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Abstract. Recent developments in supply chain planning have emerged from the field of 
agent technology and distributed decision making. Although several attempts have been 
made to exploit agent technology to design supply chain simulation tools, the integration 
of simulation with these distributed supply chain planning tools still remain to be 
addressed. This paper aims at investigating this aspect of supply chain planning through 
the use of theoretical contributions found in the field of simulation, systems theory and 
distributed decision making. More specifically, this paper proposes an analysis of the 
several uses of simulation in a supply chain context, both from the decision maker and the 
academic point of views. A theoretical illustrative case is finally presented in the lumber 
supply chain. 
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1. Introduction 
 
Advanced Planning and Scheduling (APS) systems are largely considered as being the state-of-the-
art solutions for production and supply chain (SC) planning. Despite their significant contribution 
to planning and scheduling of complex manufacturing systems, researchers and practitioners are 
currently facing research gaps in this domain ([10], [19]). In this paper we will approach two of 
them. 
 
The first gap concerns the evolution of centralized, monolithic and hierarchical planning 
approaches compared to decentralized and collaborative ones. Centralized approaches can indeed 
be suitable within a local planning domain (e.g., an enterprise or a factory). However, they are 
considered inadequate to cover more complex and realistic situations with respect to the 
consideration of partners’ plans. To overcome this limitation a set of approaches have been 
developed and tested. Specially, research developments in agent-based technology have shown 
great potential. In this case, decentralized models produce distributed plans which are coordinated 
by collaborative agents acting together to form a supply chain planning system [7]. 
 
The second gap concerns how APS systems can cope with uncertainty in a dynamic world. 
Considering the uncertain nature of the business environment, robustness and risk assessment play 
an important role. In order to manage uncertainty, simulation is seen as one of the most promising 
approaches in SC planning [9]. In current commercial APS systems, the potential of simulation is 
limited to runs of deterministic “what-if” tests of possible plans, in which a few exceptional 
situations can be tested in a “copied” version of the APS. If greater sophistication is needed, 
integration to other simulation systems may be required. Again, agent-based technologies appear as 
an interesting option for modeling distributed uncertain environments. Moreover, this technology 
allows for more flexible experiments than traditional simulation techniques. 
 
Since the 90s, several agent-based approaches for manufacturing and SCs have been proposed in 
order to address these gaps [3]. Although there have been many relevant advances in this field, the 
potential of agent-based simulation in the domain of advanced planning & scheduling systems in a 
distributed context has still not been properly discussed in the literature. This paper aims at 
investigating this gap by exploring the potential use of simulation in distributed supply chain 
planning, as well as proposing some high-level modeling constructs for defining simulation 
problems that capture the distributed and stochastic behaviours of supply chains using agents. 
 
In order to do so, our research approach consists in a systematic study of some fundamental works 
from the literature in the following areas: simulation [22], theory of complex systems [12], theory 
of distributed decision-making [18], and simulation methodology for distributed industrial systems 
([37], [38]). These research areas and they respective works were selected because we believe that 
they are essential to understand our research problem. Anchored in these works, we propose some 
conceptual models to explore the potential use of simulation in a supply chain planning context. In 
order to illustrate our discussion, a theoretical case is presented as a proof-of-concept model in the 
lumber SC using a supply chain planning system specialized in the Canadian forest products 
industry and developed by the FOR@C Research Consortium. 
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This paper is organized as follows: section 2 discusses the concept of supply chain planning 
systems; section 3 defines how the concept of simulation can be employed in this context; also, this 
section proposes some conceptual modeling constructs; section 4 presents a theoretical illustrative 
case; and finally section 5 provides the conclusion and future steps. 
 
2. Distributed Supply Chain Planning 
 
This section defines and explains what a supply chain planning system is and why agents can be 
seen as an interesting modeling approach. 
 
First, we have to understand what exactly an APS is. APS are computer supported planning 
systems for SCs. They are typically hierarchical production planning systems ([8], [20]). These 
systems employ operations research (OR) and primarily mathematical programming and meta-
heuristics, in order to carry out integrated finite-capacity planning and scheduling, covering 
strategic, tactical and operational planning levels, for procurement, production, distribution and 
sales ([7], [20]). Although SC Management (SCM) refers to the coordination of operations, 
processes and distribution throughout the SC, few APS, if any, have the ability to cross 
organizational borders in order to properly address this purpose. 
 
Software agents, on the other hand, are autonomous entities that sense their environment and carry 
out actions on it. They can communicate with one another and follow their own agenda to achieve 
their goals [26]. They are often used to model SCs because both can be considered as networks of 
distributed and cooperative entities aiming at solving problems together. 
 
Several research developments propose approaches to distribute decisions across the SC using 
agent technology. For example, the pioneering work of Fox et al. [6] followed by others Parunak 
[16], Swaminathan [24], Strader et al. [23] and Montreuil et al. [14] just to mention a few, have led 
to some significant advances through the identification of fundamental entities for modeling SCs. 
However, the notion of APS systems is not explicitly addressed in most works. For instance, in 
many cases optimization routines are not explored clearly. More recently, APS have been explicitly 
addressed by some authors ([2], [13]). In Lendermann and McGinnis [13], traditional APS systems 
are integrated to distributed simulations which are encapsulated as federates, while in Baumgaertel 
and John [2] agents directly implement a distributed APS logic and their simulation capabilities. 
 
Most work in this area are concerned with supply chain planning systems. Such a system can be 
defined as a distributed advanced planning and scheduling system (d-APS) that models the supply 
chain as a set of semi-autonomous and collaborative entities acting together to coordinate their 
decentralized plans. The concept of d-APS goes further than classic APS, as they allow for 
additional capabilities, such as the utilization of negotiation and artificial intelligence mechanisms 
to coordinate SC planning. 
 
Agents can be seen as an interesting modeling construct for this kind of distributed SC planning 
logic, although a SC is considered a complex system [25]. Modeling a complex system can be 
challenging and we will explain why agents can be relevant. 
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According to Le Moigne [12], there are nine different comprehension levels for modeling a 
complex system, such as a SC. They are: 1) the phenomenon is identifiable: modellers have a 
minimum perception and identify the system as just a “closed set”; 2) the phenomenon is active: 
the closed set, seen as a “black box”, simply takes inputs and transforms them into outputs; 3) the 
phenomenon is controlled: the system has a simple internal mechanism for regulation, that is, a 
feedback control system; 4) the phenomenon has complex artefacts for regulation: as an evolution 
of the 3rd level, the system is able to get informed about its own behaviour for more complex 
regulations; that is, the system is auto-controlled through something as internal “nerves” used for 
communication and auto-control; 5) the system has cognitive capacity: capable of producing 
information, the system is now able to treat it and make decisions concerning its own behaviour; 6) 
the phenomenon has a memory system: more than using instantaneous information, as a thermostat 
does, the memory is an information system used to take more complex decisions; 7) the system is 
able to coordinate numerous decisions over time: not only one decision; 8) the system has an 
imagination capacity: for performing self-conception and to change its own design; 9) the system 
has finalization capacity: the system itself can “decide on its decision” so as it can infer that no 
more decisions will be necessary and terminate itself. These levels are accumulative, that is, 
modeling a system at the 6th level means that the preceding levels are also considered in the model. 
 
Different modeling approaches can capture different complexity levels. For example, OR is a very 
good approach for modeling the 1st and 2nd levels, but OR was not conceived for modeling 
feedback control, as the 3rd level proposes. On the other hand, agents abstract real-life entities (as 
decision-makers and organizations) in a way that captures more complex SC behaviours, perhaps 
as the domain emerged from the distributed artificial intelligence field. In this case, agents can 
model the 3rd and 4th levels because they are conceived for monitoring their environment and acting 
upon it in a reactive or even proactive way. In addition, agents may model 5th and 6th levels because 
they can encapsulate complex cognitive capacities which employ various knowledge bases for 
decision-making. Also, due to its very distributed nature and its social abilities, agents are able to 
coordinate numerous decisions over time, which means that the 7th level can be modeled as well. 
For us, the 8th and 9th level are inherently suitable to real life agents, i.e. human beings, and the 
existing modeling approaches can still not capture their complexity. 
 
Agents and OR form an interesting partnership to address supply chain planning problems. OR 
models and methods are encapsulated by agents representing distributed organizations in a SC. 
These models and methods stands for the cognitive capacity of agents, i.e., the decision-making 
ability of each organization in a SC. Each agent makes local decisions employing its cognition and 
collectively interacts with one another in order to arrive at global decisions. An agent’s social 
ability can be understood as a kind of meta-heuristic coordinating several OR tools in a way that 
allows complex social behaviours such as negotiations and collaboration. Thus, agents can be seen 
as a general framework for representing SC entities where different advanced planning tools can be 
plugged together and collaborate. This creates an attractive environment for performing 
experiments in the domain of SC planning. 
 
Figure 1 schematizes this concept. Agent n encapsulates an APS tool dedicated to a specific 
planning domain n (e.g., a product assembler) while Agent n+1 encapsulates specialized APS for 
the planning domain n+1 (e.g., a distributor). Agent n interacts with n+1 exchanging information or 
negotiating. Also, the assembler interacts with a set of suppliers and the distributor cooperates with 
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a set of customers. Each agent has its own specialized APS tool that can provide solutions to its 
own planning problem. The whole SC planning takes place when all agents interact with one 
another collaboratively in order to reconcile their local plans with the global plan for the entire SC. 
 

 
Figure 1: Distributed APS.  
 
Even given the potential benefits of this technology, agents in manufacturing and SC planning are 
in its infancy [3]. Most of the known work in this domain presents limitations. To our knowledge it 
lacks, among others: a formal understanding of what is simulation in the context of supply chain 
planning; which simulation possibilities can be explored; and how to define simulation experiments 
for supporting the distributed planning and coordination of SCs. The remaining sections present our 
insight concerning these points. 
 
3. Simulation and Distributed Supply Chain Planning 
 
This section puts the notion of simulation into context and explores its potential. First, subsection 
3.1 defines the wide concept of simulation. After, section 3.2 presents the scope of simulation is in 
this context; then, subsection 3.3 discusses what kinds of simulation possibilities are possible. Sub-
section 3.4 proposes a conceptual model for identifying the simulation problem in SC, while, sub-
section 3.5 explains how one can translate these problems into a distributed model for supporting 
supply chain planning simulations. Next, sub-section 3.6 goes further in the notion of distribution 
and discusses how the simulation can be used to anticipate the impacts of distributed decision 
levels. Finally, section 3.7 discusses these ideas in methodological terms so as one can understand 
how the proposed conceptual models can be employed when creating supply chain planning 
simulations. 
 
3.1 Simulation Definition 
 
The notion of experimentation has been gaining considerable attention in recent years. Economists 
coined the meaningful term “experimental economy” and they pointed out the experimentation 
capacity is of great importance for companies or even nations to become and stay competitive. For 
example, it is widely believed that, “companies will have to look at their initiatives as 
“experiments,” attempts to find their way through a maze of uncertainty” [28]. Dominique Foray 
[29] states that we are actually moving toward the experimental economy in which experiments 

Agent n Agent n+1

APS n+1
“local planning 
domain n+1”

APS n
“local planning 

domain n”

Interactions 
n↔n+1



Agent-based simulation for distributed supply chain planning: conceptual modeling, analysis and illustration 

CIRRELT-2007-11 7 

with new solutions, technologies and approaches will become the normal state of affairs. 
Experimenting allows for the generation of reliable knowledge about new ways of creating value. 
This is particularly important in rapidly-changing and uncertain environments, where new ideas 
can be tested before committing more resources to them. 
 
The term experimentation stands for the large notion of conducting tests of ideas under controlled 
conditions. The term “simulation” employed here can be understood as a synonym for 
“experiment”. The classical definitions of simulation refer to it as a “numerical exercise of a 
model” for the inputs to observe how output measures of performance are affected by these inputs 
[27]. Here, it is a generic and wider label for traditional simulation. It also includes more simple 
tests in which no mathematical simulation techniques (e.g., event-based simulations, system 
dynamics or game theory) are employed, as when testing prototypes, executing pilot projects or 
performing role-play games. It covers the idea of conducting tests and investigations also in real 
systems, not only in “virtual” systems, as will be discussed in the next sub-section. Many scholars 
and managers intuitively employ the term simulation as a more global concept and this common 
sense definition is largely used inside companies and in the literature of diverse domains. We prefer 
to adopt the term simulation so as to not disagree with this common sense utilization. 
 
Due to the volatility of the planning environment, simulation can be an interesting approach in the 
APS domain, as discussed in the next sub-sections. 
 
3.2 Simulation Scopes 
 
According to Petrovic [30], dealing with uncertainty is an important issue in SC. Different sources 
of uncertainty exist in a SC, originating from suppliers, production and customers [4]. These 
uncertainties create a complex planning environment in which decision makers have to analyze 
different decision alternatives before implementing a given decision. 
 
The management of uncertainties is a significant limitation of APS systems [19]. Many efforts have 
been made to overcome this drawback. For example, there is today an emergence of APS 
employing stochastic programming. This technique involves the design of resource allocation 
models taking explicitly into account the randomness of the decision making context. It is a 
powerful approach where the expected result is optimized according to statistical information about 
the decision parameters and the expected outputs. For example, Santoro et al. [40] present a 
stochastic programming approach for solving strategic SC design problems of realistic scales where 
a huge numbers of scenarios are modeled and analysed. However, due to the large number of 
scenario to consider, stochastic programming models are usually large and difficult to solve. It is 
even more complex to solve at the tactical and operational levels where models are generally multi-
period. 
 
Along the same line, simulation can be used in a SCM context to manage uncertainty [9]. It allows 
for scenarios analysis in stochastic and complex contexts. However, the use of simulation in the 
context of supply chain planning systems still remains to be investigated by academics and such 
complex tools still need to be developed. In order to investigate this domain, we first exploit 
Sterman’s work on simulation [22]. In brief, the author explains that the objective of a simulation is 
to streamline the learning process. Based on this idea, Figure 2 represents a general understanding 
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of the simulation scopes in the context of supply chain planning. Three basic learning processes are 
presented: “intuitive learning” which naturally occurs when a decision-maker interacts with the real 
world and learns from reality; “formal learning”, in which the learning process is formalized 
through models or maps rather than occurring intuitively; “formal learning via simulation” in 
which the formalization is done through simulation models.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2: The learning processes. 
 
Both “intuitive” and “formal” learning occurs through what is called a single learning loop (loop 
1). Figure 2a) presents this loop, that can be seen as a “regular learning” process, in which the 
decision system (i.e., generally a human decision-maker) learns based on his/her experience with 
the real world. More precisely, the decision-maker, based on his own free will, decides to put the 
results of his learning into practice in the real world (the SC system – SCS). This produces some 
effects on the real world, which can be captured by the decision-maker’s information system, 
which in turn closes the feedback loop. 
 
Next, the difference in Figure 2b) from Figure 2a) is the fact that feedback is “formally” used to 
change the decision-maker’s mental models, who can then design new goals and new decision 
rules, strategies and structures. In this case, information is manipulated through formal maps. Both 
processes (“intuitive” and “formal”) employ the regular learning mechanism that is, learning loop 
1. 
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This “regular” learning process presents a set of limitations. For example, decision makers can 
make inferences about the consequences of their decision rules in unknown contexts. Or, the 
learning process can be considered extremely time consuming due to system complexity. In these 
cases, decision-makers can test their decision rules in a virtual world (Figure 2c) to streamline the 
leaning process. 
Hence, in Figure 2c) the virtual world is composed of formal simulation models (e.g., physical 
models, role-play, and computer simulations), forming a relevant environment for decision-makers 
to conduct experiments. The simulation environment stimulates reflective thoughts in a way to 
break with established concepts. Such a virtual world may be necessary for effective learning in 
dynamically complex situations. This forms a double learning loop (loop 2), in which time and 
space can be compressed, actions can be repeated under the same or different conditions (or one 
can stop the action to analyze it), and one can study risky decisions without disrupting the real 
world. It is an accelerated learning process. In fact, an effective learning involves continuous 
experimentation in both the virtual world and real world (loop 1 and 2), as can be noted in Figure 
2c. 
 
In this framework, APS systems embed simultaneously “strategies, structures and rules”, as well as 
the decisions themselves. The latter is related to basic APS functionality (decision support system) 
and the former are important prerequisites to any decision process. Strategies, structures and 
decision rules are represented through APS mathematical models (objective functions, variables, 
constraints and parameters). In addition, APS may also include some basic “what-if” simulation 
capabilities, which are part of the virtual world (Figure 2c). This kind of simulation represents only 
one simulation possibility in virtual worlds, as mentioned in section 1. 
 
The simulation functionality can be expanded to cover more possibilities. For example, Santa-
Eulalia et al. [17], Labarthe et al. [11] and Swaminathan [24], among others, propose agent-based 
discrete-event simulation models for SC planning. In a different way, Moyaux [15] deals with 
simulations based on game theory and agent models to analyze the bullwhip effect across SCs. 
Kleijnen and Persson [10] employ Monte Carlo simulation together with traditional Design of 
Experiments and meta models for analyzing the robustness of a SC configuration. The work of 
Strader et al. [23] integrates system dynamics-based simulation and discrete agent-based modeling 
for studying order fulfillment and supplier evaluation policies in SCs. These are a few examples 
showing the potential of SC simulation. As it will be discussed later, it is possible to model 
different aspects of a SC system by means of agent-based simulation models, in order to leverage 
the potential of APS systems. 
 
Figure 2d) presents an experimental learning loop (loop 3), which can be used for research 
activities (e.g., academic studies). In Figure 2a), b) and c), the real world inspires the creation of the 
virtual world and the decision-makers continuous interacting with the real world (loop 1) to 
implement decisions tested in the loop 2 or to gather more information (a “two ways interaction”, 
as seen in the Figure 2c)). Instead, in the learning loop 3 the only interaction between the real and 
virtual worlds is the inspirations that modellers employ when creating the virtual world (a “one 
way interaction”, as seen in the Figure 2d)). After, experimentation can be done in the virtual world 
without direct connection in the real world. This can be useful when the disconnection with reality 
does not impose problems to the analyst as he/she is more interested in conceptual aspects rather 
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than in practical ones. As a consequence, complex simulation models can be developed without 
requiring detailed information about the real world problems, what can burden theoretical studies. 
 
These leaning loops allow experimenters to mainly perform three kinds of simulation, as it will be 
discussed in the next sub-section. 
 
3.3 Simulation Uses 
 
Based on the proposed learning loops, we suggest that three kinds of simulation are possible: 
 
i) Simulation for Decision-Making: it refers to the use of simulation techniques to assist the 
decision-making process. In this case, prior to the implementation, the decision-maker tests one or 
several possible decisions in a real environment (loop 1) and/or in virtual environment (loop 2) for 
comprehension and comparison purposes. For example, Kleijnen and Persson [10] propose a 
simulation method for assessing three different SC designs at Ericsson in Sweden. In order to select 
the best design, they tested these scenarios by varying diverse factors for evaluating the SC 
robustness, i.e., the ability to handle changes in those factors without changing the SC design; 
 
ii) Simulation for Technology Evaluation: instead of using the simulation to support organisational 
decisions, this simulation possibility employs the learning loop 3 for evaluating different supply 
chain planning technologies. In this case, as agents are very flexible, the d-APS tool is seen as a 
test-bench for new technological approaches. Basically, one can test technology in terms of: 
 
(a) Agent cognitive capacity – i.e., the APS tool being employed, defining planning algorithms and 

methods. For example, the work of Gaudreault et al. [31] proposes different planning 
approaches (APS tools) for a softwood lumber SC. They use different models and algorithms 
(based on mixed integer programming and on constraint programming) in an agent-based 
planning system. The quality of solutions and computation time for three planning tools are 
evaluated; 

(b) Agent behaviour – internal and social behaviour of the agents. For example, the work of Forget 
et al. [32] proposes a multi-behaviour agent model employing different decision-making 
approaches in the context a supply chain planning system. Agent’s behaviour can vary from 
totally reactive employing only technical competencies (e.g., APS tools) to a cognitive agent 
employing complex collaborative competencies with learning abilities. They propose a 
simulation schema where when the system reaches a new state, each agent evaluates the 
situation and can select the appropriate behaviour; 

(c) Agent middleware and network – which manages the interaction of different applications across 
different platforms. For example, the work of Gain et al. [33] perform simulation tests to 
compare two middleware approaches, namely the Runtime Infrastructure (RTI) of the High 
Level Architecture (HLA) and a tailor-made alternative approach in which a distributed 
simulation is implemented by a parallel and distributed discrete event simulation technology 
based on an extended asynchronous simulation protocol. The authors compare two issues 
(interoperability and performance) and tests were done using a semiconductor SC model. 

 
iii) Simulation for Education: based on the learning loop 3, it refers to the use of simulation as a 
means to support training and education. Olhanger & Persson [39] report on the learning effects of 
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using simulations for investigating the behaviour of different production and inventory control 
methods in manufacturing within student projects. They demonstrated that the use of simulation 
provided a fast and accurate feedback loop for the students. Perhaps the most well-known 
simulation approach for this situation is Business Games (BG). BG are interactive experiments that 
allow managers to operate business situations within a simulated world. It is useful to model and 
simulate human behaviour, which is quite difficult compared to technological processes. These 
games are mainly used for educational purposes (e.g., to teach managers about the bullwhip effect 
across a SC – as with the famous Beer Game), but they are used in research as well (e.g., to study 
the confidence that managers have in their decisions). In this case, “human agents”, instead of 
software agents, interact with each other. For example, Holweg and Bicheno [34] describe a 
participative simulation model to demonstrate SC dynamics. It includes various levels of 
management from companies along the same SC, including directors, planners, schedulers, and was 
also used to train graduate level entry staff. Another interesting example of the beer game is 
presented by Van Horne and Marier [35]. It is called the Quebec Wood Supply Chain Game and 
uses the model of the classical Beer Game in the forest products industry, and can be played on the 
Internet. One interesting approach for education and training is the use of supply chain planning 
systems employing software agents together with human agents. The work of Dobson et al. [36] 
explores agent-based strategy games for decision training, but to our knowledge, this possibility is 
still not widely explored in the literature of SCM. 
 
Among the three possibilities, perhaps the simulation for decision-making is the most common 
approach in the literature and will be the focus of our remaining sub-sections. 
 
These three kinds of simulation require a virtual environment. Thus, the question that now arises is 
what exactly the virtual world can capture in order to perform simulations in a supply chain 
planning context, and why using agents can be advantageous. Therefore, sub-section 3.4 defines 
what a simulation problem is and sub-section 3.5 discusses how a simulation can be translated into 
a distributed agent-based system. 
 
3.4 Simulation Problem 
 
In order to understand what a virtual SC world can capture, this sub-section introduces the concepts 
of object and object environment. A virtual SCS aims at describing the behaviour of a given object 
(e.g., the SC, a facility, a relationship) under pre-defined environmental conditions (e.g., market 
conditions, material procurement limitations) in order to streamline the learning process related to 
SC planning (Figure 3). 
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Figure 3: Defining the simulation problem. 
 
In Figure 3 the grey ellipse on the left represents the object, which is anything that one desires to 
study. The grey ellipse on the right represents the object environment, which is a set of surrounding 
conditions that involves the object under study. Normally, the analyst desires to experiment with an 
object in some object environment because he suspects that the object has some predefined 
behaviour (i.e., some dynamic hypotheses about its behaviour). The analyst wants to validate or 
refute these hypotheses. For example, by believing that one key supplier is not able to support great 
demand variability one may perform experiments to analyze the robustness of supplier 
performance. In this case, the supplier is the “object”, different demand patterns form the “object 
environment” and the supposition that the supplier is not prepared to absorb great demand 
variability represents the “dynamic hypothesis”. 
 
As depicted in Figure 3, both object and object environment can be either real or virtual. The object 
and the object environment can be used for experimentation as they are. The virtual object and the 
virtual object environment are usually created as simplified copies of the real world with which one 
can experiment. The utilization of a real object and a real object environment represents the 
learning loop 1. In many situations decision-makers use virtual objects and/or virtual object 
environment in order to streamline the learning process (loop 2 or 3). In this case, the experiment is 
conducted in a virtual world. 
 
Basically, four combinations of objects and object environments are possible (see Figure 3): A) real 
object and real object environment, when performing real world experiments (e.g., when 
implementing a pilot project); B) virtual object and real object environment (e.g., when 
implementing a system prototype under real business conditions); C) real object and virtual object 
environment (e.g., the classical beer game where real objects composed of decision-makers – 
humans - are introduced in a fictitious SC order propagation system); D) virtual object and virtual 
object environment, which is the most common situation in computer-based SC simulation (e.g., 
the classical beer game is widely tested by means of system dynamics models, where both the 
object and the environment are virtual). 
 
All three possible simulation possibilities exist in the context of SC planning. They allow for the 
accomplishment of the three learning loops. But the question that arises now is what exactly can be 
classified as an object and environment. 
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3.5 Distributed Simulation Environment 
 
In order to understand which type of object and object environment exist and which kind of 
relationships they can establish, we employ one known framework from the literature to found our 
idea and to propose a conceptual schema. 
 
Based on Le Moigne [12] work on complex systems, Figure 4 depicts four sub-systems that 
compose any complex system: i) Decision system (DS): is a system responsible for making 
managerial choices – in SCM, decisions are usually subdivided into strategic, tactical and 
operational levels (e.g., a manager or an AP system); ii) Information system (IS): is a system that 
includes groups of procedures, people and machines to collect, process, store and disseminate 
information from all companies’ sub-systems (e.g., an ERP system or an accountant); iii) Operating 
system (OS): is a set of planned activities involving many human and physical resources to perform 
various actions, allowing the SC system to function and to produce its outcomes, i.e. products 
and/or services (e.g., manual operators and CNC machines); iv) System Environment1 (E): 
represents the sum of the existing surrounding conditions and forces by which the other sub-
systems are influenced (e.g., economic, climatic, political, technological and competitive 
conditions that can influence the demand, raw material availabilities, production capacities etc. in a 
SC). These sub-systems interact with each other. All DS, IS and OS may simply represent an 
internal SC (e.g., only one company with all its production sites and distribution centers) or part of 
a given SC (e.g., the Original Equipment Manufacturer, its first tier suppliers and its first tier 
clients) or even the whole SC (e.g., from the source of raw-material to the final consumer). 
 
 

 
Figure 4: Complex SC. 
 
As suggested by Figure 4, each layer can be seen as a continuum between human-based and 
machine-based elements. On the left side, managers, accountants and manual operators are 
examples of pure human-based DS, IS and OS respectively, while APS, ERP and CNC machines 
are examples of pure machine-based. In reality, most of the activities in a SC are done by both 
machines and humans.  

                                                 
1 Note that here it is important to distinguish the “system environment” (E) from the “object environment”. The former 
represents involving conditions where the SC system exists, while the latter represents inclosing conditions where the 
object to be simulated operates. 
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Using the framework, it is possible to identify the potential conditions that constitute the object and 
the object environment. Actually, both object and object environment can be an entire sub-system 
(DS, IS, OS and E) or simply a small part of it, or even a combination of sub-systems and their 
parts. This allows for a set of flexible simulation possibilities. For instance, using an APS system, 
one may want to evaluate the behaviour of a new SC capacity profile (e.g., by eliminating a third 
work shift in some SC business units) under different demand patterns. In this simple example, the 
decision-maker hypothesis is that capacity utilization can be improved without disrupting the SC 
system even when demand changes. The object is the SC capacity profile and the object 
environment is the demand patterns. In order to do so, a firm may use its APS system to make 
some “what-if” tests. In this case, the “cloned” version of the APS for “what-if” purposes stands for 
the decision system and the demand represents the environment. In order to perform further tests, 
the decision-maker may desire to implement a given decision in a simulation model of the 
operating system using the discrete-event approach. By testing the impact of the decision in the OS, 
the analyst can better understand whether this decision will disturb the production execution or not. 
In this second setting, the object environment is represented by both E and OS. This case 
exemplifies the relationship D for the learning loop 2. 
 
By using this modeling framework, one can capture different uncertainties in an APS domain. For 
instance, at the E level one can analyze uncertainties related to demand, supply or product prices. 
At IS uncertainty can be studied for its information quality (e.g., time, quantity and completeness). 
At OS one can examine the stochastic behaviour of transformation, transport and material handling. 
 
Having seen what the object and object environment could be, we can now discuss how they can be 
distributed and how they can relate with each other. 
 
 

 
 
Figure 5: Problem distribution. 
 
Figure 5 shows that for each SC sub-system a set of entities may exist. Each entity can establish 
relationships to other entities in the same sub-system, and/or to other entities from different sub-
systems. Because agent-based supply chain planning involves several autonomous entities working 
together to coordinate their decentralized plans, therefore the DS necessarily accounts for multiple 
interacting entities. Additionally, the other sub-systems may implement diverse entities to represent 
their detailed behaviours. For example, machines, cells, facilities may represent the OS of a given 
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SC. They can interact with one another (e.g., exchanging orders and materials) and they may also 
interact with other sub-systems. 
 
Now, it is important to understand one relevant concept. In supply chain planning simulation, the 
DS sub-system is involved because an APS is a decision-support system. The next sub-section will 
approach the potential of the supply chain planning systems in anticipating the impact of the 
decisions at the DS level on the other levels. 
 
3.6 Distributed Decision Levels 
 
Due to the integrated characteristics of SC problems, decisions cannot be studied in isolation. 
Decision at one level (e.g., strategic) will impact on other decision levels (e.g., tactical and 
operational), and decisions from a component of the DS will influence the behaviour of the other 
sub-systems. 
Any test performed by means of simulation can be seen as an attempt to anticipate the impact of 
some tentative decision (a SC configuration, a plan, a rule, a protocol, etc.). Anticipating a 
decision’s impacts allows the decision-maker to learn about possible results it may cause on the 
whole SCS. Under the light of Schneeweiss’ approach [18], a known work on distributed decision-
making, this anticipation can be represented as in Figure 6. 
 

 
Figure 6: Anticipating sub-systems impacts. 
 
Figure 6a) suggests that any simulation model is an anticipation of a given decision. Comparing to 
the initial model from Figure 2, the simulation can be seen as a virtual SCS and the instruction-
anticipation can be seen as the feedback loop 2. 
 
The potential of APS simulation resides in its ability to anticipate the impact of different decision 
levels and the behaviour of different sub-systems. Figure 6b) represents the case where the impact 
of a decision at the strategic level can be anticipated at the tactical level and so on. The impact of 
higher level decisions can be studied at lower decision levels. Also, Figure 6b) indicates that any 
decision at the DS can be tested at the OS concerning whether the decision can be implemented or 
not. 
 
In the Figure 6c) we provide a more complex example. Suppose that a decision-maker needs to 
analyze a strategic decision of expanding a distribution network. The new tentative configuration of 
the distribution network represents the object that is investigated. The decision-maker wants to test 
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this object under different environmental conditions at the operational level, that is, he wants to 
execute some plans and schedules for the OS system in order to verify whether this strategic 
decision can be operationalized or not. In this case, the supply chain planning system will have to 
simulate some “secondary decisions” (tactical and operational) in order to simulate the desired 
orders for the “physical system”. In order to do so, a supply chain planning system properly 
configured can be used to produce plans at tactical levels and schedules at operational levels. Later, 
it can dispatch orders at OS, which will perform discrete-event simulations in order to know how 
these orders may behave operationally.  
 
In order to understand how the proposed modeling constructs can be articulated to capture these SC 
characteristics, next sub-section discusses our ideas in the context of a modeling methodology. 
 
 
3.7 Simulation Methodology 
 
The proposed modeling constructs are intended to identify the simulation problem, setting its 
objectives and defining a high-level abstract model of the simulation problem. Banks et al. [1] 
explain that this early phase is a period of discovery and the initial statement of the problem may be 
somewhat nebulous, what may burden the modeling work. Therefore, it is a crucial step and our 
work suggests some guidelines for it. 
 
We can understand these guidelines according to the methodological approach for simulation of 
distributed industrial systems proposed by Galland et al. [37]. Their methodology is based on 
systemic and multi-agent concepts and it defines a life-cycle of models with five major phases 
(Figure 7): i) analysis: an abstract description of the modeled system containing the simulation 
requirements; ii) specification: the translation of the information derived from the analysis into a 
formal model; iii) design: definition of a structural organisation of agents, as for example 
simulation agents and facilitator agents; iv) implementation: translation of the model resulting from 
the design to a specific software platform, as ARENA®; and v) experimentation: when the 
customer uses the simulation model on a set of experimental plans. The authors propose formal 
method for the specification, design and implementation phases, but the analysis phase is not 
tackled by them. They mention that this phase is complex and there is as yet no consensus within 
the community. 
 
This paper contributes to the advancement of knowledge by proposing constructs for the definition 
of a supply chain simulation problem during the analysis phase. The initial nine steps of the 
analysis phase are represented in Figure 7. 
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Figure 7: Modeling methodologies. 
 
According to Galland [38] and Galland et al. [37], apart from the problem definition and simulation 
objectives, other elements of the analysis phase may be considered for the abstract description of 
the modeled system. Some examples are: all information which seems necessary to the 
implementation of a simulation process (e.g., description of the physical infrastructures, 
management policies, etc.), a list of experiment plans and the definition of the performance 
indicators for the simulation. As the objective of the present work is to position the potential use of 
simulation in a supply chain planning context, these elements are not considered here and might be 
subject of future publications. 
In order to exemplify the whole discussion, the next section presents an illustrative case. 
 
4. Illustrative Case 
 
The proposed conceptual models will be theoretically illustrated using a supply chain planning 
system currently under development by the FOR@C Research Consortium. This system, called the 
FOR@C Experimental Planning Platform, is agent-based and encompasses concepts of autonomy 
and cooperation to deal with distributed decision-making problem that naturally resides in SC. 
 
Basically, it addresses two relevant issues to provide a decision and planning tool for the forest 
products industry: i) capacity to plan and coordinate operations across the SC and ii) capacity to 
analyze the dynamics and performance of different SC scenarios by means of simulation [7]. These 
two issues are schematized in  
Figure 8. 
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Figure 8: Overview of the FOR@C Planning platform [7]. 
 
4.1 The Planning Functionality 
 
In this planning platform, a set of planning agents, geared up with advanced planning tools based 
on operations research technology, individually produce operations plans. These agents collectively 
interact with each other in order to carry out functionalities that synchronize their plans across the 
network to find enhanced global performance. Some planning agents have been developed to 
represent a business unit, i.e., an internal SC where all production units are owned by the same 
company. The following agents are responsible for the operational planning: 
 
• Deliver agent (De): manages all relationships with the business unit’s external customers and 

fulfils all commitments with them; 
• Make agents: several make agents are responsible for carrying out production planning 

functions, each one being in charge of a part of the overall planning functions by means of 
specialized planning capabilities. Currently, there are three make agents. Sawing (Sa), drying 
(Dr) and finishing (Fi) agents represent three different production units; 

• Source agent (So): manages the relationship with all the business units’ suppliers, forwarding 
procurement needs to the right suppliers. 

 
This functional deployment is inspired by the SCOR model [21], and by the application presented 
in Fox et al. [5]. In addition, this platform involves the development of:  
 
• Plan agent (Pl): is a tactical planning agent providing production and procurement policies (in 

the form of aggregated production guidelines) for all make agents; 
• Warehouse agent (Wa): is responsible for inventory planning of final products at the 

warehouse level. 
 
These planning agents represent the DS (from Figure 4). Next sub-section discusses how they can 
be used to create the simulation functionality shown in Figure 8. 
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4.2 The Simulation Functionality 
 
In this specific implementation, simulation functionality has been added over the planning 
functionality to simulate objects outside the decision layer. In order to create our simulation 
functionality, the proposed planning agents are configured to create the distributed decision system. 
Then, for each of these planning agents, a simulation agent is created to model the 
manufacturing/logistic sub-system controlled by the planning agent (see Figure 9). These 
simulation agents have the responsibility to simulate plan execution. 
 

 
Figure 9: The simulation environment. 
 
As noted in Figure 9, for each DS agent (apart from Plan Agent - Pl), a corresponding OS agent 
(marked with an “*”) is implemented (So*, Sa*, Dr*, Fi*, Wa* and De*). They are responsible for 
performing agent-based discrete-event simulation representing the stochastic behaviour of the SC 
physical system. Their functioning is based on the instructions sent by DS, i.e., production orders. 
 
Additionally, two extra simulation agents are implemented to compose the outside environment. 
They are the demand agent (Dm) and the supply agent (Su). Dm is responsible to generate demand 
to delivery agent (De), i.e. generating customer orders so as the planning agents are able to perform 
planning activities to satisfy customer requirements. Dm has a stochastic behaviour in a way to 
represent demand uncertainties. Su is in charge of making quantities of raw materials available for 
source agent (So), i.e., representing the fluctuation of suppliers’ capacity. In this case, all 
environmental conditions are represented by only two agents. 
 
The proposed model allows the implementation of decentralized stochastic behaviours all along the 
SC, as follows:  
• At the E level, the Dm agent may implement stochastic behaviours in terms of “customer order 

arrival time”, “customer order delivery time”, “order quantity” and “product prices elasticity”. 
Similarly, the Su agent may implement stochastic behaviours of “supply order delivery time” 
and “supply order volume”; 

• At the DS level, the planning agents may have embedded “stochastic optimization procedures” 
so as plan’s results may slightly differ even when same planning conditions are considered; 
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• At the OS level, .i.e., the virtual physical system, the Sa* agent may implement uncertainty in 
terms of “production lead time” and the “distribution outputs of the process of disassembling 
logs into lumbers”. Dr* and Fi* agents may implement stochastic “production lead-times”. 

 
Demand, product prices and the process of disassembling trees into logs are very stochastic in the 
lumber industry. Therefore, they are very important parameters in this sector and are of great utility 
in the proposed simulation model. 
 
In order to carry out the simulation, each agent must communicate with other agents whenever 
necessary to maintain proper logical relationships between them. At the DS level agents have to 
negotiate with each other in order to synchronize their plans. On the other hand, at the OS level 
communication is used to maintain the correct time-ordering of actions, i.e., to synchronize the 
operation of the OS agents in different production units. In addition, the E agents continuously send 
environmental messages for the DS sub-system. Finally, the DS and OS can interact continuously 
for re-planning. 
 
4.3 Analysis Examples 
 
In this illustrative case, different simulation alternatives are possible. Three examples are presented 
hereafter to illustrate all possible simulation uses (Figure 10): i) Simulation for Decision-Making, 
ii) Simulation for Technology Evaluation, and iii) Simulation for Education. 
 
 

 
 
Figure 10: Examples for the three simulation possibilities. 
 
i) Simulation for Decision-Making: first, as shown in Figure 10-(i), this simulation concerns a 
decision-maker who exploits the planning functionality to support his/her decisions, and the 
simulation functionality to evaluate the impacts of decision alternatives in an advanced what-if 
approach. We are here specifically interested in the relationship between the decision-maker and 
the simulation functionality. 
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For example, consider the case where one decision-maker desires to test different decoupling point 
positions in a lumber SC. He first wants to position it at the finishing level, after at the drying level 
and finally at the sawing level. By doing so, he wants to test the hypothesis that delivery 
performance can be improved when the decoupling point migrates from Finishing to Sawing, while 
maintaining similar costs. This can be obtained even when demand, supply and production are 
uncertain. The best configuration will be then implemented in a real SC. 
 
Therefore, in order to test these scenarios, the decision maker first (1) configures the platform with 
the three possible scenarios. Once simulation runs have been carried out to test these scenarios, the 
decision maker can compare and analyse their performance indicators (2) to make a decision or 
decide to go further with the simulation. 
 
In order to test this strategic analysis, Table 1 summarizes the 10 steps proposed in Figure 7b). 
 
 

Design Steps Design choices Descriptions 
1. Define the 
simulation objective 

Decision-making 
simulation 

The decision-maker desires to test three decoupling points 
positions prior to its implementation 

2. Define the 
simulation scope Accelerated learning 

The “accelerated learning” (learning loop 2, Figure 2d) refers 
to learning about the potential gain due to a strategic change 
in the SC structure by identifying the cost and the delivery 
performance improvements of various SC configurations. 
After, the best configuration will be implemented 

3. Define the object SC configuration 

As the analyst desires to test different decoupling point 
positions across the lumber SC, the objects under 
investigation (according to Figure 3’s model) are the “SC 
configurations” 

4. Define the object 
environment 

Demand, production 
and supply 

The analyst expects to have better delivery performance even 
when demand, production and supply can be uncertain. 
Consequently, the environment (according to Figure 3’s 
model) can be defined as including different “demand 
patterns”, “production rates” and “supply patterns” 

5. State the hypotheses Superior delivery 
performance 

Improved delivery performance if the decoupling point is 
positioned downstream 

6. Determine the 
simulation approach 

Virtual object and 
virtual environment 
(option D in Figure 3) 

Both the object and the environment are virtually 
implemented, because we are employing the learning loop 3 

7. Determine the 
modeling sub-systems 

Environment, decision 
system and operating 
system 

The proposed simulation objective is to test different tentative 
strategic decisions (at the “decision system” layer) concerning 
the object under different conditions related to the 
“environment” (demand) and to the “operating system” 
(physical production) 

8. Determine modeling 
agents for each sub-
system 

All agents from Figure 
9 

For the “environment”, we have the “demand” and the 
“supply” agents. For the “decision system”, we have all 
planning and scheduling agents. Finally, the “operating 
system” is modeled by all agents representing the physical 
system, according to Figure 9. In a first simulation of the 
proposed model, a particular version of the operating system 
has been simulated with dummy agents, which were “cloned” 
versions from the decision system’ agents 
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9. Position of the 
object and 
environment 

Object at the DS;  
Environment at E and 
OS 

The tentative strategic decision is configured in a supply chain 
planning system representing the decision system. 
Environmental conditions are given by the uncertainty in the 
E (demand and supply patterns) and by the OS (production 
rates) 

10. Define the 
anticipation analysis 

Done according to 
Figure 6c). 

The investigated strategic decision (decoupling point 
repositioning) will anticipate some secondary decisions 
(tactical and operational ones) and finally the physical system 
behaviour 

 
Table 1: Problem formulation and conceptualization for the example (i) 
 
ii) Simulation for Technology Evaluation: the second possibility in Figure 10-(ii) represents a 
researcher who wants to test two different algorithms for a given planning agent, within the same 
planning context, in order to compare them and make a recommendation. 
 
For example, consider the case of a researcher who needs to test an alternative planning algorithm 
for the drying agent, which is currently the bottleneck of the overall planning process. The 
performance of this agent is obviously relevant for the SC planning process. Therefore, in order to 
improve its performance, the researcher developed a new algorithm and wants to compare it to the 
current one in terms of two performance measures, quality of solution and computation time. The 
researcher believes that the new algorithm will perform better for different problem sizes in terms 
of quantity of products to be planned, number of drying machines and planning horizon extents. 
Thus, the researcher first (1) implements each algorithm in the platform and runs the simulation. 
Once the performance is known (2), the researcher can use the results to publish its work or make a 
recommendation. 
 
Table 2 summarizes the 10 steps for this example. 
 

Design Steps Design choices Descriptions 
1. Define the 
simulation objective Technology evaluation The researcher desires to test two algorithms for the drying 

agent 
2. Define the 
simulation scope Experimental learning Refers to learning about the potential gain due to the new 

algorithm 

3. Define the object Agent planning 
capacity 

The analyst changes the agent planning capacity by 
introducing a new algorithm 

4. Define the object 
environment Problem sizes 

The researcher expects to have better performance even when 
quantity of products to be planned, number of drying 
machines and planning horizon extents change 

5. State the hypotheses Superior performance 
of the new algorithm 

Improved performance in terms of quality of solution and 
computation time for the new algorithm even for different 
problem sizes 

6. Determine the 
simulation approach 

Virtual object and 
virtual environment 

Both the object and the environment are virtually 
implemented (learning loop 3) 

7. Determine the 
modeling sub-systems Decision system The proposed simulation objective is to test different 

algorithms at the “decision system” layer 
8. Determine modeling 
agents for each sub-
system 

All agents from the 
decision system in 
Figure 9 

All planning and scheduling agents in the “decision system” 

9. Position of the 
object and 
environment 

Both at the decision 
system 

The different algorithm are implemented in the decision 
system, as well all parameters concerning the problem sizes 
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10. Define the 
anticipation analysis 

Cognitive capacity of 
the drying agent 

The investigated supply chain planning system anticipates 
some possible cognitive capacity of the drying agent 

 
Table 2: Problem formulation and conceptualization for the example (ii) 
 
The advantage of performing this kind of simulation for the algorithm being tested is the fact that it 
is evaluated under complex and realistic network situations, where the SC partners are allowed to 
interact with each other and local and global analysis are possible. 
 
iii) Simulation for Education: finally, the third simulation possibility deals with a student who 
wants to learn more about decoupling point repositioning and its effects on SC performance. 
 
In order to do so, previously prepared by an instructor, the student can exploit three simulations 
that can be run with the supply chain planning system (Figure 10-(iii)-(1)). During the execution of 
the simulation, the student is able to see the dynamic of each configuration in a pre-emptive 
manner as he/she can stop the simulation at any time to analyse and compare the various situations. 
Such a tool is thus an educative tool as it provides a certain level of practical experience within a 
theoretical educative context. 
 
In our example, the proposed three simulations are the configuration of the decoupling point at the 
finishing level, after at the drying level and finally at the sawing level, as done in the example (i) 
for decision making simulation. In this case, the same performance indicators and hypothesis are 
adopted. Although the simulation is similar to the example (i), the simulation objective and the 
simulation scope are different. The objective is “educational simulation” and the scope is 
“experimental learning”. The other eight points in Table 1 are the same. Another difference from 
the example (i) is related to the quantity of simulations required. As the example (i) refers to 
decision making, simulation precision is an important issue. In this case, a larger quantity of 
simulation can be required in order to obtain the desired confidence internal for the estimated 
performance measures. In the case (ii), precision could be less relevant if one simply wants to 
demonstrate that the decoupling point can influence the SC performance. Thus, in this case it can 
be necessary less simulation executions. 
 
5. Final Remarks 
 
In this paper we discuss the potential of agent-based simulation in the domain of supply chain 
planning. In addition, we propose some conceptual modeling constructs which aims to explore how 
agent-based simulation can be employed in the context of distributed SC planning. The proposed 
conceptual modeling constructs defines some high level building-blocks and it is the first step 
towards a complete framework that can assist decision-makers to understand, design and 
implement practical simulations in supply chain planning systems. 
 
Undoubtedly, it is a difficult undertaking and important questions still remain not completely 
addressed. At the moment, ongoing work is being done on the development of: a dedicated 
methodology for simulation in supply chain planning, a detailed and formal version of the analysis 
phase and a general system architecture for supply chain planning.  
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The supply chain planning system of the illustrative case is under real advanced tests for validation 
purposes with an international forest products company for its planning environment and, also, 
under some initial tests for its simulation environment. Improved versions of these ideas with a first 
version of a more complete framework are to be published shortly. 
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