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1 Introduction

Integer stochastic problems with fixed recourse can be defined as follows:

Min c⊤x + Q(x) (1)

s.t. Ax = b (2)

x ∈ X, (3)

where Q(x) = Eξ[Q(x, ξ(ω))] (4)

and Q(x, ξ(ω)) = Miny{q(ω)⊤y | Wy = h(ω) − T (ω)x, y ∈ Y }. (5)

Problem (1)-(5) has two decision stages. Vector x represents the first stage.
These decisions must be made before a series of stochastic parameters, repre-
sented by ξ, become known. In the second stage, one observes a certain random
event, ω ∈ Ω, and ξ is fixed to ξ(ω). At this point, parameters q(ω), h(ω)
and T (ω) that make up ξ(ω), become known. Problem (1)-(5) is said to have
fixed recourse because matrix W is not dependent on the random event. In the
second stage, vector y represents the recourse that one can take given that the
first stage decisions were fixed at x. Function Q : x × ξ(ω) → R+ measures
the objective value of the recourse decisions. Therefore, function Q : x → R+,
called the recourse function, gives the average value of recourse for x over all
ω ∈ Ω. Problem (1)-(5) consists of finding a solution x that is minimal, on
average, when considering ξ. Integrality constraints may be present in sets X
and Y . As for the probability distribution of ξ, it may be either discrete or
continuous.

Integer stochastic models have been successfully applied to a variety of con-
texts [4]. The algorithms that have been used to solve problems of type (1)-(5)
have either been based on cutting plane strategies ([23], [2], [13], [6], [7], [21],
[19] and [20]), branch-and-bound procedures ([16], [5] and [1]) or more recently
on the use of test sets ([18] and [11]).

In this paper, we propose to use local branching as a way to generate a
new type of cuts that can be introduced in the case of the 0-1 integer L-shaped
method. This follows from the research initiated in Rei and al. [17] for the case
of general Benders decomposition that showed how local branching could be used
to simultaneously improve the upper and lower bounds in the Benders algorithm.
Similar ideas can be applied to the relaxation of the recourse function Q(x) in the
case of the L-shaped branch-and-cut algorithm. The principles evoked here are
applicable to all problems of type (1)-(5) having a subset of binary x variables.
In this paper, however, they are illustrated and validated in the context of the
single vehicle routing problem with stochastic demands (see [9], [12] and [14]),
for which they lead to a significantly more efficient algorithm. The effectiveness
is clearly demonstrated by computational experiments performed on a large set
of instances whose difficulty ranges from easy to extremely difficult.
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The remainder of this article is organized as follows. In section 2, a descrip-
tion of the 0-1 integer L-shaped method is given. Section 3 follows by providing
an explanation of how a local branching search strategy may be applied to the
case of the 0-1 integer L-shaped algorithm as well as a presentation of the valid
inequalities that one can derive from it. In section 4, a presentation of the one
vehicle routing problem is given as well as a description of the various cuts that
can be applied to this problem. This is followed by computational results in
section 5. Finally, this article is concluded in section 6.

2 The 0-1 integer L-shaped algorithm

The L-shaped algorithm was first introduced in 1969 by Van Slyke and Wets
[22] to solve continuous stochastic programming problems with fixed recourse,
in which random events are represented by a finite set of discrete scenarios.
This algorithm can be interpreted as the application of Benders decomposition
to the extensive form of the stochastic problem (see [4]). Indeed, when inte-
grality constraints are introduced in set X , (1)-(5) becomes a mixed integer
program and the L-shaped algorithm is then equivalent to the original Benders
decomposition algorithm [3]. The problem becomes significantly harder when
integrality constraints are introduced in set Y (integer recourse). In the Benders
decomposition algorithm, cuts are created using the dual information provided
by the solution of the subproblem. In the stochastic case, this subproblem is
defined as follows: Miny{q(ω)⊤y | Wy = h(ω) − T (ω)x, y ∈ Y } for all ran-
dom events. One must realize that when integrality constraints are present in
Y , one can no longer apply standard continuous duality. Caroe and Tind [7]
show how the L-shaped algorithm can be generalized to the case of integer re-
course by using general duality theory. Convergence is maintained when either
cutting plane algorithms or branch-and-bound procedures are used to solve the
stochastic subproblems.

The 0-1 integer L-shaped method, which tackles problems with binary first
stage variables and integer recourse, was introduced by Laporte and Louveaux
[13]. In the following, we use the notation defined in their paper. Let us assume
that vector x is of size n1 and that set X is defined as follows: X = X∩{0, 1}n1.
Then let the following problem be the current problem:

Min c⊤x + Θ (6)

s.t. Ax = b (7)

Dkx ≥ dk, k = 1, . . . , s, (8)

Elx + Θ ≥ el, l = 1, . . . , t, (9)

0 ≤ x ≤ 1, Θ ∈ R. (10)

Constraints of type (8) are called feasibility cuts, since they are used to induce
feasible values of x. The authors define a set of feasibility cuts to be valid if
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there is a finite value s such that x ∈ X if and only if {Dkx ≥ dk, k = 1, . . . , s}.
Constraints of type (9) are said to be optimality cuts since they express possible
feasible values of the recourse function. As before, a set of t optimality cuts is
valid if the following condition is verified: ∀x ∈ X, (x, Θ) ∈ {(x, Θ) | Elx+Θ ≥
el, l = 1, . . . , t} implies Θ ≥ Q(x).

One can now define the 0-1 integer L-shaped algorithm as follows:
0-1 Integer L-shaped Algorithm

Step 0 (Initialization)
Set ν = 0, t = 0, s = 0,
z = +∞,
Θ = −∞ or any valid general lower bound L.
Define the first pendant node as the initial current problem.

Step 1 (Selection)
Using a selection criterion, select a pendant node,
if there is none STOP.

Step 2 (Separation)
(2.1) ν = ν + 1.
(2.2) Solve the current problem,
if the current problem is infeasible then

fathom the node and go to Step 1,
else

let (xν , Θν) be the optimal solution to the problem.
end if

(2.3) Search for violated constraints of type (8),
if one is found then

add it to the current problem, set s = s + 1 go to (2.2),
else if c⊤xν + Θν > z then

fathom the node and go to Step 1.
end if

(2.4) Search for violated integrality constraints,
if one is found then

go to Step 3,
else

solution xν is feasible.
end if

(2.5) Compute Q(xν), zν = c⊤xν + Q(xν), z = Min{z, zν},
if Θν ≥ Q(xν) then

fathom the node and go to Step 1,
else
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add an optimality cut (9), set t = t + 1 go to (2.2).
end if

Step 3 (Branching)
Using a branching criterion, create two new nodes, append them to the list
of active nodes and go to Step 1.

The 0-1 integer L-shaped algorithm converges in a finite number of steps
whenever a valid set of optimality and feasibility cuts exists. A general lower
bound z can be obtained, at any point of the solution process, by considering
the minimum of the lower bounds associated with the currently active nodes.
This allows stopping the search procedure when an ǫ − opt solution is found.

Optimality cuts of type (9) can be expressed as follows: let us first define
the r − th feasible solution generated by the method as being xi = 1, i ∈ Sr

and xi = 0, i /∈ Sr and let Θr be the recourse value associated with this feasible
solution. Laporte and Louveaux [13] show that the set of cuts defined for all
feasible solutions r:

Θ ≥ (Θr − L)
(

∑

i∈Sr

xi −
∑

i/∈Sr

xi

)

− (Θr − L)(|Sr| − 1) + L (11)

where value L is a general lower bound on the value of recourse, is a valid set
of optimality cuts. The proof of validity is evident when one considers that
∑

i∈Sr

xi −
∑

i/∈Sr

xi is always less than or equal to |Sr|. The information provided

by cut (11) is that whenever the solution considered is the r−th feasible solution
then the recourse is equal to Θr, else the value of recourse is less than L. One
can also express the optimality cuts in the following way:

∑

i∈Sr

xi ≤ |Sr| − 1. (12)

In the form of equation (12), the optimality cut is only used to eliminate from
further consideration the r − th feasible solution. In this case it provides no
information on the value of recourse. However, it has the advantage of being
composed of coefficients equal to one, which makes cut (12) more numerically
stable than (11). As for the feasibility cuts of type (8), one can only say that
they are problem dependent.

The main difficulty associated with the 0-1 integer L-shaped algorithm re-
sides in the approximation of the recourse function. The information provided
by optimality cuts of either type (11) or (12) is very local. Constraints (11) only
bound the value of recourse associated with the feasible solutions that were used
to create them. As for (12), they only eliminate the feasible solutions that were
encountered by the algorithm. Therefore, in problem (6)-(10), the value of re-
course will only be determined by the subset of optimality constraints present
and the value of the general bound L. If one uses exclusively (12), then only the
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general bound L approximates the recourse function. If the quality of bound L
is poor, then the L-shaped algorithm will tend to enumerate feasible solutions.
The reason for this is that in the separation step (more precisely in (2.3)), the
quality of bound c⊤xν + Θν will be poor whenever xν is infeasible, resulting in
an increase of the number of active subproblems. To solve this problem, one
can either provide better general lower bounds L or use other lower bounding
functionals to better approximate the recourse function. In [13], an improved
optimality cut is presented where if a better lower bound exists in a close neigh-
bourhood of the feasible solution considered, then (11) is strenghtened by this
information. In the next section, a series of general valid inequalities will be
presented to extend this idea of using better lower bounds around solutions to
the current problem. These valid inequalities will help to provide a better de-
scription of the recourse values for different neighbourhoods of the first stage
feasible region.

3 Local branching cuts for the 0-1 integer L-

shaped algorithm

Local branching was introduced in 2003 by Fischetti and Lodi [8]. The idea
behind this method is to take advantage of the efficiency of generic solvers, such
as CPLEX, for solving small integer 0-1 problems. Therefore, one can divide
the feasible space of a problem into a series of smaller subregions and then use
a generic solver to explore efficiently each of the subregions thus created.

In the case of 0-1 integer problems, the function used to divide the feasible
region is the Hamming distance defined from a particular integer point. Let us
consider the general stochastic problem (1)-(5), for which X = X ∩ {0, 1}n1.
Let x0 be a vector of 0-1 values, then the Hamming distance function relative
to x0 is: ∆(x, x0) =

∑

j∈S0

(1 − xj) +
∑

j∈N1\S0

xj (where N1 = {1, . . . , n1} and

S0 = {j ∈ N1 | x0
j = 1}). Using function ∆(x, x0), for any integer κ, one can

divide the feasible region of (1)-(5) by creating two subproblems, one in which
the constraint ∆(x, x0) ≤ κ is added, and the other in which ∆(x, x0) ≥ κ + 1
is added. Constraint ∆(x, x0) ≤ κ can considerably reduce the size of the
feasible region of problem (1)-(5) when κ is fixed to an appropriate (small) value.
Therefore, one can use an adapted generic solver to solve this subproblem. Using
the new solution found, the procedure may continue by dividing the subregion
defined by ∆(x, x0) ≥ κ + 1 into two more subproblems where the smaller
subregion is explored in the same way as before.

In [17], the information associated with a local branching descent is used to
produce multiple optimality cuts in the case of classical Benders decomposition.
Through this process, one is also able to improve the upper bound generated by
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the Benders algorithm. Furthermore, it is shown how local branching constraints
can be used to replace or complement the feasibility cuts. We will use similar
ideas to generate a series of valid inequalities that approximate the value of
recourse in different subregions of X . Let us first define the two following
subproblems:

(Pn) Min c⊤x + Q(x) (Pn) Min c⊤x + Q(x)
s.t Ax = b s.t Ax = b

∆(x, xi) ≥ κi, i ∈ In ∆(x, xi) ≥ κi, i ∈ In

∆(x, xn) ≤ κn ∆(x, xn) ≥ κn + 1
x ∈ X x ∈ X,

where In corresponds to a set of 0-1 vectors that may or may not represent
feasible first stage solutions. A local branching step consists of solving subprob-
lem Pn and then using the solution obtained to separate the feasible region of
subproblem Pn. If Pn is found to be infeasible, a diversification strategy is ap-
plied and the problem is solved again. In this case, the diversification strategy
consists of increasing value κn to obtain a larger feasible region for Pn.

A local branching descent is composed of a series of subproblems Pn for
n = 1, . . . , m that correspond to the subregions explored by the algorithm. Let
us suppose that one is able to find a lower bound Θn (for which Θn > L) on the
value of the recourse in each of the subregions associated with subproblems Pn,
n = 1, . . . , m. Let us also redefine the current problem in the following way:

Min c⊤x + Θ (13)

s.t. Ax = b (14)

Dkx ≥ dk, k = 1, . . . , s, (15)

Elx + Θ ≥ el, l = 1, . . . , t, (16)

∆(x, xi) ≥ 1, i ∈
m
⋃

n=1

In, (17)

0 ≤ x ≤ 1, Θ ∈ R. (18)

In (17), one should realize that constraint ∆(x, xi) ≥ 1 eliminates locally vector
xi since it imposes that the Hamming distance between x and xi be at least
one. If xi is feasible, then ∆(x, xi) ≥ 1 is equivalent to the optimality cut (12).
If xi is infeasible, then ∆(x, xi) ≥ 1 may serve as a feasibility cut. Therefore,
model (13)-(18) is either equivalent to (6)-(10) or it offers a better description
of the feasible region. One can now derive the following result:

Proposition 3.1 (Local branching valid inequalities). Let Pn, n = 1, . . . , m,
define a local branching descent and Θn, n = 1, . . . , m, be valid lower bounds on
the recourse value for each of the subproblems in the descent, then the following
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system of equations defines a set of valid inequalities for problem (13)-(18):

Θ ≥ L + (Θn − L)wn, n = 1, . . . , m (19)

κn − ∆(x, xn) ≤ n1

n
∑

j=1

wj , n = 1, . . . , m (20)

∆(x, xn) − κn ≤ (1 − wn)n1, n = 1, . . . , m (21)

wn+1 ≤ wn, n = 1, . . . , m − 1 (22)

n−1
∑

j=1

wj + wn−1 = 1, n = 2, . . . , m (23)

wn ∈ {0, 1}, n = 1, . . . , m (24)

wn ∈ {0, 1}, n = 1, . . . , m − 1, (25)

where xn, n = 1, . . . , m, is a series of 0-1 vectors (that may or may not be
feasible first stage solutions), such that xn ∈ {x | ∆(x, xn−1) ≤ κn−1, ∆(x, xi) ≥
κi + 1, i ∈ In−1}, n = 2, . . . , m.

Proof. The proposition will be proved by induction.

- Base case: (19)-(25) is a set of valid inequalities for (13)-(18) when m = 1.

If m = 1, then system (19)-(25) reduces to:

Θ ≥ L + (Θ1 − L)w1, (26)

κ1 − ∆(x, x1) ≤ w1n1, (27)

∆(x, x1) − κ1 ≤ (1 − w1)n1, (28)

w1 ∈ {0, 1}. (29)

Let x̂ be a feasible solution to problem (13)-(18). One should note that x̂ is
either integer or continuous and either feasible or not with respect to the original
problem (1)-(5). There are three possible cases when one considers x̂:

1. 0 < ∆(x̂, x1) < κ1,

2. 0 < κ1 < ∆(x̂, x1),

3. ∆(x̂, x1) = κ1.

Case 1: if 0 < ∆(x̂, x1) < κ1, then constraint (27) forces w1 = 1. If w1 = 1,
then (26) becomes Θ ≥ Θ1 which is valid since ∆(x̂, x1) ≤ κ1. Also, in this
case, if w1 = 1, then constraint (28) is satisfied.

Case 2: if 0 < κ1 < ∆(x̂, x1), then constraint (28) forces w1 = 0. If w1 = 0,
then (26) becomes Θ ≥ L which is valid. Also, in this case, if w1 = 0 then
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constraint (27) is satisfied.

Case 3: if ∆(x̂, x1) = κ1, then constraints (27) and (28) allow w1 = 1 or w1 = 0.
If w1 = 1, then (26) becomes Θ ≥ Θ1 which is valid since ∆(x̂, x1) ≤ κ1.
Otherwise, if w1 = 0, then (26) becomes Θ ≥ L which is also valid. Considering
that the current problem is a minimization problem and since Θ1 > L, then, in
this case, variable w1 is fixed to 0 (w1 = 0) and (26) becomes Θ ≥ L.

- Hypothesis H1: (19)-(25) is a set of valid inequalities for (13)-(18) when m = i.

- Step: if H1 is true then (19)-(25) is a set of valid inequalities for (13)-(18)
when m = i + 1.

If m = i, then system (19)-(25) becomes:

Θ ≥ L + (Θn − L)wn, n = 1, . . . , i (30)

κn − ∆(x, xn) ≤ n1

n
∑

j=1

wj , n = 1, . . . , i (31)

∆(x, xn) − κn ≤ (1 − wn)n1, n = 1, . . . , i (32)

wn+1 ≤ wn, n = 1, . . . , i − 1 (33)

n−1
∑

j=1

wj + wn−1 = 1, n = 2, . . . , i (34)

wn ∈ {0, 1}, n = 1, . . . , i (35)

wn ∈ {0, 1}, n = 1, . . . , i − 1. (36)

If one adds another level to the local branching descent (from m = i to m =
i + 1), one adds to (30)-(36) the following inequalities:

Θ ≥ L + (Θi+1 − L)wi+1, (37)

κi+1 − ∆(x, xi+1) ≤ n1

i+1
∑

j=1

wj , (38)

∆(x, xi+1) − κi+1 ≤ (1 − wi+1)n1, (39)

wi+1 ≤ wi, (40)

i
∑

j=1

wj + wi = 1, (41)

wi+1 ∈ {0, 1}, (42)

wi ∈ {0, 1}. (43)

Let us now define the following set: Xi =
i
⋃

n=1
{x | ∆(x, xn) ≤ κn}. Once more,

let x̂ be a feasible solution to problem (13)-(18). There are two possible cases
when one considers x̂:
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1. x̂ /∈ Xi,

2. x̂ ∈ Xi.

Case 1: if x̂ /∈ Xi (i.e. ∆(x̂, xn) > κn for n = 1, . . . , i), then (32) forces wn = 0,
n = 1, . . . , i. When one considers system (37)-(43), one must first see that since
wn = 0, n = 1, . . . , i, then (41) implies that wi = 1. Constraint (40) becomes
wi+1 ≤ 1 which makes it possible for variable wi+1 to be equal to either 0 or 1.
Since x̂ /∈ Xi, then three cases are possible:

- 0 < ∆(x̂, xi+1) < κi+1,

- 0 < κi+1 < ∆(x̂, xi+1),

- ∆(x̂, xi+1) = κi+1.

Since wn = 0, n = 1, . . . , i, if 0 < ∆(x̂, xi+1) < κi+1, then constraint (38)
forces wi+1 = 1. If wi+1 = 1, then (37) becomes Θ ≥ Θi+1 which is valid
since ∆(x̂, xi+1) ≤ κi+1. Also, if wi+1 = 1, then constraint (39) is satisfied.
If 0 < κi+1 < ∆(x̂, xi+1), then constraint (39) forces wi+1 = 0. If wi+1 = 0,
then (37) becomes Θ ≥ L which is valid. Also, in this case, if wi+1 = 0 then
constraint (38) is satisfied. If ∆(x̂, xi+1) = κi+1, then constraints (38) and (39)
allow wi+1 = 1 or wi+1 = 0. If wi+1 = 1, then (37) becomes Θ ≥ Θi+1 which
is valid since ∆(x̂, xi+1) ≤ κi+1. Otherwise, if wi+1 = 0, then (37) becomes
Θ ≥ L which is also valid. Once again, considering that the current problem is
a minimization problem and since Θi+1 > L, then, in this case, variable wi+1 is
fixed to 0 (wi+1 = 0) and (37) becomes Θ ≥ L.

Case 2: if x̂ ∈ Xi, then there are two possible cases to consider:

1. there exists at least one index n, 1 ≤ n ≤ i, such that ∆(x̂, xn) < κn,

2. ∆(x̂, xn) 6< κn, for n = 1, . . . , i.

Subcase 1: If there exists at least one index n, 1 ≤ n ≤ i, such that ∆(x̂, xn) <
κn, then constraints (31) and (34) imply that there exists exactly one index
1 ≤ i⋆ ≤ i such that wi⋆ = 1. If wi⋆ = 1, then (30) reduces to Θ ≥ Θi⋆ , which
is valid because of H1. Considering system (37)-(43), since wi⋆ = 1, constraint
(41) implies that wi = 0. Then by (40), wi+1 = 0. If wi+1 = 0, then (37)
reduces to Θ ≥ L which is valid. One must now consider two possible cases:

- 0 < ∆(x̂, xi+1) ≤ κi+1,

- 0 < κi+1 < ∆(x̂, xi+1).

If 0 < ∆(x̂, xi+1) ≤ κi+1, then (38) is satisfied since i⋆ < i + 1. If 0 < κi+1 <
∆(x̂, xi+1), since wi+1 = 0, then (39) is satisfied.

Subcase 2: if ∆(x̂, xn) 6< κn, for n = 1, . . . , i, and x̂ ∈ Xi, then, there exists an
index set J ⊆ {1, . . . , i} such that ∆(x̂, xj) = κj , ∀j ∈ J , and ∆(x̂, xj) > κj ,
∀j ∈ {1, . . . , i}\J . Without loss of generality, let us assume that ∆(x̂, xn) = κn
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for n = 1, . . . , j, and ∆(x̂, xn) > κn for n = j + 1, . . . , i. Constraints (32) imply
that wn = 0 for n = j + 1, . . . , i. As for n = 1, . . . , j, constraints (31) and (32)
are always satisfied. Constraints (34) and (33) imply two possible alternatives:
either there exists exactly one index 1 ≤ i⋆ ≤ j such that wi⋆ = 1 and hence
wn = 1 for n = 1, . . . , i⋆ − 1 or else wn = 1 for n = 1, . . . , j, . . . , i − 1 and
wn = 0 for n = 1, . . . , j, . . . , i. Let us consider the first alternative, if wi⋆ = 1
and wn = 1 for n = 1, . . . , i⋆ − 1 then (30) reduces to Θ ≥ Θi⋆ . Otherwise,
if wn = 1 for n = 1, . . . , i − 1 and wn = 0 for n = 1, . . . , i then (30) reduces
to Θ ≥ L. Once again, since the current problem is a minimization problem
and given that Θn > L for n = 1, . . . , i (hence Θi⋆ > L), therefore the second
alternative will always be selected and (30) becomes Θ ≥ L, which is valid. This
situation is identical to the one encountered in case 1 (i.e., case where x /∈ Xi)
and one must therefore consider the same three possibilities:

- 0 < ∆(x̂, xi+1) < κi+1,

- 0 < κi+1 < ∆(x̂, xi+1),

- ∆(x̂, xi+1) = κi+1.

For each of these, the validity of system (37)-(43) can be proven as before and
will not be repeated here.

The system of inequalities (19)-(25) is used to bound the value of recourse
following the local branching descent. If one considers a feasible solution x̂ to
problem (13)-(18), then a valid lower bound on the value of recourse is provided
for x̂ in the first subproblem Pn, n = 1, . . . , m, for which solution x̂ is feasible.
Otherwise, the value of recourse is bounded by L. If Θn > L for n = 1, . . . , m,
then (19)-(25) offers a better description of the possible values of the recourse
function in the subregions explored in the local branching descent. Further-
more, since (19)-(25) bounds Q(x) in different subregions of X compared to
only bounding the recourse associated with a feasible solution as in the case
of the classical optimality cut (11), by using (19)-(25), one may obtain useful
information on a wider range of solutions for problem (13)-(18).

One must now find a way to generate lower bounds on the subproblems
explored during the local branching descent. To do so, one can either use a
lower bounding functional that is specific to the problem being solved or, one
can adopt a more general approach. It is observed in [17] that the local branching
subproblems retain the same structure as the original problem. Therefore, since
the L-shaped algorithm is applied on the original problem, one can also apply the
same algorithm on the local branching subproblems. In [17], the local branching
subproblems are solved until an ǫ− opt solution was found. To obtain the lower
bounds Θn, n = 1, . . . , m, one may use the same approach. Subproblems Pn,
n = 1, . . . , m, can be solved using the L-shaped algorithm until an ǫ − opt
solution is found. The lower bound on recourse can then be derived from the
general lower bound z. In this case, through the use of local branching, one is
exploring the feasible region of the original problem (1)-(5).
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There is another way of using (19)-(25), which is to generate them locally
for each of the subproblems explored by the 0-1 integer L-shaped algorithm.
In step 2 of the algorithm, one may either apply a local branching descent to
cut a solution for which the separation routine is unable to find a feasibility
cut that is violated or to tighten the lower bound c⊤xν + Θν associated with
the subproblem considered. By working locally on the subproblems of the 0-1
integer L-shaped algorithm, one reduces considerably the size of subproblems
Pn, n = 1, . . . , m, making it easier to find better quality lower bounds. The
drawback of such an approach is that the inequalities that are found are only
valid locally. However, if one is able to obtain better lower bounds for each of
the subproblems explored by the L-shaped algorithm, then one obtains a better
general lower bound z. Furthermore, by increasing values c⊤xν + Θν , one is
able to fathom the subproblems at an earlier stage. By reducing the number of
active subproblems, one can accelerate the convergence of the algorithm. These
principles will now be applied to the case of the single vehicle routing problem
with stochastic demands.

4 The single vehicle routing problem with stochas-

tic demands

To present the single vehicle routing problem with stochastic demands, let us
first define an undirected graph G(V, E), where V = {v1, . . . , vn} is a set of
vertices and E = {(vi, vj) : vi, vj ∈ V, i < j} is a set of edges. Defined on E is a
symmetric matrix C = [cij ] that corresponds to the travel costs between vertices.
Vertex v1 represents a depot where a vehicle must start and finish a route. This
route must visit each of the customers (i,e., V \{v1}) once while minimizing the
total travel cost. Up until now, this problem represents the classical traveling
salesman problem. However, the single vehicle routing problem with stochastic
demands has two additional characteristics. The vehicle has a limited capacity
D and each of the customers j ∈ V \ {v1} has a nonnegative demand that may
be stochastic. Numerical tests will be conducted on instances where each client
j ∈ V \{v1} has a demand that is a Normal random variable (i.e., ξj ∼ N(µj , σj),
truncated at zero) and all demands are independently distributed.

In this case, whenever the vehicle serves a certain client, there is always
the risk that the observed demand exceeds the residual capacity. When such a
failure occurs, partial delivery is performed and the recourse action taken is to
return to the depot, to stock up (or to unload), and then go back to the customer
where failure occured to finish the delivery and continue the route. One makes
the hypothesis that the stochastic demands are unknown when routing decisions
are being made. Therefore, the problem has two stages. One must first construct
a route and then the cost of recourse may be determined. The optimization
problem consists of finding a solution that minimizes simultaneously the original
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travel cost and the expected cost of recourse. The model is therefore defined as
follows:

Min
∑

i<j

cijxij + Q(x) (44)

s.t.

n
∑

j=2

x1j = 2, (45)

∑

i<k

xik +
∑

j>k

xkj = 2, k = 2, . . . , n, (46)

∑

i∈S

∑

j /∈S
j>i

xij +
∑

i/∈S

∑

j∈S
j>i

xij ≥ 2, S ⊆ V, |S| ≥ 3, (47)

xij ∈ {0, 1}, 1 ≤ i < j ≤ n. (48)

An important point to be made concerns the orientation of the routes that
are considered. In a deterministic context, this concept is irrelevant since the
cost of the solution remains the same for both orientations. However, in the
stochastic case, because of the cost of recourse, the value of a solution depends
on the orientation chosen. Since demands become known only when customers
are visited, one must decide, a priori, which orientation to use. Therefore,
the recourse function is: Q(x) = Min{Q1(x),Q2(x)}, where Q1(x) and Q2(x)
correspond to the recourse cost for each of the two orientations. Let us define
the r − th feasible solution xr by vector V r = (vr1

= v1, vr2
, . . . , vrn+1

= v1). If
the goods to be delivered (or collected) are divisible, then one may measure the
recourse of solution xr for the first orientation in the following way (see [14]):

Q1(xr) = 2
n
∑

j=2

∞
∑

l=1

P

(

j−1
∑

s=2

ξrs
≤ lD <

j
∑

s=2

ξrs

)

c1rj
.

The probability term is associated with the event of having the lth failure occur
at customer rj . The computation of Q2(xr) follows the same principles, one
only needs to replace the index of ξ by rn+2−s.

To solve (44)-(48) using the 0-1 integer L-shaped algorithm, one must first
relax constraints (47) and (48) and then approximate the recourse function Q(x)
using Θ. Constraints of type (47) are added in step (2.3) of the algorithm and
one may use optimality cuts of type (11) or (12), whenever a feasible solution
is obtained.

Gendreau and al. [9] were the first to apply the standard L-shaped algorithm
to the single vehicle routing problem with stochastic demands. In 1999, Hjorring
and Holt [12] proposed a new type of cut that uses information taken from
partial routes for problem (44)-(48). A partial route is made up of three sets.
Using the notation proposed by Laporte and al. [14], let us first define the
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two ordered sets S = {v1, . . . , vs} and T = {v1, . . . , vt}. Sets S and T must
respect the following condition: S ∩ T = {v1}. Let us now define a third
set U = V \ ((S \ {vs}) ∪ (T \ {vt})). One easily sees that S ∩ U = {vs}
and T ∩ U = {vt}. Therefore, a partial route is made up of the two vectors
(v1, . . . , vs) and (vt, . . . , v1) which define the beginning and end of the route,
and of set U , which contains all vertices that are not yet ordered. If (vi, vj) ∈ S
or T refers to the case where vi and vj are consecutive in S or T , then let
W (x) =

∑

(vi,vj)∈S

xij +
∑

(vi,vj)∈T

xij +
∑

vi,vj∈U

xij − |V |+ 1. If Q is a lower bound

on the value of recourse for the partial route, then the following inequality is
valid for problem (44)-(48):

Θ ≥ L + (Q − L)W (x). (49)

To obtain a lower bound Q, Hjorring and Holt [12] propose to create an
artificial vertex v0 for which the demand is ξ0 =

∑

vi∈U\{vs,vt}

ξi and the cost

of return to the depot is c10 = min
vi∈U\{vs,vt}

{c1i}. By using cost c10, one can

calculate a lower bound on the partial route by measuring the value of recourse
for (v1, . . . , vs, v0, vt, . . . , v1). As for the general lower bound L, one can use the
same technique as the one that Laporte and al. [14] propose for the case of the
general stochastic vehicle routing problem.

Inequalities (49) may be added in step (2.3) of the 0-1 integer L-shaped
algorithm since one can generate them using an integer or continuous solution
xν . There is an important point to be made concerning the separation algorithm
needed to find violated inequalities of type (49). Let us consider (xν , Θν), a
solution to a current problem solved by the L-shaped algorithm. Vector xν is
either integer or continuous. Since there is only one vehicle in problem (44)-
(48), one can always construct a partial route using xν for which W (xν) = 1.
Therefore, one obtains a violated inequality (49) using this partial route if Θν <
Q.

Let us now consider how local branching may be used in the case of the
single vehicle routing problem with stochastic demands. One may start a local
branching descent from any solution xν provided by the L-shaped algorithm.
However, one needs an integer vector to create the first neighbourhood to ex-
plore. If xν is integer, then one may use the vector directly. If xν is continuous,
then by rounding to the nearest integer each component of xν , one obtains an
integer vector x̂ν which, considering the Hamming distance, is the nearest to
xν . In this case, vector x̂ν will define the starting point of the local branching
descent. There is an important point to be made when one considers vector x̂ν :

Proposition 4.1. Let x̂ represent a feasible route, then constraint ∆(x, x̂) ≥ 4
is a valid inequality for problem (13)-(18) in the case of the single vehicle routing
problem with stochastic demands.
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Proof. The closest feasible solutions to x̂ are in the 2−opt neighbourhood. The
2−opt neighbourhood of solution x̂ is obtained by deleting two edges from route
x̂ and replacing them by two other edges that were not in route x̂ in order to
form a new feasible solution. To do so, one must have at least two (i, j) for
which x̂ij = 1 → 0 and at least two (i, j) ∈ E for which x̂ij = 0 → 1. Therefore,
all solution in the 2 − opt neighbourhood of x̂ lie at a Hamming distance of 4
from x̂.

By rounding components of xν , one may obtain a feasible or infeasible in-
teger vector x̂ν . If x̂ν is feasible and ∆(xν , x̂ν) < 4, then by adding constraint
∆(x, x̂) ≥ 4 one is able to cut off solution xν and continue the separation process.
Therefore, a local branching descent need not be performed if the previous con-
dition is verified. Only when x̂ν is either infeasible or feasible but ∆(xν , x̂ν) ≥ 4,
is a local branching descent applied using as starting point vector x̂ν . One must
now determine how to perform the local branching descent. There are three
points to be adressed, one must first decide how to calculate the lower bounds
needed, then one must find in each of the subproblems explored a new integer
vector that will be used in the branching scheme and finally, one must decide
how the branching decision will be taken.

The current problem (13)-(18) is used in order to obtain the lower bounds
for the local branching subproblems Pn (n = 1, . . . , m) that are explored. One
may use problem (13)-(18) at some point in the search tree of the 0-1 integer L-
shaped algorithm to find local lower bounds. By doing so, the valid inequalities
obtained can only be used locally on the subproblem considered. Another pos-
sibility, is to use problem (13)-(18) directly, making it possible to create general
valid inequalities. Both strategies will be applied to obtain the computational
results in the next section. To obtain values Θn for n = 1, . . . , m, the inte-
grality constraints are temporarily reintroduced in (13)-(18). The separation
algorithms are then used to improve the lower bounds in the local branching
subregions that are explored. By doing so, one is using the L-shaped algorithm
itself to increase the values obtained for Θn, n = 1, . . . , m. To limit the effort
spent improving the lower bounds, a maximum number of calls to the separa-
tion algorithms is imposed. The maximum number of calls was set to three to
obtain the computational results in the next section. If for a particular sub-
region thus explored, the associated subproblem Pn is solved exactly, then one
obtains a feasible route xn that is optimal in the subregion defined by Pn (i.e.,
Q(xn) ≤ Q(x) ∀x ∈ Pn). In this case, and one may set Θn = Q(xn). Otherwise,
the lower bound Θn is simply derived from zn = c⊤xn + Θn. By proceeding in
this way, one also obtains the integer vector (i.e., xn) needed for the branching
scheme.

Originally in [17], local branching is used to search for different optimality
cuts, using as starting point the optimal solution to the Benders master problem.
By doing so, one can simultaneously work on improving the upper and lower
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bounds used in the Benders decomposition algorithm. By using local branching
in the L-shaped algorithm, one may hope to obtain the same benefits. Since
the local branching descent may provide new feasible solutions, one can find
better upper bounds. By adding the local branching valid inequalities to the
subproblems generated by the L-shaped algorithm, one can improve the general
lower bound. However, to keep the procedure effective, one must control the
effort spent generating the local branching descent. It was found that to better
explore the feasible region of problems (13)-(18), one should always branch
using solutions xn (n = 1, . . . , m) regardless of the quality of the lower bounds
obtained. Therefore, the size of the neighbourhood is fixed to a certain value κ
which remains unchanged. Furthermore, the effort spent on each descent will
also be controled by fixing value m as to be the maximum depth allowed.

One can now conclude this section by describing how all these valid inequal-
ities are generated at the separation step of the 0-1 integer L-shaped algorithm.
Step (2.3) starts by a search of violated subtour elimination constraints. The
heuristics that are used to find these cuts, are the ones that Lysgaard and al.
[15] present for capacity inequalities. These procedures were obtained from the
CVRPSEP package proposed by the authors. Subtour elimination constraints
are added as long as the heuristics are able to find them. When these heuristics
fail, separation continues by searching for violated inequalities of type (49). If a
violated cut is found, one restarts the separation step by searching for subtour
elimination constraints. As is shown by Hjorring and Holt [12], inequalities of
type (49) are necessary to solve efficiently the single vehicle routing problem
with stochastic demands. Since these inequalities provide useful information
concerning the value of recourse, by using them, one prevents against the risk
of enumeration. When one is unable to cut the current solution using either
constraints (47) or inequalities of type (49), then a local branching descent is
performed using fixed values κ and m. Local branching is used once to tighten
the lower bound associated with the active subproblem. At the end of the sep-
aration step, the local branching system (19)-(25) is added to (13)-(18) and the
subproblem is solved once using the integrality constraints. In doing so, we
obtain the lower bound c⊤xν + Θν . The solution process can then proceed as
before.

5 Computational results

To properly test the different ideas proposed in this paper a series of test prob-
lems were generated. The problem generator used follows the same principles
as the one proposed in [12]. Therefore, the graph vertices were generated in a
[0, 100]2 square following uniform distributions and the cost matrix was then
set to be the Euclidean distances between vertices. Each customer was as-
signed an average demand following a [1, 10] uniform distribution and the stan-
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dard deviation was set to be 30% of the mean. As in [12], problems of sizes
n = 20, 30, . . . , 90 were created. For each size, five instances were generated

for which f = 95%, 97.5%, . . . , 110% (where f =
n
∑

i=1

µi/D), for a total of 280

instances.

The first algorithm implemented is the standard L-shaped algorithm for
which the partial route cuts of Hjorring and Holt [12] are added. This is the
benchmark on which the implementations using local branching are compared.
Using local branching, both cut generation strategies are implemented. The
LB implementation refers to the case were cuts are generated locally. As for
the LB1 implementation, it refers to the case were cuts are generated globally.
Parameter m is fixed to three on all runs. As for the size of the local branching
neighbourhoods, runs are made with κ = 4, 6, 8. All three algorithms are
implemented using the branching package proposed by Gendron and al. [10].
All experiments are performed on a 2.4 GHz AMD Opteron 64 bit processor. A
maximum time of 1200 seconds is imposed on all runs (as was also imposed by
Hjorring and Holt [12]) and the optimality gap considered is ǫ = 1%.

To measure the basic tradeoff in using local branching cuts, the standard
implementation is first compared to the LB implementation, for which κ = 4
(LB-4). The average solution times and average gap are reported for these two
implementations in Table 1. Results are aggregated in the following way: (< 60)
refers to those instances that are solved in less than 60 seconds by the standard
algorithm, ([60, 1200]) to those that take between 60 and 1200 seconds and
(> 1200) includes those instances that the standard implementation is unable
to solve in the maximum alotted time. As for the undefined (und .) line, it
refers to instances for which the standard algorithm is unable to find a feasible
solution after 1200 seconds of computation time. Whenever LB-4 is either able
to solve, or obtain a feasible solution to, an instance for which the standard
algorithm fails, then the (sol .) line is used. The (not sol .) line refers to
those instances for which both implementations failed. All times reported are
in seconds. Whenever the implementations are unable to solve the instances in
the maximum time allowed, then the average gap obtained is given.

When comparing the standard and LB-4 implementations, one first observes
that the results for LB-4 are significantly better. The L-shaped algorithm is
either faster or obtains better results when one uses the local branching cuts.
The only exception is the case of the easy instances (< 60) for the problems
of size n = 60, for which the average time of LB-4 is 6.71 seconds compared
to 5.69 seconds for the standard implementation, and the problems of size n =
90, for which the times are 8.97 seconds compared to 6.14 seconds. In the
case of the medium instances ([60, 1200]), which corresponds to a total of 30
problems, the sum of average times for the standard implementation is 2603.8
seconds compared to 183.38 seconds for LB-4. This corresponds to a reduction
in solution times by a factor that is slightly over 14. Furthermore, 24 of the
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n Times nb. Standard LB-4
20 < 60 35 0.15 0.1
30 < 60 31 2.58 0.83

[60, 1200] 1 134.02 1.53
> 1200 sol . 3 3.05% 359.27

40 < 60 30 4.93 1.79
[60, 1200] 3 578.67 28.44

> 1200 sol . 1 2.95% 136.32
> 1200 not sol . 1 3.00% 1.37%

50 < 60 26 5.95 2.25
[60, 1200] 2 578.67 8.92

> 1200 sol . 2 2.15% 109.36
> 1200 not sol . 5 2.82% 1.59%

60 < 60 16 5.69 6.71
[60, 1200] 5 450.16 30.16

> 1200 sol . 6 2.41% 528.05
> 1200 not sol . 8 3.58% 1.93%

70 < 60 14 3.51 2.55
[60, 1200] 6 200.4 13.48

> 1200 sol . 3 1.90% 157.34
> 1200 not sol . 10 3.78% 2.10%

und . sol . 2 - 369.69
80 < 60 11 10.91 8.21

[60, 1200] 9 392.99 64.15
> 1200 sol . 5 1.63% 67.31

> 1200 not sol . 6 2.33% 1.46%
und . sol . 3 - 4.84%

und . not sol . 1 - -
90 < 60 13 6.14 8.97

[60, 1200] 4 268.89 36.7
> 1200 sol . 2 1.21% 595.47

> 1200 not sol . 12 3.85% 2.59%
und . sol . 1 - 2.02%

und . not sol . 3 - -

Table 1: Solution times and average gap: Standard vs. LB-4

instances that the standard implementation is unable to solve in the maximum
time allowed, are solved by LB-4. These instances are sometimes solved quite
efficiently by LB-4, as is the case for problems of size n = 80, where five of
the (> 1200) instances, for which the average gap obtained by the standard
algorithm is 1.63%, are solved, on average, in a little more than one minute
(67.31 seconds) by LB-4. Also, out of the 24 hard instances solved by LB-4, two
are in the undefined (und .) category (i.e., the problems of size n = 70). Finally,
when both implementations are unable to solve the problems, the average gap
obtained with LB-4 is systematically lower than with the standard algorithm.

These results may be explained when one examines the separation algorithm
used in the LB implementation. In all cases, the separation process starts by
searching for violated subtour elimination constraints. At this point, one is try-
ing to establish first stage feasible solutions. If the separation heuristics fail, then
the algorithm turns to the recourse value to try to cut the current solution. Cuts
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of type (49) are used as much as possible to better express the recourse function.
When one is no longer able to generate a cut based on a partial solution, then in
the standard implementation, the algorithm must branch. However, in the LB
implementation, a local branching descent is applied. The lower bounds derived
from the neighbourhoods explored during the local branching descent tend to
be tighter. Therefore, by using the local branching inequalities, one can better
express the recourse value around a solution that the partial route inequalities
were unable to cut. In this case, system (19)-(25) is used to complement the cuts
of type (49) that were found for the subproblem being separated. The overall
benefit of this approach is that the lower bounds obtained for each subproblem
created by the algorithm are tighter. Furthermore, since the local branching
search may provide new feasible solutions, one is also able to find better upper
bounds at an earlier stage. In turn, both of these benefits tend to make the
solution process much faster.

n Times Standard LB-4 LB-6 LB-8
20 < 60 35 35 35 35
30 < 60 31 32 33 32

[60, 1200] 1 3 1 2
> 1200 3 0 1 1

40 < 60 30 33 33 34
[60, 1200] 3 1 1 0
> 1200 2 1 1 1

50 < 60 26 29 29 29
[60, 1200] 2 1 2 2
> 1200 7 5 4 4

60 < 60 16 20 20 20
[60, 1200] 5 7 8 7
> 1200 14 8 7 8

70 < 60 14 22 21 21
[60, 1200] 6 3 4 4
> 1200 13 10 10 10
und . 2 0 0 0

80 < 60 11 18 17 18
[60, 1200] 9 7 8 7
> 1200 11 9 10 10
und . 4 1 0 0

90 < 60 13 16 16 16
[60, 1200] 4 3 2 4
> 1200 14 13 14 13
und . 4 3 3 2

Table 2: Instances solved: standard vs. LB

Let us now examine the results obtained by both cut strategies when one
increases parameter κ. To do so, Tables 2 and 3 give us the number of instances
aggregated according to the previous classification but for all implementations
(standard, LB and LB1) and for all runs (κ = 4, 6, 8). If one sums the
results reported for all lines (< 60) and ([60, 1200]), then one obtains the total
number on instances that were solved before the time limit was reached for
all implementations on all runs. When examining Table 2, one may see that
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the standard implementation was able to solve 204 instances compared to 230
for LB-4 and LB-6 and 231 for LB-8. Results are almost identical when one
increases the value of κ in the case of LB. By generating the cuts locally, it
seems that one does not need to search large neighbourhoods to obtain good
results. With LB-4, one seems to obtain the best tradeoff between the quality
of results and computational effort.

n Times Standard LB1-4 LB1-6 LB1-8
20 < 60 35 35 35 35
30 < 60 31 32 31 31

[60, 1200] 1 2 3 2
> 1200 3 1 1 2

40 < 60 30 31 31 30
[60, 1200] 3 2 3 4
> 1200 2 2 1 1

50 < 60 26 25 27 26
[60, 1200] 2 5 4 4
> 1200 7 5 4 5

60 < 60 16 19 19 19
[60, 1200] 5 3 3 3
> 1200 14 13 13 13

70 < 60 14 19 17 19
[60, 1200] 6 4 7 5
> 1200 13 12 11 11
und . 2 0 0 0

80 < 60 11 16 13 11
[60, 1200] 9 9 12 13
> 1200 11 9 9 10
und . 4 1 1 1

90 < 60 13 15 15 12
[60, 1200] 4 3 3 7
> 1200 14 14 14 14
und . 4 3 3 2

Table 3: Instances solved: standard vs. LB1

In the case of LB1, the situation is different. When analyzing Table 3, one
may see that 217 instances are solved by LB1-4, 223 by LB1-6 and 221 by LB1-
8. When one increases the size of κ, one is able to solve more problems in the
maximum time allowed. In this case, the LB1-6 run seems to give the best
results. By using larger neighbourhoods, the cuts will bound the recourse value
for larger portions of the feasible region of the current problem. Therefore, since
the LB1 implementation generates the cuts globally (cuts are reused), larger
neighbourhoods tend to make the cuts useful on a larger number of subproblems
explored in the search tree.

When comparing LB to LB1, one observes that by generating the cuts lo-
cally, one is able to solve a greater number of instances (230 for LB-4 compared
to 223 for LB1-6). The explanation for this resides in the observation that by
reusing the cuts, as is done in LB1, one makes the last subproblem processed
in the separation procedure a lot harder to solve. Therefore, for a fixed max-
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imum computation time, the LB1 implementation explores a smaller region of
the search tree compared to the LB implementation. This proves to be a draw-
back on certain instances. However, when both strategies are compared to the
standard algorithm, it is always preferable to apply the local branching cuts.

This section will now be concluded by analyzing how the results of both the
LB and LB1 implementations vary for hard instances when the maximum time
allowed is increased. To do so, a subset of hard instances was chosen (the hard
instances for n = 70, 80, 90). Results obtained by LB-4 and LB1-6 will be
compared when the maximum time allowed is increased to 2400, 3600, 4800 and
6000 seconds. In Table 4, results obtained on the 48 hard instances used are
classified in three columns: the instances solved in the maximum time allowed
(sol .), the instances that can not be solved but for which a feasible solution is
obtained (not sol .) and the instances for which the algorithms are unable to
find at least one feasible solution (und .). Both the number of instances and
average results in seconds (for (sol .)), or percentage of gap (for (not sol .)) are
given in Table 4.

LB LB1
Max. Time sol . not sol . und . sol . not sol . und .

1200 12/228.24 32/2.42% 4 10/275.04 34/3.00% 4
2400 15/595.33 31/2.49% 2 10/275.04 35/2.98% 3
3600 17/884.89 29/2.44% 2 12/751.01 34/2.93% 2
4800 18/1078.25 29/2.52% 1 12/751.01 34/2.87% 2
6000 18/1078.25 29/2.45% 1 12/751.01 34/2.84% 2

Table 4: Results on hard instances: LB vs. LB1

Once again, the LB algorithm seems to outperform LB1. As the maximum
computation time is increased, one may see that LB-4 is able to solve more
instances compared to LB1. For 6000 seconds of computation time, LB-4 solves
18 instances compared to 12 for LB1-6. Furthermore, if one considers the (not
sol .) column, one may see that the average gap obtained is slightly better for
LB-4. Again, these results seem to show that the local branching cuts are better
used locally to the subproblems explored by the L-shaped algorithm. The LB
algorithm explores a larger portion of the search tree which seems to produce
better results on the problems that are considered here.

6 Conclusion

In this paper, a new type of valid inequalities is proposed for the 0-1 integer
L-shaped algorithm. These inequalities are based on the information gathered
through the use of local branching descents. They provide a broader descrip-
tion on the value of recourse compared to the classical optimality cut. These
inequalities can be implemented in the L-shaped algorithm using two different

20

Local Branching Cuts for the 0-1 Integer L-Shaped Algorithm

CIRRELT-2007-23



cut generation strategies (local and global). Numerical tests are conducted on a
series of single vehicle routing problems with stochastic demands. Results show
that there is a clear advantage in using these new inequalities. An interesting
avenue of research would be to generalize the approach proposed here to the
case of general vehicle routing problems with stochastic demands. It would also
be interesting to find new separation strategies using these local branching cuts.
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