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Abstract. This paper describes an exact e-constraint method for bi-objective combinatorial
optimization problems with integer objective values. This method tackles multi-objective
optimization problems by solving a series of single objective subproblems, where all but
one objective are transformed into constraints. We show in this paper that the Pareto front
of bi-objective problems can be efficiently generated with the e-constraint method.
Furthermore, we describe heuristics based on information gathered from previous
subproblems that significantly speed up the method. This approach is used to find the
exact Pareto front of the Traveling Salesman Problem with Profits, a variant of the
Traveling Salesman Problem in which a profit or prize value is associated with each
vertex. The goal here is to visit a subset of vertices while addressing two conflicting
objectives: maximize the collected prize and minimize the travel costs. We report the first
exact results for this problem on instances derived from classical vehicle routing and
traveling salesman problem instances. Results on approximations of the Pareto front
obtained from a variant of our exact algorithm are also reported.
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Introduction

Decision making issues can rarely rely on a single well ddficréerion. Although the multiple facets of
a decision process can be aggregated into a single objdaticéon, this simplification involves arbitrary
rules that can hardly capture adequately the complexitgalfworld decision issues. Thereby, the interest
for multi-criteria decision making has continually growarthg the last decades, as attested by the number
of books and surveys on the topic (see [6, 10, 22, 27], amdmgr®t It comes as no surprise if more and
more publications address combinatorial issues givemtlagty real world applications involve discrete de-
cisions or events. The reader is referred to [9] for a reviethe literature on multi-objective combinatorial
optimization (MOCO) problems.

This paper addresses a special case of MOCO problems, narajective combinatorial optimization
(BOCO) problems with integer objective values. BOCO proideare often considered independently of
MOCO problems because of their particular nature: goinghfroany to two objectives corresponds to a
significant simplification of the problemiThree is more than two plus one[9]). General BOCO problems
are formulated as:

min f(Z) = (f1(Z), f2(¥))  subjectto: ¥ € X (1)

whereX’ is the set of feasible solutions, solution spaceWe denote each evaluation vecjitr) asz and
(Z); stands for the value of thah objective. To simplify the notation, we writg instead of(2); up to
Theorem 3. From theré?); is used to avoid any ambiguity.

The objective spacés defined byZ = {Z = (z1,29) : z; = fi(¥), VZ € X, i = 1,2}. Since no
solution optimizes simultaneously both objectives, onkkseiarch for an acceptable trade-off instead of an
optimal solution. This compromise must be such that notbtrimetter solution exists, even though some
solutions might be considered as equivalent. This invoa/partial order of the objective space, defined by
adominance relationThe latter is used to characteriRareto efficiencya concept that replaces the optimal
solution of single objective optimization problems.

Definition 1 (Dominance relation). Letzandz’ € Z. We say that dominatess’’ (Z = z’) if and only if
z1 < 2} andzy <z, where at least one inequality is strict.

Definition 2 (Pareto efficiency). A solutionz € X is (Pareto) efficient inY, if and only if A7’ € X such
that f(Z') = f(Z).

Definition 3 (Efficient set). The efficient sef = {Z € X' : ¥ is Pareto efficient int'}.
Definition 4 (Pareto front). The Pareto frontF = {f(Z) : ¥ € £}.

The Efficient set(£) and Pareto front(F) contain all the Pareto efficient solutions and all the non-
dominated points in the objective space, respectivelycesine efficient set is defined on the solution space
while the Pareto front is defined on the objective space, dndirgality of £ is always greater than or equal
to the cardinality ofF. That is, there might be many feasible solutions that cpoed to the same point in
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the objective space. Usually the aim of multi-objectiveimjmation is to find one solution for each point of
F or to approximate the Pareto front with an efficient set ofisohs.

Among exact methods to find the Pareto front of MOCO problemesghted sum scalarization is the
most popular according to [9]. This method solves differeingle objective subproblems generated by
a linear scalarization of the objectives. By varying thegis of this linear function, all supportedon-
dominated points can be found. Itis worth noting that thepsolblems are as easy to solve as the correspond-
ing mono-criterion problems. On the other hand, linearastadtion cannot find unsupported points and is
therefore ill-suited for non-convex objective spaces saglthose associated with MOCO problems. This
drawback can be overcome with the Two-Phase Method [29]fitd$ all supported points of through
a weighted sum scalarization in the first phase, while n@psrtied points are found during the second
phase with problem specific methods. Most algorithms that e exact Pareto front of MOCO prob-
lems are variants of the Two-Phase Method [9], althoughrgitheametric approaches based on weighted
scalarizations can find the exact Pareto front of BOCO probIfL9, 23, 26].

Besides weighting sum algorithms, theonstraint method [6, 22] is the best known approach for-sol
ing MOCO problems, according to [9]. This method generaiegle objective subproblems, called
constraint problems, by transforming all but one objestii@o constraints. The upper bounds of these
constraints are given by tlevector and, by varying it, the exact Pareto front can thizakly be generated.

In practice, because of the high number of subproblems anditficulty to establish an efficient variation

scheme for the-vector, this approach has mostly been integrated withimisgc and interactive schemes.

It can however generate the exact Pareto front in partigifaations, such as BOCO problems, as we will
see later.

This paper focuses on BOCO problems for which no polynoniiaé talgorithm exist for solving the
corresponding single objective problems, but where therlaan still be efficiently solved through branch-
and-cut. Many problems share these characteristics, dimguthe Bi-Objective Covering Tour problem
[16] and bi-objective variants of the Traveling Salesmawbigm (TSP), such as the Bi-Objective Traveling
Purchaser Problem [25] and the Traveling Salesman ProbidmPnofits (TSPP) [11]. For these problems,
e-constraint methods are particularly attractive becahseatdition of new constraints through a branch-
and-cut procedure is quite natural.

The first contribution of this paper is to show the correcthesan efficient variant of the-constraint
method for BOCO problems, where exactly aneonstraint problem is solved for each point on the Pareto
front. The second contribution is the introduction of hsticiimprovements based on the exploitation of
information gathered from previous problems that provisigsificant speed-ups. The proposed method is
then used to solve instances of the TSPP, a variation of tiReiT &hich a profit or prize value is associated
with each vertex. We report the first exact Pareto fronts 8PP instances obtained from classical VRP
and TSP instances available in the TSPLIB [24]. The papergarozed as follows. Our general problem-
solving approach is presented in Section 1. Then, Sectiatr@iuces the improvement heuristics. Section
3 describes the TSPP and explains how our general algorimbe adapted to solve it. Finally, Section 4
reports computational results on several TSPP instances.

The supported points are those found on the convex envefdpe objective space.
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1 Exacte-constraint method for BOCO problems

The e-constraint method has been developed for general mykictie problems. It solves-constraint
problemsP;(e) obtained by transforming one of the objectives into a caimstr For the bi-objective case,
the P;(¢;) problems are:

min f;(Z) (2
subject to: reX, 3
fj((i") S Ej, Z,j = 1,2 7 75 ] (4)

Theorem 1. z* is an efficient solution of a BOCO problem if and only’if solvesP;(e;) for i = 1, 2.

Theorem 2. If ©* solvesP;(e;) for some: and if this solution is unique, thef* is an efficient solution of
a BOCO problem.

Theorems 1 and 2 are proved for general multi-objectivelprob (see [6, 22]) and are therefore valid for
BOCO problems. These theorems mean that efficient solutimmslways be found by solvirigconstraint
problems, as long as is such thatP;(¢;) is feasible. Moreover, Theorem 1 indicates that for any ieffic
solutionz’ *, one can find am; such thatt * solvesP;(¢;) for i = 1, 2. In other words, the exact Pareto front
can be found by solving-constraint problems, as long as we know how to moédjfyo generate at least
one solution for every point aF. This issue has recently been addressed for the generatahjdttive
case in [21], but it remains an important drawback of éfwnstraint method. However, the particularities
of BOCO problems yield to a simple variation schemeeftinat can be numerically implemented. The idea
is to construct a sequence Bf(e;) problems based on a progressive reductiosobet 21 = (21, 1) with

2l =minz and 2zl = min 2, (5)
zez 7eZ

be the ideal point and let? = (24V, zJ") with
2 =min{z 2 =2} and 2 =min{z : 2 = 2f} (6)
ZeZ 7eZ

be the Nadir point that defines lower and upper bounds on the\a efficient solutions, respectively.
Algorithm 1 findsF through a sequence efconstraint problems. Throughout the algorithanis decreased
by a constant valué (currently set to 1). As explained latex, may sometimes be larger to strengthen the
e-constraint. Note that a similar approach is used withoabpin [16] for the Bi-Objective Covering Tour
problem.

This strategy is somehow related to ranking methods, anetkect problem-solving scheme for bi-
objective problems. The idea of ranking methods is to starfa feasible solutio such thatf; (¥) = 2!
(or f2(¥) = 24) and to find the second best, third best, ..., feasible swigtbased on the first (or second)
objective, until the Nadir point in reached. Among the résglsolutions, there is a set of efficient solutions
that represent all points on the Pareto front. This apprdeshbeen introduced in the early 80’s to solve
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Algorithm 1 : Exact Pareto front of BOCO problems with integer objectraues.
1. Seti=1, j=20r:=2, j=1.

2. Compute the ideal and Nadir points.
3. SetF = {(z{,zJN)} ande; = zjv —AA=1).
4. Whilee; > zj, do:

(@) SolveF;(e;) through branch-and-cut and add the optimal solution vefiez7)to F.
(b) Sete; = z; — A

5. Remove dominated points froff if required (as explained later, some dominated points triigh
found throughout this procedure).

the bi-objective shortest path problem [7]. It relies onypoimial timeK -best algorithms, which have been
developed for many problems such as the shortest path anchummspanning tree problems. To prove the
correctness of Algorithm 1, we first state two lemmas sintdahose in [7]. However, the latter are specific
to the shortest path problem while our discussion takesptathe context of general BOCO problems.

Lemmal. (21, 2)) € Fand(z],21) € F.

Proof. Suppose thatz!, 2)Y) ¢ F. Then,3(z1, 22) € Z : (21, 22) = (21, 2Y). Thus according to definition
1, either:

1) z; < z{ andzy < 2 or
2) z1 <zl andzy = 2§ or
3) z1 = z{ andzy < 2§,

Since 1) and 2) contradict the definition of an ideal point badause 3) contradicts the definition of a Nadir
point, then(z{, 2l¥) € F. The proof thatz{", 21) € F is similar. O

Lemma 2. V(z1, 20) € Z, if (21,22) € F, thenz! <z < 2] andzf < 2 < 2.

Proof. By Lemma 1,(z{, 2J) € F, thus it is non-dominated. Sine¢ = minzcz 21, 21 > 2{, V(21, 22) €
F. Also, if 2o > 28, (21, 237) = (21, 22) and(z1, 22) € F. Hencez > 2f andz < 20, V(z21, 22) € F.
The proofs forz, > 24 andz; < z{¥ are similar. ]

Lemma 2 defines a region of the objective space that contanBadreto front. Let us define the set
ZV ={(21,2) € Z: 2] <z <2V andzl <z <2} @)
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which is depicted in Figure 1 by the square region formed Iayidileal and Nadir points. This region can
be used to characterize the interval of possible valuesfare. [z]f ) Zj M. Let e; be thesth value on this
interval and let us assume that" is made of subsets

z%t ={Ze€ Z%:z = fi(¥*) whereZ " is a solution ofP;(e})}. (8)
J

Figure 1 (a) depicts a typical poiat* that minimizes the second objective among the pointggfand

it shows the preferred and dominated regions accordingisopthint. If Z* € F, the other points of the
Pareto front must be in the two unidentified regionsZaf. The correctness of Algorithm 1 is shown by the
following theorem.

]]:[2 Nadlr pomt ]]:[2 Nadlr p0|nt
2 e . 2 fme .
 Region dominated
+ -d byZ : : 7%
Z o] ] : Zs— :
A ek :b A I: ................ Sl. - o
s e Y AT A AT A [~oT T TTToTTTTToTT LT ToTTTToTmooes T2
2o ; z BT =] 24 z
: Zr
Region prefered
to Z* :
2| A A | B
Ideal point : : Ideal point :
B g A0 ] A
() (b)

Figure 1: (a) lllustration of the dominance relation amotemeents ofZ". (b) lllustration of two consecu-
tive points in the sequence defined by Theorem 3.

Theorem 3. A sequence af-constraint problems’;(¢;) defined b)e}, v e where:

N S _
(a)e—z €; J.

]"

(b) € = (27 ,); — A, with 2, the value of a solution t&;(e;~') and A = 1,
generates one feasible solution for each point of the Pdretu.

Proof. Let 2%, ..., 2%, ..., Z& be the sequence of solutions corresponding to the sequénceomstraint
problems deﬂned by (a) and (b). Letus show thatd =z \ {2",..., 2, ..., 25} thenZgZ F. Assume that
there is a solutior’’ € Z \ {Z", ..., 2, ... I} such thatz”’ € F. By Lemma 2,20 < 20 < 2N, Then,
either:

CIRRELT-2007-05 5
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1) 2 = (z); (foragivens,s = 1,...,.5), or
2) (25 1)i <z < (Zf)iand(Z),); < 25 < (2)7); (for agivens, s = 1,..., 5).

In case 1)z} must be lower thaiz;"); for 2 to be efficient. But sincé\ equals 1 and since the objective
values are integers, will eventually reach a value for which the optimum of theresponding: ;-constraint
problem isz’, thatisz’ € {2, ..., Z4}, which contradicts the hypothesis. Case 2) is impossibteure
Z is the optimal value oPZ-(ej?‘1 — A), with A = 1 and integer objectives.

]

Handling the dominated pointsBecause there might exist many solutionng()ej) with different values
for objective; (i.e. |Z%| > 1), some dominated points might be generated by the sequéreeoastraint

problems defined by Theorem 3. For example, in Figure 1(a)ptintsb, c andd are dominated by point
a. Nevertheless, since all non-dominated points will be éhwome can simply exclude all the non-efficient
solutions to obtain the exact Pareto front, as it is done wigh/K-best solutions obtained from ranking
methods. Another possibility is to solve bath(e5) and Py(e;) (see Theorem 1). This can be done im-
plicitly by modifying the branch-and-cut algorithm usedstlve thee-constraint problems. Let be the
optimal value forPi(ej.). Then, the lower bound of all pending nodes in the branchieg ére greater than
or equal to(z.");, and other optimal solutions might be found by processiegp#nding nodes with a lower
bound equal tqz;");. Moreover, since a feasible solution such that); < ¢ is known,¢; can be de-
creased t¢Zz;"); — A. Doing so until no more feasible solution exists will leadatanique optimal solution
for the strengtheneelconstraint problem, which satisfies Theorem 2. This gjsateduces the number of
subproblems to the exact number of points on the Pareto, toahthose problems might be harder to solve.

The efficient set A similar modification of the branch-and-cut algorithm puecds the efficient set in addi-
tion to the Pareto front. The idea is to fathom only the nodiék wlower bound strictly greater than the
value of the best known feasible solution. The value;ashould be updated to the maximum(af*); and
¢;, for each optimal valug;* found. Moreover, inequalities that cuts all known optimalusions must be
added.

Approximation. One should also observe that the algorithm can be modifiedriergte approximations of
the Pareto front while reducing the computation time. Stheebranch-and-cut procedure runs until the gap
between the best known feasible solution value (upper boand the best linear relaxation value (lower
bound), a tolerance on this gap will produce approximatat&wis for thee-constraint problems and thus
generate an approximate Pareto front. As shown in SectitmAstrategy significantly reduces the compu-
tation time while providing good approximations of the Rarfeont.

Strengthening thec-constraint. Until now, we have considered that the constAnéquals 1, but in some
cases, it might be possible to use a larger value, which obiyicstrengthens theconstraint. We show that
A can be set to the greatest common divisor among the possiloiesvof objectivg (£2;), assuming integer
objective values.

CIRRELT-2007-05 6
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Proposition 1. Vz3, 2> € Z such that(}); # (22);,

(21); — (22);1 > Q;

Proof. Suppose there exist some poiafsandz; € Z such that(2;); — (22);] < ©;, then

(21); — (32),
o, <1 9)
Since objective values are positive integers, the lefdhside of equation (9) must be null. Therefore,
(Z1)j = (%2); which contradicts the hypothesis. O

2 Improvement Heuristics

The sequence af-constraint problems is defined by a progressive reductior) that leads to a progres-
sive increase in objective This suggests that the structure of consecutive subprsbhaight be similar.

In the following, two classes of heuristics are proposedake tadvantage of these similarities in order to
improve the branch-and-cut algorithm when solvifige;). Both heuristics exploit information gathered
from previous subproblems to solve future subproblemfa$he first heuristic exploits knowledge of the
polytope, while the second one improves the quality of thigainsolution. Later on, we will explain how
those heuristics can be applied in the case of the TSPP.

Exploiting knowledge of the polytopeThe general principle underlying cutting-plane algoritisi to re-
duce the size of the relaxed solution space by adding valis. cDue to structural similarities between
two consecutive-constraint problems, and since separation of violateduakties is often hard, it is quite
natural to keep some constraints from df¢e;) problem to the next, as long as these constraints remain
valid. This can be implemented quite easily when the brarahcut algorithm already maintains a cut-
pool. Typically, the latter contains inequalities that édeen removed to reduce the size of the model.
Since previously removed cuts can be violated again latethey are kept in a pool which is explored at the
beginning of the separation phase. We thus suggest tdiirgtide cut-pool ofPZ-(ej. ) with the active cuts at
the optimum ofPZ-(ei‘l) (another way to manage a cut-pool is proposed in [25] for thebiective Trav-
eling Purchaser problem). Knowledge of the polytope cao laésexploited to generate valid inequalities.
In the next section, we describe an inequality for the TSPfedb@an the optimal solution of the previous
problem.

Improving the initial feasible solution. Similarities between consecutive solutions can be exgldily the

heuristic that generates the initial solution. A bettetidhisolution increases the upper bound on the optimal
solution value and thus allows to prune branches early ahetesthe number of explored nodes.

3 The Traveling Salesman Problem with Profits

To empirically validate oue-constraint method for BOCO problems, we applied it to th®PSThis section
describes the problem and explains how egpnstraint method can solve it.

CIRRELT-2007-05 7
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3.1 Problem description

Among the multiple variants of the TSP [14], the TSPP beldogheselective TSRlass where a feasible
solution is not required to visit all vertices. We use thessification in [11], where variants of the selective
TSP in which values are associated with vertices are comside be TSPP. The latter is a BOCO problem
where two strongly conflicting objectives must be optimizéthmely, one must find a Hamiltonian cycle
over a subset of vertices such that the collected prize isrmzed while the travel cost is minimized. The
prize collection maximization implies that the traveleogh visit a large number of vertices, while the cost
minimization has the opposite effect.

The scope of our discussion will be restricted to the unéedISPP which can be mathematically
formulated as follows. Ler = (V, E) be an undirected complete graph, with edgefsend vertex sev’,
among which vertex stands for the depot. The nonnegative integer prizes ar@ei®n, for eachv € V
(p1 = 0). For everye € E, the nonnegative integer travel cestsatisfies the triangle inequality. We define
E(S) = {(u,v) € E :u e S,ve Standi(S) = {(u,v) € E:ue S, v¢gS}forS c V,and
V(T)={veV:Tndé{v}) # 0} forT C E. We also define}’ = V' \ {1} and for eachy € V, we
write §(v) instead ofd({v}). The decision variables are :

1 ifedgeeis used
Le = .
0 otherwise

1 if vertexwv is visited
Yy = .
0 otherwise

Finally, we definey(S) = >, cqyo andp(S) = > cgpo for S €V, andz(T) = > . ze ande(T) =
Y ecr Ce for T'C E. The TSPP can then be formulated as the following O-1 intigear program (LP):

max Z PvlYv (10)

veV
min Z Cee (1)

eck

subject to:

z(0(v)) =2y (VvEeEV) (12)
z(6(8)>2y, (VScCV:1eS, veV\S) (13)
Y1 = (14)
z.€{0,1} (Ve€eE) (15)
Yy € {0,1} VveV) (16)

The degree constraints (12) insure that a feasible solgbes exactly once through each visited vertex.
The subtour elimination constraints (13) require that eastied vertexv € V' of a feasible solution be

CIRRELT-2007-05 8
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reachable from the depot by two edge-disjoint paths. Camst(14) forces the depot to be visited and
constraints (15) and (16) impose that all variables be Odtekhat the model forces all feasible solutions to
visit at least 3 vertices. Since solutions with less thanr8aes can be easily found by explicit enumeration,
we assume, without loss of generality, that optimal sohgicontain at least 3 vertices.

In spite of its bi-objective nature, the literature focusesmono-criterion variants of the TSPP. Three
variants have been extensively studied up to now: the Phb&dithour Problem (PTP), the Orienteering
Problem (OP) and the Prize Collecting TSP (PCTSP). The RitiBduced in [8], minimizes the difference
between the collected prizes and the travel cost; it is atovk as the Simple Cycle Problem [13]. In the
OP, one must find a tour that maximizes the total collecterkpsihile maintaining the traveling cost under
a fixed value. It has been introduced in a study on orientgerampetitions [28] and it is also known as the
Selective TSP [20] and as the Maximum Collection Problen}.[Emally, the PCTSP was introduced as a
model for scheduling the daily operations of a steel rolimifj [3]. Given an undirected graph with edge
costs and node prizes, the aim of the PCTSP is to find a simple nyinimizing the total edge cost while
collecting a minimum total prize. The PCTSP is also knowrhasQuota TSP [1].

The bi-criteria nature of the TSPP has been considered infh8re the efficient set is approximated
for small problems with less than 25 vertices. To the bestiokaowledge, the bi-objective TSPP has never
been solved exactly. However, there is some literature antetgorithms for mono-criterion variants of the
TSPP which are mostly adaptations of branch-and-bouncedwoes developed for the TSP (see [11] for a
complete survey).

3.2 Finding the exact Pareto front of the TSPP

The TSPP, as defined by equations (10) to (16), is a BOCO prolleere both objectives take integer
values. Theorem 3 shows how to apply theonstraint method to find the exact Pareto front of such
problems. One must first decide which of the cost minimizatiothe collected prize maximization should
be kept in the objective. In other words, one should decitteeif-constraint problems will be OPs (collected
prize maximization) or PCTSPs (cost minimization). The BETis clearly the best choice because the
greatest common divisor among the prize values is oftertgréa@an one. That i) can often take a value
greater than one (see Proposition 1) which strengthens ithienoom prize constraint by forcing its upper
bound €) to be as close as possible to the collected prize of the ap®@ TSP solution. Note that it is not
possible to set\ > 1 in the OP, since one can hardly find the greatest common digisong all possible
Hamiltonian cycle costs.

The mathematical formulation of the PCTSP is similar to the &or the TSPP (equations 10 to 16),
except for the first objective (10) which is replaced by theimum collected prize constraint:

S yope > (17)

veV

wherep, is the prize associated with vertexandp is a constant corresponding to the minimum prize to be
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collected. Equation (17) can also be formulated as

va(l - yv) < U (18)

veV

whereU = p(V)) — p. This corresponds to theconstraint ofP;(e;), wheree; is represented by/. The
sequence of PCTSPs starts with the wersalue ¢ = 0). The latter is then progressively increased until
the largest possible valug & p(V)) is reached. Note that wheris null, the optimal PCTSP solution stays
at the depot. This zero cost solution corresponds to the pdirp?). On the other hand, the point'\, p’)

is associated with the PCTSP wijth= p(V'), which is a classical TSP.

The PCTSPs are efficiently solved through the branch-ahgroecedure described in [5]. The latter has
been modified to generate a solution with the greatest ¢etlgarize among the optimal solutionsBf(e; ),
as explained unddiandling dominated points Section 1. Thereby, the number of PCTSPs to be solved
is limited to the number of points on the Pareto front. Ouregipents show that this actually reduces the
number of subproblems by 10% on average. However, becaose subproblems are harder to solve, we
observe an increase of 159% in computation time, on avelgethus decided to use the original version
of the branch-and-cut algorithm, since it is more efficiererall.

From all the valid PCTSP inequalities used in this algorifisee Appendix A), only the cost-cover and
conditional inequalities are not guaranteed to be validafoye;. Both cuts are based on a set of vertices
or on a cycle that leads to solutions with a cost greater tharbést known feasible solution value. Since
the sequence aP;(¢;) problems is such that the solution values increase, therggpad for a subproblem
is no longer valid for the next subproblems. That is, we dogsegarate the cost-cover and conditional
inequalities. The lifted-cover inequalities are stillidah subsequent subproblems, although they lose their
strength because the cover might not remain minimal. Cgol@r inequalities also remain valid because
the minimum collected prize increases from one subprobleiing next. Simple comb, 2-matching and
logical inequalities are clearly valid for the whole seqeeenf PCTSPs.

The computation time of the branch-and-cut algorithm tloates the PCTSPs can be substantially re-
duced by using the heuristic improvements presented irndde2t In the following, we show how those
heuristics have been implemented.

Exploiting knowledge of the polytopén addition to reusing previously separated inequalitiee knowl-
edge of the polytope can be improved by adding the followmegnuality. Since the minimum collected
prize increases from one subproblem to the next, at leastiovisited vertex in;(e;) must be visited in

Pi(e5*"). Hence, we have the following validsit inequality
y(VAVS) =1 (19)

whereV " is the set of visited vertices in an optimal solution/ofe;). Such an inequality is added to the
LP of each new subproblem.
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Improving the initial feasible solution A good feasible solution can be obtained through a modidioat
to the optimal solution of the previousconstraint problem. Adding any vertex to the optimal Solutof
B—(ej‘l) actually produces a feasible solutionff(e?). Let#,;”; be an optimal solution t@i(ej‘l). Then,
the following heuristic procedure generates a feasibletignl 7 to P;(€;) :

1. Compute a feasible solutiofy with the heuristic algorithm used in [5] to find an initial &hle
solution.

2. Foreveryvertex € V\ V' | :

a) Construct solutiott; by insertingv in 2, at a location that minimizes the detour.
b) If ¢(Zs) > c(@s), Setzs = &s.

4 Computational results

We transformed VRP and TSP instances of the TSPLIB [24] irf8®F instances using the rules provided
in [5] and [12]. We considered instances for which the nodedioates were available. For VRP instances,
the demands are interpreted as the node prizes. For TSRdastahe prizes, (v € V') are generated in
three different ways:

e Generation 1p, = 1;
e Generation 2p, = 1+ (7141v 4+ 73) mod 100;
e Generation 3p, = 1+ [99%* |, wheref = max,cy c1,0.

Instances of generation 1 are in general easy problems alinmezes are the same. Generation 2 produces
instances with pseudo-random prizes while generation 8ymes hard problems where larger prizes are
associated with vertices that are further from the depot dlgorithm was implemented in C++ and was
run on a AMD Opteron 2.4 Ghz processor. The LPs were solvedjuSPLEX 9.3.

This section starts with the performance analysis of ouravgment heuristics before showing results
for all solved instances. Finally, we analyse the qualityhaf approximate Pareto fronts obtained, as ex-
plained in Section 1.

4.1 Performance of the improvement heuristics

Table 1 shows data on the performance of the improvemenidtiesron a representative sample of in-
stances. The computation times, in seconds, of the stamdigodthm without any improvement heuristic
are given in columiTD The three next columns give the relative improvement (icgmt) of the compu-
tation time due to each of the three improvement heuristics:

e ACH: keep active cuts for subsequent subproblems,
e VSI visit inequalities,
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e |SH: initial solution heuristic.

The columnsALL andAlIH give the computation time and the relative improvemenpeesvely, when all
three improvement heuristics are enabled. For each instéme best improvement is identified in bold face.

The results show that keeping the active inequalities fromm BCTSP to the next significantly reduce
the computation time (33% in average). We have no strongeacil that the visit inequalities reduce the
computation time, although a small improvement is obseoredverage. On 5 instances, however, the in-
troduction of visit inequalities slightly increases themqmutation time. Since the improvement is sometimes
around 10% while the computation times never increase by ti@amn 3%, we decided to keep them for the
exhaustive tests reported later. Using the solution of teeipus PCTSP to find a feasible initial solution
for the next subproblem improves the computation time byaltd 24.9% (9.18% in average). Combining
the three heuristics almost always give the best result® éxgeptions are reported in Table 1 where one
should have used only tH&CH heuristic.

Instance  Type| STD | ACH VS ISH ALL AIH
eil33 vrp 85.41| 2439 347 11.57 54.89 35.73
eilA76 vrp | 4528.03| 20.88 12.04 23.14 2605.27 42.46
att48 tsppl, 19.08| 46.54 -1.00 2.31 9.82 48.53
eil76 tsppl| 105.43| 52.74 -0.16 24.92 37.19 64.73

rd100 tsppl| 829.61) 53.61 -0.85 7.32 36553 55.94
pridd tsppl| 40002.63) 50.63 8.06 15.47 17481.92 56.3
ch150  tsppl 10362.8 46.65 151 16.6 3706.72 64.23
ulysses22 tsppf  21.65| 30.02 11.69 3.1 13.6 37.18

att48 tspp2| 1215.76| 15.14 2.08 2.00 866.16 28.76
berlin52  tspp2| 1386.49| 20.21 2.47 6.54| 1321.63 4.68
€il76 tspp2| 6508.44| 18.26  2.47 8.3 5158.31 20.74

rd100 tspp2| 79563.53| 41.23 -0.81 6.88 43100.31 45.83
ulysses22 tspp 21.27| 28.40 8.04 1.41 14.04 33.99

att48 tspp3| 1788.56| 14.66 -3.01 1.67 1334.41 25.39
berlin52  tspp3| 2276.94| 24.77 0.79 1.8 1292.27 43.25
st70 tspp3| 17528.77| 38.02 0.17 575 9258.1 47.18
eil76 tspp3| 7986.51| 40.52 4.14 17.1| 4971.95 37.75
Averages 33.33 3.01 9.18 40.75

Table 1: Performance of the improvement heuristics

4.2 Results for exact Pareto fronts

Tables 2, 3, 4, and 5 show results for VRP instances and TS&taj&m 1, 2 and 3 instances, respectively.
The three improvement heuristics were enabled for eachrinstreported. The columns correspond to:

e TIME: the total computation time, in seconds;
e |F|: the size of the Pareto front;
e N:the number ot-constraint problems solvép

2Thee-constraint problems are PCTSPs that visit at least 3 eati€he trivial solutions containing 1 or 2 vertices are fbbyg
enumeration and are therefore not included in N.

CIRRELT-2007-05 12



An Exact e-constraint Method for Bi-objective Combinatorial Optimization Problems
Application to the Traveling Salesman Problem with Profits

t: the average computation time of theonstraint problems;

oy: the standard deviation of theconstraint problems’ computation time;
L-5%: the percentage of the computation time spent on the 5% hprdblems;
S-50%: the percentage of the computation time spent on the 50%rgasiblems.

The letterst.l. (time limit) indicates that the instance was still unsohegdter a time limit of 72 hours
(259,200 seconds). For those instances, the coldfhgives the ratiax = ﬁ, which is an indication of
the portion of the Pareto front that has been found beforérnielimit was reached.

Our algorithm was able to solve instances of 150 verticegdasly instances (TSP generation 1) and up
to about 100 vertices for harder instances. Among thoser¢nadined unsolved after 72 hours, 39% were
almost solvedd > 0.8) while there was still a lot to do for 28% of them < 0.2). Observe that the latter
are all very hard instances (TSP generation 3).

Two factors characterize hard TSPP instances: the sizeeoP#neto front and the difficulty of the
subproblems (PCTSPs). An empirical evidence of the fir¢bfds a correlation coefficient of 0.74 between
the size of the Pareto front and the total computation time.ddserved that all instances solved in more
than 24 hours are from generations 2 and 3 (except for oné}hvidnot a surprise since both generations
are designed to produce instances with a lot of efficienttmols. On average, the ratio @F| over the
number of vertices is 8.08 and 7.84 for generations 2 andsBewrtively, while it is 1.0 for generation 1 and
3.78 for VRP instances.

The impact of the subproblems’ toughness on the computéitios is partially shown by a correla-
tion coefficient of 0.51 between the average subproblem atetipn time and the total computation time.
Although this correlation is significant, it does not tekbtlvhole story. One should observe that the subprob-
lems are not equally hard. In fact, the computation timesraustly due to a few PCTSPs. This phenomenon
is observed on hard instances with a relatively small Pdretu (that is, the latter cannot explain the in-
stance’s toughness), such@36, kroA150, kroB15@ndprl136 generation 1 instances. The statistic of
those instances is very high and 40% to 83% of the computétioa is spent on 5% of the subproblems.
Moreover, less than 2% of the computation is spent on 50%eoétibproblems (0.02% fqr76 instance).

Instance| TIME |F| N t  or L-5% SH50%

eil22 7.96 67 71 0.11 0.05 9.67 3204
eil23 8.37 75 77 0.1 0.07 9.8 21.74
eil30 27.3 125 141 0.19 0.18 18.79 19.08
eil33 54.89 159 228 0.24 0.21 16.82 20.13
att48 11.47 48 47 024 0.2 1534 2258
eil51 539.6 223 254 212 228 2165 16.36

eilA76 | 2605.27 355 458 569 7.15 24.62 14.6
eilA101 | 5046.78 498 701 7.2 97 27.13 10.39
il262 tl. 29.48 - - -

Table 2: Statistics on the VRP instances
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Instance TIME FaEY t o L-5% S50%
burmal4 0.14 14 12 0.01 0.01 2143 3571
ulysses16 0.2 16 14 0.01 0.01 15.0 25.0
ulysses22 0.51 22 21 0.02 0.01 11.76 25.49
att48 9.82 48 47 0.21 0.15 1456 24.75
eil51 10.53 51 50 0.21 0.29 23.84 13.49
berlin52 10.18 52 51 0.2 0.17 13.16 18.86
st70 61.57 70 69 0.89 1.71 36.09 6.11
eil76 37.19 76 75 0.5 0.59 2165 18.93
pr7é 175334.47 76 75 2337.79 10774.27 83.3 0.02
rat99 233.78 99 98 2.39 3.08 23,57 16.26
kroA100 341.15 100 99 3.45 481 23.22 9.18
kroB100 1075.63 100 99 10.86 33.79 54.69 2.55
kroC100 303.73 100 99 3.07 3.58 19.94 14.0
kroD100 178.9 100 99 1.81 253 2341 11.1
kroE100 837.43 100 99 8.46 25.39 52.05 3.42
rd100 365.53 100 99 3.69 10.8 59.36 5.01
eill01 90.37 101 100 0.9 0.84 19.58 20.52
lin105 5558.73 105 104 53.45 152.07 61.17 1.66
prio7 74.12 107 106 0.7 0.76 20.67 16.99
prl24 2990.82 124 123 24.32 4457 34.47 3.32
bier127 1073.62 127 126 8.52 18.13 43.96 6.68
ch130 719.24 130 129 5.58 12.87 42.61 6.25
pri36 64590.76 136 135 47845 1627.46 68.69 0.13
grl37 3354.58 137 136 24.67 64.72 48.83 3.95
prid4 17481.92 144 143 122.25 675.57 80.94 1.56
ch150 3706.72 150 149 24.88 51.03 37.53 3.14
kroA150 81024.71 150 149 543.79 1066.54 39.86 1.52
kroB150 | 68089.94 150 149 456.98 1309.99 54.31 0.39
pris52 tl. 93.38 - - - - -
ul59 tl. 39.87 - - - - -

Table 3: Statistics on the TSP generation 1 instances
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Instance TIME |F| N t o L-5% S50%
burmal4 1.73 59 60 0.03 0.02 15.03 27.17
ulysses16 4.31 102 101 0.04 0.02 10.21 34.8
ulysses22 13.6 130 130 0.1 0.05 9.78 32.65
att48 866.16 435 438 1.98 1.21 131 26.85
eil51 627.13 225 269 2.33 226 19.24 16.81
berlin52 1321.63 406 411 3.22 2.75 1597 16.84
st70 13892.93 503 643 21.61 3821 34.48 4.53
eil76 5158.31 386 538 9.59 10.81 2245 16.28
pr7é tl. 96.29 - - - - -
rat99 31524.89 662 779 4047 76,59 38.31 11.11
kroA100 tl. 87.88 - - - -

kroB100 | 186395.45 1332 1363 136.75 337.95 50.42 7.33
kroC100 | 120664.66 1311 1333 90.52 129.24 29.95 18.99
kroD100 | 53819.04 1128 1129 47.67 33.95 1543 25.2
kroE100 | 82149.58 1068 1086 75.64 119.62 32.46 9.26
rd100 43100.31 920 962 448 30.01 1431 26.92
eil101 34953.71 515 838 41.71 45.84 21.87 135
lin105 203727.18 1043 1329 153.29 291.15 36.25 10.71

prio7 tl. 49.36 - - - - -
pri24 tl. 29.24 - - - - -
bier127 tl. 87.65 - - - - -
ch130 tl. 93.87 - - - - -

Table 4: Statistics on the TSP generation 2 instances

Instance TIME |F| N t oy L-5% SH0%
burmal4 1.99 70 68 0.03 0.01 9.05 31.16
ulysses16 3.81 92 88 0.04 0.02 9.45 32.28
ulysses22 14.04 128 126 0.11 0.05 10.19 31.98
att48 1334.41 438 440 3.03 1.83 13.01 26.95
eil51 1196.46 267 299 4.0 6.16 29.71 10.51
berlin52 1292.27 439 446 2.9 2.12 1561 24.26
st70 9258.1 452 546 16.96 17.35 19.27 12.52
eil76 4971.95 383 468 10.62 8.87 16.68 20.9
pr76 tl. 8252 - - - - -
rat99 tl. 5.70 - - - - -
kroA100 | 137168.33 815 820 167.28 209.37 25.77 13.12
kroB100 tl. 16.75 - - - - -

kroC100 | 1281959 1223 1228 104.39 106.56 20.87 17.14
kroD100 | 71826.93 1063 1068 67.25 73.97 20.6 24.61

kroE100 tl. 10.38 - - - - -
rd100 180959.84 1513 1551 116.67 428.34 65.3 6.9
eil101 38227.19 499 697 54.85 92.39 33.78 7.62
lin105 tl. 977 - - - - -
pri07 tl. 216 - - - - -
pri24 tl.  3.66 - - - - -
bier127 tl.  16.09 - - - - -
ch130 tl. 88.35 - - - - -

Table 5: Statistics on the TSP generation 3 instances
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4.3 Results for approximate Pareto fronts

As explained in Section 1, our algorithm can produce an am&tion of the Pareto front. One simply
has to introduce a tolerancg)(on the minimal gap between the upper and lower bound forwisalto be
accepted by the branch-and-cut procedure. Tables 6 andw/relalts forp of 0.01 and 0.10, respectively,
on a sample of hard instances for which the exact Paretoisdmiown.

There is no consensus on the quality metrics that should déx fos multi-criteria approximation algo-
rithms. We decided to use two categories of metrics repant§th]. The first category is made of distance
based metrics while the second is made of ratios on the siteea#xact and approximated Pareto fronts.
More precisely, the columns of Tables 6 and 7 correspond to:

e .. computation time for the exact Pareto froff)(

te
e t, : computation time for the approximate Pareto fraf);(
dp

° =L 3 min % wherez, stands for the collected prize associated with pejnt

zeF Z'€F
— . . .
o d.= |—1‘ > min 'ZZ—Z| wherez,. stands for the travel cost associated with peint
eFZEF  7°
vy o
o d, = ﬁ >~ min max ('ZPZ—Z”', |ZCZ—ZC|)3;
zeFZ'€F i ¢
max __ : ('ZP_Z;)| |Zc—zé|>
o d7'"" = max min max | —=&, === |;
2€F 2eF #p Ze
FNF.
* Q1=
FNF
o Qo= "=

7l

For p = 0.01, the algorithm is 5.7 times faster than the original exactiom. It produces a very
good approximation of the Pareto front for every instanceéhef sample. Even though only an average
of 38% of the non dominated points are found, each non doetdnabint is on average at a distance of
0.002 of a point on the approximated front, according to tative Chebyshev distance metric. When the
tolerance is increased to 0.10, the algorithm runs 83 tirasteff than the original version and still finds a
good approximation of the Pareto front. The average red@ikiebyshev distance between each poirf of
and the nearest point ¢f is 0.018.

One should observe that for both valuesppi), is always lower thar),. For example, an average
of 38.0% and 62.3 % of the points ¢ are also onF whenp = 0.01 andp = 0.10, respectively. This
suggests that the approximated non dominated set is sritalerthe exact one. Actually, the size of the
approximated front corresponds to 50.506=€ 0.01) and 22.3% 4 = 0.10) of |F|, on average. Those
averages exclude TSP generation 1 instances for which betexact and approximate fronts have about
the same size. Finally, although there is no theoreticataguiae on the performance of the approximation
algorithm, the results show relatively small variationg/in This suggests that the strategy is quite robust.

3This corresponds to an average of the best relative Chebylisences. The latter defines the distance between théspoin
(z1,91) and(w2, y2) asimax(|z2 — z1, ly2 — 1))
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Instance  Type te ta ta/te d, d. d, d7rer O Q2
eilA76 vrp 2605.27 734.63 0.2820.001 0.002 0.002 0.0260.603 0.903
eilA101 vrp 5046.78 1847.79 0.3660.001 0.001 0.001 0.01p0.538 0.736
pr7é tsppl| 175334.47 28747.08 0.1640.000 0.002 0.002 0.01p0.461 0.461
pri36 tsppl/ 64590.76 4742.81 0.0730.000 0.001 0.002 0.00p0.500 0.504
prl44 tsppl/ 17481.92 5819.35 0.3330.000 0.001 0.002 0.01p0.465 0.479
kroA150 tsppl| 81024.71 2516.27 0.0310.000 0.002 0.003 0.01p0.253 0.253
kroB150 tsppl/ 68089.94 22744.47 0.3340.000 0.002 0.003 0.01p0.407 0.407
st70 tspp2| 13892.93 1061.9 0.0760.001 0.001 0.002 0.0180.475 0.685
kroB100 tspp2| 186395.45 8089.15 0.0430.001 0.001 0.002 0.02p0.261 0.645
kroC100 tspp2 120664.66 5988.84 0.0500.001 0.001 0.002 0.0410.250 0.659
rd100 tspp2| 43100.31 3712.49 0.0860.001 0.001 0.002 0.03R0.262 0.623
lin105 tspp2| 203727.18 31861.07 0.1560.001 0.001 0.002 0.0810.320 0.742
st70 tspp3 9258.1 2192.75 0.2370.002 0.001 0.003 0.030.473 0.751
kroA100 tspp3| 137168.33 17569.18 0.1280.002 0.001 0.003 0.05p0.329 0.786
kroD100 tspp3y 71826.93 12683.36 0.1770.002 0.001 0.003 0.03p0.249 0.639
rd100 tspp3| 180959.84 33950.47 0.1880.002 0.001 0.003 0.1430.171 0.617
eil101 tspp3| 38227.19 10434.01 0.2730.001 0.002 0.002 0.01f0.439 0.709
Averages 0.176| 0.001 0.001 0.002 0.0340.380 0.623

Table 6: Results for approximate Pareto fronts witk 0.01

Instance  Type te ta ta/te d, d. d, dpe Q1 Qs
eilA76 vrp 2605.27 22.83 0.0090.007 0.008 0.019 0.2100.085 0.345
eilA101 vrp 5046.78 83.48 0.0170.005 0.004 0.014 0.1410.084 0.228
pr76 tsppl| 175334.47 17.67 0.00p0.002 0.008 0.028 0.0830.118 0.122
pri36 tsppl| 64590.76 354.62 0.0050.001 0.005 0.017 0.07p0.206 0.215
prld4 tsppl/ 17481.92 599.07 0.03#0.002 0.007 0.018 0.0500.139 0.157
kroA150 tsppl| 81024.71 164.27 0.00R0.002 0.006 0.020 0.0830.073 0.078
kroB150 tsppl/ 68089.94 367.13 0.0050.000 0.006 0.018 0.0830.127 0.129
st70 tspp2| 13892.93 39.33 0.0080.007 0.006 0.018 0.1130.074 0.272
kroB100 tspp2 186395.45 163.33 0.0010.004 0.004 0.014 0.1780.035 0.208
kroC100 tspp2 120664.66 224.53 0.00R0.006 0.005 0.015 0.1550.039 0.291
rd100 tspp2| 43100.31 1623.16 0.0090.006 0.003 0.014 0.2430.052 0.226
lin105 tspp2| 203727.18  528.95 0.0080.005 0.005 0.025 0.0680.023 0.122
st70 tspp3 9258.1 460.18 0.050 0.007 0.004 0.022 0.1430.084 0.297
kroA100 tspp3| 137168.33 1211.63 0.0090.008 0.005 0.015 0.3560.058 0.333
kroD100 tspp3y 71826.93 1894.98 0.0260.006 0.004 0.016 0.1250.027 0.149
rd100 tspp3| 180959.84 1623.16 0.0090.006 0.003 0.013 0.1430.032 0.214
eil101 tspp3| 38227.19 1805.84 0.040.007 0.006 0.019 0.11B0.066 0.234
Averages 0.012| 0.005 0.006 0.018 0.1380.078 0.213

Table 7: Results for approximate Pareto fronts itk 0.10

Conclusion

We have shown that theconstraint method can be used efficiently to find the exaatBdront of BOCO
problems with integer objective values. We also providermapment heuristics devised to speed up the
resolution of thes-constraint problems when the latter are solved throughdbrand-cut. Oue-constraint
method and the improvement heuristics have been testedssialty on the TSPP. The results have shown
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the relevance of the improvement heuristics and provideditht exact solutions for TSPP instances. Be-
cause the TSPP is a very hard problem, the instances thabbawesolved are quite small. Obviously, exact
algorithms cannot run very fast on BOCO problems, but weelelthat our solutions will be useful bench-
marks to evaluate the quality of future approximation athans for the TSPP. Besides, we have shown that
good approximations of the Pareto front might be found inadt quickly through a simple modification of
our exact algorithm.
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A Appendix - Valid inequalities for the PCTSP

This appendix summarizes the valid inequalities used bythach-and-cut algorithm presented in [5] for

the model defined by equations (11) to (17). They are obtaitedr from the associated knapsack polytope,

from a combination of the SECs and the minimum prize congtrar from the associated traveling salesman

polytope.

A.1 Inequalities from the associated knapsack polytope

Two types of inequalities based on knapsack constraintscergidered. They are referred as lifted-cover

andcost-coverinequalities.

A.1.1 Lifted-cover inequalities

Let S be a minimal cover for (18), i.eS is a minimal subset df" such thap(.S) > U. The cover inequality:
Y (-y)<Isl-1 (20)

ve(SUSY)

whereS’ = {v € V' \ S : p, > maxycs py}, is valid for the knapsack problem [2]. The coefficients of
the y variables can be lifted to obtalifted-coverinequalities that reinforce equation (20). L&t= {v €
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V\ S : py, > maxyes py}, andsy, the set of the firsh elements ofS (Vi € S, p; > p;11 is assumed),
h=1,...,|S|. LetV be partitioned intd/g, V1, .., V,, ¢ = |S| — 1, where:

Vi, = {U € (SUS):p(Sh) <py < p(Sh+1)} , h=2,..q
Vi=(SUSH\Ui_,Vh, (21)
Vo=V \(Sus’)

and define:
m=h, YveV,, h=0,..q. (22)
Then, the lifted-cover inequality is written:
Z(l_yv)+ Z Wv(l_yv) < |S|_1 (23)
veS veV\S

It has been shown that (23) is valid for alke K P, whereK P is the convex hull of y € {0, 1} : y satisfies
(18) } [2]. Since the PCTS polytope is included kP [3], the lifted-cover inequalities are also valid for
the PCTSP.

A.1.2 Cost-cover inequalities

Let ¢y be the upper bound on an optimal solution. TRED, ;, c.z. < ¢y defines a knapsack constraint in

terms of costs that can be used to derive valid inequalilie$.S C V, 1 € S andog a lower bound on
the optimal TSP value 0f. Then, ifog > ¢y and if the costs satisfy the triangle inequality, the folilogy
cost-coverinequalities are valid for the PCTSP. We consider only sperases that are easy to separate,
namely, wherS| = 3:

Yu+ Yo <1 Yu,v € V' suchthat ¢y ) + ) + 1) > v (24)
and when S| = 2:
Yy, =0 VYo eV’ such that 2¢c(1,0) > cU (25)
A.2 Inequalities from the SEC and knapsack constraint

Cycle-coverandconditionalinequalities both use a knapsack constraint to strengtieSEC (13).

A.2.1 Cycle-cover inequalities

The cycle-cover inequalities exploit the minimum prize stwaint and the fact that a feasible solution must
be acycle. LefS C V, 1 € S such thap(S) < p, then

z(E(S)) <y(S) -1 (26)

is a valid inequality for the PCTSP, as shown in [5].
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A.2.2 Conditional inequalities

An upper bound:;; on the objective value can be used to derive inequalitiedlasirto the cycle-cover,
but based on the selected edges. Although they are not geedato be valid, these inequalities can be
conditionally used in a cutting-plane context. letC E such thai(7") > ¢y, then

z(T) <y(V(T)) -1 (27)

is valid for the PCTSP if no feasible solution of value lowkarn ¢;; is contained inT’, sincex(T) <
y(V(T)) holds for every feasible solution. This occurs, in parieuivhenT defines a simple cycle that
goes through the depot and for whiet¥") > .

A.3 Comb inequalities

The well known comb inequalities can be adapted from the TStRe PCTSP [4]. Let us consider two

sets of vertices, the handlé C V and the teet; C V (5 = 1,..,t). The general comb inequalities are

formulated as:

3t+1
2

2(B(T))) < y(H) + > |T;| - (28)

1 j=1

t
Jj=

forall H, Ty, ..., T; satisfying:

a) [T;NH|>1,withj=1,.,t

b) |T;\ H| > 1,withj =1,....¢;

c) ;NT; =0, withl <i<j<t and
d) ¢t > 3 and odd.

In the special case whe[€; N H| = 1 for all j, the inequalities are referred to sismple combnequalities.
Simple comb inequalities becor2ematchinginequalities if|T; \ H| = 1 for all j.
A.4 Logical inequalities

Obviously, if an edge € 4(v) is part of a solution, the vertexmust be visited, hence the following logical
inequality:
re <y, Yee€dw), veV (29)
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