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Abstract. Distributed Constraint Optimization is increasingly used to formalize problem 

solving by multiple agents. However, there are situations where agents represent an 

organization made up of heterogeneous agents (e.g. network of companies) in which the 

context, the structure, and the business rules define the interactions that are possible 

between them. The solution space for those hierarchical problems is reminiscent of the 

ones of centralized combinatorial problems. Therefore, we propose a distributed algorithm 

(MacDS) that performs discrepancy-based search which is known to perform well for 

centralized problems. The proposed algorithm is complete and aims at producing good 

solutions in a short amount of time. It allows concurrent computation and is tolerant to 

message delays. It has been evaluated using real industrial problems with complex 

subproblems, for which it showed good performance. 
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Introduction 
Many generic algorithms have been proposed in recent 
years to solve Distributed Constraint Optimization 
Problems (DCOP). In (Modi and Veloso 2005), the authors 
underline that those generic algorithms do not always take 
advantage of the characteristics of a particular class of 
problems, e.g. specific constraint structures or domain 
specific heuristics. Moreover, there are situations where 
the agents solving the problem represent an organization 
that exists a priori and is made up of heterogeneous agents 
(e.g. network of companies). The structure of the 
organization and its context may limit the type of relation 
and interactions between them (Horling and Lesser 2004).  
 In this paper, we study a class of distributed problems 
that are hierarchical in nature. As for classic DCOP, there 
is an objective function that agents try to minimize. 
However: 
• The problem is partitioned into subproblems and there is 

a sequence in which they must be solved, imposed by 
the business domain; 

• The agents are constrained when solving a subproblem 
by the decisions of the previous ones; 

• The objective can be formulated as a function of the 
variables of one subproblem (most of the time the last 
one).  

A wide range of problems meet those criteria, notably 
many planning problems in a hierarchical context. 
Schneeweiss describes many problems from industrial 
applications in (Schneeweiss 2003). 
 We will especially study the case of industrial supply 
chain networks (Moyaux, Chaib-draa and D'Amours 2006). 
More precisely, using the following example where agents 
are factories offering services to the others agents. An 
external client announces a call for bids for a product and 
the work of each plant is needed to produce and deliver the 
final good. Different alternatives are possible regarding the 
parts to use, the manufacturing processes to follow, the 
scheduling of operations and the choice of transportation. 
The partners want to put together a common production 
plan (e.g. what to do, where and when). Each agent has a 
local vision: it can only think about its own production, 
inputs and outputs. Business rules state a resolution 
sequence; a factory cannot calculate its needs for raw 
material and send them to its supplier without knowing 
what it is asked to produce, neither can it plan its 
production before knowing what supply is granted by the 
supplier. These define the two subproblems of each agent.  
 The objective function represents the client’s interest, 
e.g. minimize lateness. Because agents do not know 
alternative possibilities for the agents they supply, a bound 
on the objective function cannot be computed until it is 
time to solve the last subproblem. 
 The consortium is in competition with others; if the 
external client rejects the first proposal, it is urgent to 
propose alternative solutions before it accepts a proposition 
from another consortium. Our goal is therefore to produce 
good solutions quickly.  

 In the following sections, we will formally describe the 
problem and show that few DCOP methods apply in this 
context. We will then propose MacDS, a concurrent 
method allowing the agents to systematically explore the 
solution space, but aiming at producing good solutions first 
by using a backtracking strategy based on the computation 
of discrepancies. The algorithm will then be evaluated for 
both random data and real industrial problems. 

Problem Definition 
A Hierarchical Distributed Constraint Optimization 
Problem (HDCOP) is defined over a set of variables 
X={X1,…,Xm}. Each variable Xi can take a value from a set 
Di. The set of variables X is partitioned into disjoint subsets 
(subproblems). Each variable is part of a subproblem 
S(Xi)∈S=[S1,…,Sn]. Each one is owned by an agent (an 
agent may own many subproblems). Formally, 
A(Xi)=A(S(Xi))∈A={A1,…,Ap}. Subproblems must be 
solved in the order defined by S. Each subproblem Sj is 
constrained by previous decisions, as stated by a predicate 
Cj(U(S1,…,Sj)). Agents wish to minimize a function 
F(Sq) where Sq∈S. 
 We suppose that agents know algorithms to solve their 
subproblems and they produce the solutions in an order 
defined by this algorithm. In that context, we can represent 
the global solution space as a tree, where each level 
j=1,…,n corresponds to subproblem Sj. Each node on that 
level represents an instance of that subproblem (defined by 
previous decisions). Each arc is an alternative and feasible 
solution to that subproblem. Arcs are ordered according to 
the local algorithm used by the agent.  

DCOP 
The previous problem could be reformulated as a classic 
DCOP such as in (Modi, Shen, Tambe, and Yokoo 2005). 
To keep the notion of subproblems, we need to consider 
that each subproblem in the original HDCOP formulation 
is now a variable in the DCOP. The domain of each new 
variable is the Cartesian product of the original variables. 
The original variables cease to exist. Unfortunately, we 
then lack the representation of the mandatory solving 
sequence. We also miss the fact that each time a variable 
must be valued, a complex subproblem must be solved and 
that we must use the local solver of the agent. In contrast, 
most DCOP algorithms specify the rule the agent must use 
for value ordering for that variable/subproblem. For those 
reasons, we will prefer the HDCOP definition. 

Algorithms for Classical DCOP 
The simplest algorithm is Synchronous Backtracking 
(SyncBT) (Yokoo, Ishida, Durfee and Kuwabara 1992). It 
mimics chronological backtracking in the tree representing 
the solution space (for our HDCOP, the one presented with 
our definition). Agents solve the subproblems in sequence. 
The messages transmitted by agents represent current 
partial assignments (CPA). In the case of a dead end, or 
when a global solution is found, a chronological backtrack 
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occurs. Of course, the method is complete. Synchronous 
Branch-and-Bound (SyncBB) improves SyncBT by 
calculating a bound on the objective in each node. The 
value is used to prune the tree and guide the value ordering 
(Hirayama and Yokoo 1997). For a hierarchical problem 
where the objective is represented by a function of the 
variables of the last subproblem and the agents lack a good 
representation of the other subproblems, the bound would 
be equal to zero at each node. SyncBB is then equivalent to 
SyncBT. In Asynchronous Forward-Bounding (AFB) 
(Gershman, Meisels and Zivan 2006), when an agent 
assigns a value it transfers the CPA to every following 
agent. Agents then compute bounds concurrently. 
 Some methods allow the agent to assign a value to 
variables asynchronously, as soon as it supposes this 
change could improve the global solution. Distributed local 
search does this but it is incomplete (Sun, Zhang, and Nee 
2001; Hirayama and Yokoo 1997). Asynchronous 
Distributed Optimization (ADOPT) was the first method 
both asynchronous and complete (Modi, Shen, Tambe, and 
Yokoo 2005) but the algorithm needs agents to be able to 
calculate good bounds and change their values accordingly. 
It therefore violates our assumption about agents using 
specialized solvers.  
 Another approach is distributed dynamic programming. 
The best known algorithm is DPOP (Petcu and Faltings 
2005) for which different improvements have been 
proposed over time. It makes the assumption that agent 
A(Sj) can solve Sj  before Sj-1 is solved. A(Sj) is asked 
for the best solution for Sj for any potential solution of 
Sj-1. This supposes that A(Sj) has a good representation of 
the domain for Sj-1 and can solve Sj to optimality in 
reasonable time. 

Multi-Agent Concurrent Discrepancy Search 
The solution space for the introduced hierarchical 
distributed optimization problems is reminiscent of the 
ones for centralized combinatorial problems. The search 
tree (see HDCOP definition) is equivalent to one for a 
centralized problem given a variable ordering heuristic and 
a value ordering heuristic. 
 In such a centralized context, chronological 
backtracking is most of the time outperformed by search 
methods based on the computation of discrepancies, both 
for satisfaction and optimization problems (Harvey and 
Ginsberg 1995; Le Pape and Baptiste 1999). These 
strategies have the characteristic of not relying on bound 
calculation. 
 This section introduces a new distributed algorithm 
(MacDS) that performs discrepancy-based search. It is 
complete (exploring the same search space as SyncBT) but 
aims at producing good solutions in a short amount of 
time. It allows concurrent computation, uses asynchronous 
communication, an asynchronous timing model (Lynch 
1996) and is tolerant to random message transmission 
delays. It also takes advantage of situations where 
subproblem solving times vary from one agent to another. 

Discrepancy-based Search  
Limited Discrepancy Search (LDS) was the first method 
based on discrepancies (Harvey and Ginsberg 1995). The 
main idea is that the leaves of the tree (solutions) do not 
have the same expected quality; that it decreases with the 
number of times one should branch to the right when going 
from the root to that leaf (i.e. the number of discrepancies). 
The rationale is that a move to the right is a move against 
the value ordering heuristic. LDS aims to first visit the 
leaves with the fewest discrepancies. Another effect of 
LDS is that the solutions visited in a given period of time 
will be more different from one another than those 
produced using chronological backtracking. It is this 
interesting characteristic we seek in our distributed 
algorithm. In the original description by Harvey, LDS was 
a search procedure, but the idea can be used to specify a 
node selector: when backtracking conditions occurs, the 
search engine must select the node for which the next 
unvisited child has the fewest discrepancies (Beck and 
Perron 2000). This is why LDS can be described as a 
backtracking policy. 
 LDS has been applied with success to optimization 
problems (Le Pape and Baptiste 1999). For n-ary trees, 
they proposed to count the discrepancies as follows: the i-
th arc followed at a given level counts as i-1 
discrepancies. Over time, other discrepancy-based methods 
have been proposed  (Walsh 1997; Beck and Perron 2000). 
Discrepancy-based search is integrated into commercial 
solvers as, for example, ILOG Solver. 

Concurrent Search Algorithms 
Classic algorithms for DCOP and DisCSP (distributed 
satisfaction problems) exploit two different approaches to 
achieve concurrency (Zivan and Meisels 2006). The first is 
the asynchronous approach used by ADOPT, as described 
previously. The second is called Concurrent Search 
Algorithm (CSA) by (Zivan and Meisels 2006). They 
exploited it in the ConcDB algorithm (for DisCSP). With 
this approach, each global solution is constructed 
sequentially by the agents, but agents collectively work on 
many solutions. A concurrent algorithm must specify how 
and when a new “path” must be explored. Our algorithm 
makes use of this form of concurrency. 

Proposed Algorithm (MacDS) 
We will first describe the algorithm informally using a 
simple example. Agents A={B,C,D} should solve the 
problem made-up of subproblems S=[B,C,D]. Each 
global solution is constructed sequentially by the agents. 
They solve the subproblems as ordered in the vector. The 
first agent (B) uses its local solver. Once it has a first 
solution, agent B sends it to agent C in a message named 
“B0” (first solution for subproblem B). Agent C then 
repeats the same and transmits the message “B0-C0” (first 
solution of C according to the first solution of B) to the next 
agent. But, as soon as the first agent has sent its solution 
“B0” to the second agent, it started looking for an 
alternative decision (“B1”) using its local solver. As soon 
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as “B1” is ready, it is sent asynchronously to agent C, 
whether or not it has already found a solution for “B0”. 
When receiving this message, agent C must ask itself 
whether it is better to continue working on “B0-C0” or 
begin to work on “B1-C0”. This decision will be based on 
discrepancies (the names of messages contain information 
to compute them). 
 Essentially, each agent manages a list of tasks, supplied 
asynchronously by the previous one. Tasks are prioritized 
locally according to the discrepancy profile of the next 
message the task would generate. The policy used to 
compare them defines a backtracking strategy that will be 
enforced collectively by all agents. The policy is 
implemented by a function comparing two profiles and 
selecting the one with greater priority. It is possible to 
implement it based on different known strategies: LDS, 
DDS, SBS, DFS, etc. (in the latter case, we would then 
perform a concurrent synchronous backtracking). 
 In the extreme case where a single agent owns every 
subproblem, then MacDS visits the nodes of the tree in the 
same order as a centralized search algorithm (applying the 
same backtracking strategy) would. 
 In a distributed context where each agent manages its 
own task list, each solution to the global problem will be 
obtained in no more time than would be necessary for the 
centralized algorithm (ignoring communication delays). 
Each agent is working as soon as there is a task in its list, 
but preempts its current work when a task with greater 
priority is added to the list. 
 The algorithm is complete since it explores the same 
solution space as SyncBT; it only changes the sequence in 
which nodes will be visited. In the case of 
communication breakdown (or in presence of random 
messages transmission delays), the agent always works on 
the available task with the greatest priority, rather than 
remaining idle. Therefore, it is not mandatory for messages 
to arrive in the same order as they were sent.  
Pseudocode. The following objects are manipulated by the 
algorithm: 
• A message msg is a couple <d,p> where d represents 

the decisions for the previous subproblems and p is a 
vector of integers representing the discrepancy profile.  
The element p[j] defines, for a level j, which arc 
should be followed when going from the root to the 
“current node” in the solution tree. 

• A list of tasks (tasks) contains the running and waiting 
tasks of the agent. A task is defined by d and p, by the 
number of local solutions produced to date for the task 
(i) and by a boolean indicating if the subproblem solver 
thinks there is no more solution (noMoreSol). 

Each agent runs many threads: one for each task plus a 
control thread. A single thread per agent is active at any 
moment. The control thread (Figure 1) is activated when 
the agent receives a message (WhenReceiveMsg) and 
when a task has just produced a new subproblem solution 
(WhenNewSolution). It then updates the task list and 
transfers control to the thread of the task with the greatest 
priority (ActivateTask).  

WhenReceiveMsg(msg) 
 if (running ≠ ∅) running.Sleep(); 
 tasks.insert(<msg.d, msg.p, 0, false>)); 
 ActivateATask(); 
 
WhenNewSolution(task) 
 task.Sleep(); 
 SendMessage(successor(task), <task.d +  
             task.sol.d, task.p + task.i>) 
 task.i++; 
 if (task.noMoreSol)  
  tasks.Remove(task); 
  running ← ∅; 
 ActivateATask(); 
 
ActivateATask() 
 if (tasks.count() > 0) 
  running ← tasks[1]; 
  running.WakeUp(); 
 else 
  running ← ∅; 

Figure 1: Control thread of the agent 
 
 The pseudocode for the task threads is shown in 
Figure 2. When a task is created, its thread is idle. It must 
be activated by the control thread. When the task produces 
a new subproblem solution, it signals it to the control 
thread (SignalNewSolution) and goes idle (sleep). It is 
the control thread that sends the message to the agent that 
owns the next subproblem.  
 
Run(task) 
 task.noMoreSol ← false; 
 task.sol ← NextSolution(task); 
 while (task.sol ≠ ∅) 
  SignalNewSolution(task); 
  Sleep(); 
  task.sol ← NextSolution(task); 
 task.noMoreSol ← true; 
 SignalNewSolution(task); 

Figure 2: Thread implementing a task 
 
 In the shown pseudocode, we suppose that tasks are 
ordered by decreasing priority. Figure 3 shows examples of 
comparator functions that can be used to maintain the list 
sorted. They identify, over a pair of discrepancy profiles, 
which one have greater priority, according to a 
backtracking strategy. The first one (CompareBT) defines a 
chronological backtracking policy. The other one 
(CompareLDS) defines an LDS policy. When one calls 
those functions, the discrepancy profile representing a task 
is the concatenation of task.p and task.i. 

Evaluation 
MacDS was evaluated with generated data and with a real 
industrial problem. 
Evaluation with Generated Data. We suppose n-ary trees 
randomly generated, such that the probability that a leaf is 
the best solution is proportional with δ(p), where p is the 
number of discrepancies of the leaf and δ is a parameter 
that varies from 0.1 to 1.0 (by steps of 0.1). When δ is 
maximal, all leaves have the same probability. The 



Concurrent Discrepancy-based Search for Distributed Optimization 

CIRRELT-2007-09 5 

performance measure used is the expected time needed to 
find the best solution on these trees. Others parameters we 
experimented with were: number of subproblems 
(Card(S)), message transmission delay (τ), subproblem 
solving time (α), and the number of solutions for each 
subproblem (n). This experiment was conducted in a 
simulation environment similar to (Modi, Shen, Tambe, 
and Yokoo 2005). 
 
CompareBT(p1, p2) 
 depth ← Min(Card(p1), Card(p2)); 
 j ← 1; 
 while (p1[j] = p2[j] && j ≤ depth) j++; 
 if (j ≤ depth) 
  if (p1[j] ≤ p2[j]) return p1; 
  else return p2; 
 else 
   if (Card(p1) ≥ Card(p2).depth()) return 
p1; 
  else return p2; 
 CompareLDS(p1, p2) 
 t1 ← Σ(j=1..Card(p1)) p1[j]; 
 t2 ← Σ(j=1..Card(p1)) p2[j]; 
 if (t1 < t2) return p1; 
 else  
  if (t2 < t1) return p2; 
  else return CompareBT(p1,p2); 

Figure 3: Comparators implementing two backtracking policies 
 
 We compared MacDS using a LDS policy 
(MacDS_LDS) with SyncBT. To measure which part of 
the gain was due to concurrency and which to the 
backtracking policy, we also tested a version of MacDS 
using chronological backtracking (MacDS_BT) and also 
implemented SyncLDS (synchronous as SyncBT, but 
performing LDS). 
 MacDS_LDS is always the best of the four algorithms 
(caught up by MacDS_BT when δ=1.0). For both 
backtracking policies (BT and LDS), the MacDS version 
always beats the synchronous one. The following figures 
shows results when δ=0.7, which is representative of the 
average case. 
 Figure 4(a) shows that message delay (τ) has a linear 
impact for all four algorithms, but a much smaller one for 
both versions of MacDS. For them, expected time needed 

to find the best solution is equal to (Card(S)-1)τ. Figure 
4(b) shows that subproblem solving time (α) also has a 
linear impact, again smaller for the MacDS versions. 
Figure 4(c) shows that the impact of the number of 
subproblems (Card(s)) is exponential.  
Industrial Evaluation. We then evaluated the algorithms 
using real industrial data with complex subproblems. The 
case is a supply chain coordination problem in the forest 
products industry. The data were extracted from the 
company databases at different moments in 2005. 
 The network has three plants A={A1,A2,A3} and four 
subproblems S=[V,W,X,Y]. The equivalent centralized 
problem has millions of solutions. In terms of product 
flow, the agents form a chain. But, the decision flow is 
more complex (see Figure 5). Agent A2 is in contact with 
the external customer. An customer order is a set of tuples 
<product,dueDate,quantity>. A2 first computed a 
demand for A1 (subproblem V). A1 then builds its 
production plan and allocates supply to A2 (subproblem W). 
A2 builds its production plan and allocates supply to A3 
(subproblem X). Then, A3 plans its production (subproblem 
Y). The objective is to minimize the sum of order lateness, 
which is a function of the variables in Y. 
 Each local solver was made available by FORAC, a 
consortium of companies and researchers. Agent A1 plans 
its sawing operations using a Mixed Integer Linear 
Programming model. Agent A2 uses Constraint 
Programming to plan and schedule its wood drying 
operations. Agent A3 schedules its wood finishing 
operation using a forward-scheduling heuristic, but uses a 
DDS backtracking strategy to produce alternative 
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solutions.  
 
 These experiments were done in a distributed 
environment where each agent runs on a different 
computer. It allows measuring the real impact of 
concurrency in a situation where subproblems are hard and 
take a different amount of time to be solved. The 
difference in computation time between subproblems can 
vary five fold. Production of alternative solutions varies 
from a few seconds to several minutes. In this context, 
communication complexity is not an issue (Lynch 1996). 
 For a given case, the first global solution of each 
compared algorithm is always the same. It is also this 
solution that would be obtained by the companies using 
standard business process. Consequently, we compared the 
algorithms according to the percentage of reduction of the 
objective function they achieved, with respect to the 
computation time (in seconds). Figure 6 illustrates the 
results for the four industrial cases studied (a,b,c,d). For a 
very short computation time, SyncBT and MacDS_LDS 
give comparable results. This is because they produce the 
same solutions until the last agent receives a second task in 
its list. Then, MacDS_LDS starts to outperform SyncBT in 
a significant manner: while SyncBT persists in exploring 
only minor variations of the first solutions, MacDS_LDS 
explores different areas of the search tree. Case (b) is an 
exception: SyncBT is the winner by 0.5% for pretty much 
any computation time. 
 We can see the impact of the backtracking policy by 
comparing SyncBT and SyncLDS. The latter outperforms 
SyncBT, except for very short computation time. 

 By comparing MacDS_LDS with SyncLDS, we see that 
for any solution quality reached by SyncLDS, MacDS 
produces an equal or better solution in an equal or shorter 
computation time. The average reduction of computation 
time for each case is as follows: 18.5%, 88.7%, 54.5% and 
64.0%. Two reasons explain this. Concurrency makes each 
solution being produced in an equal or shorter amount of 
time, but it also gives agents the opportunity to explore 
more alternative solutions in a given amount of time. 
 MacDS_BT gave results indistinct from those of 
SyncBT. For that reason, they are not shown in the figures. 
The explanation is the following: for industrial cases, any 
subproblem has many alternative solutions. When 
performing chronological backtracking, the system takes a 
long time to explore alternative solutions of the last 
subproblem only. In MacDS_BT, previous agents produce 
alternative solutions but they are never exploited by the 
last agent. 

Conclusion 
The good performance of classic algorithms for DCOP is 
based on the ability of each agent to locally compute a 
good bound on the global objective and make its decisions 
based on this bound. In a heterogeneous context, where 
specialized agents are facing different complex 
subproblems, agents may lack such global vision. 
Hierarchical problems are such a context. 
 For those situations, we proposed MacDS, a distributed 
algorithm that performs discrepancy-based search and 
allows the agents to work concurrently. It outperforms 
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basic distributed search algorithms by two ways: (1) by 
applying backtracking policies based on discrepancies and 
(2) by allowing the agents to work concurrently, which 
reduces idle time for the agents.  
 We demonstrated the impact of different methods by 
applying them to real industrial problems. They all show 
considerable reduction of lateness for a real network of 
companies, MacDS being the winner most of the time. For 
an equal solution quality, MacDS also shows considerable 
reduction of computation time, when compared to a non-
concurrent synchronous algorithm applying the same 
backtracking policy (LDS). 
 In the near future, it would be interesting to measure if 
discrepancy-based search could be helpful in situations 
where bound computation is possible. Discrepancy-based 
backtracking coupled with pruning based on bounds has 
shown good results in a centralized environment (Beck and 
Perron 2000).   
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