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Abstract. This paper describes an exact ε-constraint method for bi-objective combinatorial 
optimization problems with integer objective values. This method tackles multi-objective 
optimization problems by solving a series of single objective subproblems, where all but 
one objective are transformed into constraints. We show in this paper that the Pareto front 
of bi-objective problems can be efficiently generated with the ε-constraint method. 
Furthermore, we describe heuristics based on information gathered from previous 
subproblems that significantly speed up the method. This approach is used to find the 
exact Pareto front of the Traveling Salesman Problem with Profits, a variant of the 
Traveling Salesman Problem in which a profit or prize value is associated with each 
vertex. The goal here is to visit a subset of vertices while addressing two conflicting 
objectives: maximize the collected prize and minimize the travel costs. We report the first 
exact results for this problem on instances derived from classical vehicle routing and 
traveling salesman problem instances. Results on approximations of the Pareto front 
obtained from a variant of our exact algorithm are also reported. 
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Introduction

Decision making issues can rarely rely on a single well defined criterion. Although the multiple facets of
a decision process can be aggregated into a single objectivefunction, this simplification involves arbitrary
rules that can hardly capture adequately the complexity of real world decision issues. Thereby, the interest
for multi-criteria decision making has continually grown during the last decades, as attested by the number
of books and surveys on the topic (see [6, 10, 22, 27], among others). It comes as no surprise if more and
more publications address combinatorial issues given thatmany real world applications involve discrete de-
cisions or events. The reader is referred to [9] for a review of the literature on multi-objective combinatorial
optimization (MOCO) problems.

This paper addresses a special case of MOCO problems, namelybi-objective combinatorial optimization
(BOCO) problems with integer objective values. BOCO problems are often considered independently of
MOCO problems because of their particular nature: going from many to two objectives corresponds to a
significant simplification of the problem (“Three is more than two plus one.”[9]). General BOCO problems
are formulated as:

min f(~x) = (f1(~x), f2(~x)) subject to: ~x ∈ X (1)

whereX is the set of feasible solutions, orsolution space. We denote each evaluation vectorf(~x) as~z and
(~z)i stands for the value of theith objective. To simplify the notation, we writezi instead of(~z)i up to
Theorem 3. From there,(~z)i is used to avoid any ambiguity.

The objective spaceis defined byZ = {~z = (z1, z2) : zi = fi(~x), ∀~x ∈ X , i = 1, 2}. Since no
solution optimizes simultaneously both objectives, one will search for an acceptable trade-off instead of an
optimal solution. This compromise must be such that no strictly better solution exists, even though some
solutions might be considered as equivalent. This involvesa partial order of the objective space, defined by
adominance relation. The latter is used to characterizePareto efficiency, a concept that replaces the optimal
solution of single objective optimization problems.

Definition 1 (Dominance relation). Let~z and~z ′ ∈ Z. We say that~z dominates~z ′ (~z ≻ ~z ′) if and only if
z1 ≤ z′1 andz2 ≤ z′2 where at least one inequality is strict.

Definition 2 (Pareto efficiency). A solution~x ∈ X is (Pareto) efficient inX , if and only if 6 ∃~x ′ ∈ X such
that f(~x ′) ≻ f(~x).

Definition 3 (Efficient set). The efficient setE = {~x ∈ X : ~x is Pareto efficient inX}.

Definition 4 (Pareto front). The Pareto frontF = {f(~x) : ~x ∈ E}.

The Efficient set(E) and Pareto front (F) contain all the Pareto efficient solutions and all the non-
dominated points in the objective space, respectively. Since the efficient set is defined on the solution space
while the Pareto front is defined on the objective space, the cardinality ofE is always greater than or equal
to the cardinality ofF . That is, there might be many feasible solutions that correspond to the same point in
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the objective space. Usually the aim of multi-objective optimization is to find one solution for each point of
F or to approximate the Pareto front with an efficient set of solutions.

Among exact methods to find the Pareto front of MOCO problems,weighted sum scalarization is the
most popular according to [9]. This method solves differentsingle objective subproblems generated by
a linear scalarization of the objectives. By varying the weights of this linear function, all supported1 non-
dominated points can be found. It is worth noting that the subproblems are as easy to solve as the correspond-
ing mono-criterion problems. On the other hand, linear scalarization cannot find unsupported points and is
therefore ill-suited for non-convex objective spaces suchas those associated with MOCO problems. This
drawback can be overcome with the Two-Phase Method [29] thatfinds all supported points ofF through
a weighted sum scalarization in the first phase, while non-supported points are found during the second
phase with problem specific methods. Most algorithms that find the exact Pareto front of MOCO prob-
lems are variants of the Two-Phase Method [9], although other parametric approaches based on weighted
scalarizations can find the exact Pareto front of BOCO problems [19, 23, 26].

Besides weighting sum algorithms, theǫ-constraint method [6, 22] is the best known approach for solv-
ing MOCO problems, according to [9]. This method generates single objective subproblems, calledǫ-
constraint problems, by transforming all but one objectives into constraints. The upper bounds of these
constraints are given by theǫ-vector and, by varying it, the exact Pareto front can theoretically be generated.
In practice, because of the high number of subproblems and the difficulty to establish an efficient variation
scheme for theǫ-vector, this approach has mostly been integrated within heuristic and interactive schemes.
It can however generate the exact Pareto front in particularsituations, such as BOCO problems, as we will
see later.

This paper focuses on BOCO problems for which no polynomial time algorithm exist for solving the
corresponding single objective problems, but where the latter can still be efficiently solved through branch-
and-cut. Many problems share these characteristics, including the Bi-Objective Covering Tour problem
[16] and bi-objective variants of the Traveling Salesman Problem (TSP), such as the Bi-Objective Traveling
Purchaser Problem [25] and the Traveling Salesman Problem with Profits (TSPP) [11]. For these problems,
ǫ-constraint methods are particularly attractive because the addition of new constraints through a branch-
and-cut procedure is quite natural.

The first contribution of this paper is to show the correctness of an efficient variant of theǫ-constraint
method for BOCO problems, where exactly oneǫ-constraint problem is solved for each point on the Pareto
front. The second contribution is the introduction of heuristic improvements based on the exploitation of
information gathered from previous problems that providessignificant speed-ups. The proposed method is
then used to solve instances of the TSPP, a variation of the TSP in which a profit or prize value is associated
with each vertex. We report the first exact Pareto fronts for TSPP instances obtained from classical VRP
and TSP instances available in the TSPLIB [24]. The paper is organized as follows. Our general problem-
solving approach is presented in Section 1. Then, Section 2 introduces the improvement heuristics. Section
3 describes the TSPP and explains how our general algorithm can be adapted to solve it. Finally, Section 4
reports computational results on several TSPP instances.

1The supported points are those found on the convex envelope of the objective space.
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1 Exact ǫ-constraint method for BOCO problems

The ǫ-constraint method has been developed for general multi-objective problems. It solvesǫ-constraint
problemsPk(ǫ) obtained by transforming one of the objectives into a constraint. For the bi-objective case,
thePi(ǫj) problems are:

min fi(~x) (2)

subject to: ~x ∈ X , (3)

fj(~x) ≤ ǫj , i, j = 1, 2 i 6= j. (4)

Theorem 1. ~x ∗ is an efficient solution of a BOCO problem if and only if~x ∗ solvesPi(ǫj) for i = 1, 2.

Theorem 2. If ~x ∗ solvesPi(ǫj) for somei and if this solution is unique, then~x ∗ is an efficient solution of
a BOCO problem.

Theorems 1 and 2 are proved for general multi-objective problems (see [6, 22]) and are therefore valid for
BOCO problems. These theorems mean that efficient solutionscan always be found by solvingǫ-constraint
problems, as long asǫj is such thatPi(ǫj) is feasible. Moreover, Theorem 1 indicates that for any efficient
solution~x ∗, one can find anǫj such that~x ∗ solvesPi(ǫj) for i = 1, 2. In other words, the exact Pareto front
can be found by solvingǫ-constraint problems, as long as we know how to modifyǫj to generate at least
one solution for every point ofF . This issue has recently been addressed for the general multi-objective
case in [21], but it remains an important drawback of theǫ-constraint method. However, the particularities
of BOCO problems yield to a simple variation scheme forǫ that can be numerically implemented. The idea
is to construct a sequence ofPi(ǫj) problems based on a progressive reduction ofǫj. Let~z I = (zI

1 , zI
2) with

zI
1 = min

~z∈Z
z1 and zI

2 = min
~z∈Z

z2, (5)

be the ideal point and let~z N = (zN
1 , zN

2 ) with

zN
1 = min

~z∈Z
{z1 : z2 = zI

2} and zN
2 = min

~z∈Z
{z2 : z1 = zI

1} (6)

be the Nadir point that defines lower and upper bounds on the value of efficient solutions, respectively.
Algorithm 1 findsF through a sequence ofǫ-constraint problems. Throughout the algorithm,ǫj is decreased
by a constant value∆ (currently set to 1). As explained later,∆ may sometimes be larger to strengthen the
ǫ-constraint. Note that a similar approach is used without proof in [16] for the Bi-Objective Covering Tour
problem.

This strategy is somehow related to ranking methods, another exact problem-solving scheme for bi-
objective problems. The idea of ranking methods is to start from a feasible solution~x such thatf1(~x) = zI

1

(or f2(~x) = zI
2) and to find the second best, third best, ..., feasible solutions based on the first (or second)

objective, until the Nadir point in reached. Among the resulting solutions, there is a set of efficient solutions
that represent all points on the Pareto front. This approachhas been introduced in the early 80’s to solve
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Algorithm 1 : Exact Pareto front of BOCO problems with integer objectivevalues.
1. Seti = 1, j = 2 or i = 2, j = 1.

2. Compute the ideal and Nadir points.

3. SetF = {(zI
i , zN

j )} andǫj = zN
j − ∆ (∆ = 1).

4. Whileǫj ≥ zI
j , do:

(a) SolvePi(ǫj) through branch-and-cut and add the optimal solution value(z∗i , z∗j )to F .

(b) Setǫj = z∗j − ∆.

5. Remove dominated points fromF if required (as explained later, some dominated points might be
found throughout this procedure).

the bi-objective shortest path problem [7]. It relies on polynomial timeK-best algorithms, which have been
developed for many problems such as the shortest path and minimum spanning tree problems. To prove the
correctness of Algorithm 1, we first state two lemmas similarto those in [7]. However, the latter are specific
to the shortest path problem while our discussion takes place in the context of general BOCO problems.

Lemma 1. (zI
1 , zN

2 ) ∈ F and(zN
1 , zI

2) ∈ F .

Proof. Suppose that(zI
1 , zN

2 ) 6∈ F . Then,∃(z1, z2) ∈ Z : (z1, z2) ≻ (zI
1 , zN

2 ). Thus according to definition
1, either:

1) z1 < zI
1 andz2 < zN

2 or

2) z1 < zI
1 andz2 = zN

2 or

3) z1 = zI
1 andz2 < zN

2 .

Since 1) and 2) contradict the definition of an ideal point andbecause 3) contradicts the definition of a Nadir
point, then(zI

1 , zN
2 ) ∈ F . The proof that(zN

1 , zI
2) ∈ F is similar.

Lemma 2. ∀(z1, z2) ∈ Z, if (z1, z2) ∈ F , thenzI
1 ≤ z1 ≤ zN

1 andzI
2 ≤ z2 ≤ zN

2 .

Proof. By Lemma 1,(zI
1 , zN

2 ) ∈ F , thus it is non-dominated. SincezI
1 = min~z∈Z z1, z1 ≥ zI

1 , ∀(z1, z2) ∈
F . Also, if z2 > zN

2 , (zI
1 , zN

2 ) ≻ (z1, z2) and(z1, z2) 6∈ F . Hence,z1 ≥ zI
1 andz2 ≤ zN

2 , ∀(z1, z2) ∈ F .
The proofs forz2 ≥ zI

2 andz1 ≤ zN
1 are similar.

Lemma 2 defines a region of the objective space that contains the Pareto front. Let us define the set

Z+ = {(z1, z2) ∈ Z : zI
1 ≤ z1 ≤ zN

1 andzI
2 ≤ z2 ≤ zN

2 } (7)
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which is depicted in Figure 1 by the square region formed by the ideal and Nadir points. This region can
be used to characterize the interval of possible values forǫj, i.e. [zI

j , zN
j ]. Let ǫs

j be thesth value on this
interval and let us assume thatZ+ is made of subsets

Z+
ǫs
j

= {~z ∈ Z+ : zi = fi(~x
∗) where~x ∗ is a solution ofPi(ǫ

s
j)}. (8)

Figure 1 (a) depicts a typical point~z ∗ that minimizes the second objective among the points ofZ+
ǫs
2

and
it shows the preferred and dominated regions according to this point. If ~z ∗ ∈ F , the other points of the
Pareto front must be in the two unidentified regions ofZ+. The correctness of Algorithm 1 is shown by the
following theorem.

f1

f2

f1

zN
2

zI
2

zI
1 zN

1

Ideal point

Nadir point

z∗2

z∗1

Region prefered
to ~z ∗

Z+
ǫk
2

Region dominated
by ~z ∗

f2

zN
2

zI
2

zI
1 zN

1

Ideal point

Nadir point

~z ∗
s−1

~z ∗
s

∆

Z+
ǫs
2

(b)(a)

ǫs
2a

b
c
d

Figure 1: (a) Illustration of the dominance relation among elements ofZ+. (b) Illustration of two consecu-
tive points in the sequence defined by Theorem 3.

Theorem 3. A sequence ofǫ-constraint problemsPi(ǫj) defined byǫ1
j , ..., ǫ

s
j , ..., ǫ

S
j where:

(a) ǫ1
j = zN

j , ǫS
j = zI

j ,

(b) ǫs
j = (~z ∗

s−1)j − ∆, with ~z ∗
s−1 the value of a solution toPi(ǫ

s−1
j ) and∆ = 1,

generates one feasible solution for each point of the Paretofront.

Proof. Let ~z ∗
1 , ..., ~z ∗

s , ..., ~z ∗
S be the sequence of solutions corresponding to the sequence of ǫ-constraint

problems defined by (a) and (b). Let us show that if~z ∈ Z \ {~z ∗
1 , ..., ~z ∗

s , ..., ~z ∗
S }, then~z 6∈ F . Assume that

there is a solution~z ′ ∈ Z \ {~z ∗
1 , ..., ~z ∗

s , ..., ~z ∗
|F|} such that~z ′ ∈ F . By Lemma 2,zI

i ≤ z′i ≤ zN
i . Then,

either:
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1) z′i = (z ∗
s )i (for a givens, s = 1, ..., S), or

2) (~z ∗
s−1)i < z′i < (~z ∗

s )i and(~z ∗
s−1)j < z′j ≤ (~z ∗

s )j (for a givens, s = 1, ..., S).

In case 1),z′j must be lower than(~z ∗
s )j for ~z ′ to be efficient. But since∆ equals 1 and since the objective

values are integers,ǫj will eventually reach a value for which the optimum of the correspondingǫj-constraint
problem is~z ′, that is~z ′ ∈ {~z ∗

s+1, ..., ~z
∗
S }, which contradicts the hypothesis. Case 2) is impossible because

~z ∗
s is the optimal value ofPi(ǫ

s−1
j − ∆), with ∆ = 1 and integer objectives.

Handling the dominated points.Because there might exist many solutions toPi(ǫ
s
j) with different values

for objectivej (i.e. |Z+
ǫs
j
| > 1), some dominated points might be generated by the sequence of ǫ-constraint

problems defined by Theorem 3. For example, in Figure 1(a), the pointsb, c andd are dominated by point
a. Nevertheless, since all non-dominated points will be found, one can simply exclude all the non-efficient
solutions to obtain the exact Pareto front, as it is done withthe K-best solutions obtained from ranking
methods. Another possibility is to solve bothP1(ǫ

s
2) andP2(ǫ

s
1) (see Theorem 1). This can be done im-

plicitly by modifying the branch-and-cut algorithm used tosolve theǫ-constraint problems. Let~z ∗
s be the

optimal value forPi(ǫ
s
j). Then, the lower bound of all pending nodes in the branching tree are greater than

or equal to(~z ∗
s )i, and other optimal solutions might be found by processing the pending nodes with a lower

bound equal to(~z ∗
s )i. Moreover, since a feasible solution such that(~z ∗

s )j ≤ ǫs
j is known,ǫs

j can be de-
creased to(~z ∗

s )j − ∆. Doing so until no more feasible solution exists will lead toa unique optimal solution
for the strengthenedǫ-constraint problem, which satisfies Theorem 2. This strategy reduces the number of
subproblems to the exact number of points on the Pareto front, but those problems might be harder to solve.

The efficient set.A similar modification of the branch-and-cut algorithm produces the efficient set in addi-
tion to the Pareto front. The idea is to fathom only the nodes with a lower bound strictly greater than the
value of the best known feasible solution. The value ofǫs

j should be updated to the maximum of(~z ∗)j and
ǫj, for each optimal value~z ∗

s found. Moreover, inequalities that cuts all known optimal solutions must be
added.

Approximation. One should also observe that the algorithm can be modified to generate approximations of
the Pareto front while reducing the computation time. Sincethe branch-and-cut procedure runs until the gap
between the best known feasible solution value (upper bound) and the best linear relaxation value (lower
bound), a tolerance on this gap will produce approximate solutions for theǫ-constraint problems and thus
generate an approximate Pareto front. As shown in Section 4,this strategy significantly reduces the compu-
tation time while providing good approximations of the Pareto front.

Strengthening theǫ-constraint. Until now, we have considered that the constant∆ equals 1, but in some
cases, it might be possible to use a larger value, which obviously strengthens theǫ-constraint. We show that
∆ can be set to the greatest common divisor among the possible values of objectivej (Ωj), assuming integer
objective values.
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Proposition 1. ∀~z1, ~z2 ∈ Z such that(~z1)j 6= (~z2)j , |(~z1)j − (~z2)j | ≥ Ωj

Proof. Suppose there exist some points~z1 and~z2 ∈ Z such that|(~z2)j − (~z2)j | < Ωj, then

|(~z1)j − (~z2)j |

Ωj
< 1 (9)

Since objective values are positive integers, the left-hand side of equation (9) must be null. Therefore,
(~z1)j = (~z2)j which contradicts the hypothesis.

2 Improvement Heuristics

The sequence ofǫ-constraint problems is defined by a progressive reduction of ǫj that leads to a progres-
sive increase in objectivei. This suggests that the structure of consecutive subproblems might be similar.
In the following, two classes of heuristics are proposed to take advantage of these similarities in order to
improve the branch-and-cut algorithm when solvingPi(ǫj). Both heuristics exploit information gathered
from previous subproblems to solve future subproblems faster. The first heuristic exploits knowledge of the
polytope, while the second one improves the quality of the initial solution. Later on, we will explain how
those heuristics can be applied in the case of the TSPP.

Exploiting knowledge of the polytope. The general principle underlying cutting-plane algorithms is to re-
duce the size of the relaxed solution space by adding valid cuts. Due to structural similarities between
two consecutiveǫ-constraint problems, and since separation of violated inequalities is often hard, it is quite
natural to keep some constraints from onePi(ǫj) problem to the next, as long as these constraints remain
valid. This can be implemented quite easily when the branch-and-cut algorithm already maintains a cut-
pool. Typically, the latter contains inequalities that have been removed to reduce the size of the model.
Since previously removed cuts can be violated again later on, they are kept in a pool which is explored at the
beginning of the separation phase. We thus suggest to initialize the cut-pool ofPi(ǫ

s
j) with the active cuts at

the optimum ofPi(ǫ
s−1
j ) (another way to manage a cut-pool is proposed in [25] for the Bi-objective Trav-

eling Purchaser problem). Knowledge of the polytope can also be exploited to generate valid inequalities.
In the next section, we describe an inequality for the TSPP based on the optimal solution of the previous
problem.

Improving the initial feasible solution. Similarities between consecutive solutions can be exploited by the
heuristic that generates the initial solution. A better initial solution increases the upper bound on the optimal
solution value and thus allows to prune branches early and reduce the number of explored nodes.

3 The Traveling Salesman Problem with Profits

To empirically validate ourǫ-constraint method for BOCO problems, we applied it to the TSPP. This section
describes the problem and explains how ourǫ-constraint method can solve it.
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3.1 Problem description

Among the multiple variants of the TSP [14], the TSPP belongsto theselective TSPclass where a feasible
solution is not required to visit all vertices. We use the classification in [11], where variants of the selective
TSP in which values are associated with vertices are considered to be TSPP. The latter is a BOCO problem
where two strongly conflicting objectives must be optimized. Namely, one must find a Hamiltonian cycle
over a subset of vertices such that the collected prize is maximized while the travel cost is minimized. The
prize collection maximization implies that the traveler should visit a large number of vertices, while the cost
minimization has the opposite effect.

The scope of our discussion will be restricted to the undirected TSPP which can be mathematically
formulated as follows. LetG = (V,E) be an undirected complete graph, with edge setE and vertex setV ,
among which vertex1 stands for the depot. The nonnegative integer prizes are denotedpv for eachv ∈ V
(p1 = 0). For everye ∈ E, the nonnegative integer travel costce satisfies the triangle inequality. We define
E(S) = {(u, v) ∈ E : u ∈ S, v ∈ S} andδ(S) = {(u, v) ∈ E : u ∈ S, v 6∈ S} for S ⊂ V , and
V (T ) = {v ∈ V : T ∩ δ({v}) 6= ∅} for T ⊆ E. We also define,V ′ = V \ {1} and for eachv ∈ V , we
write δ(v) instead ofδ({v}). The decision variables are :

xe =

{

1 if edgee is used

0 otherwise

yv =

{

1 if vertex v is visited

0 otherwise

Finally, we definey(S) =
∑

v∈S yv andp(S) =
∑

v∈S pv for S ⊆ V , andx(T ) =
∑

e∈T xe andc(T ) =
∑

e∈T ce for T ⊆ E. The TSPP can then be formulated as the following 0-1 integerlinear program (LP):

max
∑

v∈V

pvyv (10)

min
∑

e∈E

cexe (11)

subject to:

x(δ(v)) = 2yv (∀ v ∈ V ) (12)

x(δ(S)) ≥ 2yv (∀ S ⊂ V : 1 ∈ S, v ∈ V \ S) (13)

y1 = 1 (14)

xe ∈ {0, 1} (∀ e ∈ E) (15)

yv ∈ {0, 1} (∀ v ∈ V ′) (16)

The degree constraints (12) insure that a feasible solutiongoes exactly once through each visited vertex.
The subtour elimination constraints (13) require that eachvisited vertexv ∈ V ′ of a feasible solution be
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reachable from the depot by two edge-disjoint paths. Constraint (14) forces the depot to be visited and
constraints (15) and (16) impose that all variables be 0-1. Note that the model forces all feasible solutions to
visit at least 3 vertices. Since solutions with less than 3 vertices can be easily found by explicit enumeration,
we assume, without loss of generality, that optimal solutions contain at least 3 vertices.

In spite of its bi-objective nature, the literature focuseson mono-criterion variants of the TSPP. Three
variants have been extensively studied up to now: the Profitable Tour Problem (PTP), the Orienteering
Problem (OP) and the Prize Collecting TSP (PCTSP). The PTP, introduced in [8], minimizes the difference
between the collected prizes and the travel cost; it is also known as the Simple Cycle Problem [13]. In the
OP, one must find a tour that maximizes the total collected prize while maintaining the traveling cost under
a fixed value. It has been introduced in a study on orienteering competitions [28] and it is also known as the
Selective TSP [20] and as the Maximum Collection Problem [17]. Finally, the PCTSP was introduced as a
model for scheduling the daily operations of a steel rollingmill [3]. Given an undirected graph with edge
costs and node prizes, the aim of the PCTSP is to find a simple cycle minimizing the total edge cost while
collecting a minimum total prize. The PCTSP is also known as the Quota TSP [1].

The bi-criteria nature of the TSPP has been considered in [18] where the efficient set is approximated
for small problems with less than 25 vertices. To the best of our knowledge, the bi-objective TSPP has never
been solved exactly. However, there is some literature on exact algorithms for mono-criterion variants of the
TSPP which are mostly adaptations of branch-and-bound procedures developed for the TSP (see [11] for a
complete survey).

3.2 Finding the exact Pareto front of the TSPP

The TSPP, as defined by equations (10) to (16), is a BOCO problem where both objectives take integer
values. Theorem 3 shows how to apply theǫ-constraint method to find the exact Pareto front of such
problems. One must first decide which of the cost minimization or the collected prize maximization should
be kept in the objective. In other words, one should decide iftheǫ-constraint problems will be OPs (collected
prize maximization) or PCTSPs (cost minimization). The PCTSP is clearly the best choice because the
greatest common divisor among the prize values is often greater than one. That is,∆ can often take a value
greater than one (see Proposition 1) which strengthens the minimum prize constraint by forcing its upper
bound (ǫ) to be as close as possible to the collected prize of the optimal PCTSP solution. Note that it is not
possible to set∆ > 1 in the OP, since one can hardly find the greatest common divisor among all possible
Hamiltonian cycle costs.

The mathematical formulation of the PCTSP is similar to the one for the TSPP (equations 10 to 16),
except for the first objective (10) which is replaced by the minimum collected prize constraint:

∑

v∈V

yvpv ≥ p̄ (17)

wherepv is the prize associated with vertexv andp̄ is a constant corresponding to the minimum prize to be
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collected. Equation (17) can also be formulated as

∑

v∈V

pv(1 − yv) ≤ U (18)

whereU = p(V ) − p̄. This corresponds to theǫ-constraint ofPi(ǫj), whereǫj is represented byU . The
sequence of PCTSPs starts with the worstp̄ value (̄p = 0). The latter is then progressively increased until
the largest possible value (p̄ = p(V )) is reached. Note that when̄p is null, the optimal PCTSP solution stays
at the depot. This zero cost solution corresponds to the point (cI , pN ). On the other hand, the point (cN , pI )
is associated with the PCTSP with̄p = p(V ), which is a classical TSP.

The PCTSPs are efficiently solved through the branch-and-cut procedure described in [5]. The latter has
been modified to generate a solution with the greatest collected prize among the optimal solutions ofPi(ǫj),
as explained underHandling dominated pointsin Section 1. Thereby, the number of PCTSPs to be solved
is limited to the number of points on the Pareto front. Our experiments show that this actually reduces the
number of subproblems by 10% on average. However, because those subproblems are harder to solve, we
observe an increase of 159% in computation time, on average.We thus decided to use the original version
of the branch-and-cut algorithm, since it is more efficient overall.

From all the valid PCTSP inequalities used in this algorithm(see Appendix A), only the cost-cover and
conditional inequalities are not guaranteed to be valid forany ǫj. Both cuts are based on a set of vertices
or on a cycle that leads to solutions with a cost greater than the best known feasible solution value. Since
the sequence ofPi(ǫj) problems is such that the solution values increase, the upper bound for a subproblem
is no longer valid for the next subproblems. That is, we do notseparate the cost-cover and conditional
inequalities. The lifted-cover inequalities are still valid in subsequent subproblems, although they lose their
strength because the cover might not remain minimal. Cycle-cover inequalities also remain valid because
the minimum collected prize increases from one subproblem to the next. Simple comb, 2-matching and
logical inequalities are clearly valid for the whole sequence of PCTSPs.

The computation time of the branch-and-cut algorithm that solves the PCTSPs can be substantially re-
duced by using the heuristic improvements presented in Section 2. In the following, we show how those
heuristics have been implemented.

Exploiting knowledge of the polytope. In addition to reusing previously separated inequalities, the knowl-
edge of the polytope can be improved by adding the following inequality. Since the minimum collected
prize increases from one subproblem to the next, at least oneunvisited vertex inPi(ǫ

s
j) must be visited in

Pi(ǫ
s+1
j ). Hence, we have the following validvisit inequality:

y(V \ V ∗
s ) ≥ 1 (19)

whereV ∗
s is the set of visited vertices in an optimal solution ofPi(ǫ

s
j). Such an inequality is added to the

LP of each new subproblem.
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Improving the initial feasible solution. A good feasible solution can be obtained through a modification
to the optimal solution of the previousǫ-constraint problem. Adding any vertex to the optimal solution of
Pi(ǫ

s−1
j ) actually produces a feasible solution toPi(ǫ

s
j). Let~x ∗

s−1 be an optimal solution toPi(ǫ
s−1
j ). Then,

the following heuristic procedure generates a feasible solution x̃s to Pi(ǫ
s
j) :

1. Compute a feasible solutioñxs with the heuristic algorithm used in [5] to find an initial feasible
solution.

2. For every vertexv ∈ V \ V ∗
s−1 :

a) Construct solution̂xs by insertingv in ~x ∗
s−1 at a location that minimizes the detour.

b) If c(x̃s) > c(x̂s), setx̃s = x̂s.

4 Computational results

We transformed VRP and TSP instances of the TSPLIB [24] into TSPP instances using the rules provided
in [5] and [12]. We considered instances for which the node coordinates were available. For VRP instances,
the demands are interpreted as the node prizes. For TSP instances, the prizespv (v ∈ V ′) are generated in
three different ways:

• Generation 1:pv = 1;
• Generation 2:pv = 1 + (7141v + 73) mod 100;
• Generation 3:pv = 1 + ⌊99

c1,v

θ
⌋, whereθ = maxw∈V ′ c1,w.

Instances of generation 1 are in general easy problems sinceall prizes are the same. Generation 2 produces
instances with pseudo-random prizes while generation 3 produces hard problems where larger prizes are
associated with vertices that are further from the depot. The algorithm was implemented in C++ and was
run on a AMD Opteron 2.4 Ghz processor. The LPs were solved using CPLEX 9.3.

This section starts with the performance analysis of our improvement heuristics before showing results
for all solved instances. Finally, we analyse the quality ofthe approximate Pareto fronts obtained, as ex-
plained in Section 1.

4.1 Performance of the improvement heuristics

Table 1 shows data on the performance of the improvement heuristics on a representative sample of in-
stances. The computation times, in seconds, of the standardalgorithm without any improvement heuristic
are given in columnSTD. The three next columns give the relative improvement (in percent) of the compu-
tation time due to each of the three improvement heuristics:

• ACH: keep active cuts for subsequent subproblems,
• VSI: visit inequalities,
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• ISH: initial solution heuristic.

The columnsALL andAIH give the computation time and the relative improvement, respectively, when all
three improvement heuristics are enabled. For each instance, the best improvement is identified in bold face.

The results show that keeping the active inequalities from one PCTSP to the next significantly reduce
the computation time (33% in average). We have no strong evidence that the visit inequalities reduce the
computation time, although a small improvement is observedon average. On 5 instances, however, the in-
troduction of visit inequalities slightly increases the computation time. Since the improvement is sometimes
around 10% while the computation times never increase by more than 3%, we decided to keep them for the
exhaustive tests reported later. Using the solution of the previous PCTSP to find a feasible initial solution
for the next subproblem improves the computation time by 1.4% to 24.9% (9.18% in average). Combining
the three heuristics almost always give the best results. Two exceptions are reported in Table 1 where one
should have used only theACH heuristic.

Instance Type STD ACH VSI ISH ALL AIH
eil33 vrp 85.41 24.39 3.47 11.57 54.89 35.73
eilA76 vrp 4528.03 20.88 12.04 23.14 2605.27 42.46
att48 tspp1 19.08 46.54 -1.00 2.31 9.82 48.53
eil76 tspp1 105.43 52.74 -0.16 24.92 37.19 64.73
rd100 tspp1 829.61 53.61 -0.85 7.32 365.53 55.94
pr144 tspp1 40002.63 50.63 8.06 15.47 17481.92 56.3
ch150 tspp1 10362.8 46.65 1.51 16.66 3706.72 64.23
ulysses22 tspp2 21.65 30.02 11.69 3.19 13.6 37.18
att48 tspp2 1215.76 15.14 2.08 2.00 866.16 28.76
berlin52 tspp2 1386.49 20.21 2.47 6.54 1321.63 4.68
eil76 tspp2 6508.44 18.26 2.47 8.3 5158.31 20.74
rd100 tspp2 79563.53 41.23 -0.81 6.88 43100.31 45.83
ulysses22 tspp3 21.27 28.40 8.04 1.41 14.04 33.99
att48 tspp3 1788.56 14.66 -3.01 1.67 1334.41 25.39
berlin52 tspp3 2276.94 24.77 0.79 1.88 1292.27 43.25
st70 tspp3 17528.77 38.02 0.17 5.75 9258.1 47.18
eil76 tspp3 7986.51 40.52 4.14 17.1 4971.95 37.75
Averages 33.33 3.01 9.18 40.75

Table 1: Performance of the improvement heuristics

4.2 Results for exact Pareto fronts

Tables 2, 3, 4, and 5 show results for VRP instances and TSP generation 1, 2 and 3 instances, respectively.
The three improvement heuristics were enabled for each instance reported. The columns correspond to:

• TIME: the total computation time, in seconds;
• |F|: the size of the Pareto front;
• N: the number ofǫ-constraint problems solved2;

2Theǫ-constraint problems are PCTSPs that visit at least 3 vertices. The trivial solutions containing 1 or 2 vertices are found by
enumeration and are therefore not included in N.
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• t̄: the average computation time of theǫ-constraint problems;
• σt: the standard deviation of theǫ-constraint problems’ computation time;
• L-5%: the percentage of the computation time spent on the 5% harder problems;
• S-50%: the percentage of the computation time spent on the 50% easier problems.

The letterst.l. (time limit) indicates that the instance was still unsolvedafter a time limit of 72 hours
(259,200 seconds). For those instances, the column|F| gives the ratioα = p̄

p(V ) , which is an indication of
the portion of the Pareto front that has been found before thetime limit was reached.

Our algorithm was able to solve instances of 150 vertices foreasy instances (TSP generation 1) and up
to about 100 vertices for harder instances. Among those thatremained unsolved after 72 hours, 39% were
almost solved (α > 0.8) while there was still a lot to do for 28% of them (α < 0.2). Observe that the latter
are all very hard instances (TSP generation 3).

Two factors characterize hard TSPP instances: the size of the Pareto front and the difficulty of the
subproblems (PCTSPs). An empirical evidence of the first factor is a correlation coefficient of 0.74 between
the size of the Pareto front and the total computation time. We observed that all instances solved in more
than 24 hours are from generations 2 and 3 (except for one), which is not a surprise since both generations
are designed to produce instances with a lot of efficient solutions. On average, the ratio of|F| over the
number of vertices is 8.08 and 7.84 for generations 2 and 3, respectively, while it is 1.0 for generation 1 and
3.78 for VRP instances.

The impact of the subproblems’ toughness on the computationtime is partially shown by a correla-
tion coefficient of 0.51 between the average subproblem computation time and the total computation time.
Although this correlation is significant, it does not tell the whole story. One should observe that the subprob-
lems are not equally hard. In fact, the computation times aremostly due to a few PCTSPs. This phenomenon
is observed on hard instances with a relatively small Paretofront (that is, the latter cannot explain the in-
stance’s toughness), such aspr76, kroA150, kroB150andpr136 generation 1 instances. Theσt statistic of
those instances is very high and 40% to 83% of the computationtime is spent on 5% of the subproblems.
Moreover, less than 2% of the computation is spent on 50% of the subproblems (0.02% forpr76 instance).

Instance TIME |F| N t̄ σt L-5% S-50%
eil22 7.96 67 71 0.11 0.05 9.67 32.04
eil23 8.37 75 77 0.11 0.07 9.8 21.74
eil30 27.3 125 141 0.19 0.18 18.79 19.08
eil33 54.89 159 228 0.24 0.21 16.82 20.13
att48 11.47 48 47 0.24 0.2 15.34 22.58
eil51 539.6 223 254 2.12 2.28 21.65 16.36
eilA76 2605.27 355 458 5.69 7.15 24.62 14.6
eilA101 5046.78 498 701 7.2 9.7 27.13 10.39
gil262 t.l. 29.48 - - - - -

Table 2: Statistics on the VRP instances
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Instance TIME |F| N t̄ σt L-5% S-50%
burma14 0.14 14 12 0.01 0.01 21.43 35.71
ulysses16 0.2 16 14 0.01 0.01 15.0 25.0
ulysses22 0.51 22 21 0.02 0.01 11.76 25.49
att48 9.82 48 47 0.21 0.15 14.56 24.75
eil51 10.53 51 50 0.21 0.29 23.84 13.49
berlin52 10.18 52 51 0.2 0.17 13.16 18.86
st70 61.57 70 69 0.89 1.71 36.09 6.11
eil76 37.19 76 75 0.5 0.59 21.65 18.93
pr76 175334.47 76 75 2337.79 10774.27 83.3 0.02
rat99 233.78 99 98 2.39 3.03 23.57 16.26
kroA100 341.15 100 99 3.45 4.81 23.22 9.18
kroB100 1075.63 100 99 10.86 33.79 54.69 2.55
kroC100 303.73 100 99 3.07 3.58 19.94 14.0
kroD100 178.9 100 99 1.81 2.53 23.41 11.1
kroE100 837.43 100 99 8.46 25.39 52.05 3.42
rd100 365.53 100 99 3.69 10.8 59.36 5.01
eil101 90.37 101 100 0.9 0.84 19.58 20.52
lin105 5558.73 105 104 53.45 152.07 61.17 1.66
pr107 74.12 107 106 0.7 0.76 20.67 16.99
pr124 2990.82 124 123 24.32 44.57 34.47 3.32
bier127 1073.62 127 126 8.52 18.13 43.96 6.68
ch130 719.24 130 129 5.58 12.87 42.61 6.25
pr136 64590.76 136 135 478.45 1627.46 68.69 0.13
gr137 3354.58 137 136 24.67 64.72 48.83 3.95
pr144 17481.92 144 143 122.25 675.57 80.94 1.56
ch150 3706.72 150 149 24.88 51.03 37.53 3.14
kroA150 81024.71 150 149 543.79 1066.54 39.86 1.52
kroB150 68089.94 150 149 456.98 1309.99 54.31 0.39
pr152 t.l. 93.38 - - - - -
u159 t.l. 39.87 - - - - -

Table 3: Statistics on the TSP generation 1 instances
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Instance TIME |F| N t̄ σt L-5% S-50%
burma14 1.73 59 60 0.03 0.02 15.03 27.17
ulysses16 4.31 102 101 0.04 0.02 10.21 34.8
ulysses22 13.6 130 130 0.1 0.05 9.78 32.65
att48 866.16 435 438 1.98 1.21 13.1 26.85
eil51 627.13 225 269 2.33 2.26 19.24 16.81
berlin52 1321.63 406 411 3.22 2.75 15.97 16.84
st70 13892.93 503 643 21.61 38.21 34.48 4.53
eil76 5158.31 386 538 9.59 10.81 22.45 16.28
pr76 t.l. 96.29 - - - - -
rat99 31524.89 662 779 40.47 76.59 38.31 11.11
kroA100 t.l. 87.88 - - - - -
kroB100 186395.45 1332 1363 136.75 337.95 50.42 7.33
kroC100 120664.66 1311 1333 90.52 129.24 29.95 18.99
kroD100 53819.04 1128 1129 47.67 33.95 15.43 25.2
kroE100 82149.58 1068 1086 75.64 119.62 32.46 9.26
rd100 43100.31 920 962 44.8 30.01 14.31 26.92
eil101 34953.71 515 838 41.71 45.84 21.87 13.5
lin105 203727.18 1043 1329 153.29 291.15 36.25 10.71
pr107 t.l. 49.36 - - - - -
pr124 t.l. 29.24 - - - - -
bier127 t.l. 87.65 - - - - -
ch130 t.l. 93.87 - - - - -

Table 4: Statistics on the TSP generation 2 instances

Instance TIME |F| N t̄ σt L-5% S-50%
burma14 1.99 70 68 0.03 0.01 9.05 31.16
ulysses16 3.81 92 88 0.04 0.02 9.45 32.28
ulysses22 14.04 128 126 0.11 0.05 10.19 31.98
att48 1334.41 438 440 3.03 1.83 13.01 26.95
eil51 1196.46 267 299 4.0 6.16 29.71 10.51
berlin52 1292.27 439 446 2.9 2.12 15.61 24.26
st70 9258.1 452 546 16.96 17.35 19.27 12.52
eil76 4971.95 383 468 10.62 8.87 16.68 20.9
pr76 t.l. 82.52 - - - - -
rat99 t.l. 5.70 - - - - -
kroA100 137168.33 815 820 167.28 209.37 25.77 13.12
kroB100 t.l. 16.75 - - - - -
kroC100 128195.9 1223 1228 104.39 106.56 20.87 17.14
kroD100 71826.93 1063 1068 67.25 73.97 20.6 24.61
kroE100 t.l. 10.38 - - - - -
rd100 180959.84 1513 1551 116.67 428.34 65.3 6.9
eil101 38227.19 499 697 54.85 92.39 33.78 7.62
lin105 t.l. 9.77 - - - - -
pr107 t.l. 2.16 - - - - -
pr124 t.l. 3.66 - - - - -
bier127 t.l. 16.09 - - - - -
ch130 t.l. 88.35 - - - - -

Table 5: Statistics on the TSP generation 3 instances
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4.3 Results for approximate Pareto fronts

As explained in Section 1, our algorithm can produce an approximation of the Pareto front. One simply
has to introduce a tolerance (ρ) on the minimal gap between the upper and lower bound for a solution to be
accepted by the branch-and-cut procedure. Tables 6 and 7 show results forρ of 0.01 and 0.10, respectively,
on a sample of hard instances for which the exact Pareto frontis known.

There is no consensus on the quality metrics that should be used for multi-criteria approximation algo-
rithms. We decided to use two categories of metrics reportedin [15]. The first category is made of distance
based metrics while the second is made of ratios on the size ofthe exact and approximated Pareto fronts.
More precisely, the columns of Tables 6 and 7 correspond to:

• te : computation time for the exact Pareto front (F);
• ta : computation time for the approximate Pareto front (F̄ );

• dp = 1
|F|

∑

z∈F

min
z′∈F̄

|zp−z′p|

zp
, wherezp stands for the collected prize associated with pointz;

• dc = 1
|F|

∑

z∈F
min
z′∈F̄

|zc−z′c|
zc

, wherezc stands for the travel cost associated with pointz;

• dz = 1
|F|

∑

z∈F
min
z′∈F̄

max
(

|zp−z′p|

zp
, |zc−z′c|

zc

)

3;

• dmax
z = max

z∈F
min
z′∈F̄

max
(

|zp−z′p|

zp
, |zc−z′c|

zc

)

;

• Q1 = F∩F̄
|F| ;

• Q2 = F∩F̄
|F̄|

.

For ρ = 0.01, the algorithm is 5.7 times faster than the original exact version. It produces a very
good approximation of the Pareto front for every instance ofthe sample. Even though only an average
of 38% of the non dominated points are found, each non dominated point is on average at a distance of
0.002 of a point on the approximated front, according to the relative Chebyshev distance metric. When the
tolerance is increased to 0.10, the algorithm runs 83 times faster than the original version and still finds a
good approximation of the Pareto front. The average relative Chebyshev distance between each point ofF
and the nearest point of̄F is 0.018.

One should observe that for both values ofρ, Q1 is always lower thanQ2. For example, an average
of 38.0% and 62.3 % of the points onF are also onF̄ whenρ = 0.01 andρ = 0.10, respectively. This
suggests that the approximated non dominated set is smallerthan the exact one. Actually, the size of the
approximated front corresponds to 50.5% (ρ = 0.01) and 22.3% (ρ = 0.10) of |F|, on average. Those
averages exclude TSP generation 1 instances for which both the exact and approximate fronts have about
the same size. Finally, although there is no theoretical guarantee on the performance of the approximation
algorithm, the results show relatively small variations indz. This suggests that the strategy is quite robust.

3This corresponds to an average of the best relative Chebyshev distances. The latter defines the distance between the points
(x1, y1) and(x2, y2) as:max(|x2 − x1|, |y2 − y1|).
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Instance Type te ta ta/te dp dc dz dmax
z Q1 Q2

eilA76 vrp 2605.27 734.63 0.282 0.001 0.002 0.002 0.0260.603 0.903
eilA101 vrp 5046.78 1847.79 0.3660.001 0.001 0.001 0.0100.538 0.736
pr76 tspp1 175334.47 28747.08 0.1640.000 0.002 0.002 0.0100.461 0.461
pr136 tspp1 64590.76 4742.81 0.0730.000 0.001 0.002 0.0090.500 0.504
pr144 tspp1 17481.92 5819.35 0.3330.000 0.001 0.002 0.0190.465 0.479
kroA150 tspp1 81024.71 2516.27 0.0310.000 0.002 0.003 0.0100.253 0.253
kroB150 tspp1 68089.94 22744.47 0.3340.000 0.002 0.003 0.0100.407 0.407
st70 tspp2 13892.93 1061.9 0.0760.001 0.001 0.002 0.0180.475 0.685
kroB100 tspp2 186395.45 8089.15 0.0430.001 0.001 0.002 0.0290.261 0.645
kroC100 tspp2 120664.66 5988.84 0.0500.001 0.001 0.002 0.0410.250 0.659
rd100 tspp2 43100.31 3712.49 0.0860.001 0.001 0.002 0.0320.262 0.623
lin105 tspp2 203727.18 31861.07 0.1560.001 0.001 0.002 0.0810.320 0.742
st70 tspp3 9258.1 2192.75 0.237 0.002 0.001 0.003 0.0320.473 0.751
kroA100 tspp3 137168.33 17569.18 0.1280.002 0.001 0.003 0.0500.329 0.786
kroD100 tspp3 71826.93 12683.36 0.1770.002 0.001 0.003 0.0390.249 0.639
rd100 tspp3 180959.84 33950.47 0.1880.002 0.001 0.003 0.1430.171 0.617
eil101 tspp3 38227.19 10434.01 0.2730.001 0.002 0.002 0.0170.439 0.709
Averages 0.176 0.001 0.001 0.002 0.0340.380 0.623

Table 6: Results for approximate Pareto fronts withρ = 0.01

Instance Type te ta ta/te dp dc dz dmax
z Q1 Q2

eilA76 vrp 2605.27 22.83 0.009 0.007 0.008 0.019 0.2110.085 0.345
eilA101 vrp 5046.78 83.48 0.017 0.005 0.004 0.014 0.1410.084 0.228
pr76 tspp1 175334.47 17.67 0.0000.002 0.008 0.028 0.0830.118 0.122
pr136 tspp1 64590.76 354.62 0.0050.001 0.005 0.017 0.0700.206 0.215
pr144 tspp1 17481.92 599.07 0.0340.002 0.007 0.018 0.0500.139 0.157
kroA150 tspp1 81024.71 164.27 0.0020.002 0.006 0.020 0.0830.073 0.078
kroB150 tspp1 68089.94 367.13 0.0050.000 0.006 0.018 0.0830.127 0.129
st70 tspp2 13892.93 39.33 0.003 0.007 0.006 0.018 0.1130.074 0.272
kroB100 tspp2 186395.45 163.33 0.0010.004 0.004 0.014 0.1780.035 0.208
kroC100 tspp2 120664.66 224.53 0.0020.006 0.005 0.015 0.1550.039 0.291
rd100 tspp2 43100.31 1623.16 0.0090.006 0.003 0.014 0.2430.052 0.226
lin105 tspp2 203727.18 528.95 0.0030.005 0.005 0.025 0.0680.023 0.122
st70 tspp3 9258.1 460.18 0.050 0.007 0.004 0.022 0.1430.084 0.297
kroA100 tspp3 137168.33 1211.63 0.0090.008 0.005 0.015 0.3560.058 0.333
kroD100 tspp3 71826.93 1894.98 0.0260.006 0.004 0.016 0.1250.027 0.149
rd100 tspp3 180959.84 1623.16 0.0090.006 0.003 0.013 0.1430.032 0.214
eil101 tspp3 38227.19 1805.84 0.0470.007 0.006 0.019 0.1130.066 0.234
Averages 0.012 0.005 0.006 0.018 0.1380.078 0.213

Table 7: Results for approximate Pareto fronts withρ = 0.10

Conclusion

We have shown that theǫ-constraint method can be used efficiently to find the exact Pareto front of BOCO
problems with integer objective values. We also provide improvement heuristics devised to speed up the
resolution of theǫ-constraint problems when the latter are solved through branch-and-cut. Ourǫ-constraint
method and the improvement heuristics have been tested successfully on the TSPP. The results have shown
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the relevance of the improvement heuristics and provided the first exact solutions for TSPP instances. Be-
cause the TSPP is a very hard problem, the instances that havebeen solved are quite small. Obviously, exact
algorithms cannot run very fast on BOCO problems, but we believe that our solutions will be useful bench-
marks to evaluate the quality of future approximation algorithms for the TSPP. Besides, we have shown that
good approximations of the Pareto front might be found relatively quickly through a simple modification of
our exact algorithm.
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A Appendix - Valid inequalities for the PCTSP

This appendix summarizes the valid inequalities used by thebranch-and-cut algorithm presented in [5] for
the model defined by equations (11) to (17). They are obtainedeither from the associated knapsack polytope,
from a combination of the SECs and the minimum prize constraint, or from the associated traveling salesman
polytope.

A.1 Inequalities from the associated knapsack polytope

Two types of inequalities based on knapsack constraints areconsidered. They are referred as thelifted-cover
andcost-coverinequalities.

A.1.1 Lifted-cover inequalities

LetS be a minimal cover for (18), i.e.,S is a minimal subset ofV such thatp(S) > U . The cover inequality:

∑

v∈(S∪S′)

(1 − yv) ≤ |S| − 1 (20)

whereS′ = {v ∈ V \ S : pv ≥ maxw∈S pw}, is valid for the knapsack problem [2]. The coefficients of
they variables can be lifted to obtainlifted-cover inequalities that reinforce equation (20). LetS′ = {v ∈
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V \ S : pv ≥ maxw∈S pw}, andSh the set of the firsth elements ofS (∀i ∈ S, pi ≥ pi+1 is assumed),
h = 1, ..., |S|. Let V be partitioned intoV0, V1, .., Vq, q = |S| − 1, where:

Vh =
{

v ∈ (S ∪ S′) : p(Sh) ≤ pv < p(Sh+1)
}

, h = 2, ..., q

V1 = (S ∪ S′) \ ∪q
h=2Vh, (21)

V0 = V \ (S ∪ S′)

and define:
πv = h, ∀v ∈ Vh, h = 0, ..., q. (22)

Then, the lifted-cover inequality is written:
∑

v∈S

(1 − yv) +
∑

v∈V \S

πv(1 − yv) ≤ |S| − 1 (23)

It has been shown that (23) is valid for ally ∈ KP , whereKP is the convex hull of{y ∈ {0, 1} : y satisfies
(18) } [2]. Since the PCTS polytope is included inKP [3], the lifted-cover inequalities are also valid for
the PCTSP.

A.1.2 Cost-cover inequalities

Let cU be the upper bound on an optimal solution. Then
∑

e∈E cexe ≤ cU defines a knapsack constraint in
terms of costs that can be used to derive valid inequalities.Let S ⊆ V , 1 ∈ S andσS a lower bound on
the optimal TSP value onS. Then, ifσS > cU and if the costs satisfy the triangle inequality, the following
cost-coverinequalities are valid for the PCTSP. We consider only special cases that are easy to separate,
namely, when|S| = 3 :

yu + yv ≤ 1 ∀u, v ∈ V ′ such that c(1,u) + c(u,v) + c(v,1) > cU (24)

and when|S| = 2 :
yv = 0 ∀v ∈ V ′ such that 2c(1,v) > cU (25)

A.2 Inequalities from the SEC and knapsack constraint

Cycle-coverandconditional inequalities both use a knapsack constraint to strengthen the SEC (13).

A.2.1 Cycle-cover inequalities

The cycle-cover inequalities exploit the minimum prize constraint and the fact that a feasible solution must
be a cycle. LetS ⊂ V , 1 ∈ S such thatp(S) < p̄, then

x(E(S)) ≤ y(S) − 1 (26)

is a valid inequality for the PCTSP, as shown in [5].
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A.2.2 Conditional inequalities

An upper boundcU on the objective value can be used to derive inequalities similar to the cycle-cover,
but based on the selected edges. Although they are not guaranteed to be valid, these inequalities can be
conditionally used in a cutting-plane context. LetT ⊆ E such thatc(T ) > cU , then

x(T ) ≤ y(V (T )) − 1 (27)

is valid for the PCTSP if no feasible solution of value lower than cU is contained inT , sincex(T ) ≤
y(V (T )) holds for every feasible solution. This occurs, in particular, whenT defines a simple cycle that
goes through the depot and for whichc(T ) > cU .

A.3 Comb inequalities

The well known comb inequalities can be adapted from the TSP to the PCTSP [4]. Let us consider two
sets of vertices, the handleH ⊂ V and the teethTj ⊂ V (j = 1, .., t). The general comb inequalities are
formulated as:

x(E(H)) +
t

∑

j=1

x(E(Tj)) ≤ y(H) +
t

∑

j=1

|Tj | −
3t + 1

2
(28)

for all H, T1, ...,Tt satisfying:

a) |Tj ∩ H| ≥ 1, with j = 1, .., t;

b) |Tj \ H| ≥ 1, with j = 1, ..., t;

c) Ti ∩ Tj = ∅, with 1 ≤ i < j ≤ t; and

d) t ≥ 3 and odd.

In the special case where|Tj ∩ H| = 1 for all j, the inequalities are referred to assimple combinequalities.
Simple comb inequalities become2-matchinginequalities if|Tj \ H| = 1 for all j.

A.4 Logical inequalities

Obviously, if an edgee ∈ δ(v) is part of a solution, the vertexv must be visited, hence the following logical
inequality:

xe ≤ yv ∀e ∈ δ(v), v ∈ V ′ (29)
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