
Concurrent Discrepancy-based
Search for Distributed
Optimization

Jonathan Gaudreault
Jean-Marc Frayret
Gilles Pesant

January 2007

 CIRRELT-2007-09

CONCURRENT DISCREPANCY-BASED SEARCH

FOR DISTRIBUTED OPTIMIZATION

Jonathan Gaudreault 1, Jean-Marc Frayret1,2,3, Gilles Pesant2,3

1 Research Consortium in e-Business in the forest products industry (FOR@C)
2 École Polytechnique de Montréal, Québec, Canada
3 Centre interuniversitaire de recherche sur les réseaux d’entreprises, la logistique et le transport

(CIRRELT)

Abstract. Distributed Constraint Optimization is increasingly used to formalize problem

solving by multiple agents. However, there are situations where agents represent an

organization made up of heterogeneous agents (e.g. network of companies) in which the

context, the structure, and the business rules define the interactions that are possible

between them. The solution space for those hierarchical problems is reminiscent of the

ones of centralized combinatorial problems. Therefore, we propose a distributed algorithm

(MacDS) that performs discrepancy-based search which is known to perform well for

centralized problems. The proposed algorithm is complete and aims at producing good

solutions in a short amount of time. It allows concurrent computation and is tolerant to

message delays. It has been evaluated using real industrial problems with complex

subproblems, for which it showed good performance.

Keywords. Distributed constraint optimization; multi-agent; discrepancy-based search;

supply chain; lumber industry.

Acknowledgements. This work was funded by the Research Consortium in E-Business

in the Forest Products Industry (FOR@C) and supported by the Interuniversity Research

centre on Enterprise Networks, logistics and transportation (CIRRELT).

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: jean-marc.frayret@cirrelt.ca

Dépôt légal – Bibliothèque nationale du Québec,
 Bibliothèque nationale du Canada, 2007

© Copyright Gaudreault, Frayret, Pesant et CIRRELT, 2007

Concurrent Discrepancy-based Search for Distributed Optimization

CIRRELT-2007-09 2

Introduction
Many generic algorithms have been proposed in recent
years to solve Distributed Constraint Optimization
Problems (DCOP). In (Modi and Veloso 2005), the authors
underline that those generic algorithms do not always take
advantage of the characteristics of a particular class of
problems, e.g. specific constraint structures or domain
specific heuristics. Moreover, there are situations where
the agents solving the problem represent an organization
that exists a priori and is made up of heterogeneous agents
(e.g. network of companies). The structure of the
organization and its context may limit the type of relation
and interactions between them (Horling and Lesser 2004).
 In this paper, we study a class of distributed problems
that are hierarchical in nature. As for classic DCOP, there
is an objective function that agents try to minimize.
However:
• The problem is partitioned into subproblems and there is

a sequence in which they must be solved, imposed by
the business domain;

• The agents are constrained when solving a subproblem
by the decisions of the previous ones;

• The objective can be formulated as a function of the
variables of one subproblem (most of the time the last
one).

A wide range of problems meet those criteria, notably
many planning problems in a hierarchical context.
Schneeweiss describes many problems from industrial
applications in (Schneeweiss 2003).
 We will especially study the case of industrial supply
chain networks (Moyaux, Chaib-draa and D'Amours 2006).
More precisely, using the following example where agents
are factories offering services to the others agents. An
external client announces a call for bids for a product and
the work of each plant is needed to produce and deliver the
final good. Different alternatives are possible regarding the
parts to use, the manufacturing processes to follow, the
scheduling of operations and the choice of transportation.
The partners want to put together a common production
plan (e.g. what to do, where and when). Each agent has a
local vision: it can only think about its own production,
inputs and outputs. Business rules state a resolution
sequence; a factory cannot calculate its needs for raw
material and send them to its supplier without knowing
what it is asked to produce, neither can it plan its
production before knowing what supply is granted by the
supplier. These define the two subproblems of each agent.
 The objective function represents the client’s interest,
e.g. minimize lateness. Because agents do not know
alternative possibilities for the agents they supply, a bound
on the objective function cannot be computed until it is
time to solve the last subproblem.
 The consortium is in competition with others; if the
external client rejects the first proposal, it is urgent to
propose alternative solutions before it accepts a proposition
from another consortium. Our goal is therefore to produce
good solutions quickly.

 In the following sections, we will formally describe the
problem and show that few DCOP methods apply in this
context. We will then propose MacDS, a concurrent
method allowing the agents to systematically explore the
solution space, but aiming at producing good solutions first
by using a backtracking strategy based on the computation
of discrepancies. The algorithm will then be evaluated for
both random data and real industrial problems.

Problem Definition
A Hierarchical Distributed Constraint Optimization
Problem (HDCOP) is defined over a set of variables
X={X1,…,Xm}. Each variable Xi can take a value from a set
Di. The set of variables X is partitioned into disjoint subsets
(subproblems). Each variable is part of a subproblem
S(Xi)∈S=[S1,…,Sn]. Each one is owned by an agent (an
agent may own many subproblems). Formally,
A(Xi)=A(S(Xi))∈A={A1,…,Ap}. Subproblems must be
solved in the order defined by S. Each subproblem Sj is
constrained by previous decisions, as stated by a predicate
Cj(U(S1,…,Sj)). Agents wish to minimize a function
F(Sq) where Sq∈S.
 We suppose that agents know algorithms to solve their
subproblems and they produce the solutions in an order
defined by this algorithm. In that context, we can represent
the global solution space as a tree, where each level
j=1,…,n corresponds to subproblem Sj. Each node on that
level represents an instance of that subproblem (defined by
previous decisions). Each arc is an alternative and feasible
solution to that subproblem. Arcs are ordered according to
the local algorithm used by the agent.

DCOP
The previous problem could be reformulated as a classic
DCOP such as in (Modi, Shen, Tambe, and Yokoo 2005).
To keep the notion of subproblems, we need to consider
that each subproblem in the original HDCOP formulation
is now a variable in the DCOP. The domain of each new
variable is the Cartesian product of the original variables.
The original variables cease to exist. Unfortunately, we
then lack the representation of the mandatory solving
sequence. We also miss the fact that each time a variable
must be valued, a complex subproblem must be solved and
that we must use the local solver of the agent. In contrast,
most DCOP algorithms specify the rule the agent must use
for value ordering for that variable/subproblem. For those
reasons, we will prefer the HDCOP definition.

Algorithms for Classical DCOP
The simplest algorithm is Synchronous Backtracking
(SyncBT) (Yokoo, Ishida, Durfee and Kuwabara 1992). It
mimics chronological backtracking in the tree representing
the solution space (for our HDCOP, the one presented with
our definition). Agents solve the subproblems in sequence.
The messages transmitted by agents represent current
partial assignments (CPA). In the case of a dead end, or
when a global solution is found, a chronological backtrack

Concurrent Discrepancy-based Search for Distributed Optimization

CIRRELT-2007-09 3

occurs. Of course, the method is complete. Synchronous
Branch-and-Bound (SyncBB) improves SyncBT by
calculating a bound on the objective in each node. The
value is used to prune the tree and guide the value ordering
(Hirayama and Yokoo 1997). For a hierarchical problem
where the objective is represented by a function of the
variables of the last subproblem and the agents lack a good
representation of the other subproblems, the bound would
be equal to zero at each node. SyncBB is then equivalent to
SyncBT. In Asynchronous Forward-Bounding (AFB)
(Gershman, Meisels and Zivan 2006), when an agent
assigns a value it transfers the CPA to every following
agent. Agents then compute bounds concurrently.
 Some methods allow the agent to assign a value to
variables asynchronously, as soon as it supposes this
change could improve the global solution. Distributed local
search does this but it is incomplete (Sun, Zhang, and Nee
2001; Hirayama and Yokoo 1997). Asynchronous
Distributed Optimization (ADOPT) was the first method
both asynchronous and complete (Modi, Shen, Tambe, and
Yokoo 2005) but the algorithm needs agents to be able to
calculate good bounds and change their values accordingly.
It therefore violates our assumption about agents using
specialized solvers.
 Another approach is distributed dynamic programming.
The best known algorithm is DPOP (Petcu and Faltings
2005) for which different improvements have been
proposed over time. It makes the assumption that agent
A(Sj) can solve Sj before Sj-1 is solved. A(Sj) is asked
for the best solution for Sj for any potential solution of
Sj-1. This supposes that A(Sj) has a good representation of
the domain for Sj-1 and can solve Sj to optimality in
reasonable time.

Multi-Agent Concurrent Discrepancy Search
The solution space for the introduced hierarchical
distributed optimization problems is reminiscent of the
ones for centralized combinatorial problems. The search
tree (see HDCOP definition) is equivalent to one for a
centralized problem given a variable ordering heuristic and
a value ordering heuristic.
 In such a centralized context, chronological
backtracking is most of the time outperformed by search
methods based on the computation of discrepancies, both
for satisfaction and optimization problems (Harvey and
Ginsberg 1995; Le Pape and Baptiste 1999). These
strategies have the characteristic of not relying on bound
calculation.
 This section introduces a new distributed algorithm
(MacDS) that performs discrepancy-based search. It is
complete (exploring the same search space as SyncBT) but
aims at producing good solutions in a short amount of
time. It allows concurrent computation, uses asynchronous
communication, an asynchronous timing model (Lynch
1996) and is tolerant to random message transmission
delays. It also takes advantage of situations where
subproblem solving times vary from one agent to another.

Discrepancy-based Search
Limited Discrepancy Search (LDS) was the first method
based on discrepancies (Harvey and Ginsberg 1995). The
main idea is that the leaves of the tree (solutions) do not
have the same expected quality; that it decreases with the
number of times one should branch to the right when going
from the root to that leaf (i.e. the number of discrepancies).
The rationale is that a move to the right is a move against
the value ordering heuristic. LDS aims to first visit the
leaves with the fewest discrepancies. Another effect of
LDS is that the solutions visited in a given period of time
will be more different from one another than those
produced using chronological backtracking. It is this
interesting characteristic we seek in our distributed
algorithm. In the original description by Harvey, LDS was
a search procedure, but the idea can be used to specify a
node selector: when backtracking conditions occurs, the
search engine must select the node for which the next
unvisited child has the fewest discrepancies (Beck and
Perron 2000). This is why LDS can be described as a
backtracking policy.
 LDS has been applied with success to optimization
problems (Le Pape and Baptiste 1999). For n-ary trees,
they proposed to count the discrepancies as follows: the i-
th arc followed at a given level counts as i-1
discrepancies. Over time, other discrepancy-based methods
have been proposed (Walsh 1997; Beck and Perron 2000).
Discrepancy-based search is integrated into commercial
solvers as, for example, ILOG Solver.

Concurrent Search Algorithms
Classic algorithms for DCOP and DisCSP (distributed
satisfaction problems) exploit two different approaches to
achieve concurrency (Zivan and Meisels 2006). The first is
the asynchronous approach used by ADOPT, as described
previously. The second is called Concurrent Search
Algorithm (CSA) by (Zivan and Meisels 2006). They
exploited it in the ConcDB algorithm (for DisCSP). With
this approach, each global solution is constructed
sequentially by the agents, but agents collectively work on
many solutions. A concurrent algorithm must specify how
and when a new “path” must be explored. Our algorithm
makes use of this form of concurrency.

Proposed Algorithm (MacDS)
We will first describe the algorithm informally using a
simple example. Agents A={B,C,D} should solve the
problem made-up of subproblems S=[B,C,D]. Each
global solution is constructed sequentially by the agents.
They solve the subproblems as ordered in the vector. The
first agent (B) uses its local solver. Once it has a first
solution, agent B sends it to agent C in a message named
“B0” (first solution for subproblem B). Agent C then
repeats the same and transmits the message “B0-C0” (first
solution of C according to the first solution of B) to the next
agent. But, as soon as the first agent has sent its solution
“B0” to the second agent, it started looking for an
alternative decision (“B1”) using its local solver. As soon

Concurrent Discrepancy-based Search for Distributed Optimization

CIRRELT-2007-09 4

as “B1” is ready, it is sent asynchronously to agent C,
whether or not it has already found a solution for “B0”.
When receiving this message, agent C must ask itself
whether it is better to continue working on “B0-C0” or
begin to work on “B1-C0”. This decision will be based on
discrepancies (the names of messages contain information
to compute them).
 Essentially, each agent manages a list of tasks, supplied
asynchronously by the previous one. Tasks are prioritized
locally according to the discrepancy profile of the next
message the task would generate. The policy used to
compare them defines a backtracking strategy that will be
enforced collectively by all agents. The policy is
implemented by a function comparing two profiles and
selecting the one with greater priority. It is possible to
implement it based on different known strategies: LDS,
DDS, SBS, DFS, etc. (in the latter case, we would then
perform a concurrent synchronous backtracking).
 In the extreme case where a single agent owns every
subproblem, then MacDS visits the nodes of the tree in the
same order as a centralized search algorithm (applying the
same backtracking strategy) would.
 In a distributed context where each agent manages its
own task list, each solution to the global problem will be
obtained in no more time than would be necessary for the
centralized algorithm (ignoring communication delays).
Each agent is working as soon as there is a task in its list,
but preempts its current work when a task with greater
priority is added to the list.
 The algorithm is complete since it explores the same
solution space as SyncBT; it only changes the sequence in
which nodes will be visited. In the case of
communication breakdown (or in presence of random
messages transmission delays), the agent always works on
the available task with the greatest priority, rather than
remaining idle. Therefore, it is not mandatory for messages
to arrive in the same order as they were sent.
Pseudocode. The following objects are manipulated by the
algorithm:
• A message msg is a couple <d,p> where d represents

the decisions for the previous subproblems and p is a
vector of integers representing the discrepancy profile.
The element p[j] defines, for a level j, which arc
should be followed when going from the root to the
“current node” in the solution tree.

• A list of tasks (tasks) contains the running and waiting
tasks of the agent. A task is defined by d and p, by the
number of local solutions produced to date for the task
(i) and by a boolean indicating if the subproblem solver
thinks there is no more solution (noMoreSol).

Each agent runs many threads: one for each task plus a
control thread. A single thread per agent is active at any
moment. The control thread (Figure 1) is activated when
the agent receives a message (WhenReceiveMsg) and
when a task has just produced a new subproblem solution
(WhenNewSolution). It then updates the task list and
transfers control to the thread of the task with the greatest
priority (ActivateTask).

WhenReceiveMsg(msg)
 if (running ≠ ∅) running.Sleep();
 tasks.insert(<msg.d, msg.p, 0, false>));
 ActivateATask();

WhenNewSolution(task)
 task.Sleep();
 SendMessage(successor(task), <task.d +
 task.sol.d, task.p + task.i>)
 task.i++;
 if (task.noMoreSol)
 tasks.Remove(task);
 running ← ∅;
 ActivateATask();

ActivateATask()
 if (tasks.count() > 0)
 running ← tasks[1];
 running.WakeUp();
 else
 running ← ∅;

Figure 1: Control thread of the agent

 The pseudocode for the task threads is shown in
Figure 2. When a task is created, its thread is idle. It must
be activated by the control thread. When the task produces
a new subproblem solution, it signals it to the control
thread (SignalNewSolution) and goes idle (sleep). It is
the control thread that sends the message to the agent that
owns the next subproblem.

Run(task)
 task.noMoreSol ← false;
 task.sol ← NextSolution(task);
 while (task.sol ≠ ∅)
 SignalNewSolution(task);
 Sleep();
 task.sol ← NextSolution(task);
 task.noMoreSol ← true;
 SignalNewSolution(task);

Figure 2: Thread implementing a task

 In the shown pseudocode, we suppose that tasks are
ordered by decreasing priority. Figure 3 shows examples of
comparator functions that can be used to maintain the list
sorted. They identify, over a pair of discrepancy profiles,
which one have greater priority, according to a
backtracking strategy. The first one (CompareBT) defines a
chronological backtracking policy. The other one
(CompareLDS) defines an LDS policy. When one calls
those functions, the discrepancy profile representing a task
is the concatenation of task.p and task.i.

Evaluation
MacDS was evaluated with generated data and with a real
industrial problem.
Evaluation with Generated Data. We suppose n-ary trees
randomly generated, such that the probability that a leaf is
the best solution is proportional with δ(p), where p is the
number of discrepancies of the leaf and δ is a parameter
that varies from 0.1 to 1.0 (by steps of 0.1). When δ is
maximal, all leaves have the same probability. The

Concurrent Discrepancy-based Search for Distributed Optimization

CIRRELT-2007-09 5

performance measure used is the expected time needed to
find the best solution on these trees. Others parameters we
experimented with were: number of subproblems
(Card(S)), message transmission delay (τ), subproblem
solving time (α), and the number of solutions for each
subproblem (n). This experiment was conducted in a
simulation environment similar to (Modi, Shen, Tambe,
and Yokoo 2005).

CompareBT(p1, p2)
 depth ← Min(Card(p1), Card(p2));
 j ← 1;
 while (p1[j] = p2[j] && j ≤ depth) j++;
 if (j ≤ depth)
 if (p1[j] ≤ p2[j]) return p1;
 else return p2;
 else
 if (Card(p1) ≥ Card(p2).depth()) return
p1;
 else return p2;
 CompareLDS(p1, p2)
 t1 ← Σ(j=1..Card(p1)) p1[j];
 t2 ← Σ(j=1..Card(p1)) p2[j];
 if (t1 < t2) return p1;
 else
 if (t2 < t1) return p2;
 else return CompareBT(p1,p2);

Figure 3: Comparators implementing two backtracking policies

 We compared MacDS using a LDS policy
(MacDS_LDS) with SyncBT. To measure which part of
the gain was due to concurrency and which to the
backtracking policy, we also tested a version of MacDS
using chronological backtracking (MacDS_BT) and also
implemented SyncLDS (synchronous as SyncBT, but
performing LDS).
 MacDS_LDS is always the best of the four algorithms
(caught up by MacDS_BT when δ=1.0). For both
backtracking policies (BT and LDS), the MacDS version
always beats the synchronous one. The following figures
shows results when δ=0.7, which is representative of the
average case.
 Figure 4(a) shows that message delay (τ) has a linear
impact for all four algorithms, but a much smaller one for
both versions of MacDS. For them, expected time needed

to find the best solution is equal to (Card(S)-1)τ. Figure
4(b) shows that subproblem solving time (α) also has a
linear impact, again smaller for the MacDS versions.
Figure 4(c) shows that the impact of the number of
subproblems (Card(s)) is exponential.
Industrial Evaluation. We then evaluated the algorithms
using real industrial data with complex subproblems. The
case is a supply chain coordination problem in the forest
products industry. The data were extracted from the
company databases at different moments in 2005.
 The network has three plants A={A1,A2,A3} and four
subproblems S=[V,W,X,Y]. The equivalent centralized
problem has millions of solutions. In terms of product
flow, the agents form a chain. But, the decision flow is
more complex (see Figure 5). Agent A2 is in contact with
the external customer. An customer order is a set of tuples
<product,dueDate,quantity>. A2 first computed a
demand for A1 (subproblem V). A1 then builds its
production plan and allocates supply to A2 (subproblem W).
A2 builds its production plan and allocates supply to A3
(subproblem X). Then, A3 plans its production (subproblem
Y). The objective is to minimize the sum of order lateness,
which is a function of the variables in Y.
 Each local solver was made available by FORAC, a
consortium of companies and researchers. Agent A1 plans
its sawing operations using a Mixed Integer Linear
Programming model. Agent A2 uses Constraint
Programming to plan and schedule its wood drying
operations. Agent A3 schedules its wood finishing
operation using a forward-scheduling heuristic, but uses a
DDS backtracking strategy to produce alternative

0

5 000

10 000

15 000

20 000

0 2 5 10

SyncBT MacDS_BT SyncLDS MacDS_LDS

(a)

0

7 000

14 000

21 000

28 000

1 5 10

SyncBT
MacDS_BT
SyncLDS
MacDS_LDS

(b)

1

10

100

1 000

10 000

100 000

3 6 9

SyncBT
MacDS_BT
SyncLDS
MacDS_LDS

(c)
Figure 4: Expected time to get best solution, according to: (a) message transmission time [Card(S)=4;n=10;α=1;δ=0.7], (b) time to
solve subproblem [Cards(S)=4;n=10;τ=0;δ=0.7] and (c) total number of subproblems [n=3;α=1;τ=0;δ=0.7]

W
V

X
Y

2A1A 3A

Figure 5: Agents, subproblems and solving sequence

Concurrent Discrepancy-based Search for Distributed Optimization

CIRRELT-2007-09 6

solutions.

 These experiments were done in a distributed
environment where each agent runs on a different
computer. It allows measuring the real impact of
concurrency in a situation where subproblems are hard and
take a different amount of time to be solved. The
difference in computation time between subproblems can
vary five fold. Production of alternative solutions varies
from a few seconds to several minutes. In this context,
communication complexity is not an issue (Lynch 1996).
 For a given case, the first global solution of each
compared algorithm is always the same. It is also this
solution that would be obtained by the companies using
standard business process. Consequently, we compared the
algorithms according to the percentage of reduction of the
objective function they achieved, with respect to the
computation time (in seconds). Figure 6 illustrates the
results for the four industrial cases studied (a,b,c,d). For a
very short computation time, SyncBT and MacDS_LDS
give comparable results. This is because they produce the
same solutions until the last agent receives a second task in
its list. Then, MacDS_LDS starts to outperform SyncBT in
a significant manner: while SyncBT persists in exploring
only minor variations of the first solutions, MacDS_LDS
explores different areas of the search tree. Case (b) is an
exception: SyncBT is the winner by 0.5% for pretty much
any computation time.
 We can see the impact of the backtracking policy by
comparing SyncBT and SyncLDS. The latter outperforms
SyncBT, except for very short computation time.

 By comparing MacDS_LDS with SyncLDS, we see that
for any solution quality reached by SyncLDS, MacDS
produces an equal or better solution in an equal or shorter
computation time. The average reduction of computation
time for each case is as follows: 18.5%, 88.7%, 54.5% and
64.0%. Two reasons explain this. Concurrency makes each
solution being produced in an equal or shorter amount of
time, but it also gives agents the opportunity to explore
more alternative solutions in a given amount of time.
 MacDS_BT gave results indistinct from those of
SyncBT. For that reason, they are not shown in the figures.
The explanation is the following: for industrial cases, any
subproblem has many alternative solutions. When
performing chronological backtracking, the system takes a
long time to explore alternative solutions of the last
subproblem only. In MacDS_BT, previous agents produce
alternative solutions but they are never exploited by the
last agent.

Conclusion
The good performance of classic algorithms for DCOP is
based on the ability of each agent to locally compute a
good bound on the global objective and make its decisions
based on this bound. In a heterogeneous context, where
specialized agents are facing different complex
subproblems, agents may lack such global vision.
Hierarchical problems are such a context.
 For those situations, we proposed MacDS, a distributed
algorithm that performs discrepancy-based search and
allows the agents to work concurrently. It outperforms

0%

20%

40%

60%

80%

0 1000 2000 3000

SyncBT
SyncLDS
MacDS_LDS

(a)

0%

10%

20%

30%

40%

50%

0 1000 2000 3000

SyncBT
SyncLDS
MacDS_LDS

(b)

0%

1%

2%

3%

4%

5%

6%

0 1000 2000 3000

SyncBT
SyncLDS
MacDS_LDS

(c)

0%

5%

10%

15%

20%

25%

0 1000 2000 3000

SyncBT
SyncLDS
MacDS_LDS

(d)
Figure 6: Reduction of the objective function, according to computation time (in seconds) for cases (a), (b), (c) and (d).

Concurrent Discrepancy-based Search for Distributed Optimization

CIRRELT-2007-09 7

basic distributed search algorithms by two ways: (1) by
applying backtracking policies based on discrepancies and
(2) by allowing the agents to work concurrently, which
reduces idle time for the agents.
 We demonstrated the impact of different methods by
applying them to real industrial problems. They all show
considerable reduction of lateness for a real network of
companies, MacDS being the winner most of the time. For
an equal solution quality, MacDS also shows considerable
reduction of computation time, when compared to a non-
concurrent synchronous algorithm applying the same
backtracking policy (LDS).
 In the near future, it would be interesting to measure if
discrepancy-based search could be helpful in situations
where bound computation is possible. Discrepancy-based
backtracking coupled with pruning based on bounds has
shown good results in a centralized environment (Beck and
Perron 2000).

References

Beck, J.C., Perron, L. 2000. Discrepancy-Bounded Depth
First Search. Workshop on Integration of AI and OR
Technologies for Combinatorial Optimization Problems, 7-
17. Paderborn, Germany.
Gershman, A., Meisels, A., Zivan, R. 2006. Asynchronous
Forward-Bounding for Distributed Constraints
Optimization. European Conference on Artificial
Intelligence, 137-139. Amsterdam: IOS Press.
Harvey, W.D., Ginsberg, M.L. 1995. Limited discrepancy
search. International Joint Conference on Artificial
Intelligence, 607-613. Montreal, Can: Morgan Kaufmann.
Hirayama, K., Yokoo, M. 1997. Distributed partial
constraint satisfaction problem. International Conference
on Principles and Practice of Constraint Programming,
LNCS #1330, 222-236. Linz, Austria: Springer.
Horling, B., Lesser, V. 2004. A survey of multi-agent
organizational paradigms. Knowledge Engineering
Review. 19(4): 281-316.
Le Pape, C., Baptiste, P. 1999. Heuristic control of a
constraint-based algorithm for the preemptive job-shop
scheduling problem. Journal of Heuristics. 5(3): 305-325.
Lynch, N.A. 1996. Distributed algorithms. San Francisco,
Calif.: Morgan Kaufmann.
Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M. 2005.
Adopt: asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence. 161(1-2):
149-180.
Modi, P.J., Veloso, M. 2005. Bumping strategies for the
multiagent agreement problem. International Conference
on Autonomous Agents and Multiagent Systems, 527-533.
New York: ACM Press.
Moyaux, T., Chaib-draa, B., D'Amours, S. 2006. Supply
Chain Management and Multiagent Systems: An

Overview. In: Multiagent-Based Supply Chain
Management. Chaib-draa, B. and Müller, J.P. eds. New
York : Springer.
Petcu, A., Faltings, B. 2005. DPOP: A Scalable Method for
Multiagent Constraint Optimization. International Joint
Conference on Artificial Intelligence. Edinburg, Scotland.
SCHNEEWEISS, C. 2003. Distributed Decision Making.
New York: Springer.
Sun, J., Zhang, Y.F., Nee, A.Y.C. 2001. A distributed
multi-agent environment for product design and
manufacturing planning. International Journal of
Production Research. 39(4): 625-645.
Walsh, T. 1997. Depth-bounded discrepancy search.
International Joint Conference on Artificial Intelligence,
1388-1393. Nagoya, Japan: Morgan Kaufmann.
Yokoo, M., Ishida, T., Durfee, E.H., Kuwabara, K. 1992.
Distributed constraint satisfaction for formalizing
distributed problem solving. International Conference on
Distributed Computing Systems, 614-21. Yokohama,
Japan: IEEE Press.
Zivan, R., Meisels, A. 2006. Concurrent search for
distributed CSPs. Artificial Intelligence. 170(4-5): 440-61.

