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Abstract. Constraints have played a central role in CP because they capture key 

substructures of a problem and efficiently exploit them to boost inference. This paper 

intends to do the same thing for search, proposing constraint-centered heuristics which 

guide the exploration of the search space toward areas that are likely to contain a high 

number of solutions. We first propose new search heuristics based on solution counting 

information at the level of individual constraints. We then describe efficient algorithms to 

evaluate the number of solutions of two important families of constraints: occurrence 

counting constraints, such as all different, and sequencing constraints, such as regular. 
In both cases we take advantage of existing filtering algorithms to speed up the 

evaluation. Experimental results on benchmark problems show the effectiveness of our 

approach. 
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1 Introduction

Constraint Programming (cp) is a powerful technique to solve combina-
torial problems. It applies sophisticated inference to reduce the search
space and a combination of variable and value selection heuristics to
guide the exploration of that search space. Despite many research efforts
to design generic and robust search heuristics and to analyze their be-
haviour, a successful cp application often requires customized, problem-
centered search heuristics or at the very least some fine tuning of standard
ones, particularly for value selection. In contrast, Mixed Integer Program-
ming (mip) and sat solvers feature successful default search heuristics
that basically reduce the problem at hand to a modeling issue.

Constraints have played a central role in cp because they capture key
substructures of a problem and efficiently exploit them to boost inference.
This paper intends to do the same thing for search, proposing constraint-
centered heuristics. A constraint’s consistency algorithm often maintains
data structures in order to incrementally filter out values that are not
supported by the constraint’s set of valid tuples. These same data struc-
tures may be exploited to evaluate how many valid tuples there are. Up
to now, the only visible effect of the consistency algorithms has been on
the domains, projecting the set of tuples on each of the variables. Addi-
tional information about the number of solutions of a constraint can help
a search heuristic to focus on critical parts of a problem or promising
solution fragments. Polytime approximate or exact algorithms to count
the number of solutions of several common families of constraints were
given in [12]. For some families, little work was required to provide close
or even exact evaluations of the number of solutions for a constraint,
given the existing consistency algorithm and its data structures.

There is a large body of scientific literature on search heuristics to solve
csps. Most of the popular dynamic variable selection heuristics favour
small domain size and large degree in the constraint graph (mindom,
dom/deg, dom/ddeg, dom/wdeg, Brelaz). For value selection, minimizing
the number of conflicts with neighbouring variables is popular. We men-
tion below the closest related work on search. Kask et al. [9] approximate
the total number of solutions extending a partial solution to a csp and
use it in a value selection heuristic, choosing the value whose assignment
to the current variable gives the largest approximate solution count. An
implementation optimized for binary constraints performs well compared
to other popular strategies. Refalo [14] proposes a generic variable selec-
tion heuristic based on the impact the assignment of a variable has on
the reduction of the remaining search space, computed as the Cartesian
product of the domains of the variables. It reports promising results on
benchmark problems. The main difference between our work and these
is that we focus on individual constraints whereas they consider the
problem as a whole. As an interesting connection for constraint-centered
heuristics, Patel and Chinneck [10] investigate several variable selection
heuristics guided by the constraints that are tight at the optimal solution
of the relaxation, to find feasible solutions of mips.
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Contributions There are two main contributions in this work. First,
we describe efficient algorithms to evaluate the number of solutions of
two important families of constraints: occurrence counting constraints
(alldifferent) and sequencing constraints (regular). With respect to
[12], what is proposed for the former is a considerable improvement and
for the latter it details what was only alluded to before. Second, we
propose and experiment with new search heuristics based on solution
counting information at the level of individual constraints.

Plan of the paper Section 2 presents some key definitions and describes
the search heuristics we propose. Section 3 gives an algorithm to com-
pute the number of solutions of regular constraints. Section 4 summa-
rizes the literature on counting solutions of alldifferent constraints
and proposes a related algorithm more suited to our purpose. Section 5
presents comparative experimental results supporting our proposal. Fi-
nally Section 6 summarizes our work and mentions some of the arising
research issues.

2 Generic Constraint-Centered

Heuristic Search Framework

Whereas most generic dynamic search heuristics in constraint program-
ming rely on information at the fine-grained level of the individual vari-
able (e.g. its domain size and degree), we investigate dynamic search
heuristics based on coarser, but more global, information. Global con-
straints are successful because they encapsulate powerful specialized fil-
tering algorithms but firstly because they bring out the underlying struc-
ture of combinatorial problems. That exposed structure can also be ex-
ploited during search. The heuristics proposed here revolve around the
knowledge of the number of solutions of individual constraints, the intu-
ition being that a constraint with few solutions corresponds to a critical
part of the problem with respect to satisfiability.

Definition 1 (solution count). Given a constraint γ(x1, . . . , xk) and
respective finite domains Di 1≤i≤k, let #γ(x1, . . . , xk) denote the number
of solutions of constraint γ.

Search heuristics following the fail-first principle (detect failure as early
as possible) and centered on constraints can be guided by a count of the
number of solutions left for each constraint. We might focus the search
on the constraint currently having the smallest number of solutions, rec-
ognizing that failure necessarily occurs through a constraint admitting
no more solution.
We can go one step further with solution count information and evaluate
it for each variable-value pair in an individual constraint.

Definition 2 (solution density). Given a constraint γ(x1, . . . , xk), re-
spective finite domains Di 1≤i≤k, a variable xi in the scope of γ, and a
value d ∈ Di, we will call

σ(xi, d, γ) =
#γ(x1, . . . , xi−1, d, xi+1, . . . , xk)

#γ(x1, . . . , xk)
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max = 0;1

for each constraint γ(x1, . . . , xk) do2

for each unbound variable xi ∈ {x1, . . . , xk} do3

for each value d ∈ Di do4

if σ(xi, d, γ) > max then5

(x⋆, d⋆) = (xi, d);6

max = σ(xi, d, γ);7

return branching decision “x⋆ = d⋆”;8

Algorithm 1: The Maximum Solution Density (MaxSD) search heuristic

the solution density of pair (xi, d) in γ. It measures how often a certain
assignment is part of a solution.

We can favour the highest solution density available with the hope that
such a choice generally brings us closer to satisfying the whole csp. Our
choice may combine information from every constraint in the model, be
restricted to a single constraint, or even to a given variable. Algorithms 1
to 3 define the search heuristics with which we will experiment in Section
5.

max = 0;1

choose constraint γ(x1, . . . , xk) which minimizes #γ;2

for each unbound variable xi ∈ {x1, . . . , xk} do3

for each value d ∈ Di do4

if σ(xi, d, γ) > max then5

(x⋆, d⋆) = (xi, d);6

max = σ(xi, d, γ);7

return branching decision “x⋆ = d⋆”;8

Algorithm 2: The Minimum Solution Count, Maximum Solution Density
(MinSC;MaxSD) search heuristic

3 Counting for Regular Constraints

The regular(X, Π) constraint [11] holds if the values taken by the se-
quence of finite domain variables X = 〈x1, x2, . . . , xn〉 spell out a word
belonging to the regular language defined by the deterministic finite au-
tomaton Π = (Q, Σ, δ, q0, F ) where Q is a finite set of states, Σ is an
alphabet, δ : Q × Σ → Q is a partial transition function, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of final (or accepting) states. The
filtering algorithm associated to this constraint is based on the compu-
tation of paths in a graph. The automaton is unfolded into a layered
acyclic directed graph G = (V, A) where vertices of a layer correspond
to states of the automaton and arcs represent variable-value pairs. We
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max = 0;1

Let S = {xi : |Di| > 1 and minimum};2

for each variable xi ∈ S do3

for each constraint γ with xi in its scope do4

for each value d ∈ Di do5

if σ(xi, d, γ) > max then6

(x⋆, d⋆) = (xi, d);7

max = σ(xi, d, γ);8

return branching decision “x⋆ = d⋆”;9

Algorithm 3: The Smallest Domain, Maximum Solution Density (Min-

Dom;MaxSD) search heuristic

denote by vℓ,q the vertex corresponding to state q in layer ℓ. The first
layer only contains one vertex, v1,q0 ; the last layer only contains vertices
corresponding to accepting states, vn+1,q with q ∈ F . This graph has
the property that paths from the first layer to the last are in one-to-one
correspondence with solutions of the constraint. The existence of a path
through a given arc thus constitutes a support for the corresponding
variable-value pair [11]. Figure 1 gives an example of a layered directed
graph built for one such constraint on five variables.

x1 x2 x3 x4 x5

L2 L3 L4 L5 L6L1

 1;7

 1;6

 1;1

 1;5

 1;5

 1;4

 1;1

 
  1;5

 1;2

 5;2

 3;1

 1;2

 1;2  4;1

 19;1

 1;1

 8;1

 6;1

 2;2

 1;19

Fig. 1. The layered directed graph built for a regular constraint on five variables.
Vertex labels represent the number of incoming and outgoing paths.

The time complexity of the filtering algorithm is linear in the size of the
graph (the number of variables times the number of transitions appearing
in the automaton). Essentially, one forward and one backward sweep of
the graph are sufficient. An incremental version of the algorithm, which
updates the graph as the computation proceeds, has a time complexity
that is linear in the size of the changes to the graph.
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3.1 Counting paths in the associated graph

Given the graph built by the filtering algorithm for regular, what is the
additional computational cost of determining its number of solutions?
As we already pointed out, every (complete) path in that graph corre-
sponds to a solution. Therefore it is sufficient to count the number of such
paths. We express this through a simple recurrence relation, which we
can compute by dynamic programming. Let #op(ℓ, q) denote the number
of paths from vℓ,q to a vertex in the last layer. Then we have:

#op(n + 1, q) = 1

#op(ℓ, q) =
X

(vℓ,q,vℓ+1,q′ )∈A

#op(ℓ + 1, q′), 1 ≤ ℓ ≤ n

The total number of paths is given by

#regular(X, Π) = #op(1, q0)

in time linear in the size of the graph even though there may be expo-
nentially many of them. Therefore this is absorbed in the asymptotic
complexity of the filtering algorithm.

The search heuristics we consider require not only solution counts of
constraints but solution densities of variable-value pairs as well. In the
graph of regular, such a pair (xi, d) is represented by the arcs between
layers i and i + 1 corresponding to transitions on value d. The number
of solutions in which xi = d is thus equal to the number of paths going
through one of those arcs. Consider one such arc (vi,q, vi+1,q′): the num-
ber of paths through it is the product of the number of outgoing paths
from vi+1,q′ and the number of incoming paths to vi,q. The former is
#op(i + 1, q′) and the latter, #ip(i, q), is just as easily computed:

#ip(1, q0) = 1

#ip(ℓ + 1, q′) =
X

(vℓ,q,vℓ+1,q′ )∈A

#ip(ℓ, q), 1 ≤ ℓ ≤ n

where #ip(ℓ, q) denotes the number of paths from v1,q0 to vℓ,q.

In Figure 1, the left and right labels inside each vertex give the number of
incoming and outgoing paths for that vertex, respectively. For example,
the arc between the vertex labeled “2; 2” in layer L3 and the vertex
labeled “5; 2” in layer L4 has 2 × 2 = 4 paths through it.

Let A(i, d) ⊂ A denote the set of arcs representing variable-value pair
(xi, d). The solution density of pair (xi, d) is thus given by:

σ(xi, d, regular) =

P
(vi,q,vi+1,q′ )∈A(i,d) #ip(i, q) · #op(i + 1, q′)

#op(1, q0)

Once these quantities are tabulated, the cost of computing the solution
density of a given pair is in the worst case linear in |Q|, the number of
states of the automaton.
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3.2 An incremental version

Because a constraint’s filtering algorithm is called on frequently, the
graph for regular is not created from scratch every time but updated at
every call. Given that we already maintain data structures to perform in-
cremental filtering for regular, should we do the same when determining
its solution count and solution densities?
For the purposes of the filtering algorithm, as one or several arcs are
removed between two given layers of the graph as a consequence of a
value being deleted from the domain of a variable, other arcs are consid-
ered for removal in the previous (resp. following) layers only if the out-
degree (resp. in-degree) of some vertices at the endpoints of the removed
arcs becomes null. Otherwise no further updates need to be propagated.
Consequently even though the total amount of work in the worst case is
bounded above by the size of the graph, it is often much less in practice.
In the case of solution counting, the labels that we added at vertices
contain finer-grained information requiring more extensive updates. Re-
moving an arc will change the labels of its endpoints but also those of
every vertex reachable downstream and of every vertex upstream which
can reach that arc. Here the total amount of work in practice may be
closer to the worst case. Therefore maintaining the additional data struc-
tures could prove to be too expensive.

3.3 A lazy evaluation version

We may not be interested in the value of #op() and #ip() for every
combination of arguments — for example in some search heuristics we
may only want the solution densities for a particular variable. One way
to avoid useless work is to lazily evaluate the #op()/#ip() values as we
require them. Memory functions combine the goal-oriented, top-down
approach of recursive calls with the compute-once ability of dynamic pro-
gramming. The request for a solution density triggers the computation of
the required #op()/#ip() values. If that value has been computed before,
it is simply looked up in a table. Otherwise, it is computed recursively
and tabulated before it is returned to avoid recomputing it. In some cases
only a small fraction of the vertex labels are actually computed, espe-
cially if we do not require the solution count of the constraint: if we only
compare variable-value pairs within a constraint, solution densities can
be replaced by the number of solutions in which each pair participates,
thus avoiding the computation of #op(1, q0).
On the Nonogram problem introduced in Section 5, the lazy evaluation
version was slightly faster than the version computing from scratch and
up to five times faster than the version maintaining the data structures.
Consequently we used the lazy evaluation version in our experiments.

4 Counting for Alldifferent Constraints

The alldifferent constraint restricts a set of variables to be pairwise
different [15].
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Definition 3 (Value Graph). Given a set of variables X = {x1, . . . , xn}
with respective domains D1, . . . , Dn, we define the value graph as a bi-
partite graph G = (X ∪ DX , E) where DX =

S
i=1,...,n Di and E =

{{xi, d} | d ∈ Di}.
There exists a bijection between a maximum matching of size |X| on the
value graph and a solution of the related alldifferent constraint. Find-
ing the number of solutions is then equivalent to counting the number of
maximum matchings on the value graph.
Maximum matching counting is also equivalent to the problem of com-
puting the permanent of a (0-1) matrix. Given a bipartite graph
G = (V1 ∪ V2, E), with |V1| = |V2| = n, the related n × n adjacency
matrix A has element ai,j equal to 1 if and only if vertex i is connected
to vertex j. The permanent of a n × n matrix A is formally defined as:

per(A) =
X

σ∈Sn

Y
i

ai,σ(i) (1)

where Sn denotes the symmetric group, i.e. the set of n! permutations of
[n]. Given a specific permutation, the product is equal to 1 if and only if
all the elements are equal to 1 i.e. the permutation is a valid maximum
matching in the related bipartite graph. Hence, the sum over all the
permutations gives us the total number of maximum matchings. In the
following, we will freely use both matrix and graph representations.

4.1 Computing the permanent

Permanent computation has been studied for the last two centuries and
it is still a challenging problem to address. Even though the analytic for-
mulation of the permanent resembles that of the determinant, there has
been few advances on its exact computation. In 1979, Valiant [16] proved
that the problem is #P -complete, even for 0-1 matrices, that is, under
reasonable assumptions, it cannot be computed in polynomial time. The
focus then moved to approximating the permanent. We can identify at
least four different approaches for approximating the permanent: elemen-
tary iterative algorithms, reductions to determinants, iterative balancing,
and Markov Chain Monte Carlo methods.

Elementary Iterative Algorithms Rasmussen proposed in [13] a very
simple recursive estimator for the permanent. This method works quite
well for dense matrices but it breaks down when applied to sparse matri-
ces; its time complexity is O(n3ω) recently improved to O(n2ω) by Fürer
[3] (here ω is a function satisfying ω → ∞ as n → ∞). Further details
about these approaches will be given in the next section.

Reduction to Determinant The determinant reduction technique is
based on the resemblance of the permanent and the determinant. This
method randomly replaces some 1-entry elements of the matrix by uni-
form random elements {±1}. It turns out that the determinant of the new
matrix is an unbiased estimator of the permanent of the original matrix.
The proposed algorithms either provide an arbitrarily close approxima-
tion in exponential time [2] or an approximation within an exponential
factor in polytime [1].
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Iterative Balancing The work of Linial et al. [8] exploits a lower bound
on the permanent of a doubly stochastic 3 n × n matrix B: per(B) ≥
n!/nn. The basic idea is to use the linearity of permanents w.r.t. mul-
tiplication with constants and transform the original matrix A to an
approximated doubly stochastic matrix B and then exploit the lower
bound. The algorithm that they proposed runs in O(n5 log2 n) and gives
an approximation within a factor of en.

Markov Chain Monte Carlo Methods Markov Chains can be a pow-
erful tool to generate almost uniform samples. They have been used for
the permanent in [6] but they impose strong restrictions on the mini-
mum vertex degree. A notable breakthrough was achieved by Jerrum et
al. [7]: they proposed the first polynomial approximation algorithm for
general matrices with non-negative entries. Nonetheless this remarkable
result has to face its impracticality due to a very high-computational
complexity Õ(n26) improved to Θ(n10 log2 n) later on.

Note that for our purposes we are not only interested in computing the
total number of solutions but we also need that solution densities for each
variable-value pair. Moreover, we need fast algorithms that work on the
majority of the matrices; since the objective is to build a search heuristic
based on counting information, we would prefer a fast algorithm with
less precise approximation over a slower algorithm with better approxi-
mation guarantees. With that in mind, Markov Chain-based algorithms
do not fit our needs (they are either too slow or they have a precondi-
tion on the minimum vertex degree). Determinant based algorithms are
either exponential in time or give too loose approximations (within an
exponential factor) as well as algorithms based on matrix scaling. The
approach that seems to suit our needs better is elementary iterative algo-
rithms. It combines a reasonable complexity with a good approximation.
Although it gives poor results for sparse matrices, those cases are likely
to appear close to the leaves of the search tree where an error by the
heuristics has a limited negative impact.

4.2 Rasmussen’s estimator and its extensions

Suppose we want to estimate a function Q (in our case the permanent):
a traditional approach is to design an estimator that outputs a random
variable X whose expected value is equal to Q. The estimator is unbiased
if E(X) and E(X2) are finite. A straightforward application of Cheby-

shev’s inequality shows that if we conduct O(E(X2)

E(X)2
ǫ−2) independent and

identically distributed trials and we take the mean of the outcomes then
we have guarantee of ǫ-approximation. Hence the performance of a single

run of the estimator and the ratio E(X2)

E(X)2
(critical ratio) determine the

efficiency of the algorithm.
In the following, we denote by A(n, p) the class of random (0-1) n × n
matrices in which each element has independent probability p of being 1.

3 P
i ai,j =

P
j ai,j = 1
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We write XA for the random variable that estimate the permanent of the
matrix A; Ai,j denotes the submatrix obtained from A by removing row
i and column j. The pseudo-code of Rasmussen’s estimator is shown in
Algorithm 4; despite its simplicity compared to other techniques, the es-
timator is unbiased and shows good experimental behaviour. Rasmussen
gave theoretical results for his algorithm applied to random matrices
belonging to the class A(n, p ≥ 1/2). He proved that for “almost all”
matrices of this class, the critical ratio is bounded by O(nω) where ω is
a function satisfying ω → ∞ as n → ∞; the complexity of a single run of
the estimator is O(n2), hence the total complexity is O(n3ω). Here “al-
most all” means that the algorithm gives a correct approximation with
probability that goes to 1 as n → ∞. While this result holds for dense
matrices, it breaks down for sparse matrices. Note however that there
are still matrices belonging to A(n, p = 1/2) for which the critical ratio
is exponential. Consider for instance the upper triangular matrix:

U =

0BBB� 1 1 . . . 1
1 . . . 1

. . .
...
1

1CCCA
For this particular matrix Rasmussen’s estimator has expected value
E(XU ) = 1 and E(X2

U ) = n!, hence the approximation is likely to be
very poor.

if n = 0 then1

XA = 12

else3

W = {j : a1,j = 1};4

if W = ∅ then5

XA = 0;6

else7

Choose j u.a.r. from W ;8

Compute XA1,j ;9

XA = |W | · XA1,j ;10

Algorithm 4: Rasmussen’s estimator

Fürer et al. [3] enhanced Rasmussen’s algorithm with some branching
strategies in order to pick up more samples in the critical parts of the
matrix. It resembles very closely the exploration of a search tree. Instead
of choosing u.a.r. a single column j from W , Fürer picks up a subset
J ⊆ W and it iterates on each element of J . The number of times it
branches is logarithmic in the size of the matrix, and for a given branch-
ing factor he showed that a single run of the estimator still takes O(n2)
time. The advantage of this approach resides in the theoretical conver-
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gence guarantee: the number of required samples is only O(ω) instead of
Rasmussen’s O(nω), thus the overall complexity is O(n2ω).
Both Fürer and Rasmussen estimators allow to approximately compute
the total number of solution of an alldifferent constraint. However if
we need to compute the solution density σ(xi, d, γ) we are forced to recall
the estimators on the submatrix Ai,d. Hence the approximated solution
density is:

σ(xi, d, γ) ≈
E(XAi,d

)

E(XA)
(2)

Adding propagation to the estimator A simple way to improve
the quality of the approximation is to add propagation to Rasmussen’s
estimator. After randomly choosing a row i and a column j, we can
propagate on the submatrix Ai,j in order to remove all the 1-entries
(edges) that do not belong to any maximum matching (the pseudo-code is
shown in Algorithm 5). This broadens the applicability of the method; in
matrices such as the upper triangular matrix, the propagation can easily
lead to the identity matrix for which the estimator performs exactly.
However, as a drawback, the propagation takes an initial precomputation
of O(

√
nm) plus an additional O(n+m) each time it is called [15] (here m

is the number of ones of the matrix i.e. edges of the graph). A single run
of the estimator requires n propagation calls, hence the time complexity
is O(nm); the overall time complexity is then O(n2mω).

if n = 0 then1

XA = 12

else3

Choose i u.a.r. from {1 . . . n};4

W = {j : ai,j = 1};5

Choose j u.a.r. from W ;6

Propagation on Ai,j ;7

Compute XAi,j ;8

XA = |W | · XAi,j ;9

Algorithm 5: Estimator with propagation

A particularity of the new estimator is that it removes a priori all the
1-entries that do not lead to a solution. Hence it always samples feasible
solutions whereas Rasmussen’s ends up with infeasible solutions when-
ever it reaches a case in which W = ∅. This opens the door also to an
alternative evaluation of the solution densities; given the set of solution
samples S, we denote by Sxi,d ⊆ S the subset of samples in which xi = d.
The solution densities are approximated as:

σ(xi, d, γ) ≈ |Sxi,d|
|S| (3)

Experimental results showed a much better approximation quality for the
computation of the solution densities using samples (3) instead of using
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submatrix counting (2). It is worth pointing out that Fürer’s provides
several samples in a single run but highly biased from the decisions taken
close to the root of the search tree; thus it cannot be used to compute
solution densities from samples. Due to the better results obtained using
samples, we decide not to apply propagation methods to Fürer’s.

% Removals 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Counting Error
Rasmussen 1.32 1.76 3.66 5.78 7.19 13.80 22.65
Fürer 0.69 1.07 1.76 2.17 2.52 4.09 5.33
CountS 1.44 1.51 2.48 2.30 4.31 3.94 1.23

Average Solution Density Error
Rasmussen 1.13 1.83 3.12 5.12 7.85 13.10 23.10
Fürer 0.58 0.92 1.55 2.49 3.74 6.25 8.06
CountS 0.73 0.76 0.80 1.01 1.33 1.81 2.03

Maximum Solution Density Error
Rasmussen 3.91 6.57 11.60 19.86 30.32 42.53 40.51
Fürer 2.09 3.20 5.75 9.36 15.15 21.18 15.01
CountS 2.64 2.60 2.89 3.90 5.39 6.03 2.61

Table 1. Estimators performance.

Estimator benchmarks We compared three estimators: Rasmussen’s,
Fürer’s, and ours (the version based on samples,“CountS”). Due to the
very high computational time required to compute the exact number of
solutions, we performed systematic experiments on alldifferent of size
10, 11 and 12 with varying percentage of domain value removals. Table
1 shows the error on the total number of solutions, the average and the
maximum error on the solution densities (all the errors are expressed in
percentage). The number of samples used is 100 times the size of the
instance. The time taken for counting is slightly higher than one tenth
of a second for our methods compared to one tenth for Fürer’s and a few
hundredths for Rasmussen’s. On the other side, exact counting can take
up to thousands of seconds for very loose instances to a few hundredths
of a second. Due to lack of room, we do not show the tests with a com-
mon time limit: the situation is pretty much the same, with our method
showing the best approximations. Note that we also tested our method
with instances of bigger size (up to 30) and even with few samples (10
times the instance size): the average error remains pretty low (again on
the order of 2-4%) as well as the maximum error. The current implemen-
tation of our approach makes use of Ilog Solver 6.2; we believe that a
custom implementation can gain in performance, avoiding the overhead
due to model extraction and to backtrack information bookkeeping.
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5 Experimental Results

We evaluate the proposed constraint-centered search heuristics on two
benchmark problems modeled with the alldifferent and regular con-
straints.

Nonogram A Nonogram (problem 12 of CSPLib) is built on a rectan-
gular n×m grid and requires filling in some of the squares in the unique
feasible way according to some clues given on each row and column. As
a reward, one gets a pretty monochromatic picture. Each individual clue
indicates how many sequences of consecutive filled-in squares there are
in the row (column), with their respective size in order of appearance.
Each sequence is separated from the others by at least one blank square
but we know little about their actual position in the row (column). Such
clues can be modeled with regular constraints (the actual automata
Ar

i ,Ac
j are not difficult to derive but lie outside the scope of this paper):

regular((xij)1≤j≤m,Ar
i ) 1 ≤ i ≤ n

regular((xij)1≤i≤n,Ac
j) 1 ≤ j ≤ m

xij ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ j ≤ m

These puzzles typically require some amount of search, despite the fact
that domain consistency is maintained on each clue. We experimented
with 75 instances of sizes ranging from 16 × 16 to 24 × 24.
We compared four search heuristics: random selection for both variable
and value, dom/ddeg variable selection with min conflicts value selection,
MaxSD, and MinSC;MaxSD. A variable selection heuristic based solely on
domain size is not useful for this problem since every unbound variable
has an identical domain of size 2. Note also that for the same reason the
min conflicts value selection does not discriminate at all.

heuristic avg btk median btk total time

random var/val 348.0 16 40.7
dom/ddeg ; min conflicts 33640.4 146 4405.2
MaxSD 236.0 2 57.0
MinSC;MaxSD 48.5 3 8.9

Table 2. Number of backtracks and computation time (in seconds) for 75 Nonogram
instances.

Table 2 reports the average and median number of backtracks and the
total computation time for these heuristics. dom/ddeg is definitely ill-
suited for such a problem: the statistics reported should even be higher
since ten instances where interrupted after five minutes of computation.
A purely random heuristic performs fairly well here, which can be ex-
plained by the binary domains of the variables: even a random choice
of value has a 50% chance of success. MaxSD performs better than the
random heuristic in terms of backtracks but not enough to offset its
higher computational cost, yielding a slightly higher computation time.
MinSC;MaxSD is the best of the four, with a significantly lower average
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number of backtracks and the best computation time. The difference in
performance between our two heuristics is actually strongly influenced
by a few instances for which MaxSD behaved poorly: if we look at the
median number of backtracks, the two are very close and markedly lower
than for the random heuristic.

Quasigroup with Holes A Latin Square of order n is defined on a n×n
grid whose squares each contain an integer from 1 to n such that each
integer appears exactly once per row and column. The Quasigroup with
Holes (QWH) problem gives a partially-filled Latin Square instance and
asks to complete it. It is easily modeled as:

alldifferent((xij)1≤j≤n) 1 ≤ i ≤ n
alldifferent((xij)1≤i≤n) 1 ≤ j ≤ n
xij = d (i, j, d) ∈ S
xij ∈ {1, 2, . . . , n} 1 ≤ i, j ≤ n

We tested four search heuristics: dom/ddeg variable selection with min
conflicts value selection (one of the most robust heuristics for QWH),
MinDom;MaxSD, MaxSD, and a lazy version of MaxSD. For counting,
we used an exact algorithm for 0.1 seconds and, in case of timeout, we
ran CountS for another 0.1 seconds. Note that the counting is done only
if a domain event occurs, that is, the counting algorithm is woken up
in a way that is similar to constraint propagation. The lazy version of
maximum solution density recounts at each event when the search is
close to the tree root (whenever less than 20% of variables are assigned),
every 2 events when the unbound variables are between 20% and 50% and
every 3 events thereafter. The four heuristics were tested on 40 balanced
QWH instances with about 41% of holes, randomly generated following
[4]. We set the time limit to 1200 seconds. Table 3 shows the results. The

heuristic avg btk median btk total time unsolved

dom/ddeg ; min conflicts 788887.1 365230.5 19070.7 10
MinDom;MaxSD 17626.3 10001.5 25983.8 19
MaxSD 5634.0 2534.2 11371.3 1
LazyMaxSD 7479.6 2243.7 10258.0 2

Table 3. Number of backtracks, computation time (in seconds) and the number of
unsolved instances for 40 hard QWH instances of order 30.

heuristics based on maximum density were the ones performing better in
term of backtracks (two orders of magnitude of difference), total time and
number of instances solved. We also ran some tests on easier instances
outside the phase transition: the dom/ddeg heuristic did better than
our heuristics in terms of running time but not in terms of number of
backtracks. It is worth mentioning that the number of backtracks by
our heuristics only diminished slightly on these easier instances, so the
heuristics appear fairly robust throughout the range.
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6 Conclusion and Open Issues

This paper advocated using constraints not only for inference but also
for search. The key idea is to use solution counting information at the
level of individual constraints. We showed that for some widely-used con-
straints such information could be computed efficiently, especially given
the support already in place for domain filtering. We also proposed novel
search heuristics based on solution counting and showed their effective-
ness through experiments.
From the point of view of cp systems, we are really introducing a new
functionality for constraints alongside satisfiability testing, consistency
and domain filtering, entailment, etc. As we argued, providing this sup-
port does not necessarily require a lot of extra work. It would, however,
benefit from some thinking about how best to offer access to solution
counts and solution densities, from a programming language design per-
spective.
We believe there are still several open issues regarding this work. Even
though we have had some success with the search heuristics we proposed,
little has been tried so far about combining the information originating
from the different constraints, which should increase robustness in cases
where the constraints give hugely conflicting information. We saw already
that some compromises were attempted for the alldifferent constraint
to cut down its computation time — a more in-depth investigation is re-
quired, including finding out a way to make it more incremental. Finally
there are many more families of constraints for which efficient solution
counting algorithms must be found.
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15. Régin, J.-C. 1994. A Filtering Algorithm for Constraints of Differ-
ence in CSPs. In Proc. Twelfth National Conference on Artificial
Intelligence (AAAI), volume 1. AAAI Press. 362–367.

16. Valiant, L. G. 1979. The complexity of computing the permanent,
Theoretical Computer Science 8, 189–201.

Solution Counting Algorithms for Constraint-Centered Search Heuristics

CIRRELT-2007-18 15


	CIRRELT-2007-18.doc
	CIRRELT-2007-18-abstract.doc
	CIRRELT-2007-18.pdf



