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Abstract. We examine and compare simulation-based algorithms for solving the agent 

scheduling problem in a multiskill call center. This problem consists in minimizing the total 

costs of agents under constraints on the expected service level per call type, per period, 

and aggregated. We propose a solution approach that combines simulation with integer or 

linear programming, with cut generation. In our numerical experiments with realistic 

problem instances, this approach performs better than all other methods proposed 

previously for this problem. We also show that the two-step approach, which is the 

standard method for solving this problem, sometimes yield solutions that are highly 

suboptimal and inferior to those obtained by our proposed method. 
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1 Introduction

The telephone call center industry employs millions of people around the world and is fast growing.
In the United States, for example, customer service representatives held 2.1 million jobs in 2004,
and employment in this job category is expected to increase faster than average at least through 2014
(Bureau of Labor Statistics 2007). A few percent saving in workforce salaries easily means several
million dollars.

Call centers often handle several types of calls distinguished by the required skills for delivering
service. Training all agents to handle all call types is not cost-effective. Each agent has a selected
number of skills and the agents are distinguished by the set of call types they can handle (also called
their skill set). When such skill constraints exist, we speak of a multiskill call center. Skill-based

routing (SBR), or simply routing, refers to the rules that control the call-to-agent and agent-to-call
assignments. Most modern call centers perform skill-based routing (Koole and Mandelbaum 2002,
Gans et al. 2003).

In a typical call center, inbound calls arrive at random according to some complicated stochastic
processes, call durations are also random, waiting calls may abandon after a random patience time,
some agents may fail to show up to work for any reason, and so on. Based on forecasts of call
volumes, call center managers must decide (among other things) how many agents of each type (i.e.,
skill set) to have in the center at each time of the day, must construct working schedules for the
available agents, and must decide on the call routing rules. These decisions are made under a high
level of uncertainty. The goal is typically to provide the required quality of service at minimal cost.

The most common measure of quality of service is the service level (SL), defined as the long-
term fraction of calls whose time in queue is no larger than a given threshold. Frequently, multiple
measures of SL are of interest: for a given time period of the day, for a given call type, for a given
combination of call type and period, aggregated over the whole day and all call types, and so on. For
certain call centers that provide public services, SL constraints are imposed by external authorities,
and violations may result in stiff penalties (CRTC 2000).

In this paper, we assume that we have a detailed stochastic model of the dynamics of the call
center for one day of operation. This model specifies the stochastic processes for the call arrivals
(these processes are usually non-stationary and doubly stochastic), the distributions of service times
and patience times for calls, the call routing rules, the periods of unavailability of agents between
calls (e.g., to fill out forms, or to go to the restroom, etc.), and so forth. We formulate a stochastic
optimization problem where the objective is to minimize the total cost of agents, under various SL
constraints. This could be used in long-term planning, to decide how many agents to hire and for
what skills to train them, or for short-term planning, to decide which agents to call for work on a
given day and what would be their work schedule. The problem is difficult because for any given
fixed staffing of agents (the staffing determines how many agents of each type are available in each
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time period), no reliable formulas or quick numerical algorithms are available to estimate the SL; it
can be estimated accurately only by long (stochastic) simulations. Scheduling problems in general
are difficult (they are NP-hard) even in deterministic settings where each solution can be evaluated
quickly and exactly. When this evaluation requires costly and noisy simulations, as is the case here,
solving the problem exactly is even more difficult and we must settle with methods that are partly
heuristic.

Staffing in the single-skill case (i.e., single call type and single agent type) has received much
attention in the call center literature. Typically, the workload varies considerably during the day
(Gans et al. 2003, Avramidis et al. 2004, Brown et al. 2005), and the planned staffing can change
only at a few discrete points in time (e.g., at the half hours). It is common to divide the day into
several periods during which the staffing is held constant and the arrival rate does not vary much.
If the system can be assumed to reach steady-state quickly (relative to the length of the periods),
then steady-state queueing models are likely to provide a reasonably good staffing recommendation
for each period. For instance, in the presence of abandonments, one can use an Erlang-A formula
to determine the minimal number of agents for the required SL in each period (Gans et al. 2003).
When that number is large, it is often approximated by the square root safety staffing formula, based
on the Halfin-Whitt heavy-traffic regime, and which says roughly that the capacity of the system
should be equal to the workload plus some safety staffing which is proportional to the square root of
the workload (Halfin and Whitt 1981, Gans et al. 2003). This commonly used heuristic, known as
the stationary independent period by period (SIPP) approach, often fails to meet target SL because
it neglects the non-stationarity (Green et al. 2003). Non-stationary versions of these approximations
have also been developed, still for the single-skill case (Jennings et al. 1996, Green et al. 2003).

Scheduling problems are often solved in two separate steps (Mehrotra 1997): After an appropriate
staffing has been determined for each period in the first step, a minimum-cost set of shifts that
covers this staffing requirement can be computed in the second step by solving a linear integer
program. However, the constraints on admissible working shifts often force the second step solution
to overstaff in some of the periods. This drawback of the two-step approach has been pointed out
by several authors, who also proposed alternatives (Keith 1979, Thompson 1997, Henderson and
Mason 1998, Ingolfsson et al. 2003, Atlason et al. 2004). For example, the SL constraint is often
only for the time-aggregated (average) SL over the entire day; in that case, one may often obtain
a lower-cost scheduling solution by reducing the minimal staffing in one period and increasing it
in another period. Atlason et al. (2004) developed a simulation-based methodology to optimize
agents’ scheduling in the presence of uncertainty and general SL constraints, based on simulation
and cutting-plane ideas. Linear inequalities (cuts) are added to an integer program until its optimal
solution satisfies the required SL constraints. The SL and the cuts are estimated by simulation.

In the multiskill case, the staffing and scheduling problems are more challenging, because the
workload can be covered by several possible combinations of skill sets, and the routing rules also
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have a strong impact on the performance. Staffing a single period in steady-state is already difficult;
the Erlang formulas and their approximations (for the SL) no longer apply.... Simulation seems
to be the only reliable tool to estimate the SL. Cez̧ik and L’Ecuyer (2007) adapt the simulation-
based methodology of Atlason et al. (2004) to the optimal staffing of a multiskill call center for a
single period. They point out difficulties that arise with this methodology and develop heuristics
to handle them. Avramidis et al. (2006) solve the same problem by using neighborhood search
methods combined with an analytical approximation of SLs, with local improvement via simulation
at the end. Pot et al. (2007) impose a constraint only on the aggregate SL (across all call types); they
solve Lagrangean relaxations using search methods and analytical approximations.

Some authors have studied the special case where there are only two call types, and some have
developed queueing approximations for the case of two call types, via Markov chains and under
simplifying assumptions; see Stolletz and Helber (2004) for example. But here we are thinking of
20 to 50 call types or more, which is common in modern call centers, and for which computation
via these types of Markov chain models is clearly impractical.

For the multiskill scheduling problem, Bhulai et al. (2007) propose a two-step approach in which
the first step determines a staffing of each agent type for each period, and the second step computes
a schedule by solving an IP in which this staffing is the right-hand side in key constraints. A key
feature of the IP model is that the staff-coverage constraints allow downgrading an agent into any
alternative agent type with smaller skill set, separately for each period. Bhulai et al. (2007) recognize
that their two-step approach is generally suboptimal and they illustrate this by examples.

In this paper, we propose a simulation-based algorithm for solving the multiskill scheduling prob-
lem, and compare it to the approach of Bhulai et al. (2007). This algorithm extends the method of
Cez̧ik and L’Ecuyer (2007), which solves a single-period staffing problem. In contrast with the two-
step approach, our method optimizes the staffing and the scheduling simultaneously. Our numerical
experiments show that our algorithm provides approximate solutions to large-scale realistic problem
instances in reasonable time (a few hours). These solutions are typically better, sometimes by a
large margin (depending on the problem), than the best solutions from the two-step approach. We
are aware of no competitive faster method.

The remainder of this paper is organized as follows. In section 2, we formally define the problem
at hand and provide a mathematical programming formulation. The new algorithm is described in
3. We report computational results on several test instances in section 4. The conclusion follows.
A preliminary version of this paper was presented at the 2007 Industrial Simulation Conference
(Avramidis et al. 2007).

5

Optimizing Daily Agent Scheduling in a Multiskill Call Center

CIRRELT-2007-44



2 Model Formulation

We now provide definitions of the multiskill staffing and scheduling problems. We assume that we
have a stochastic model of the call center, under which the mathematical expectations used below
are well defined, and that we can simulate the dynamics of the center under this model. Our problem
formulations here do not depend on the details of this model.

There are K call types, labeled from 1 to K, and I agent types, labeled from 1 to I. Agent type i

has the skill set Si ⊆ {1, . . . ,K}. The day is divided into P periods of given length, labeled from 1 to
P. The staffing vector is y = (y1,1, . . . ,y1,P, . . . ,yI,1, . . . ,yI,P)t where yi,p is the number of agents of
type i available in period p. Given y, the service level (SL) in period p for type-k calls is defined as

gk,p(y) = E[Sg,k,p]/E[Sk,p +Ak,p],

where Sk,p is the number of type-k calls that arrive in period p, Sg,k,p is the number of those calls
that get served after waiting at most τk,p (a constant called the acceptable waiting time), and Ak,p is
the number of type-k calls that abandon in period p after waiting at least τk,p. Aggregate SLs, per
call type, per period, and globally, are defined analogously. Given acceptable waiting times τp, τk,
and τ , the aggregate SLs are denoted by gp(y), gk(y) and g(y) for period p, call type k, and overall,
respectively.

A shift is a time pattern that specifies the periods in which an agent is available to handle calls. In
practice, it is characterized by its start period (the period in which the agent starts working), break

periods (the periods when the agent stops working), and end period (the period when the agent
finishes his/her workday). In general, agents have several breaks of different duration; for instance,
morning and afternoon coffee breaks, as well as a longer lunch break.

Let {1, . . . ,Q} be the set of all admissible shifts. To simplify the exposition, we assume that this
set is the same for all agent types; this assumption could easily be relaxed if needed, by introducing
specific shift sets for each agent type. The admissible shifts are specified via a P×Q matrix A0

whose element (p,q) is ap,q = 1 if an agent with shift q works in period p, and 0 otherwise. A
vector x = (x1,1, . . . ,x1,Q, . . . ,xI,1, . . . ,xI,Q)t, where xi,q is the number of agents of type i working
shift q, is a schedule. The cost vector is c = (c1,1, . . . ,c1,Q, . . . ,cI,1, . . . ,cI,Q)t, where ci,q is the cost
of an agent of type i with shift q. To any given shift vector x, there corresponds the staffing vector
y = Ax, where A is a block-diagonal matrix with I identical blocks A0, if we assume that each agent
of type i works as a type-i agent for his/her entire shift.

However, following Bhulai et al. (2007), we also allow an agent of type i to be downgraded to
an agent with smaller skill set, i.e., of type ip where Sip ⊂ Si, in any time period p of his/her shift.
Define S +

i = { j : S j ⊃ Si∧ 6 ∃m : S j ⊃ Sm ⊃ Si} (S +
i is thus the set of agent types whose skill set is a

minimum strict superset of the skill set of agent type i) and S −
i = { j : S j ⊂ Si∧ 6 ∃m : S j ⊂ Sm ⊂ Si}

(S −
i is thus the set of agent types whose skill set is a maximum strict subset of skill set of agent

type i). To illustrate, consider a call centre with K = 3 call types, I = 4 agent types, and skill sets
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S1 = {1}, S2 = {2} (specialist agents), S3 = {2,3}, and S4 = {1,2,3} (generalist agent); then we
have, among others, S −

1 = S −
2 = /0, S +

2 = {3}, and S −
4 = {1,3}. For each i and j ∈S −

i and each
period p, we define the skill transfer variable zi, j,p, which represents the number of type-i agents that
are downgraded to type j during period p. Note that by performing multiple skill transfers during
a period, an agent of type i may end up being downgraded to any type whose skill set included in
Si (in the previous example, a type 4 agent could be downgraded to type 3 and then to type 2, even
though there are no z4,2,p variables).

A schedule x =(x1,1, . . . ,x1,Q, . . . ,xI,1, . . . ,xI,Q)t is said to cover the staffing y =(y1,1, . . . ,y1,P, . . . ,

yI,1, . . . ,yI,P)t if for i = 1, . . . , I and p = 1, . . . ,P, there are nonnegative integers z j,i,p for j ∈S +
i and

zi, j,p for j ∈S −
i , such that

Q

∑
q=1

ap,qxi,q + ∑
j∈S +

i

z j,i,p− ∑
j∈S −

i

zi, j,p ≥ yi,p. (1)

These inequalities can be written in matrix form as Ax+Bz≥ y, where z is a column vector whose
elements are the zi, j,p variables and B is a matrix whose entries are in the set {−1,0,1}. With this
notation, the scheduling problem can be formulated as

(P0) : [Scheduling problem]

min ctx = ∑
I
i=1 ∑

Q
q=1 ci,qxi,q

s.t.
Ax+Bz≥ y
gk,p(y)≥ lk,p for 1≤ k ≤ K and 1≤ p≤ P
gp(y)≥ lp for 1≤ p≤ P
gk(y)≥ lk for 1≤ k ≤ K
g(y)≥ l
x≥ 0, z≥ 0, y≥ 0 and integer

where lk,p, lp, lk and l are given constants.
In practice, a given agent often works more efficiently (faster) when handling a smaller number

of calls (i.e., if his/her skill set is artificially reduced). The possibility of downgrading agents to a
smaller skill set for some periods can sometimes be exploited to take advantage of this increased
efficiency. In case where the agent’s speed for a given call type (in the model) does not depend on
his/her skill set, one might think intuitively that downgrading cannot help, because it only limits the
flexibility of the routing. This would be true if we had an optimal dynamic routing of calls. But
in practice, an optimal dynamic routing is too complicated to compute and simpler routing rules
are used instead. These simple rules are often static. Then, downgrading may sometimes help by
effectively changing the routing rules. Clearly, the presence of skill transfer variables in (P0) cannot
increase the optimal cost, it can only reduce it.
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Suppose we consider a single period, say period p, and we replace gk,p(y) and gp(y) by approx-
imations that depend on the staffing of period p only, say g̃k,p(y1,p, . . . ,yI,p) and g̃p(y1,p, . . . ,yI,p),
respectively. If all system parameters are assumed constant over period p, then natural approxima-
tions are obtained by assuming that the system is in steady-state over this period. The single-period
multiskill staffing problems can then be written as

(P1) : [Staffing problem]

min ∑
I
i=1 ciyi

s.t.
g̃k(y1, . . . ,yI)≥ lk for 1≤ k ≤ K
g̃(y1, . . . ,yI)≥ l
yi ≥ 0 and integer for all i

where ci is the cost of agent type i (for a single period), and the period index was dropped throughout.
Simulation-based solution methods for this problem are proposed in Cez̧ik and L’Ecuyer (2007) and
Avramidis et al. (2006). Pot et al. (2007) address a restricted version of it, with a single constraint
on the aggregate SL over the period (i.e., they assume lk = 0 for all k).

In the approach of Bhulai et al. (2007), the first step is to determine an appropriate staffing,
ŷ = (ŷ1,1, . . . , ŷ1,P, . . . , ŷI,1, . . . , ŷI,P)t. For this, they look at each period p in isolation and solve a
version of (P1) with a single constraint on the aggregate SL; this gives ŷ1,p, . . . , ŷI,p for each p. In
their second step, they find a schedule that covers this staffing by solving:

(P2) : [Two-stage approach]

min ctx
s.t.

Ax+Bz≥ ŷ
x≥ 0,z≥ 0 and integer

The presence of skill-transfer variables generally reduces the optimal cost in (P2) by adding
flexibility, compared with the case where no downgrading is allowed. However, there sometimes
remains a significant gap between the optimal solution of (P0) and the best solution found for the
same problem by the two-step approach. The following simplified example illustrates this.

Example 1 Let K = I = P = 3, and Q = 1. The single type of shift covers the three periods. The
skill sets are S1 = {1,2}, S2 = {1,3}, and S3 = {2,3}. All agents have the same shift and the same
cost. Suppose that the total arrival process is stationary Poisson with mean 100. This incoming
load is equally distributed between call types {1,2} in period 1, {1,3} in period 2, {2,3} in period
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3. Any agent can be downgraded to a specialist that can handle a single call type (that belongs to
his skill set), in any period. In the presence of such specialists, an incoming call goes first to its
corresponding specialist if there is one available, otherwise it goes to a generalist that can handle
another call type as well. When the agent becomes available, he serves the call that has waited the
longest among those in the queue (if any). The service times are exponential with mean 1, there
are no abandonments, and the SL constraints specify that 80% of all calls must be served within 20
seconds, in each time period, on average over an infinite number of days.

If we assume that the system operates in steady-state in period 1, then the optimal staffing for that
period is 104 agents of type 1. Since all agents can serve all calls, we have in this case an M/M/s

queue with s = 104, and the global SL is 83.4%, as can be computed by the Erlang-C formula. By
symmetry, the optimal staffing solutions for the other periods are obviously the same: 104 agents of
type 2 in period 2 and 104 agents of type 3 in period 3. Then, the two-step approach gives a solution
to (P2) with 104 agents of each type, for a total of 312 agents.

If we solve (P0) directly instead (e.g., using the simulation-based algorithm described in the next
section), assuming again (as an approximation) that the system is in steady-state in each of the three
periods, we find a feasible solution with 35 agents of type 1, 35 agents of type 2, and 34 agents of
type 3, for a total of 104 agents. With this solution, during period 1, the agents of types 2 and 3 are
downgraded to specialists who handle only call types 1 and 2, respectively, and the agents of type 1
act as generalists. A similar arrangement applies to the other periods, mutatis mutandis. Note that
this solution of (P0) remains valid even if we remove the skill transfer variables from the formulation
of (P0), because the sets Si− and S+

i are all empty, if we assume that the routing rules do not change;
i.e., if calls are always routed first to agents that can handle only this call type among the calls that
can arrive during the current period.

Suppose now that we add the additional skill sets S4 = {1}, S5 = {2}, S6 = {3}, and that these
new specialists cost 6 each, whereas the agents with two skills cost 7. In this case it becomes
attractive to use specialists to handle a large fraction of the load, because they are less expensive,
and to keep a few generalists in each period to obtain a “resource sharing” effect. It turns out that
an optimal staffing solution for period 1 is 2 generalists (type 1) and 52 specialists of each of the
types 4 and 5. An analogous solution holds for each period. With these numbers, if downgrading
is not possible, the two-step approach gives a solution with 6 generalists (2 of each type) and 156
specialists (52 of each type), for a total cost of 978. If downgrading is allowed, then the two-step
approach finds the following much better solution: 2 agents of type 1 and 52 of each of the types 2
and 3, for a total cost of 742. The skill transfer works in this way. In period 1: 52 agents of type
2 are downgraded to specialists of type 4 and 52 of type 3 to specialists of type 5. In period 2: 2
agents of type 1 are downgraded to agents of type 5, 52 of type 2 to type 6 and 50 of type 3 to type
5. In period 3: 2 agents of type 1 are downgraded to agents of type 4, 50 of type 2 to type 4 and 52
of type 3 to type 6. If we solve (P0) directly with these additional skill sets, we get the same solution

9

Optimizing Daily Agent Scheduling in a Multiskill Call Center

CIRRELT-2007-44



as without them; i.e., 104 agents with two skills each, for a total cost of 728. This is again better
than with the two-step approach, but the gap is much smaller than what we had with only three skill
sets.

Example 2 Observe that in the previous example, if all the load was from a single call type, there
would be a single agent type and the two-step approach would provide exactly the same solution as
the optimal solution of (P0). The example illustrates a suboptimality gap due to a variation in the
type of load.

Another potential source of suboptimality (this one can occur even in the case of a single call
type) is the time variation of the total load from period to period. If there is only a global SL
constraint over the entire day, then the optimal solution may allow a lower SL during one (or more)
peak period(s) and recover an acceptable global SL by catching up in the other periods. To account
for this, Bhulai et al. (2007), Section 5.4, propose a heuristic based on the solution obtained by their
basic two-step approach. Although this appears to work well in their examples, the effectiveness of
this heuristic for general problems is not clear.

Yet another (important) type of limitation that can significantly increase the total cost is the
restriction on the set of available shifts.... Suppose for example that there is a single call type, that
the day has 10 periods, and that all shifts must cover 8 periods, with 7 periods of work and a single
period of lunch break after 3 or 4 periods of work. Thus a shift can start in period 1, 2, or 3, and
there are six shift types in total. Suppose we need 100 agents available in each period. For this we
clearly need 200 agents, each one working for 7 periods, for a total of 1400 agent-periods. If there
were no constraints on the duration and shape of shifts, on the other hand, then 1000 agent-periods
would suffice.

3 Optimization by Simulation and Cutting Planes

We now describe the proposed simulation-based optimization algorithm. The general idea is to
replace the problem (P0) by a sample version of it, (SP0n), and then replace the nonlinear SL con-
straints by a small set of linear constraints, in a way that the optimal solution of the resulting relaxed

sample problem is close to that of (P0). The relaxed sample problem is solved by linear or integer
programming.

We first describe how the relaxation works when applied directly to (P0); its works the same way
when applied to the sample problem. Consider a version of (P0) in which the SL constraints have
been replaced by a small set of linear constraints that do not cut out the optimal solution. Let ȳ be
the optimal solution of this (current) relaxed problem. If ȳ satisfies all SL constraints of (P0), then
it is an optimal solution of (P0) and we are done. Otherwise, take a violated constraint of (P0), say
g(ȳ) < l, suppose that g is (jointly) concave in y for y≥ ȳ, and that q̄ is a subgradient of g at ȳ. Then

g(y)≤ g(ȳ)+ q̄t(y− ȳ)
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for all y≥ ȳ. We want g(y)≥ l, so we must have

l ≤ g(y)≤ g(ȳ)+ q̄t(y− ȳ),

i.e.,
q̄ty≥ q̄tȳ+ l−g(ȳ). (2)

Adding this linear cut inequality to the constraints removes ȳ from the current set of feasible solu-
tions of the relaxed problem without removing any feasible solution of (P0). On the other hand, in
case q̄ is not really a subgradient (which may happens in practice), then we may cut out feasible
solutions of (P0), including the optimal one. We will return to this.

Since we cannot evaluate the functions g exactly, we replace them by a sample average over n

independent days, obtained by simulation. Let ω represent the sequence of independent uniform
random numbers that drives the simulation for those n days. When simulating the call center for
different values of y, we assume that the same uniform random numbers are used for the same
purpose for all values of y, for each day. That is, we use the same ω for all y. Proper synchronization
of these common random numbers is implemented by using a random number package with multiple
streams and substreams (Law and Kelton 2000, L’Ecuyer et al. 2002, L’Ecuyer 2004).

The empirical SL over these n simulated days is a function of the staffing y and of ω . We denote it
by ĝn,k,p(y,ω) for call type k in period p; ĝn,p(y,ω) aggregated over period p; ĝn,k(y,ω) aggregated
for call type k; and ĝn(y,ω) aggregated overall. For a fixed ω , these are all deterministic functions
of y. Instead of solving directly (P0), we solve its sample-average approximation (SP0n) obtained
by replacing the functions g in (P0) by their sample counterparts ĝ (here, ĝ stands for any of the
empirical SL functions, and similarly for g).

We know that ĝn,k,p(y) converges to gk,p(y) with probability 1 for each (k, p) and each y when
n→ ∞. In this sense, (SP0n) converges to (P0) when n→ ∞. Suppose that we eliminate a priori all
but a finite number of solutions for (P0). This can easily be achieved by eliminating all solutions
for which the total number of agents is unreasonably large. Let Y ∗ be the set of optimal solutions
of (P0) and suppose that no SL constraint is satisfied exactly for these solutions. Let Y ∗

n be the
set of optimal solutions of (SP0n). Then, the following theorem implies that for n large enough, an
optimal solution to the sample problem is also optimal for the original problem. It can be proved
by a direct adaptation of the results of Vogel (1994) and Atlason et al. (2004); see also Cez̧ik and
L’Ecuyer (2007).

Theorem 1 With probability 1, there is an integer N0 < ∞ such that for all n≥N0, Y ∗
n = Y ∗. More-

over, under the mild assumption that the service-level estimators satisfy a standard large-deviation

principle (see Assumption 1 in Cez̧ik and L’Ecuyer (2007)), there are positive real numbers α and

β such that for all n,

P[Y ∗
n = Y ∗]≥ 1−αe−βn.
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We solve (SP0n) by the cutting plane method described earlier, with the functions g replaced
by their empirical counterparts. The major practical difficulty is to obtain the subgradients q̄. In
fact, the functions ĝ in the empirical problem (computed by simulation) are not necessarily concave
for finite n, even in the areas where the functions g of (P0) are concave. To obtain a (tentative)
subgradient q̄ of a function ĝ at ȳ, we use forward finite differences as follows. For j = 1, . . . , IP,
we choose an integer d j ≥ 0, we compute the function ĝ at ȳ and at ȳ+d je j for j = 1, . . . , IP, where
e j is the jth unit vector, and we define q̄ as the IP-dimensional vector whose jth component is

q̄ j = [ĝ(ȳ+d je j)− ĝ(ȳ)]/d j. (3)

In our experiments, we used the same heuristic as in Cez̧ik and L’Ecuyer (2007) to select the d j’s: We
took d j = 3 when the SL corresponding to the considered cut was less than 0.5, d j = 2 when it was
between 0.5 and 0.65, and d j = 1 when it was greater than 0.65. When we need a subgradient for a
period-specific empirical SL (ĝp or ĝk,p), the finite difference is formed only for those components of
y corresponding to the given period; the other elements of q̄ are set to zero. This heuristic introduces
inaccuracies, because ĝp and ĝk,p depend in general on the staffing of all periods up to p or even
p+1, but it reduces the work significantly.

Computing q̄ via (3) requires IP + 1 simulations of n days each. This is by far the most time-
consuming part of the algorithm. Even for medium-size problems, these simulations can easily
require an excessive amount of time. For this reason, we use yet another important short-cut: We
generally use a smaller value of n for estimating the subgradients than for checking feasibility. (The
latter requires a single n-day simulation experiment.) That is, we compute each ĝ(ȳ + d je j) in (3)
using n0 < n days of simulation, instead of n days. In most of our experiments (including those
reported in this paper), we have used n0 ≈ n/10.

With all these approximations and the simulation noise, we recognize that the vector q̄ thus
obtained is only a heuristic guess for a subgradient. It may fail to be a subgradient. In that case
the cut (2) may remove feasible staffing solutions including the optimal one, and this may lead
our algorithm to a suboptimal schedule; Atlason et al. (2004) and Cez̧ik and L’Ecuyer (2007) give
examples of this. For this reason, it is a good idea to run the algorithm more than once with different
streams of random numbers and/or slightly different parameters, and retain the best solution found.

At each step of the algorithm, after adding new linear cuts, we solve a relaxation of (SP0n)
in which the SL constraints have been replaced by a set of linear constraints. This is an integer
programming (IP) problem... But when the number of integer variables is large, we just solve it
as a linear program (LP) instead, because solving the IP becomes too slow. To recover an integer
solution, we select a threshold δ between 0 and 1; then we round up (to the next integer) the real
numbers whose fractional part is larger than δ and we truncate (round down) the other ones. These
two versions of the CP algorithm are denoted CP-IP and CP-LP.

When we add new cuts, we give priority to the cuts associated with the global SL constraints,
followed by aggregate ones specific to a call type, followed by aggregate ones specific to a period,
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followed by the remaining ones. This is motivated by the intuitive observation that the more aggre-
gation we have, the smoother is the empirical SL function, because it involves a larger number of
calls. So its gradient is less likely to oscillate and the vector q defined earlier is more likely to be a
subgradient. Moreover, in the presence of abandonments, the SL functions tend to be non-concave
in the areas where the SL is very small, and very small SL values tend to occur less often for the ag-
gregated measures than for the more detailed ones that were averaged. Adding cuts that strengthen
the aggregate SL often helps to increase the small SL values associated with specific periods and
call types.

After adding enough linear cuts, we eventually end up with a feasible solution for (SP0n). This
solution may be infeasible for (P0) (because of random noise, especially if n is small) or may be
feasible but suboptimal for (P0) (because one of the cuts may have removed the optimal solution
of (P0) from the feasible set of (SP0n)). To try improving our solution to (SP0n), we perform a
local search around it. In the CP-LP version, before launching this local search, the solution must
be rounded to integers. This is done using a threshold δ as explained earlier. This threshold value
is determined by the following procedure: a binary search is performed over the whole [0, 1]
interval, up to a precision of 0.01, to find the largest value of δ that yields a feasible integer solution
for (SP0n).

The local search proceeds by iteratively considering longer simulations to check the feasibility
of the solutions that it examines. The number of days used in these simulations, n1, starts from a
value n2 (smaller than n) specified as an input parameter and increases at each iteration by 50% of
this value. Each iteration of the local search tries to solve SP0n1 , in three phases.. In the first phase,
the current solution is checked again for feasibility with the new value of n1 and agents are added
at minimum cost until feasibility has been restored, if required. In the second phase, we attempt
to reduce the cost of the solution by removing one shift at a time, until none of the possibilities is
feasible. We further attempt to reduce the cost in the third phase by iteratively considering switch

moves in which we try to replace an agent/shift pair by another one with smaller cost; the candidates
for the switch moves are drawn at random, at each step, and the phase terminates when a maximum
number of consecutive moves without improvement is reached. After the third phase, the current
solution is tested for feasibility in a simulation of duration n3 = max(n,500) days. If it is feasible
or if a time limit has been reached, the local search terminates, otherwise n1 is increased and a new
iteration is performed. Thus, at the end of the local search procedure, we have a feasible solution
for either SP0n1 or SP0n3 . The reason for using shorter, but increasingly long, simulations in the
local search is the need to find some balance between limiting the time required to evaluate a large
number of candidate solutions and ensuring the feasibility of the solutions considered (it is pointless
to spend time examining a large number of solutions if they all turn up to be infeasible).

If we start the cutting plane algorithm with a full relaxation of (SP0n) (no constraint at all), the
optimal solution of this relaxation is y = 0. The functions ĝ are not concave at 0, and we cannot
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get subgradients at that point, so we cannot start the algorithm from there. As a heuristic to quickly
remove this area where the staffing is too small and the SL is non-concave, we restrict the set of
admissible solutions a priori by imposing (extra) initial constraints. To do that, we impose that for
each period p, the skill supply of the available agents covers at least αk times the total load for each
call type k (defined as the arrival rate of that call type divided by its service rate), where each αk

is a constant, usually close to 1. Finding the corresponding linear constraints is easily achieved by
solving a max flow problem in a graph. See Cez̧ik and L’Ecuyer (2007) for the details.

4 Computational Results

In order to assess the performance of the proposed algorithm, as well as the impact of flexibility on
solutions, a number of problem instances were solved with the proposed algorithm and the two-step
method. These instances were constructed in such a way as to mimic the operations of real call
centers. The general setting of the instances considered is characterized as follows, unless stated
otherwise.

The call center opens at 8:00 AM and closes at 5:00 PM; the working day is divided into P = 36
15-minute periods. Shifts vary in length between 6.5 hours (26 periods) and 9 hours (36 periods) and
include a 30-minute lunch break near the middle and two 15-minute coffee breaks (one pre-lunch
and one post-lunch). Overall, there are 285 possible shifts (see Table 1).

Call arrivals are assumed to obey a stationary Poisson process over each period, for each call
type, and independent across call types. The profile of the arrival rates in the different periods are
inspired from observations in real-life call centers at Bell Canada (Avramidis et al. 2004). They are
plotted separately for each instance. All service times are exponential with service rate µ = 8 calls
per hour. Patience times have a mixture distribution: the patience is 0 with probability 0.001, and
with probability 0.999, it is exponential with rate 0.1 per minute. The routing policy is an agents’
preference-based router (Buist and L’Ecuyer 2005).

For most instances, we only consider aggregate service level constraints for each period. These
require that at least 80% of all the calls received during the period be answered within 20 seconds
(i.e., we have τp = 20 seconds and lp = 0.8 for each p). The satisfaction of these constraints implies
that the global constraint with τ = 20 seconds and l = 0.8 is automatically satisfied, but we still
require this explicitely, because this constraint plays a key role in the cutting-plane algorithm. In
some cases, we also impose disaggregate SL constraints for each (call type, period) combination
(k, p) with τk,p = 20 seconds and lk,p = 0.5 for all k and p. Note that this in turn implies the
satisfaction of aggregate SL constraints for each call type k with τk = 20 seconds and lk = 0.5.

The formula used to compute agents’ costs accounts for both the number of skills in the agent’s
skill set and the length of the shift being worked:

ciq = (1+(ηi−1)ς)lq/30 for all i and q, (4)
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where lq is the length (in periods) of shift q, 30 is the number of periods in a “standard” 7.5-hour
shift, ηi is the cardinality of Si, and ς is an instance-specific parameter that represents the cost
associated with each agent skill.

Type length shift start break1 start lunch start break3 start
1 7:30 8:00, 8:30, 9:00, 9:30 9:30-11:30 12:00, 12:30, 13:00 14:00-15:30
2 7:45 9:15 10:45-11:15 12:00, 12:30, 13:00 14:00-15:30
3 8:00 9:00 10:30-11:00 12:00, 12:30, 13:00 14:00-15:30
4 8:15 8:45 10:15-10:45 12:00, 12:30, 13:00 14:00-15:30
5 8:30 8:30 10:00-10:30 12:00, 12:30, 13:00 14:30-16:00
6 9:00 8:00 11:00-12:00 13:00, 13:30, 14:00 14:45-16:15
7 6:30 10:00 11:30-12:00 13:00, 13:30, 14:00 14:15-15:45

Table 1: Description of the 285 shifts for our examples

We first compare the two solution methods described (i.e., TS and CP) on three instances that
correspond to a small (section 4.1), a medium-sized (section 4.2) and a larger call center (section
4.3). For the medium-size center, two variants are considered: M1, in which only aggregate SL
constraints considered, and M2 with aggregate and disaggregate SL constraints. For the larger center,
we also examine the impact of having a longer working day.

Both TS and CP use Cplex 9.0 to solve the optimization problems. To allow a fair comparison
of the methods, we allocate the same CPU time “budget” to each. Considering the nature of the
algorithms, this cannot be done by simply stopping them when this time limit is reached. Instead,
we must carefully adjust, by trial and error, the number of simulated days n, which is a key parameter
of both methods, to obtain running times close to the target budget. It is clear that one would not
use such a procedure in a practical context, but this is necessary for the comparative study. For
each instance, we consider several different budgets, since we expect that a higher value of n will
produce more accurate and more stable results. Furthermore, in each case, r replications of each
method/budget combination are performed to account for the random elements in both methods.

In the first phase of TS, to simulate each individual period of the call center and evaluate the
results of the simulations, we use the batch means method (Law and Kelton 2000). Each batch
is constituted by a minimum number of 30 simulation time units and statistical observations are
collected on a minimum of 50 batches, using 2 warmup batches before starting to collect statistics.

Final solutions obtained by the two methods were simulated for n∗ = 50,000 days as an additional
(much more stringent) feasibility test, and each solution was declared feasible or not according to
the result of this test, i.e., according to the feasibility of (SP0n∗).

For each instance (or variant), results are summarized in a table with the following column head-
ings: case, an index assigned for a specific CPU time budget; n, the number of simulated days for
checking feasibility when adding cutting planes and for the local search at the end of the algorithm;
n2, the starting number of days in local search simulations; CPUavg, the average CPU time per repli-
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cation; Min cost and Med cost, which are respectively the minimum and median costs of all solutions
(feasible or not) obtained by this method over the r replications; P∗, the percentage of replications
that returned a feasible solution for (SP0n∗); and P∗1 , the percentage that returned a feasible solution
with cost within 1% of the best known feasible solution (the lowest-cost feasible solution for (SP0n∗)
generated by either algorithm, over all replications and CPU time budgets, in all experiments that we
have done, including those described in Section 4.4). We also report the maximum relative viola-
tion gap (in percent) observed in a SL constraint for each type of constraints; Gperiod and Gcall,period

refer respectively to violations of SL constraints for periods and for individual (call type, period)
combinations.

4.1 A small call center

This instance has K = 2 call types and I = 2 agent types, with S1 = {1} and S2 = {1,2}. Agent costs
are computed by setting the parameter ς equals to 0.2 in formula 4. Arrival rates for the two call
types are plotted in Figure 1. All SL constraints are enforced in this instance. Four different CPU
time budgets were considered: 3, 15, 30 and 60 minutes.. Results, based on r = 32 replications, are
displayed in Table 2.
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Figure 1: Small center: arrival rates

Several observations can be made from Table 2. First, CP-IP is almost always able to find feasible
solutions to the problem and most of them are very good. In fact, the only case where solutions are
more expensive than those obtained with TS, and these are infeasible, is when n = 120. This seems to
indicate that this might be too small a value for n. On the other hand, the results obtained for the three
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Case Algorithm n n2 CPUavg Min Med P∗1 P∗ Gperiod Gcall,period
sec. cost cost

1 CP-IP 120 50 136 36.31 36.91 0 100 0 0
TS 120 162 35.60 35.60 0 0 0.81 0

2 CP-IP 1500 800 914 35.13 35.17 100 100 0 0
TS 1500 898 35.59 35.59 0 0 0.94 0

3 CP-IP 1600 1000 1774 35.03 35.17 75 87 0 0.15
TS 2800 1753 35.67 35.67 0 0 0.79 0

4 CP-IP 2000 1000 3694 35.03 35.17 100 100 0 0
TS 6000 3453 35.67 35.67 0 0 0.79 0

Table 2: Small center: results obtained with CP-IP and TS for different CPU time budgets

larger values of n are quite similar and setting n to 1500 is probably sufficient for this small center.
It is also interesting, and rather surprising, to find out that all runs of TS failed to find a feasible
solution, even though constraint violations were always inferior to 1%. The solutions produced by
TS are also more expensive than the ones obtained with CP for large enough n. Such an outcome
in not surprising considering the inherent shortcomings of the method. A closer examination of the
distribution of the cost of solutions reveals that, except for CP-IP with n = 120, these costs vary very
little. With TS, all runs with the same computing budget return in fact the same cost value.

In practice, a manager might be willing to use almost-feasible solutions, considering the fact that
the center will always experience stochastic variation in the arrival process and the SL in any case.
For this reason, it is probably useful to report slightly infeasible solutions in general, and not only
the feasible ones.

The best scheduling solutions obtained by CP and TS are described in Table 3. In this table, shift
types correspond to the length of the shifts as indicated in Table 1. Both methods return solutions
with the same number of agents (31), most of which are specialists (type 1). Further analysis of
these solutions reveals that they differ only slightly in terms of the duration of the shifts scheduled,
but CP uses more specialists than TS (24 vs 21) and thus gives a cheaper solution.

Algorithm Agent type Shift type
1 2 3 4 5 6 7

CP-IP 1 6 3 3 1 1 8 2
2 3 0 0 1 1 2 0

TS 1 6 1 3 1 2 7 1
2 4 1 0 1 0 3 1

Table 3: Small center: scheduling solutions

Service levels for the best solution obtained are plotted in Figure 2. We see (1) a wide variation of
the SL throughout the day and (2) that calls of type 1 have much better SL than those of type 2. This
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Figure 2: Small center: service levels by period

imbalance can be explained by the fact that the type 1 calls can be answered by less expensive spe-
cialists, while type 2 calls must be handled by generalists. This observation highlights the fact that to
ensure a fair treatment of all call types in a real-life setting, it is often necessary to include call-type
specific SL constraints (either over the whole day or for each period) in the problem formulation.

4.2 A medium-sized call center

In the medium-sized instances, there are K = 5 call types and I = 15 agent types. Skill sets are
displayed in Table 4. The parameter ς used to compute agent costs in formula 4 is now equal to
0.1. Arrival rates for all call types are plotted in Figure 3.

Skill Agent types
1 1, 6, 9, 10, 11, 14, 15
2 2, 7, 9, 10, 12, 13, 14, 15
3 3, 8, 13, 15
4 4, 11, 12, 13, 14, 15
5 5, 6, 7, 8, 10, 11, 12, 14, 15

Table 4: Medium-sized center: skill sets

As we already mentioned, we consider two variants of the medium-sized centre: in the first,
called M1, only global and per-period SL constraints are enforced, while the second variant, M2,
also includes disaggregate SL constraints. Since in practice one may find it hard to satisfy all SL
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Figure 3: Medium-sized center: arrival rates

constraints and since real-life call center managers are often more interested by global SL, it seemed
interesting to compare these two variants. For each of them, we performed r = 8 replications for
several CPU time budgets of 15, 30 and 60 minutes. Because of the larger size of these instances,
it was not possible to run CP-IP, since this would have led to unacceptable running times; we used
CP-LP instead. The results for M1 and M2 are summarized in Tables 5 and 8.

From these tables, one can conclude that most replications of CP-LP return low-cost feasible
solutions for both variants, but the cost variation between solutions is more pronounced than for
the small center. The quality of solutions also increases significantly with n, which emphasizes the
importance of performing long enough simulations in the obtention of good results. Contrary to
what was observed for the small center, TS always finds feasible solutions, but their cost is much
higher than the cost of CP solutions; in fact, the optimality gap with respect to the best solution
found is over 25% for M1 and close to that value for M2. This shows that large suboptimality gaps
with TS do occur in realistic call center settings, and not only in artificial examples.

If one compares the best scheduling solutions obtained for M1 with CP and TS (see Tables 6 and
7), one observes that CP not only uses significantly less agents (14 vs 17), but also that these agents
have on average a smaller number of skills (2.50 vs 2.76) and work shorter hours (more than 10
minutes less a day, on average) . Similar results are observed for M2 in Tables 9 and 10.

When we compare the value of the best solutions obtained by CP for M1 and M2, we notice that
the solution obtained for M1 is cheaper, which is exactly what was to be expected since M1 turns out
to be a relaxation of M2. In fact, the most interesting conclusion that one could draw here is that the
increase in cost incurred when imposing the disaggregate SL constraints is rather marginal. We have
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Case Algorithm n n2 CPUavg Min Med P∗1 P∗ Gperiod
sec. cost cost

1 CP-LP 300 100 855 18.33 18.85 0 87 0.51
TS 1200 897 21.83 21.83 0 100 0

2 CP-LP 600 100 1598 17.56 18.43 0 75 0.41
TS 2400 1774 21.72 21.72 0 100 0

3 CP-LP 1000 400 2686 17.36 17.66 25 87 0.02
TS 3000 2793 21.69 21.69 0 100 0

Table 5: M1: results obtained with CP-LP and TS for different CPU time budgets

shift types total
1 2 3 4 5 6 7

agents CP 4 1 1 0 2 4 2 14
agents TS 5 1 1 2 1 6 1 17

Table 6: M1: scheduling solutions

plotted the SL curves by period for these solutions in Figure 4. These curves clearly show that the
overall SL undergoes significant variations throughout the day; we also note that the two patterns
observed are quite different, which highlights the importance of imposing SL constraints by type of
calls.

4.3 A larger call center

The larger center instances have K = 20 call types and I = 35 agent types. Skill sets are displayed
in Table 11. Agent costs are computed with ς = 0.1.

For this larger example, we only consider SL constraints by period, plus the global SL constraint.
Two CPU time budgets are examined: 5 and 10 hours. As for the medium-sized center, the CP-LP
version of CP is run. All results are obtained by performing r = 8 replications.

One of our objectives with this larger example is to show that the performance of CP does not
depend on the particular structure of the shifts. We thus consider again two variants: L36, which uses
the 9-hour working day and the same shift structure as the previous examples, and L52, which has a
working day starting at 8:00 AM and ending at 9:00 PM; in that variant, the total number of periods

agent types
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CP 1 0 1 1 1 0 1 2 0 1 1 1 2 0 2
TS 0 0 3 0 0 1 2 2 0 1 1 1 2 1 3

Table 7: M1: total number of agents of each type in the scheduling solutions
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Case Algorithm n n2 CPUavg Min Med P∗1 P∗ Gperiod Gcall,period
sec. cost cost

1 CP-LP 400 100 828 18.48 18.98 0 87 0.58 0
TS 600 876 21.58 21.58 0 100 0 0

2 CP-LP 400 100 1751 18.11 18.97 0 87 0.54 0
TS 1500 1677 21.65 21.65 0 100 0 0

3 CP-LP 400 100 3520 17.92 18.57 0 75 0.28 0
TS 3000 3212 21.80 21.80 0 100 0 0

Table 8: M2: results obtained with CP and TS varying the CPU time budget

shift types total
1 2 3 4 5 6 7

agents CP 4 0 1 1 0 6 2 14
agents TS 3 1 1 2 1 7 2 17

Table 9: M2: scheduling solutions

is 52 and all the shifts have a fixed length of 7.5 hours, thus yielding a total of 123 different shifts
(considering also shifts starting at 1:00 PM and 1:30 PM in order to cover the additional periods).
Arrival rates for both variants are plotted in Figure 5 (only the rates of the first 36 periods apply to
L36). Results obtained for the L36 variant are displayed in Table 12.

On this larger problem, CP has difficulty finding a feasible solution with the smaller computing
budget. In fact, only two runs out of 8 succeed in finding feasible solutions to the problem, even
though constraint violations might not be severe. This situation is clearly alleviated by allotting more
CPU time. Furthermore, with more time, CP finds significantly better solutions. TS always finds
feasible solutions within the allotted computing budget, but the solutions returned are on average
20% more expensive than those obtained with CP. This confirms our observations of the previous
section regarding the poor performance of TS. Surprisingly, increasing the CPU budget does not
improve the quality of the results obtained with TS. In fact, with more time, it returns inferior
solutions. This is because the method obtains a different staffing solution in the first step; while this
solution might track more closely the call arrival curve, it ends up leading to a poorer scheduling
solution. A close examination of the relative cost distributions of solutions highlights the fact that,
in the case of TS, all replications produce identical, and largely suboptimal, solutions.

When one examines the best scheduling solutions obtained by CP and TS (see Table 13), the
reason for the lower cost of the CP solution becomes obvious: by resorting to slightly more agents
with long shifts, CP is capable of covering the demand with only 52 agents compared to 62 for TS.

Results obtained for the L52 variant are reported in Table 14. On this larger problem, a single
one of the 8 solutions found by CP-LP, was declared feasible by the 50,000-day simulation, but it
is an excellent solution with a cost of 131.7. With more time, CP returned 4 feasible solutions out
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agent types
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CP 0 1 1 0 1 1 0 3 1 0 1 1 2 1 1
TS 0 0 2 0 0 2 2 3 0 1 1 1 2 1 2

Table 10: M2: total number of agents for each type in the scheduling solutions
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Figure 5: Larger instances: arrival rates
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Skill Agent types
1 10, 12, 14, 16, 35
2 1, 3, 5, 7, 9, 17
3 3, 11, 13, 18
4 1, 4, 10, 19, 35
5 2, 6, 7, 9, 20
6 4, 8, 11, 12, 21
7 4, 5, 9, 11, 13, 14, 22
8 1, 3, 4, 5, 9, 23
9 4, 5, 8, 12, 13, 24
10 4, 7, 9, 11, 25, 35
11 3, 8, 10, 13, 14, 26
12 1, 4, 6, 9, 14, 27
13 7, 8, 12, 14, 28
14 1, 5, 6, 13, 29
15 4, 9, 11, 30, 35
16 1, 5, 10, 31
17 2, 3, 12, 13, 32
18 1, 7, 11, 14, 33
19 2, 5, 7, 11, 12, 13, 34
20 2, 4, 6, 8, 15, 35

Table 11: The skill sets for the larger instances

of 8 runs, but these turned out to be inferior to the one found in 5 hours, probably due to simulation
noise. Overall, these results emphasizes the importance of performing several trial runs when using
this type of approach.

All the solutions returned by TS were declared feasible, but they are significantly more expensive,
with a cost of 156.1. This is once more an example of the large suboptimality gaps produced by the
TS method.

Table 15 displays the best solutions found by CP-LP and by TS for the L52 instance. In the table,
agent types are regrouped by cost, which is equivalent to grouping them by number of skills, since
in this variant, because all agents work 7.5-hour shifts, agent costs depend only upon their skill

Case Algorithm n n2 CPUavg Min Med P∗1 P∗ Gperiod
min. cost cost

1 CP-LP 400 50 288 82.02 82.20 0 25 0.25
TS 1500 299 96.08 96.08 0 100 0

2 CP-LP 500 50 577 78.87 81.80 25 87 0.15
TS 2400 598 102.87 102.87 0 100 0

Table 12: L36: results obtained with CP-LP and TS for different CPU time budgets

24

Optimizing Daily Agent Scheduling in a Multiskill Call Center

CIRRELT-2007-44



shift types total
1 2 3 4 5 6 7

agents CP 17 1 4 7 3 17 3 52
agents TS 25 4 4 4 2 17 6 62

Table 13: L36: scheduling solutions

Case Algorithm n n2 CPUavg Min Med P∗1 P∗ Gperiod
minutes cost cost

1 CP-LP 300 50 296 130.8 133.6 12 12 0.54
TS 1500 262 156.1 156.1 0 100 0

2 CP-LP 400 50 588 133.5 137.7 0 50 0.44
TS 1800 542 156.1 156.1 0 100 0

Table 14: L52: results obtained with CP-LP and TS for different CPU time budgets

sets. The table gives the total number of agents of each group (each cost) in the solution. When we
analyze the results, we first remark that CP-LP uses only 96 agents compared to 107 for TS. We also
note that several of the agents in the CP solution are specialists, while TS uses a large number of
expensive generalists with 7 skills. These two factors combined explain the large difference in cost.

agent type cost CP-LP TS
4 1.8 1 1

1,5,9,11,13 1.6 12 32
7,12,14 1.5 29 18
2,3,8,35 1.4 15 33

6,10 1.3 24 23
15,. . . ,34 1.0 15 0

total number 96 107
total cost 131.7 156.1

Table 15: L52: a summary of the best feasible solutions found by CP-LP and by TS

Our motivation for investigating the 52-period example was to verify that CP performed correctly
for instances with a different shift structure. Our results confirm this, but at the same time they
highlight one of the potential shortcomings of the approach, which is that, because of simulation
noise, one may end up with no feasible solution, even though several near-feasible solutions may
have been identified. We address this issue in the next subsection.

4.4 Getting more feasible results

Empirical results show that, as problem instances become larger and more complex, there is a defi-
nite possibility that CP would return a set of low-cost, but only nearly-feasible solutions. While this
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may be acceptable in some practical settings, it is nonetheless annoying to be unable to provide the
call center manager with a solution that meets all his/her requirements. A simple and attractive way
of tackling this problem consists in slightly increasing the right-hand side value of the SL constraints
when applying the algorithm (except obviously for the final long simulation that is used to determine
the feasibility of solutions). It should be noted that this idea is not specific to the CP procedure and
could therefore be applied with any other solution approach.

We first tested this idea on the L52 instance, using values of 0.81 and 0.82 as target SL for all
periods. We combined these tests with experiments on the value of the threshold δ that is used
for rounding continuous solutions to integer ones in CP-LP. The rationale for investigating different
values of δ is that the rounding procedure used in CP-LP introduces a heuristic element in what
would otherwise be an exact procedure and that selecting the best value for this threshold is far from
obvious.

In our experiments, we considered three different values of δ (0.5, 0.6 and 0.7) for CPU budgets
of 5 and 10 hours and ran 8 replications in each case. All 48 runs performed for each of the two
target values turned out to be feasible for the 50,000-day simulation! Furthermore, one of these
runs returned a solution that was significantly better than the best solution found before (cost of
130.5 vs 131.7). The results obtained for a SL target of 0.81 are summarized in Table 16. These
results show that the value selected for δ seems to have a slight, but not critical impact on the quality
of the solutions obtained. In fact, it seems to be much more important to make sure that the runs
that are made do produce feasible solutions, in order to have a larger set to choose from. We then

δ CPU budget Min Med Worst SL
hours cost cost

0.5 5 132.10 134.85 ≥ 0.8
10 132.30 136.80 ≥ 0.8

0.6 5 130.50 133.55 ≥ 0.8
10 135.30 138.60 ≥ 0.8

0.7 5 132.50 135.20 ≥ 0.8
10 131.60 138.05 ≥ 0.8

Table 16: L52: results obtained with a target SL of 0.81

ran CP-LP with the original 0.80 target value for different values of δ . These tests clearly showed
that modifying δ alone was not sufficient to consistently obtain feasible solutions, since more than
half of these runs returned infeasible solutions. However, they did allow us to find an even cheaper
feasible solution with a cost 130.4.

We also ran the algorithm with a target SL value of 0.81 for the other instances (keeping the value
of δ unchanged at 0.5). The results that we otained can be summarized as follows:

• For the small center, all runs returned feasible solutions, which was not surprising considering
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previous results, but these solutions were not better than the ones obtained previously.

• For the medium-sized instances, all runs succeeded in producing feasible solutions and im-
proved solutions were obtained both for the M1 and M2 instances (with respective costs of
17.22 and 17.39).

• For the L36 instance, 15 of the 16 runs yielded a feasible solution, but never better than the
best one found with an SL target of 0.8.

Overall, slightly increasing the value of the SL target value is a useful device for making sure that
the method will return feasible solutions. However, there is no guarantee that better solutions will be
found by doing so. In fact, the variability of the results that we observed in this respect once again
highlights the stochastic nature of the proposed approach, which cannot be avoided considering the
significant amount of noise in the simulations.

4.5 The impact of flexibility

We performed another series of numerical experiments to quantify empirically the impact of the
flexibility provided by a rich set of shift types. Those experiments were performed on the small
center of subsection 4.1. We considered three sets of shift types: the original one with all 285 shifts,
a slightly reduced one with 267 shifts, obtained by deleting the 26-period and some 36-period shifts,
and adding some 35-period ones, and finally a much more restricted set in which we only allow the
105 7.5-hour shifts. The staffing solutions corresponding to the best scheduling solutions obtained
for these three cases are plotted in Figure 6, along with the optimal staffing solution computed by
considering each period individually. Three main conclusions can be drawn from this figure:

1. As shown by the solution with 285 shifts, if enough flexibility is introduced in the set of
available shifts, it is possible to find schedules that track closely the staffing requirements.

2. Even a slight decrease in flexibility (e.g., by going from 285 to 267 shifts) can lead to a
significant overstaffing in some periods.

3. Schedules with a relatively small number of fixed-length shifts (the 105-shift case) are bound
to suffer from major overstaffing.

It follows that, while the complexity of the scheduling problem significantly increases with the
number of available shifts, there are definite benefits to be reaped from the introduction of more
varied shift types.
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Figure 6: Small center: staffing solutions with 105, 267 and 285 shift types

5 Conclusion

We have proposed in this paper a simulation-based methodology to optimize agent scheduling over
one day in a multiskill call center. Even though the use of common random numbers reduces the
simulation noise (or variance) significantly, there is still a fair amount of randomness in the solution
provided by the algorithm, mainly due to the fact that the simulation length must be kept short
(because the estimation of each subgradient requires simulations at up to thousands of different
parameter values). Yet, to our knowledge, better solutions are found with this approach than with
any other method we know. In particular, during the development of the cutting plane algorithm, we
also implemented simultaneously a metaheuristic method based on neighborhood search combined
with queueing approximation, along the lines of Avramidis et al. (2006), but we were unable to make
it competitive for solving the scheduling problem.

In practice, one may run the algorithm a few times (e.g., overnight) to obtain a few solutions and
retain the best found. We also showed that by slightly perturbing the SL targets, it is possible to
overcome some of the problems caused by the presence of the simulation noise and thus to greatly
increase the probability of obtaining feasible, high-quality solutions.

Future research on this problem include the search for faster ways of estimating the subgradients
(by simulation), refining the algorithm to further reduce the noise in the returned solution, and
extending the technique to simultaneously optimize the scheduling and the routing of calls (via
dynamic rules).
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