distribution routes (Ledyard et al., 2002), job shop scheduling
(Wellman et al., 2001), electricity markets (Ausubel and Cramton, 2004; ?),
trading (Abrache et al., 2005), etc.

Whether they involve spectrum rights, transportation routes, or computer
hardware parts, many markets of interest have one thing in common: they all
trade items of different nature that are interrelated from the perspective of
the participants to the market. Item interrelation means that, independently
of the way items are traded in the market, the value of a given item to a
participant depends on whether or not that participant has been able to trade
some other items as well. Items may in that regard be complementary or
substitutable to each other. More precisely, if A and B are two items, and v(·)
denotes the participant’s (supposed to be a buyer) function of preference, A

and B are said to be complementary if v({A,B}) > v({A}) + v({B}), and
substitutable if v({A,B}) < v({A}) + v({B}). Consider airport time slots
as an example. A take-off slot associated to the origin airport of a flight and
a corresponding landing slot at the destination airport indeed complement
each other. On the other hand, two pairs of take-off and landing time slots
that correspond to the same origin and destination airports within the same
period of time (e.g., from 8h00 to 8h30) are likely to be substitutable for an
airline company operating one daily service between the two airports.

The way item interrelation impacts the trading strategies of a participant
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depends primarily on how items are traded in the market. For example,
if the market maker has several different items to sell and decides to do
so by running several parallel auctions (one for each item), the participant
could of course submit several simultaneous bids on all the items in which
it is interested. It may continue to bid on complementary items that con-
stitute a desirable collection of items till the total value of its bids reaches
its preference for the collection. But since the auctions of the different items
run independently of each other, the participant may find itself stuck with
a subset of the desired collection, which it would have paid more than its
value. This exposure problem often leads in practice to strategic bidding and
therefore to economically inefficient auctions.

Combinatorial auctions are increasingly considered as an alternative to si-
multaneous single-item auctions. Combinatorial auctions commonly refer to
auction mechanisms in which participants are allowed to bid on combinations,
or bundles of items. Being able to bid on bundles clearly mitigates the ex-
posure problem, since it gives the participants the option to bid their precise
valuations for any collection of items they desire. On the other hand, combi-
natorial auctions often require the market maker, the participants, or both,
to solve complex decision problems (see, for example, (Pekec̃ and Rothkopf,
2003). Hence, consider what might arguably be the simplest setting for a
combinatorial auction: an auctioneer selling n different items to several po-
tential buyers, which are allowed to submit sealed bids on bundles of items.
On the basis of the bids it receives, the auctioneer must decide which bids
win and which ones lose, under the condition that no single item is allocated
to more than one bid, and such that its revenue from the sale of the items is
maximized. This winner determination problem is well-known to be NP-hard
(Rothkopf et al., 1998) and even difficult to approximate (Sandholm, 2002).

The challenge of mechanism design (Mas-Colell et al., 1995) for combina-
torial auctions is much broader. In the context of auctions, a mechanism can
be defined as the specification of all possible bidding strategies available to
the participants, and of an outcome function that maps these strategies to an
allocation of items (who gets what?) and corresponding payments the partic-
ipants need to make or receive. The mapping is generally done with respect
to an objective that can be the maximization of the revenue of the sellers, the
maximization of the overall social efficiency of the allocation, or any other ob-
jective. Market designers trying to implement auction mechanisms therefore
find themselves faced with many complicated issues to address. While some
of these issues, such as deciding on bidder qualification, entry fees, or scoring
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rules, call mainly upon the experience of the designer and its knowledge of
the context of the auction (Rothkopf and Park, 2001), some others are indeed
fundamental. These issues concern, for instance, the decision to make bid-
ding in the auction one-shot or progressive, and the nature and timing of the
information to be revealed to the participants in intermediary stages of the
auction. More importantly, the designer often needs to ensure, by properly
setting the rules of the auction, that the objectives are always achieved, even
in environments involving self-interested participants and characterized by
incomplete information (i.e., participants keeping private their preferences).
Since Myerson’s seminal paper on optimal auction design (Myerson, 1981),
tackling these questions has greatly motivated the overall research effort on
mechanism design, and a significant part of this effort has been devoted to
combinatorial auction mechanisms. Important examples of these include the
AUSM auction (Banks et al., 1989), the RAD mechanism (DeMartini et al.,
1999), the PAUSE mechanism (Kelly and Steinberg, 2000), the AkBA family
of auctions (Wurman and Wellman, 1999a), the iBundle mechanism (Parkes,
1999), the ascending proxy auctions (Ausubel and Milgrom, 2002), and the
clock-proxy auctions (Ausubel et al., 2006).

As pointed out in (Rothkopf and Park, 2001), market design is a multidis-
ciplinary effort made of contributions from economics, operations research,
computer science, and many other disciplines. Economists, in particular,
have played a decisive role in the exploration of the theoretical properties
of auctions (Klemperer, 1999). By putting game theory into application,
they have built models that describe the strategic behavior of the partici-
pants in many auction types. Among main issues relevant to auctions, they
have shaped powerful theories for economic efficiency, pricing, incentives,
and collusive behavior. Last but not least, they have set in experimental
economics the scientific foundations for testing their theories. The contribu-
tion of computer science lies mostly in (a) the development of appropriate
software architectures and tools for the deployment of auctions; (b) the de-
sign of software agents capable of interacting competitively or cooperatively
in an “intelligent” way; and (c) the design and implementation of simulation
platforms for the evaluation of auction mechanisms in controlled artificial en-
vironments. As for operations research, it already provides tools for efficiently
addressing winner determination and pricing issues. Operations research will
play, in our opinion, an increasingly important role in the modeling of the
many decision problems encountered by the auctioneer and the participants
during the course of an auction mechanism. Being closer to the actual appli-
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cations, it has tendency to develop more detailed models of the reality than,
say, economics, and thus may be particularly appealing to engineers and
practitioners. Furthermore, when these models are “hard”— as this is the
case in combinatorial auctions— optimization techniques can be extremely
valuable in the design of efficient exact and heuristic solution approaches to
the proposed formulations, and may even be impossible to circumvent.

The goal of this paper is to identify and discuss some of the complex issues
related to the design of combinatorial auctions. We emphasize four issues:
a classification of combinatorial auctions and the associated formulations,
the expression of combinatorial bids, the design of multi-round mechanisms
intended to determine allocations and prices in situations where complete
information about the participants’ preferences is not available, and the de-
cision problems faced by participants in combinatorial auctions. This paper
is an updated version of (Abrache et al., 2004b) and includes the new research
on combinatorial auctions published in the last two years.

The paper is organized as follows. In Section 2, we present an elementary
taxonomy of auctions and survey several important formulations of the win-
ner determination problem. In Section 3, we tackle the important issue of
the expression of combined bids and give evidence of the need for a bidding
framework that goes beyond what the basic languages currently permit par-
ticipants to express. In Section 4, we discuss progressive auction mechanisms
that approximate the behavior of an “ideal” complete information market,
when only incomplete information about participants’ valuation functions is
available to the auctioneer. For these mechanisms, pricing schemes and the
design of auction rules are interesting but generally challenging issues that
need to be studied more extensively. We conclude in Section 5 with a gen-
eral discussion about the role of advisors to participants in combinatorial
auctions.

2 Basic formulations

In order to make the presentation as uniform as possible, we present a taxon-
omy of auctions we use throughout the paper. It is not our intention, however,
to realize an exhaustive parameterization of auctions. For a fuller treatment
of auction classification, we refer the reader to (EngelBrecht-Wiggans, 1980)
and (Wurman et al., 2001). Hence, we limit ourselves to the following di-
mensions of the auction space.
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• What is traded? Items that are traded can be:

1. Indivisible goods versus divisible ones. Capacity in telecommu-
nication networks is divisible, but rail right-of-way is not. It is
noteworthy that, when multiple units of items are traded, item
divisibility should be clearly distinguished from bid divisibility,
in the sense that the former depends intrinsically on the physi-
cal nature of goods while the latter refers to bidders’ tolerance to
obtain partial execution of their bids. Note also that auctions of
divisible items sometimes provide acceptable models for the sale
of physically indivisible goods, especially when large volumes are
involved in the trade (assets in financial markets, for example).

2. Pure commodities that have no special structure versus network
commodities which refer to capacity or services that belong to
systems with network structure.

• What roles the participants play in the auction? It is possible
to distinguish between one-sided auctions and multilateral ones. One-
sided auctions correspond to trading situations in which there is (a)
one seller and multiple buyers (the one-to-many case), or (b) many
sellers and one buyer (the many-to-one case). Multilateral auctions,
often designated by the name exchanges, involve many sellers and many
buyers (the many-to-many case). It is noteworthy that a participant
in an exchange can be only a seller, only a buyer, or both.

• What are the objectives of the auction? Auctions can be opti-
mized or not. In optimized auctions, the market mechanism ensures
that a given goal is achieved when the auction clears, i.e., when (pro-
visional or final) allocations and payments are determined. Hereby, we
may separately consider:

1. The allocation rule, which induces: (a) locally efficient outcomes
(Wurman et al., 2001) when the revenue of the seller in a one-
to-many configuration, the cost to the buyer in a many-to-one
configuration, or the surplus of the auction in multilateral cases
are optimized given the bids of the participants; or (b) socially ef-
ficient outcomes when the overall social welfare of the participants
is optimized.
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2. The pricing rule, which indicates what participants should pay
or receive. For example, a participant whose bids win may have
to pay a uniform price corresponding to an “equilibrium” state of
the market, the exact amount of money specified in the bids (first-
price auctions), or the price of the “second-best” bid (Vickrey-
based payments).

• How “complex” are the participants’ bids? If we limit ourselves
to combinatorial auctions, we would have to decide whether the partic-
ipants bid simply, i.e., make unrelated bids in which they specify only
the composition of the bid and a corresponding price, or are allowed to
use sophisticated bidding languages, in terms of which they may express
more complex bidding requirements. We will elaborate further on this
issue in Section 3.

• How is the auction organized? An auction may be:

1. Single-round if it clears only once, or progressive if provisional out-
comes are determined during the course of the auction and partici-
pants are allowed to update their bids. Progressive auctions can be
iterative (multi-round) if there are pre-specified events that sched-
ule bidding and clearing in the auction, or continuous if clearing
may occur asynchronously (for instance, whenever new bids are
submitted by participants, no bidding activity is observed during
a given period of time, etc.).

2. Based on an ascending price update scheme (English-like auc-
tion), descending price update scheme (Dutch-like auction), or
non-monotone price updates (e.g., Walrasian tâtonnement).

3. Sequential when items are traded one at a time (e.g., art auctions),
or parallel when they are traded simultaneously.

• What information is revealed to participants? We distinguish
between
sealed-bid auctions in which no information is disclosed to the par-
ticipants, and open auctions that provide them with “signals” about
the state of the auction. Very often, the information handed over to
participants consists of anonymous or personalized price quotes new
bids need to beat in order to be eligible to be provisional winners.
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By giving specific values to parameters in each one of these dimensions,
one may derive different combinatorial auction situations and mechanisms. In
order to illustrate the modeling challenges, we limit ourselves in this section
to the first two dimensions (the nature of items and the roles of participants),
and only consider local efficiency as objective. The basic winner determina-
tion formulations have already been studied in the literature on combinatorial
auctions. In this survey, we connect them to classical optimization problems
to help gain useful insights into the complexity of tackling winner determi-
nation and integrating it into complex auction mechanisms.

2.1 The one-to-many indivisible case

In this configuration, one seller has a set G of m indivisible items to sell to n

potential buyers. Let us suppose first that items are available in single units.
A bid made by buyer j, 1 ≤ j ≤ n is defined as a tuple (S, pj,S) where S ⊆ G

and pj,S is the amount of money buyer j is ready to pay to obtain bundle
S. Define xj,S = 1 if S is allocated to buyer j, and 0 otherwise. The winner
determination problem can be formulated as model (M1):

max
∑

1≤j≤n

∑

S⊆G

pj,Sxj,S (1)

s.t.
∑

1≤j≤n

∑

S⊆G

δi,Sxj,S ≤ 1,∀i ∈ G, (2)

∑

S⊆G

xj,S ≤ 1,∀j, 1 ≤ j ≤ n, (3)

xj,S ∈ {0, 1},∀S ⊆ G,∀j, 1 ≤ j ≤ n, (4)

where δi,S = 1 if i ∈ S, and 0 otherwise. Constraints (2) establish that no
single item is allocated to more than one buyer, while constraints (3) ensure
that no buyer obtains more than one bundle. The objective is to maximize
the revenue of the seller given the bids made by buyers.

Model (M1) corresponds to a set-packing problem (de Vries and Vohra,
2003). The classical account of the problem by (Rothkopf et al., 1998) first
proposes a dynamic programming algorithm that can determine a revenue-
maximizing allocation in O(3m) iterations. The algorithm is based on the
straightforward remark that, given a subset S of items, the maximum rev-
enue that can be achieved from the sale of S comes from a bid (S, pj,S) on
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S itself, or from the sale of two subsets S1 and S2 that form a partition of
S. The authors also consider several restrictions on allowable bids that make
the problem computationally manageable. Hence, they show that winner
determination can be solved in polynomial time if bids have nested structure
(any two bundles are either disjoint or one of them is a subset of the other),
some cardinality-based restrictions are imposed (e.g., allow only bundles of
two items or less), or bids have some inherent geometric structure (notably
when items can be linearly ordered and bundles may only contain items that
are adjacent to each other). However, restricting the bundles on which bids
are submitted may deprive participants of bidding on the bundles they de-
sire, which leads to the same inefficiency and exposure issues encountered in
non-combinatorial auctions. (Park and Rothkopf, 2005) recently proposed
a sealed-bid auction in which the decision on what is biddable is delegated
to the bidders themselves. Bidders submit a prioritized list of combinations
upon which they want to bid at the beginning of the auction and the auction-
eer uses as many of these combinations as is computationally possible. More
recently, (Müller, 2006) provided a survey of tractable winner determination
problems based on both subset restrictions and preference-type restrictions.

By opposition to the worst-case analysis of (Rothkopf et al., 1998), the
search algorithms that have been proposed in the literature (e.g., (Fujushima
et al., 1999; Sandholm, 2002; Sandholm et al., 2001; Hoos and Boutilier,
2000)) capitalize on the observation that when the number of items is large,
bidders are likely to formulate bids on only a small subset of all possible
bundles. In particular, (Sandholm, 2002) proposes a tree representation of
the solution space in which items are judiciously indexed so that a feasible
allocation can be represented only once. (Fujushima et al., 1999) suggest in
their CASS algorithm a structured depth-first search procedure in which two
fundamental ideas are put forward to avoid unnecessary computation. The
first is the identification of subsets of mutually incompatible bids (“bins”),
i.e., which cannot be simultaneously executed due to a conflict on one item,
so that the exploration of a solution can be interrupted as soon as two items
in a same “bin” are encountered. The second idea, inspired by dynamic
programming, is the use of intermediate results to prune the search tree.
Suppose we already know the maximum revenue r⋆

C that can be achieved
from the sale of C ⊆ G. Consider a partial feasible allocation of the sub-
set F ⊆ G at a given step of the search such that G \ F ⊆ C. Then, if
r⋆
C + rF is lower than the revenue of the best feasible allocation found up

to that point, then there is no need to explore the tree beyond F . The
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CABOB algorithm of (Sandholm et al., 2001) calls upon additional tech-
niques that include pruning with upper and lower bounds, decomposition of
the bid graph, and dynamic branching heuristics. (Andersson et al., 2000)
made insightful computational comparisons between some of the search al-
gorithms (namely the CASS and Sandholm’s algorithm) and standard MIP
techniques used in commercial solvers (CPLEX 6.5). Although it has not
taken the most recent developments into account, their study concluded that
the overall performance of CPLEX is actually very good compared to that of
the search algorithms. Recently, (Sandholm et al., 2005) compared the per-
formance of the newest development of their search algorithm, CABOB, to
CPLEX 8.0 using different combinatorial auction benchmark distributions.
CPLEX was faster than CABOB for most distributions. However, CABOB
required less CPU time for the so-called Components distribution (i.e., a
distribution in which the problem can be decomposed into smaller indepen-
dent sub-problems) thanks to the decomposition techniques it incorporates.
(Günlük et al., 2005) presented a Branch-and-Price algorithm for solving the
winner determination problem for combinatorial auctions with bids having
a XOR-of-OR structure (see Section 3.1 for the definition of XOR-of-OR
bidding languages). The algorithm is applied to a formulation of the WDP
which uses considerably more variables than the classical formulation, but
which is proved to yield tighter linear programming relaxations. The pro-
posed Branch-and-Price algorithm is compared to CPLEX 8.0 (applied to
the classical formulation) for a large set of generated instances inspired from
FCC spectrum auctions. Although the reported results give a computational
advantage to the Branch-and-Price procedure over CPLEX, no conclusive
results can be made on the relative performance of one method to the other
for general instances. In fact, the authors reported that CPLEX performed
better than their Branch-and-Bound procedure for other instances derived
from pre-existing generators for combinatorial auctions.

While many approximate methods for the general set packing problem
have been suggested in the literature (Chandra and Halldórsson, 2001), the
Casanova algorithm by (Hoos and Boutilier, 2000) is, to the best of our
knowledge, the first representative of this class of methods in the context
of combinatorial auctions. Casanova is a stochastic search algorithm using
in its exploration of the allocation space a simple concept of neighborhood.
More specifically, a single non executed bid in the solution corresponding to
the current feasible allocation of items is chosen for execution in the next
feasible allocation. The choice is done according to the bid’s “score”, which
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designates the ratio of the bid’s price to the number of items in the bid.
Numerical comparison with the CASS algorithm seems to indicate promising
results. (Sakurai et al., 2000) presented an approximate algorithm based on
limited discrepancy search (LDS). The LDS algorithm limits the search ef-
forts to the region that is likely to contain good solutions. When compared to
the optimal IDA∗ search algorithm of (Sandholm, 2002), the LDS algorithm
yielded good solutions (within 5% of optimal) with smaller computing times
(1% of the running time required by the IDA∗ algorithm). Near-optimal so-
lutions (usually within 1% of optimal) were also obtained by the two-phase
heuristic proposed by (Zürel and Nisan, 2001). The first phase of the heuristic
approximates the LP relaxation of the set packing problem. This fractional
approximate solution determines a first order on the bids that is adopted by
a greedy algorithm in the second phase. The resulting allocation is improved
through local changes in the ordering of the bids.

The multi-unit combinatorial auction (MUCA) extends model (M1). Here,
the seller has Mi available units of item i to sell. A bid submitted by a buyer
takes the form b = ({ab,i}i∈G

, pb), where ab,i is the number of units of item
i that are requested by bid b, and pb is the price the buyer offers for the
collection {ab,i}i∈G

. Let B denote the set of all bids made by buyers, and
xb = 1 if bid b wins, and 0 if it loses, ∀b ∈ B. The winner determination
problem can be written in this case as model (M2):

max
∑

b∈B

pbxb (5)

s.t.
∑

b∈B

ab,ixb ≤ Mi,∀i ∈ G, (6)

xb ∈ {0, 1},∀b ∈ B. (7)

Model (M2) is an 0-1 multidimensional knapsack problem for which ex-
act and heuristic solution methods have been designed and implemented
(Martello and Toth, 1997). In the context of combinatorial auctions, many
search algorithms have been recently proposed. Among the important contri-
butions, (Leyton-Brown et al., 2000) and (Leyton-Brown, 2003) present the
CAMUS (“Combinatorial Auction Multi-Unit Search”) algorithm is which
the main techniques introduced by former search algorithms are generalized
to deal with the multi-unit model. Various bounding techniques (using no-
tably linear relaxation of the multidimensional knapsack problem and greedy
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allocation procedures) are suggested in the context of the Branch-and-Bound
algorithms of (Gonen and Lehmann, 2000) and (Lehmann and Gonen, 2001).
Finally, the observation in (Mansini and Speranza, 2002) that a lower bound
on the number of winning bids in an optimal allocation can be derived from
the solution of |G| auxiliary knapsack problems is instrumental in allowing
the formulation of good valid inequalities for the (M2) formulation and in
improving the upper bounds on the optimal solution. Preliminary results
obtained by the authors suggest significant improvements in performance in
comparison with CPLEX 7.0, particularly for large problems.

2.2 Many-to-one combinatorial auctions

In a many-to-one combinatorial auction configuration (sometimes called re-
verse combinatorial auctions), one buyer needs to obtain a set G of items,
supplied by several potential sellers. A bid b made by a seller can be defined
as b = (Sb, pb), where Sb is a subset of items, and pb an ask price the seller
requires to be paid for Sb to be supplied. Consider the set B of all bids and
define binary decision variables xb = 1 if bid b wins, and 0 if it loses, ∀b ∈ B.
The winner determination problem is to find the less expensive set of bids
that provide the buyer with all items in G, and corresponds to model (M3):

min
∑

b∈B

pbxb (8)

s.t.
∑

b∈B

δi,Sb
xb ≥ 1,∀i ∈ G, (9)

xb ∈ {0, 1},∀b ∈ B, (10)

where δi,Sb
= 1 if i ∈ Sb, and 0 otherwise. Model (M3) is a set-covering

problem, which is also NP-hard. It is important to note that an implicit free
disposal assumption is made in model (M3); that is, the buyer tolerates more
than one unit of each item to be supplied. If this tolerance to extra units
cannot be assumed in a particular market context, constraints (9) need to
be changed to equalities. The corresponding set partitioning problem proves
to be relatively more difficult to tackle (Sandholm et al., 2002).

In practice, reverse auctions are especially useful as market mechanisms
for the procurement of goods and services. Among the many applications
that have invoked reverse combinatorial auctions in recent years, one may
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cite trucking service acquisition for Sears Logistical Services (Ledyard et al.,
2002), procurement of direct inputs for a food manufacturer (Davenport and
Kalagnanam, 2001; ?), and assignment of nationwide meal service contracts
by the Chilean government (Epstein et al., 2002). In a typical procurement
application, side constraints are often needed to ensure additional conditions
on a valid assignment are satisfied. For instance, constraints that set limits
on the number of winning bids and the volumes of goods received from each
of the bidders appear in (Davenport and Kalagnanam, 2001) and (Hohner
et al., 2003), while (Epstein et al., 2002) set limits on (a) the total number
of winning bidders, (b) the number of territorial units (geographic regions)
assigned to a bidder, and (c) the number of bidders that will operate in a
given region. In a recent discussion on the use of combinatorial auctions
for transportation services procurement, (Caplice and Sheffi, 2006) classify
the side constraints commonly encountered in the United States truckload
markets into three categories: (1) business guarantee constraints, which set
bounds on the amount of traffic (in terms of loads won or total estimated
dollar value) a carrier or a set of carriers wins, (2) carrier base size constraints,
which restrict the total number of winning carriers in the system, the region
or the lane, and (3) If-Then constraints, which express the fact that if a
carrier is awarded any business, then it has to be of a certain minimum level.
The authors illustrate how these constraints can be mathematically modeled.

2.3 A network formulation

All previous models have dealt with pure items with no special structure. We
claim that, when the traded commodities correspond to network resources
(e.g., capacity in telecommunication networks), complex bidding require-
ments related to flow conservation, required offer and demand, etc., can be
directly represented on network structures, and network flow algorithms can
help in finding the optimal allocations more efficiently. By way of illustra-
tion, and in order to give an empirical support to our claim, we present in
this section a basic formulation of the winner determination problem in a
combinatorial auction for selling network capacity.

Let G = (V,A) be a network, where V is a set of vertices and A a set of
links. To each link a ∈ A is associated a capacity va. It is assumed that the
capacity is owned by a single seller and that there are several buyers. The
combinatorial aspect of the problem ensues from the fact that buyers desire
to obtain capacity between pairs of vertices, rather than on individual links.
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To simplify the presentation, we define a bid bj submitted by buyer j ∈ N

as bj = ({Oj, Dj}, cj, Gj, pj) (we suppose, with no loss of generality, that a
buyer submits a single bid), where

1. ({Oj, Dj}) is an origin-destination pair of vertices specifying that buyer
j needs capacity between Oj and Dj;

2. cj is the required capacity between Oj et Dj;

3. Gj ⊆ G is a subnetwork such that Oj, Dj ∈ Gj, with the condition that
all the capacity required between Oj and Dj must be within paths in
Gj;

4. pj is the price offer of participant j for the bundle.

Figure 1 illustrates such capacity bidding. Two bids have been submitted.
b1 is a $100 bid for a capacity of 20 contained in the sub-network G1 between
O1 and D1, while b2 is a $80 bid for a capacity of 10 on path O2 − I2 − D2.

O

D

O

D

1

1

2

2

G

G1

2

,  p1 = 100

20

20

10

10 ,  p  =  802

I2

Figure 1: Combinatorial bids on capacity

Let Kj be the set of paths between Oj and Dj that are in Gj. We define
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the decision variables xj, ∀j ∈ N and hk, ∀k ∈ Kj, ∀j ∈ N , as follows:

xj =

{

1, if bid bj is winning,
0, otherwise;

and hk is the capacity allocated to participant j on path k ∈ Kj.
The winner determination problem can be formulated as model (M4):

max
∑

j∈N

xjpj (11)

s.t.
∑

k∈Kj

hk = cjxj,∀j ∈ N, (12)

∑

j∈N

∑

k∈Kj

δa,khk ≤ va,∀a ∈ A, (13)

xj ∈ {0, 1},∀k ∈ Kj,∀j ∈ N, (14)

hk ≥ 0,∀k ∈ Kj,∀j ∈ N, (15)

where δa,k = 1 if a ∈ k, 0 otherwise. Constraints (12) state that the capac-
ity allocated to a winning bid must be within the bid’s sub-network, while
constraints (13) correspond to capacity availability on links.

When paths are completely specified by buyers, i.e., Gj is limited to
a single path between Oj and Dj, ∀j ∈ N , and single units capacity are
available on links (va = 1,∀a ∈ A) and requested by buyers (cj = 1,∀j ∈ N),
model (M4) is equivalent to model (M1), in which items are links and bundles
are paths. The particularity of model (M4) lies in the fact that buyers do not
need in general to indicate a specific path along which the capacity should
be allocated. It is up to the auctioneer to do the additional task of routing
the requested capacities between the origins and the destinations in order to
determine the winning bids. Model (M4) could of course be solved directly
by a commercial MIP solver. However, significant gains in computational
efficiency may probably be obtained if one exploits the remark that the LP
relaxation of (M4) can be formulated as a multicommodity network flow
problem. Efficient specialized algorithms (Ahuja et al., 1993) can therefore be
used instead of plain simplex in a Branch-and-Bound procedure, for example.

2.4 Combinatorial exchanges

Combinatorial exchanges refer to many-to-many combinatorial auctions, in
which there are many sellers and many buyers. A participant in this category
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of auctions may submit bids b = ({qb,i}i∈G
, pb) where qb,i is a quantity of item

i to trade in bid b (qb,i > 0 in case of a buy, and qb,i < 0 in case of a sell),
and pb is a price that the participant is ready to pay pb > 0 or asks to receive
pb < 0. If bids are indivisible, i.e., the whole bundles {qb,i}i∈G

are traded
or nothing at all, then denote by G the set of all bids and define xb = 1 if
bid b wins, 0 otherwise. The winner determination problem is formulated as
model (M5 − a):

max
∑

b∈B

pbxb (16)

s.t.
∑

b∈B

qb,ixb ≤ 0,∀i ∈ G, (17)

xb ∈ {0, 1},∀b ∈ B. (18)

Model (M5 − a) maximizes the total surplus of the market under the
constraint that sales should cover buys. Notice again that inequalities in con-
straints (17) assume free disposal by the market maker of any extra quantity
of items supplied in the market, and must be changed to equalities if that
assumption cannot be made.

When bids are divisible, let decision variable xb, b ∈ B designate the
execution proportion of bid b, and pb(xb) the price the participant is ready to
pay or receive if proportion xb of bid b is executed. The allocation problem
can be formulated as model (M5 − b):

max
∑

b∈B

pb(xb) (19)

s.t.
∑

b∈B

qb,ixb ≤ 0,∀i ∈ G, (20)

0 ≤ xb ≤ 1,∀b ∈ B. (21)

While model (M5−b) is generally easy to solve, especially when the price
mappings pb(.) are linear, model (M5 − a) remains NP-complete, since the
one-to-many indivisible case corresponding to model (M1) may be seen as a
particular instance of combinatorial exchanges with indivisible bids. (Sand-
holm and Suri, 2003) suggest the BOB algorithm, in which they adapt various
search techniques previously suggested for the one-to-many allocation model
(M1). Hybrid clearing models for exchanges, in which some bids can be
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subdivided while others cannot, have also been considered in the literature.
Thus, (Kothari et al., 2002) consider combinatorial exchanges with bundle
bids including only sell or buy components, and show that when a few bids
(no more than the number of commodities traded) may be partially exe-
cuted, there is no integrality gap between the corresponding market clearing
formulation and its LP relaxation.

Applications of combinatorial exchanges have also been suggested for
trading assets in financial markets (e.g., (Fan et al., 2000; ?)), supply chain
formation and coordination (Walsh et al., 2000), and market clearing in pro-
cess industries (Kalagnanam et al., 2001). The latter is particularly interest-
ing, as the model considered by the authors considers supply and demand
bids on single products, but with various levels of quality. The fact that the
model tolerates substitution between products having different levels of qual-
ity give rise to additional constraints on possible matchings between sell and
buy orders. The authors note also that whether or not it is possible to con-
solidate several sell orders to satisfy a buy order is crucial, as the allocation
problem can be modeled as a maximum flow problem when consolidation
is tolerated, whereas it corresponds to an NP-hard generalized assignment
problem otherwise.

2.5 Conclusion

In this section, we have presented a few basic formulations of the winner
determination problem in combinatorial auctions. These formulations are
important from a mechanism-design perspective because they may serve as
starting points for modeling more complex settings. Moreover, they provide
insights on the computational complexity of more elaborate market-clearing
algorithms.

Real-world markets often require, however, that designers of combinato-
rial auction mechanisms extend the basic formulations by addressing a certain
number of additional issues. Thus, in many important markets, participants
do not limit their bid definition to desired bundles of items and prices to
pay or receive, but may also bid on other attributes, such as quality of ser-
vice, delivery times, requirements on technology, etc (Sandholm and Suri,
2001; ?). Handling these requirements may sometimes be achieved through
bid re-weighting schemes that take into account the additional attributes in
the winner determination objective (Sandholm and Suri, 2001). The most
common approach nevertheless consists in adding side constraints to the ba-
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sic formulations. Side constraints present the advantage of encompassing
both market requirements derived from business practices (e.g., guarantee
a minimal market share to a given group of participants) and constraints
formulated by participants when complex bidding languages are used to ex-
press bids. They may, however, significantly increase the complexity of the
corresponding market clearing formulations. A comprehensive compilation
of generic classes of side constraints for combinatorial markets, and examina-
tion of their impacts on the complexity of winner determination formulations
can be found in (Sandholm and Suri, 2001).

3 Expression of combined bids

The framework that describes how bids are defined in a combinatorial market
should be sufficiently powerful to allow the representation of the preferences
and objectives of the various participants. From a market design perspec-
tive, it should be also flexible and general so that one does not need to
invent a new formalism for every new application. In this section, we survey
the existing literature on bidding languages, and briefly present a new uni-
fied bidding framework for combinatorial auctions of divisible and indivisible
items recently introduced.

The definition of bidding languages is also closely related to issues relative
to the user interfaces and how easy it is for auction participants to enter
their bids. The study of these questions is, however, outside the scope of the
current paper.

3.1 Motivation and state of the art

By submitting combined bids that consist of the specification of a bundle of
items and an associated price, a participant actually could, at least in theory,
reflect accurately its preference for any subset of items. Yet, this can be
difficult and costly in practice. Consider for instance a combinatorial freight
exchange in which shippers submit orders to move loads between different
locations and carriers bid for the execution of these orders. In order to permit
an optimal usage of the transportation resources available to the carriers, the
exchange allows the latter to consolidate several individual loads and submit
package bids on complete routes. Suppose now that, at a given stage of the
auction, a (small) carrier with only one available truck is interested in (and
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able to) service loads in five different bundles A,B,C,D, and E. With no
mean to express succinctly the condition that it could serve anyone, but only
one of these bundles, the carrier will have to enumerate explicitly all subsets
of {A,B,C,D,E}, evaluate them, then bid accordingly.

Concise expression of such queries through an appropriate “logic” has
thus naturally motivated the first bidding languages proposed in the liter-
ature. Hence, in (Fujushima et al., 1999), as well as in (Sandholm, 2002),
one may find the expression of exclusive OR (XOR) conditions through the
introduction of dummy goods. These are items with no value to bidders,
and intended only to enforce exclusion in the execution of the corresponding
bids. For instance, our carrier may define a dummy load l, construct bundles
A ∪ {l}, B ∪ {l}, . . ., E ∪ {l}, and submit five unrelated bids on these new
bundles. The OR and XOR logics have been combined for the first time
in (Hoos and Boutilier, 2000). More specifically, Hoos and Boutilier define
(1) clauses as subsets of items such that a bidder formulating a clause ex-
presses its willingness to obtain any number of items in the clause; and (2)
bids as sets of clauses along with a price, such that the bidder requires all
the clauses of a bid to be satisfied by an allocation of the items and declares
its willingness to pay the associated price in that case. The resulting Lcnf

CA

bidding language can thus be seen as a two-level logical formalism in which
an OR logic governs the clause level, while an AND logic applies at the bid
level. The authors introduce also a slightly more general language (Lk−of

CA ),
in which a selection operator takes place of the conjunctive logic.

As far as we know, (Nisan, 2000) is the first successful effort to systemat-
ically analyze a bidding language. Hence, the author defines two important
concepts: (1) the expressiveness of a bidding language, which is a measure
of the language’s ability to express concisely bids that are consistent with
(support) a certain family of bidder valuation functions; and (2) its simplic-
ity, which indicates how easy it is, for the bidders and the auctioneer, to
understand and use the language. Additionally, Nisan formally defines and
analyzes seven bidding languages:

• Atomic bids. In this language, the simplest possible in the combinato-
rial bidding world, a bidder may only submit a single bid b = (S, p),
where S ⊆ G and p is the price the bidder is willing to pay for S.
Obviously, this language provides very little expressiveness since even
additive preferences are not supported.

• OR-bids, XOR-bids, OR-of-XORs, XOR-of-ORs, OR/XOR-formulae.

18

Combinatorial Auctions

CIRRELT-2007-02



These languages correspond to the application of the OR and XOR
logics on the atomic bids.

• The OR⋆ language. This language is simply a variation of the OR-bids
language in which “dummy” bids can be used to express disjunction (in
basically the same way that Fujushima et al. and Sandholm previously
suggested). Surprisingly, the OR⋆ language is provably more expressive
than both the OR-of-XORs and the XOR-of-ORs languages.

(Boutilier and Hoos, 2001) is an attempt to generalize the prior com-
binatorial bidding languages by focusing on the semantics of prices. Thus,
while in Nisan’s language the emphasis is on logical conditions (in the sense
that prices are only relevant at the atomic bid level), the bidding frame-
work suggested by Boutilier and Hoos allows to associate prices at any level
of the logical formulae associated with a combined bid. More specifically,
three bidding operators are introduced: ∧, ∨, and ⊕. The semantics of the
language can be summarized as follows. A bid can basically take the form
b = 〈{i}, p〉, where i ∈ G is a single item and p is a price the bidder is
willing to pay if she obtains item i. Otherwise, if b1 and b2 denote two com-
bined bids formulated in the language, with respective price valuations p1

and p2, and X ∈ {∧,∨,⊕}. A combined bid b = 〈b1X b2, p〉 has the following
interpretation, dependent of operator X :

1. If X = ∧, the bidder expresses her willingness to execute bids b1 and
b2 for their corresponding price valuations, and to pay a “premium” of
p if both bids are executed;

2. If X = ∨, the bidder requires that (i) b1 is executed for p1 + p; (ii) b2

is executed for p2 + p; or (iii) b1 and b2 are executed for p1 + p2 + p;

3. If X = ⊕, the bidder expresses that she is willing to pay max(p1, p2)+p

if b1, b2, or both of them are executed.

Obviously, the operator ∧ is intended to express bid complementarity,
while ∨ and ⊕ reflect two different forms of bid substitutability. Actually,
Boutilier and Hoos argue that this language has the potential to represent
any utility function and to express certain bids more succinctly than prior
bidding languages (in particular, Nisan’s OR⋆ language).

(Abrache et al., 2004a) pointed out that all the languages previously con-
sidered in the literature were formalized for one-sided combinatorial auctions
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of indivisible single-unit items. They present a new bidding language frame-
work that is independent of the physical nature of the items traded and their
divisibility. The proposed language is general enough to be applied to either
unilateral or multilateral markets. It also allows participants to submit com-
plex bidding definitions, requirements and conditions in a succinct way. We
describe this framework in more details in Section 3.2.

(Cavallo et al., 2005) presented a new logical tree-based bidding language
(TBBL) that allows participants to express preferences for both buying and
selling goods in the same structure. The leaves of the tree-bid correspond to
individual item trades, either a buy or a sell, and the internal nodes describe
the relationship between lower-level nodes. More precisely, an internal node is
an “interval-choose” (ICy

x) operator which defines a range of children nodes
(at least x and at most y) that need to be satisfied. This class of ICy

x

operators include the standard XOR, OR, AND and k − of operators.
TBBL also imposes that a given node in the tree can be satisfied only if its
parent node is satisfied. This latter rule gives the internal operator nodes the
possibility to act as constraints on what allocations are acceptable. When
compared to OR∗, a TBBL language allowing a node to have multiple parents
is proved to be more concise than OR∗. This increase in conciseness is also
observed with regard to the LGB language of (Boutilier and Hoos, 2001)
in some but not all settings. For example, TBBL is more concise when
valuations are expressed on an interval range of satisfied leaves.

TBBL also supports a partial value revelation. That is, bidders are al-
lowed to specify upper and lower bounds on their values for trades. Such
a functionality is interesting in iterative mechanisms since bidders are given
the possibility to refine their valuations at each round of the auction as a re-
sponse to the information feedback. (Parkes et al., 2005) recently proposed
an iterative combinatorial exchange mechanism that incorporates the TBBL
language.

(Day and Raghavan, 2006) introduced a matrix bidding language and
showed that it is as expressive as that proposed by (Boutilier and Hoos,
2001) with the k − of operator. A bidder expresses its preferences through
a matrix B in which a column j represents a fictive “unit-demand” agent
and a row i corresponds to an auctioned item. A bidder must specify a
total and strict ordering of the auctioned items so that the highest ranked
item corresponds to the first row of the matrix. A value bij in that matrix
corresponds to the bid offered by the bidder for item i given that it is the
jth best item it receives. It is also assumed that any “unit-demand” agent
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(except the first one) cannot receive an item unless the next more highly
ranked agent receives a more highly ranked item. Matrix bidding has the
advantage to be particularly compact in expressing some preferences (for
example, preferences with capacity constraints and/or cost structure) that
could have required several k − of expressions. However, the value an item
brings to a bidder is determined only by its ranking with respect to the other
items in the bundle and is assumed independent of the identity of the items
already received. In other words, the incremental value an item provides to
a bundle is assumed the same for all the bundles containing higher ranked
items.

3.2 A new bidding framework

A major limitation of the bidding languages proposed so far is that they
apply only to combinatorial auctions of indivisible goods. It is legitimate to
think that, as important markets trading commodities that are intrinsically
divisible (e.g., electricity power, telecommunication capacity) or can be safely
be considered as divisible (assets in financial markets), a comprehensive and
unified bidding framework, which would encompass both the divisible and
the indivisible cases, would prove much more appropriate.

The bidding framework we propose (Abrache et al., 2004a) relies on a two-
level representation of a bid. Physical items traded in the market constitute
the framework’s elementary ingredients. At the lower, inner level, we define
the atomic bid as a sell or buy request of a quantity q of a given item,
along with a price valuation p. In the divisible case, the atomic bid can
be “subdivided” into arbitrarily small fractions and its execution within a
trade that is acceptable to the participant means essentially that a positive
proportion of the quantity q is traded; otherwise, in the indivisible case, the
whole quantity q should be traded for the atomic bid to be executed.

Partial bids are then introduced at the inner level to formalize the combi-
nation of atomic bids and, in the divisible case, the expression of conditions
related to their traded proportions. Hence, a partial bid refers to a collection
of atomic bids and relies on a bidding operator that contains information on
the execution conditions. For instance, a partial bid can be used to express
the following request: “I desire to sell up to 40 units of item r1 at $100 and
to buy up to 20 units of item r3 at $90. Moreover, I want equal proportions
of these orders to be traded”, by combining atomic bids corresponding the
the buy and sell orders with an EQUAL bidding operator. A partial bid is
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executed if all the conditions included in its associated bidding operator are
satisfied.

The outer level of the framework is mainly concerned with providing
means to define and express logical conditions related to the execution of
partial bids. At the outer level, the most important concept is that of the
combined bid, which is basically a collection of partial bids that are combined
with the help of a logical bidding operator. Hence, it would be possible, for
instance, to formulate a bidding requirement such as “Execute Partial Bid
1 or Partial Bid 2, but not both of them” by the means of a combined bid
containing references to Partial Bid 1 and Partial Bid 2, and a bidding oper-
ator XOR representing the exclusive OR execution condition. It is of course
possible, just like in other combinatorial languages for indivisible items, to
define more complex bidding requirements that involve logical expressions,
or formulae, by allowing for the recursive application of a few basic logical
operators in the expression of the combined bid. Thus, a final combined bid
that carries all the relevant bidding information should be submitted by each
participant in the auction.

The full description of the bidding framework can be found in (Abrache
et al., 2004a). In the following, we present a brief survey of the important
concepts of the framework.

3.2.1 The inner level

Let G be the set of items traded in the market and L the set of partici-
pants.

Definition 1 (Atomic bid) An atomic bid is a 4-tuple δ = (r, q, b, p) where

• r ∈ G is a reference to an item;

• q is the maximum quantity of item r to be traded in δ;

• b is a lower bound on the execution proportion x of atomic bid δ, which
means that the participant asks for the execution of at least the propor-
tion b of the maximum quantity q;

• p is a price valuation related to δ.
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The interpretation of the quantity q and the price valuation p depends on
the divisibility of the atomic bid. In the indivisible case, the whole quantity
q of item r should be traded in δ, or nothing at all, and p indicates a price
the participant may pay or receive if the q units are traded. Whereas in
the divisible case, an atomic bid can be subdivided into arbitrarily small
portions. Quantity q is therefore interpreted as the maximum quantity of
item r to be traded in δ, and an execution proportion x ∈ [0, 1] may be
associated to atomic bid δ to indicate that a quantity xq of item r is traded in
δ. Accordingly, price valuation p corresponds in this case to a price mapping
defined on [0, b] such that p(x) is the price the participant may pay or receive
if a proportion x of atomic bid δ is executed. We say that atomic bid δ =
(r, q, b, p) is executed in a trade if the lower bound condition x ≥ b is satisfied
by the outcome of the trade.

Partial bids combine atomic bids and formulate conditions related to their
execution proportions. A partial bid may be defined as follows:

Definition 2 (Partial bid) Let Al be the set of atomic bids of participant l.
A partial bid θi formulated by participant l may take one of the two following
forms:

1. θi = δh, h ∈ Al (θi is an atomic bid);

2. θi = (∆i,Xi, pi) where

• ∆i = {δk}k∈Ki
, Ki ⊆ Al is a subset of atomic bids defined by

participant l;

• Xi is a bidding operator of the inner level applied to ∆i;

• pi is a price valuation related to θi.

A bidding operator Xi of the inner level can be associated to a condition
subset EXi

⊆ [0, 1]|Ki| which represents analytically, as a mathematical set
of constraints, the execution conditions of the operator. Partial bid θi is
executed if the vector xi = {xk}k∈Ki

of execution proportions of atomic bids
in ∆i is in the condition subset EXi

. If partial bid θi is not executed, then
no atomic bid in ∆i should be executed.

Providing participants in actual combinatorial auctions with an adequate
set of operators that have a well-defined “meaning”, equally understood by
the participants and the auctioneer, constitutes an extremely important de-
sign step. In (Abrache et al., 2004a), we introduce some important classes
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of inner-level bidding operators. We may classify these operators into three
categories:

• Composition operators express directly conditions on the execution pro-
portions of atomic bids. An example of a composition operator is the
EQUAL operator, which expresses the requirement that equal propor-
tions of atomic bids in a partial bid θi are executed when θi is executed,
and corresponds to the condition subset

EXi
= {{xk}k∈Ki

∈ [0, 1]|Ki| : xk1
= xk2

,∀k1, k2 ∈ Ki}.

• The selection operator specifies constraints on the number of atomic
bids to be executed. Let θi = (∆i,Xi, pi) be a partial bid, where ∆i =
{δk}k∈Ki

, and denote by Πi = {k ∈ Ki : δk is executed} the set of
atomic bids in ∆i that are executed in the trade. Consider the logical
operator

Skl,ku(∆i) =

{

1 if kl ≤ |Πi| ≤ ku,

0 otherwise,

where kl and ku are integer parameters such that 0 ≤ kl ≤ ku ≤ |Ki|.
The associated selection operator SELECT-INNER expresses the
condition that no less than kl and no more than ku atomic bids should
be executed when θi is executed, and corresponds to the condition sub-
set

EXi
= {{xk}k∈Ki

∈ [0, 1]|Ki| : Skl,ku(∆i) = 1}.

• Hybrid operators combine functions of composition and selection oper-
ators. More precisely, a hybrid operator consists of composition con-
straints that should be applied only to the atomic bids that are selected
to be executed by a selection constraint. We may then define, for ex-
ample, the SELECT-INNER + EQUAL operator as follows:

EXi
= {{xk}k∈Ki

∈ [0, 1]|Ki| : Skl,ku(∆i) = 1; xk1
= xk2

,∀k1, k2 ∈ Πi}.

3.2.2 The outer level

The following recursive definition of a combined bid allows for the definition
of bid execution constraints that correspond to complex logical formulae.
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Definition 3 (Combined bid) Let Il be the set of partial bids defined by
participant l, l ∈ L.

A combined bid Θj that participant l formulates can take one of the two
following forms:

1. Θj = θi, i ∈ Il (Θj is a partial bid);

2. Θj = (Ωj,Xj, pj) where

• Ωj = {Θ̄}̄∈Jj
is a subset of other previously defined combined

bids formulated by participant l, Jj being the index set of these
combined bids;

• Xj is a logical bidding operator of the outer level applied to
Θj;

• pj is a price valuation related to Θj.

We suggest the selection operator as our bidding operator of choice at
the outer level. Let us consider combined bid Θj = (Ωj,Xj, pj), where Ωj =
{Θ̄}̄∈Jj

. Denote by Ψj = {̄ ∈ Jj : Θ̄ is executed} the set of combined bids
in the expression of Θj that are executed when Θj is executed in the trade.
The outer level selection operator SELECT-OUTER corresponds to the
following logical operator

SN l,Nu(Ωj) =

{

1 if N l ≤ |Ψj| ≤ Nu,

0 otherwise.

Here N l and Nu are integer parameters such that 0 ≤ N l ≤ Nu ≤ |Jj|.
In this case, the SELECT-OUTER operator indicates that no less than
N l and no more than Nu combined bids in Ωj have to be executed, should
combined bid Θj be executed. Otherwise, if the selection condition is not
satisfied, then no combined bid in Ωj should be executed.

It is noteworthy that the usual logical operators AND, OR, and XOR
are in fact special cases of the SELECT-OUTER operator: if Θ1 and Θ2

are two combined bids, then Θ1 AND Θ2 ≡ S2,2({Θ1, Θ2}), Θ1 OR Θ2 ≡
S1,2({Θ1, Θ2}), and Θ1 XOR Θ2 ≡ S1,1({Θ1, Θ2}).

In a complex bidding framework, price semantics have considerable im-
portance and should be clarified. Among the important questions related to
prices that need to be addressed are the following: What do prices specified
at the atomic, partial, and combined bid level mean? Which ones of these
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values are relevant? Can we have conflicting prices? In (Abrache et al.,
2004a), we precise the meaning of prices and propose general-purpose (and
in that sense minimal) conditions that need to be verified to ensure that
the pricing information submitted by a participant is complete (i.e., the auc-
tioneer would always be able to determine, whatever the allocation of items,
the payment a bidder is ready to make or receive) and coherent (i.e., prices
specified by a bidder in its bids are not conflicting with each other).

3.3 Impact on the allocation problem

We illustrate the impact of bidding languages on market clearing formu-
lations by considering a simple application in financial markets. In many
contexts, traders need to submit bundle orders to simultaneously sell and
buy different assets, along with prices they are willing to pay or receive if
the orders are executed. This is notably the case when they rebalance their
portfolios at the end of a trading session. After receiving all the trade or-
ders, the market maker determines the executed proportions of each order
and payments the traders should make or receive such that total surplus of
the market is maximized. A bundle order j defined by trader l is basically a
vector Olj = ({qljr}r∈G, plj) where:

• qljr is the maximum number of units of asset r that may be traded in
order j; qljr > 0 corresponds to a buy, qljr < 0 to a sell, and qljr = 0 if
asset r is not traded in order j;

• plj is the bundle price the trader is willing to make or receive if order
j is entirely executed.

Let Jl be the set of bundle orders formulated by trader l, l ∈ L, and
define the primary decision variables:

• xlj = the traded proportion of bundle order j formulated by trader l.

The basic formulation of the market clearing problem can be expressed
as the following LP model:
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max
∑

l∈L

∑

j∈Jl

pljxlj (22)

s.t.
∑

l∈L

∑

j∈Jl

qljrxlj = 0, r ∈ G, (23)

0 ≤ xlj ≤ 1, l ∈ L, j ∈ Jl. (24)

Among the many additional bidding requirements traders may formulate
in such markets, we focus on: a) lower bounds on the executed proportion of
orders, which indicate that traders prefer an order not to be executed at all
unless a minimal execution proportion is guaranteed (trading small volumes
may sometimes be non profitable if there are transaction fees to pay); and b)
XOR relations between certain orders, such that at most one of these orders
may be executed (may indicate, for example, that the trader considers the
orders as “equivalent”, but is averse to the fragmentation of its portfolio).

Let us associate a lower bound blj to a bundle order j defined by trader
l and define Xl as the set of all XOR relations defined by trader l, where
X ∈ Xl is a subset of bundles in Jl such that at most one order in X should
be executed. Consider the auxiliary decision variables:

• ylj = 1 if order j formulated by trader l is executed, = 0 otherwise.

When lower bounds constraints and XOR relations are taken into account,
market clearing corresponds to the following MIP formulation:

max
∑

l∈L

∑

j∈Jl

pljxlj (25)

s.t.
∑

l∈L

∑

j∈Jl

qljrxlj = 0, r ∈ G, (26)

bljylj ≤ xlj ≤ ylj, l ∈ L, j ∈ Jl, (27)
∑

j∈X

ylj ≤ 1, X ∈ Xl, l ∈ L. (28)

Hence, even the most elementary bidding operators can significantly in-
crease the complexity of market clearing formulations. A numerical investi-
gation of the impact on economic surplus and computational complexity of
lower bound and XOR operators in the context of bundle trading of financial
assets is presented in (Abrache et al., 2005).

27

Combinatorial Auctions

CIRRELT-2007-02



4 Iterative combinatorial auctions

In a number of settings, knowing how to write bids and determine the win-
ning allocation and prices is sufficient. Single-round, sealed-bid auctions are
a case in point. Simply put, participants submit all their bids more or less
simultaneously, and the auctioneer determines the winning bid by simply
identifying the “best” one with respect to pre-defined rules. The fact that
bids are sealed implies that, in general, a bidder will have no information
about other participants’ behavior and, consequently, will derive its bidding
strategy from incomplete and abstract (i.e., not related to the current auc-
tion) assessment of competition, as well as from its own valuation of the
items on the market. Such a market is inefficient (in an economic sense of
the term) due, in particular, to a lack of information concerning the cost and
utility functions of the market participants.

Assuming such information is available, one could build a model to de-
termine optimal allocations and prices. To illustrate, consider an idealized
multi-commodity, multi-lateral market (Bourbeau et al., 2005). Participants,
which are sellers and buyers of products, communicate all the relevant in-
formation about their production costs and demand functions, respectively.
The market maker also requires the participants to reveal complete informa-
tion about the transportation costs between sellers and buyers, as well as
all the technological constraints related to the production and consumption
of the products. It then solves a large non-linear market clearing model to
identify an allocation and a set of equilibrium prices such that the total social
efficiency is maximized.

Situations in which bidders hand over to market makers complete and
truthful information are very rare, however. The participants are generally
unwilling, and sometimes even unable, to disclose all the relevant information
required by the auction mechanism to optimize the market. In this, they may
be motivated by several considerations:

• Information confidentiality. Given that participants are often self-
interested agents, they are generally reluctant to disclose proprietary
data, even to an electronic software agent representing the market
maker.

• Uncertainty in the valuation of items. In some contexts, the value of
items or bundles of items is not known with certainty to the partic-
ipants and only estimates of the actual valuations can be communi-
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cated to the auctioneer (e.g., oil and gas lease auctions; see (Oren and
Williams, 1975)). In some other contexts, that information is imprecise
(art auctions, for instance) and needs to be adjusted according to what
competitors actually bid.

• Complexity of evaluating and communicating preferences. Especially
when the number of items on the market is large and the bidding re-
quirements of participants are complex, evaluation by participants of
their own preferences can become a hard task. Moreover, a commu-
nication “bottleneck” exists (Nisan, 2001) and implies that optimal
outcomes in combinatorial auctions cannot be achieved, in the general
case, with sub-exponential data communication.

Iterative auctions (Cramton, 1998) alleviate some of these concerns since
they require significantly less a priori information and allow participants
to progressively reveal their private information by altering their selling or
buying offers in light of the market information and their own assessment
of the market. The idea of iterative auctions (Figure 2) is the following. In
each auction round, participants submit bids on bundle of items. These bids
do not need to represent the complete and definitive needs of participants,
nor to convey a priori, truthful information. Given the bids, the auctioneer
uses a market-clearing process to determine a set of provisional allocations
and payments. Information - signals - related to the temporary state of the
market and intended to incite the participants to commit themselves further
in the auction, is then returned to them. Consequently, in the following
rounds, the participants may alter their bids or make new ones, according
to the signals received from the market and to their own bidding strategies.
The process continues until a stopping criterion is met (e.g., no new bids or
bid updates are submitted in a given round) and the outcome of the auction
becomes a final one. Bid changes from one round to the next are often
governed by activity rules whose function is to give impetus to the market
by prompting participants to be active and reveal their real needs as early
as possible.

Many “classical” auction mechanisms, such as the ascending English and
the descending Dutch auctions, are actually iterative auctions. These are
well known and understood. The design of iterative combinatorial auctions
gives rise to many complex problems, however. In the following, we focus on
three particularly important aspects: the design of auction rules, the pricing
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Figure 2: Direct revelation mechanisms vs multi-round auctions

schemes in price-directed auctions, and the incentive-compatibility properties
of an iterative combinatorial auction.

4.1 Design of auction rules

A primary objective of the market maker is to move the auction at a steady
pace, ensuring that the participants progressively, but actively, commit them-
selves, and that the whole process eventually converges to allocations and
prices close to what would have been obtained in the “ideal” case of an opti-
mized, centralized market. Several rules must be set in order to achieve this
goal:

• Admissibility rules. These rules govern the way participants update
their bids as the auction goes on. For the most part, they consist of
constraints on the composition of bids (a bidder, for instance, may only
bid on increasingly larger packages), or on price offers (bidders should
bid incrementally on each bundle of items, for example).

• Activity rules. In order to give impetus to the market, participants
should express their real needs reasonably early in the auction. Hence,
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the mechanism should prevent, for instance, participants from simply
observing the market, or making infinitesimal modifications to current
bids, and waiting for the final stages of the auction to submit “jump”
bids in an attempt to threw everybody else out of the auction.

• Stopping rules. These rules specify criteria according to which the
process ends. Examples of these are predefined numbers of rounds, pre-
defined auction times, and the absence of significant bidding activity.
Note that a stopping rule can be rather complex and may consist, for
instance, in the combination of several simpler stopping rules.

It is noteworthy that the complexity of real-world applications often re-
quires the auctioneer to do a finer subdivision of an iterative auction mech-
anism, first in phases, then in rounds. A phase can be defined as a sequence
of rounds intended to reach an important intermediary step in the auction.
Each phase may consequently be characterized by its own rules and “mech-
anism”, and produce a provisional outcome supplied as input to the next
phase. To illustrate the concept of multi-phase auctions, let us briefly con-
sider an iterative procurement auction for transportation services designed
for a large mining company. In the auction, the mining company acts as
the buyer, while sellers are carriers that provide the transportation services.
Carriers bid on long-term contracts on transportation lots (a lot designates a
required transportation capacity between two locations). A two-phase proto-
type mechanism has been suggested. The first phase is composed of a single
round, in which the carriers submit bids on individual lots. The purpose of
this preliminary phase is to “heat” the market and to gently introduce the
carriers into the bidding process (bidding decisions are relatively simple here
since no combination of lots is permitted). The second phase is a multi-round
process, in which the carriers are allowed to bid on bundles of lots (routes).
The auctioneer maintains prices on individual lots that are disclosed at the
end of each round. Provisional winners are notified individually. To be ad-
missible, a new bundle bid needs to beat a provisional winner by at least a
given threshold.

4.2 Pricing

The nature of the information disclosed to participants at intermediary stages
of the auction is a central issue in the design of multi-round auction mech-
anisms. An important class of such mechanisms are price-directed iterative
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auctions, in which that information is primarily related to prices of items or
bundles of items. While price-directed iterative auctions can easily be de-
signed and implemented in the simple case of single-item bidding auctions,
deriving prices in combinatorial settings is much more challenging. See (Xia
et al., 2004) for a recent survey on pricing combinatorial auctions.

The divisible case (commodities or bids are divisible) is encompassed
by the theory of general equilibrium in exchange economies. To ease the
presentation, we limit ourselves to the one-sided, one-to-many case. Let G

be a set of m divisible goods, and J a set of buyers. The seller has an
endowment M = [M1, . . . ,Mm] of the goods. Each buyer j has a preference
vj(xj) for bundle xj = [xj,1, . . . , xj,m]. A socially-efficient allocation x⋆ is an
allocation that solves maxx∈D

∑

j∈J vj(xj), where D is the set of all feasible
allocations of goods to buyers. Walrasian equilibrium prices that support
the efficient allocation are single-item prices {pi}i∈G, such that x⋆ maximizes
the payoff of each buyer; that is

vj(x
⋆
j) − pj.x

⋆
j = max

x∈D
{vj(xj) − pj.xj}

with the usual quasi-linear utility assumption.
A classical result of the general equilibrium theory (Arrow and Debreu,

1954) establishes that Walrasian equilibrium prices exist under conditions of
continuity, monotony, and concavity of preference functions vj(.). Reaching
an equilibrium, when it exists, through a Walrasian tâtonnement process
is however dependent of whether or not that equilibrium is stable. In that
regard, the economic literature notoriously identifies the gross substitutes
(GS) property, which essentially states that the demand for a given good does
not decrease when individual prices of other goods increase, as a sufficient
condition for the stability of equilibria (see, for example, (Arrow and Hahn,
1971)).

The literature on iterative auction design in presence of indivisibilities has
mainly focused on the Combinatorial Allocation Problem (CAP) (de Vries
and Vohra, 2003). The CAP has the same settings as the basic winner
determination formulation (M1), but seeks to maximize the overall social
efficiency of the market, rather than the revenue of the seller given buyer bids.
So, with the notation of subsection 2.1 and vj(S) defined as the preference
of buyer j for getting bundle S ⊆ G, a basic formulation of the CAP can be
written as model (CAP):
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max
∑

1≤j≤n

∑

S⊆G

vj(S)xj,S (29)

s.t.
∑

1≤j≤n

∑

S⊆G

δi,Sxj,S ≤ 1,∀i ∈ G, (30)

∑

S⊆G

xj,S ≤ 1,∀j, 1 ≤ j ≤ n, (31)

xj,S ∈ {0, 1},∀S ⊆ G,∀j, 1 ≤ j ≤ n. (32)

If one does not take into account the integrality gap that may exist be-
tween model (CAP) and its LP relaxation, equilibrium single-item prices can
be derived from the dual of the LP relaxation (Bikhchandani and Mamer,
1997): optimal solutions {p⋆

i}i∈G and {τ ⋆
j}1≤j≤n

of

min
∑

1≤j≤n

τj +
∑

i∈G

pi (33)

s.t.
∑

i∈S

pi + τj ≥ vj(S),∀j ∈ N,∀S ⊆ G, (34)

pi ≥ 0,∀i ∈ G, (35)

τj ≥ 0,∀j, 1 ≤ j ≤ n, (36)

can be interpreted in this case as Walrasian equilibrium prices and optimal
payoffs of participants, respectively.

The existence of Walrasian equilibrium prices (and therefore the integral-
ity of the LP relaxation of (CAP)) requires stronger conditions in the indivis-
ible case. Notably, (Gul and Stacchetti, 1999) show that the GS property is a
sufficient one, which implies, essentially, that linear (single-item) prices may
not exist when there are complementarities between items. (Bikhchandani
and Ostroy, 2002) propose two extended formulations of the CAP. While
these formulations have many more variables and constraints than model
(CAP), they are generally stronger and duals of their LP relaxations pro-
vide, respectively, anonymous bundle prices (all buyers pay the same price
for a bundle), and discriminatory bundle prices (what a buyer pays for a
bundle depends on its identity). Interestingly, the strongest formulation has
an integral LP relaxation, which means it is always possible to compute dis-
criminatory bundle prices that support an efficient allocation of the CAP.
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Researchers have recently considered embedding Bikhchandani and Os-
troy’s formulations in primal-dual frameworks. The iBundle family of ascending-
price auctions (Parkes, 1999) is an example of such approach. The iBundle
mechanisms assume that participants are self-interested price-taker buyers
that react myopically to prices by bidding on bundles giving them the most
payoff at these prices, and manage to reach a competitive equilibrium (an
equilibrium that maximizes also the revenue of the seller) by carefully increas-
ing prices on over-demanded bundles. More recently, (O’Neill et al., 2005)
presented a primal-dual method to construct a set of linear prices that sup-
port a Walrasian competitive equilibrium in markets with non-convexities.
These prices are proved to correspond to the dual prices of an “augmented”
linear program. The latter is obtained by adding to the linear relaxation of
the original MIP, a set of equality constraints forcing the variables to take
their optimal integer values. Such a method assumes however that optimal
integer solutions can be efficiently computed.

Many other iterative auctions based on different price-adjustment schemes
have been suggested. For instance, the experimental RAD mechanism of (De-
Martini et al., 1999) announces, at the end of each round, single-item prices
to the participants. These prices are “approximated” equilibrium prices that
minimize the violation of complementary slackness. To be admissible to the
next round, new bids by the participants need to beat the current provi-
sional prices by a certain increment. Although the RAD mechanism achieves
high level of ex post efficiency in experiments (Kwasnica et al., 2005), the-
oretical efficiency results are not available. (Wurman and Wellman, 1999b)
prove the existence of anonymous bundle equilibrium prices and give a pro-
cedure to compute them. Their proof is constructive and proceeds in two
steps. Once a provisional optimal allocation has been determined on the ba-
sis of bids submitted by the participants, prices for the assigned bundles are
computed using the dual of the corresponding assignment problem (Leonard,
1983). Given that this problem has multiple solutions in general, the authors
suggest two auxiliary problems that provide optimal prices minimizing the
revenue of the auctioneer and maximizing the surplus of the participants,
respectively. Then, prices of unassigned bundles are set such that no par-
ticipant is distracted from the provisional optimal allocation. Equilibrium
prices computed this way are not competitive equilibrium prices, though,
in the sense that they do not guarantee the auctioneer getting the highest
possible revenue.

A somewhat different but promising line of research consists in the adap-
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tation of mathematical decomposition approaches, especially price-driven
ones (Dantzig-Wolfe, Lagrangian relaxation and decomposition). These meth-
ods have been used for decades to tackle large-scale optimization of problems
with special structure, but there have been very few efforts to take profit of
their potential for decentralized decision making to design corresponding it-
erative auction mechanisms (see, for instance, (Kutanoglu and Wu, 1999)
for an application to distributed job shop scheduling). (de Vries and Vohra,
2003) recently emphasized the connections between the duality theory of op-
timization problems and the design of auctions. They showed that some
of the auction mechanisms already proposed, such as the RAD, and the
iBundle auctions can be given a Lagrangian relaxation interpretation. In a
subsequent paper, (de Vries et al., 2005) showed that many of the well-known
ascending auctions can be derived from either primal-dual or subgradient al-
gorithms. (Abrache et al., 2003) were the first to analyse mathematical pro-
gramming decomposition methods for combinatorial multilateral auctions, in
which many sellers and buyers interact. They investigate iterative auction
mechanisms based on Lagrangian relaxation and Dantzig-Wolfe decompo-
sition for a general combinatorial exchange economy in which participants
trade heterogeneous divisible commodities. They show that, under appro-
priate assumptions, the application of these decomposition techniques to the
centralized allocation problem leads to indirect mechanisms that can achieve
social efficiency without requiring complete information revelation from the
participants.

4.3 Incentive-compatibility issues

Up to this point, the reader may judiciously ask: how could the auctioneer
determine the socially-efficient allocation if the participants do not accept
to reveal (progressively or in one shot) their valuations without misreport-
ing them? Actually, this question brings out a focal aspect of an auction
mechanism, which is its ability to provide the right incentives for partic-
ipants to bid truthfully. Regarding this issue, a mechanism is said to be
strategy-proof if it is a dominant strategy for any participant to report its
true valuations, whatever the strategies adopted by the other participants.
Strategy-proofness, when it can be achieved, is indeed a very powerful prop-
erty since it means that participants will confine themselves to the simplest
strategy available to them (which is to report truthfully their private types),
being assured that doing so is in their best interest.
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The Vickrey-Clarke-Groves auction (VCG) (Vickrey, 1961; Clarke, 1971;
Groves, 1973) is known to be an economically efficient, strategy-proof mech-
anism. Given preferences {ṽj(.)}j∈J

reported by participants, the VCG’s
allocation and payment rules are:

• Return an allocation x⋆ ∈ arg maxx∈D

∑

j∈J ṽj(xj) that maximizes total
value given the reported valuations;

• Participant j pays V ⋆
−j−(V ⋆−ṽj(x

⋆
j)), where V ⋆ = maxx∈D

∑

j∈J ṽj(xj)
and V ⋆

−j = maxx∈D

∑

k∈J−{j} ṽk(xk) (a participant receives a “discount”
on its reported value equal to the economic impact of its presence in
the market).

A serious limitation of the VCG auction lies in the fact that it is a sealed-
bid mechanism that requires complete information about participants’ prefer-
ences to be revealed to the auctioneer. This fact has motivated the design of
iterative incentive-compatible auctions, that would end up with the same out-
come as the direct-revelation VCG mechanism. Among the most important
developments recently reported, we may cite (Gul and Stacchetti, 2000) who
show that, under the GS condition, a simple tâtonnement process that gen-
eralizes the English auction leads to the smallest Walrasian prices, which in
turn correspond to the Vickrey-Clarke-Groves payments with further restric-
tions on the GS preferences. (Bikhchandani et al., 2001) give a primal-dual
interpretation to Gul and Stacchetti’s auction. (Ausubel, 2006) suggests
an iterative implementation of the VCG with GS preferences. Ausubel’s
mechanism requires however to run |J |+1 parallel auctions in order to com-
pute the Vickrey-Clarke-Groves payments. The Extend & Adjust iterative
mechanism (Parkes, 2001; Parkes and Ungar, 2002) computes the Vickrey-
Clarke-Groves payments through a two-phase process. In the first phase, an
iBundle ascending-price auction determines an efficient allocation and com-
petitive equilibrium prices. The second phase collects “just enough” addi-
tional information from participants to compute Vickrey discounts. (de Vries
et al., 2005) and (Mishra and Parkes, 2005) recently observed that deriving
VCG payments with an ascending-price primal-dual algorithm is not always
guaranteed. (de Vries et al., 2005) prove that a stronger condition on the
submodularity of coalition values needs to be satisfied to achieve the VCG
outcomes with an ascending price auction. (Mishra and Parkes, 2005) gener-
alize the auction in (de Vries et al., 2005) and the iBundle auction in (Parkes
and Ungar, 2000) from the restricted-valuation class of buyer-submodularity
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to general valuations. They introduce the concept of universal competitive
equilibrium prices (these are competitive equilibrium prices for the main econ-
omy as well as for every marginal economy, i.e., an economy where one agent
is excluded) and show that these prices are necessary and sufficient to yield
VCG outcomes in an ascending-price auction. Truthful bidding is shown to
be an ex post Nash equilibrium in the auctions proposed.

The simple fact of being able to derive Vickrey-Clarke-Groves payments
in iterative auction mechanisms does not necessarily mean, however, that
it is always desirable to do so. Indeed, Vickrey auctions suffer from many
other shortcomings (Rothkopf et al., 1990; ?; ?; ?), such as their sensi-
tivity to collusion and cheating, and the fact that they do not guarantee
the budget-balance of the market and may give a seller a marginally small
revenue. The latter stands out since it can be shown that for the impor-
tant case of exchanges (even non-combinatorial ones), budget-balance may
not be achieved. Moreover, (Ausubel and Milgrom, 2006) showed that the
VCG auction loses its dominant-strategy property when bidders face effec-
tive budget constraints. Hence, some recent researches turned towards the
design of alternative auction mechanisms that overcome some of the VCG
auction drawbacks. (Parkes et al., 2001) proposed a Threshold payment rule
that determines budget-balanced payments that minimize the maximal er-
ror to the VCG outcome across all agents. (Parkes et al., 2005) extended
this threshold payment rule from one-sided to exchange markets with par-
tial revelation. (Ausubel and Milgrom, 2002) proposed an ascending proxy
auction and proved that the final payoffs it yields are always in the core.
That is, there is no coalition of bidders that can trade among themselves in
a way that generates strictly more revenue for the seller (the market maker)
and equally or more preferred outcomes for all the bidders of the coalition.
(Ausubel and Milgrom, 2006) showed that the Vickrey auction leads to such
core allocations only when the goods-are-substitutes condition holds for all
bidders and bidders’ budgets are unlimited.

5 Participant decision problems

Auction participants need, of course, to construct initial bids and to modify
them (both their composition and the associated price offers) as the multi-
round process goes on. Yet, this is not the only problem they face. To be
able to decide on profitable bidding strategies, participants have to analyze
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complex information disclosed by the market mechanism and combine it with
their business processes: internal cost policies, current operations and activ-
ities, knowledge of the economic sector and competition, etc. Thus, there
is need to develop optimization-based decision support tools - advisors - to
help participants tackle these decisions.

To illustrate the types and role of advisors, consider applications to elec-
tronic freight marketplaces (Chang et al., 2002; Figliozzi et al., 2002). Par-
ticipants are shippers (production firms, freight forwarders, etc.) that need
commodities (for simplicity, assume full load trailers or containers) moved
between various locations, and motor carriers bidding for the loads. In de-
signing their bidding strategies, carriers are faced with several questions: (1)
on which loads to bid? (2) when to bid? and (3) at what prices? Decisions
have to be coherent with the current and forecast fleet deployment and de-
mand. It is also noteworthy that particular groups of loads may present a
special interest for a given carrier when, for example, they may be blocked
into a route performed by a single driver or may be used to bring home a
driver and its empty vehicle. In this context, advisors are software agents
that assist carriers in making “profitable” bidding decisions, by processing
the information available in the market and realizing its integration into the
dynamic planning of transportation operations.

A major difference between advisors and classical decision support sys-
tems is that while the latter have to interact only with the planning methods
and data of the firm, the former have also to deal with the many forms
of marketplaces encountered on the Internet. Consequently, other than the
particular transportation sector in which they evolve (truckload, less-than-
truckload, container, a combination of the three, etc.) advisors may be clas-
sified according to their response to the following characteristics:

1. Market type. Advisors may be developed for single or multiple mar-
ketplaces. In the latter, carriers are interested in loads appearing on
several different marketplaces. Indeed, while marketplaces are inde-
pendent of each other, loads are often interdependent for carriers (e.g.,
to form an interesting route loads have to be negotiated on different
marketplaces). In this case, advisors have the additional burden of co-
ordinating the carriers’ bidding activities in the different marketplaces.
Advisors of this type have been proposed in the literature for very sim-
ple multi-market negotiations (Benyoucef et al., 2001), but no known
multi-market advisors exist for more complex settings.
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2. Auction type. Auctions can be single or multi -round, continuous or
periodic, and may involve bidding on independent single loads, or on
bundles (combinatorial bidding).

3. Integration with the planning process. Advisors can be remotely cou-
pled to the (dynamic) planning of operations, or tightly coupled to it.
In the first case, the advisor rely generally on predetermined lists of
available vehicles. On the other hand, tightly coupled advisors need to
interact, at regular intervals with the (dynamic) fleet management pro-
cess in order to evaluate loads to bid on. The length of these intervals
depends on the response time of the model, as well as on the delays
tolerated by the auction and the carrier trade-off between profitability
and risk of loosing loads.

In computer science terms, the advisor (or agent) ménagerie is even more
diverse and complex. We may mention, for example, that while planning
advisors, such as the ones described above, may be used to select loads on
which to bid and determine the corresponding pricing data, negotiators are
required to actually conduct the bidding. The complexity of the negotiation
strategy, as well as its call to planning advisors during the auction, depend
largely on the market characteristics and the time available for computations.

The development of dynamic advisors, for freight as for other types of
markets, is thus a key design issue, especially critical for a successful deploy-
ment of combinatorial market designs.

(Das et al., 2001) undertook to compare the performances of software
agents against humans in a continuous double auction where multiple units
of a single hypothetical commodity could be bought or sold. The reported
results show that software agents consistently obtained significantly larger
trade gains than their human counterparts. However, convergence to equi-
librium was generally slower than in prior all-software agent or all-human
traders auctions. (Ausubel and Milgrom, 2002) introduced the concept of
“proxy agents” in the ascending auction they propose. A proxy agent is a
software agent that acts on behalf the bidder. More specifically, each bid-
der reports his values to the corresponding proxy agent for all the packages
that it is interested in. Based on these values, the proxy submit bids on
behalf the bidder so as to maximize its utility. (Ausubel and Milgrom, 2002)
proved that ascending proxy auctions help bidders focus on the packages they
are more likely to win given the bids made by competitors in earlier rounds.
Moreover, they prove that, under some assumptions, using such proxy agents

39

Combinatorial Auctions

CIRRELT-2007-02



yields core allocations. (Hoffman et al., 2004) focused on the package deter-
mination problem in combinatorial FCC spectrum auctions. They describe
an optimization-based bidder aid-tool support to simultaneously generate
and valuate the optimal set of biddable packages at the beginning of the
auction and dynamically before each round.

(Song and Regan, 2005) recently proposed an optimization-based approx-
imation algorithm that helps trucking companies construct optimal or near-
optimal bids for the procurement of freight transportation contracts. This
carrier bid construction problem is modeled as a vehicle routing problem in
which each route represents a candidate bid for the carrier and the objective
function minimizes the total empty movement cost. The reported results
are promising. (Lee et al., 2006) also considered vehicle routing models to
help bidders identify sets of origin-destination pairs that maximize their prof-
its. Column generation and Lagrangian based techniques are employed for
solving this carrier optimization model.

(Kwon et al., 2005) studied a more general bid construction problem in
the context of an iterative ascending framework (Parkes and Ungar, 2000).
They propose a bidding mechanism that enables bidders to identify new
valuable packages during the course of the auction. New bids are identified
by the use of single-item prices that maintain the ascending property of
the auction. Thus, at each round of the auction, a procedure similar to
that proposed in the RAD mechanism (DeMartini et al., 1999) computes
approximate single-item prices based on the provisional allocation. Given
this set of prices, best-response packages are determined, i.e., packages that
maximize the quasi-linear utility of the bidder, and conveniently priced. The
authors prove that the efficiency yielded by an ascending mechanism with the
proposed endogenous bidding can be greater than the efficiency produced by
other ascending mechanisms where bidding is restricted to a fixed set of
packages determined before the start of the auction.

Advisors have been considered in the literature to guide not only bidders
in constructing profitable bids but also auctioneers in determining efficient
allocations in partial-revelation mechanisms. In such mechanisms, bidders
need not to bid on all the bundles nor to specify exact valuations for the
packages they desire, circumventing thus the complexity of the communi-
cation and valuation tasks encountered in combinatorial auctions. Besides,
(Nisan and Segal, 2006) showed that, in the worst case, identifying an op-
timal allocation requires an exponential amount of communication in the
number of auctioned items. The role of the advisor, also called “elicitor” in
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this case, is to help the auctioneer elicit the bidders’preferences by cleverly
querying them, i.e., asking them the “right” questions at the “right” times,
without requesting bids on all bundles. Incremental querying enables thus
the auctioneer to collect the information needed to derive optimal allocations.
(Conen and Sandholm, 2001) used three types of queries in the preference
elicitation framework they proposed: order, value and rank queries. In an or-
der query, the elicitor asks the bidder to order two given bundles. In a value
query, the elicitor presents a bundle and the bidder responds with either ex-
act or approximate (i.e., upper and lower bounds) values on this bundle. A
rank query asks a bidder on the rank of a given bundle, the bundle having a
giving rank, etc. The gathered information is progressively stored in particu-
lar data structures (constraint networks) and is used by the proposed search
algorithms to tighten the search space. In a subsequent paper, (Hudson and
Sandholm, 2002) showed the merits of using such elicitation procedures in
reducing the size of the information communicated by bidders. (Zinkevich
et al., 2003) and (Santi et al., 2004) studied special classes of preferences for
which they prove that elicitation can be achieved in a polynomial number
of value queries (polynomial with regard to the number of auctioned items).
Their proof relies on some known results of learning theory.

(Blum et al., 2004) and (Lahaie and Parkes, 2004) explored the links
between the preference elicitation problem in combinatorial auctions with
general valuations and the problem of learning an unknown function from
computational learning theory. They considered learning algorithms with
membership queries (i.e., a query in which the learner asks the oracle on the
values of the unknown function at some points) and equivalence queries (i.e.,
a query in which the learner presents its current estimate of the unknown
function and the oracle either agrees or returns a point at which the values
of the estimate function and the true one are different).

(Lahaie and Parkes, 2004) proved that any exact learning algorithm with
membership and equivalence queries can be converted into a preference elic-
itation algorithm with value and demand queries. In a demand query, the
elicitor presents a vector of non-negative prices over all the possible bundles
as well as a specified bundle. The bidder either confirms that the proposed
bundle is the most preferred at the specified prices or indicates a better
one. (Lahaie and Parkes, 2004) also presented an elicitation algorithm that
guarantees elicitation in a polynomial number of value and demand queries
(polynomial in the number of items, agents and the size of the agent’s valua-
tion functions). Later, (Lahaie et al., 2005) extended the work of (Lahaie and
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Parkes, 2004) by providing a preference elicitation scheme for a wide class
of the so-called atomic languages (i.e., languages in which a bid is expressed
through a set of items and the corresponding price) such as OR and XOR

ones. They also addressed the problem of incentive compatibility by intro-
ducing a new type of demand query, namely the universal demand query.
They reported that using this new type of query together with value and
traditional demand queries in the preference elicitation scheme yields to uni-
versal competitive equilibrium prices and thus to VCG outcomes (Mishra and
Parkes, 2005). In a universal demand query, the elicitor presents to a bidder i

a set of prices on all bundles and a set of n bundles (where n denote the num-
ber of bidders). The bidder agrees if every bundle is a best-response at the
proposed prices or disagrees by pointing out the “bad” bundle and proposing
a better one. We refer the reader to (Sandholm and Boutilier, 2006)’s survey
for more details on preference elicitation in combinatorial auctions.

6 Conclusion

Since the very first attempts to use combinatorial auctions for the allocation
of heterogeneous commodities, there has been increasing awareness that the
design of this class of auctions is a complex and multi-faceted problem. While
the early literature has naturally started by addressing the winner determi-
nation problem, that proved to be only the beginning. Thus, a remarkable
multidisciplinary effort has been initiated to investigate original issues raised
by combinatorial bidding (bidding languages, for instance), as well as to re-
think some other well-known problems in auction theory and practice (such
as incentives) that become particularly difficult when package bidding is al-
lowed. Some excellent surveys have recently discussed combinatorial auction
design in general (Pekec̃ and Rothkopf, 2003; de Vries and Vohra, 2003), or
highlighted a more specific issue (Xia et al., 2004; ?; ?; ?). Nevertheless,
some other issues, such as advising participants in combinatorial auctions,
still need more attention.

In this paper, we gathered and discussed a few interesting issues in the
design of combinatorial auctions. The first of these is the classification of
combinatorial auctions and the corresponding formulations of the winner
determination problem. We put the emphasis on five important models rep-
resenting direct and reverse one-sided combinatorial auctions, auctions of
network resources, and combinatorial exchanges. These generic models pro-
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vides preliminary insights on the complexity of clearing the market. However,
the auction designer should be concerned with additional attributes and side
constraints that follow from real-world applications, and which may compli-
cate significantly the market-clearing formulations.

We next discussed the need for high-level bidding languages that give par-
ticipants the means to express succinctly their bidding requirements. We pre-
sented a novel formalism that goes a step beyond the existing languages of the
literature by allowing combined bid formulation for divisible and indivisible
commodities. The impact of using a bidding language on the formulation of
the allocation problem is illustrated through a simple application in finance.
This analysis suggests that dealing with expressive bidding formalisms can
be challenging for both the auctioneer, which has to handle potentially large
market-clearing MIP formulations, and the participants, which need to figure
out how to construct and update bids that are coherent with their business
processes and their knowledge of the market and their competitors. It also
points out the importance, in practice, of reaching an acceptable trade-off
between the expressiveness of the bidding language and its simplicity of use.

The design of iterative incentive-compatible combinatorial auctions, which
give participants the impetus to progressively reveal truthful information
about their preferences, has been a key objective of recent research on mech-
anism design. Although important breakthroughs have been reported for the
simplest combinatorial auction settings (in particular for the CAP), much
work is still needed to extend the results to more complicated (and useful)
auction models that take into account high-level bidding languages and mar-
ket side constraints.
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