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1 Introduction

A metaheuristic, according to its original definition, is a general search framework that
specifies a heuristic strategy to explore the solution space. The name combines the Greek
prefix meta (beyond, here in the sense of higher level) and heuristic (from heuriskein, to
find). A metaheuristic thus provides a means to tackle different types of problems with
relatively few modifications. It includes, in particular, strategies to escape from local optima
in complex solution spaces, like strategies based on transitions from the current solution
to some other solution through local modifications or moves that define a neighbourhood
structure.

Metaheuristics have emerged in the 1980’s (Glover coined the term metaheuristics for
such methods in 1986 [56]) and have constantly gained popularity among researchers and
practitioners since then. Previously, specialized heuristics were developed to solve com-
plex problems. With the advent of these more general problem-solving approaches, the
picture drastically changed. Metaheuristics are now, in most cases, the method of choice
for solving complex, ill-defined problems, particularly those of a combinatorial nature. The
challenge then becomes one of adapting a metaheuristic to the problem at hand, which is
often a much easier task than developing a specialized heuristic from scratch. Furthermore,
a good metaheuristic implementation is likely to provide near-optimal solutions in very rea-
sonable computation times. With increasingly powerful computers and parallel platforms,
metaheuristics have even been applied with success to real-time problems with stringent
response time requirements.

The aim of this paper is to review the most popular metaheuristics and to emphasize the
main contributions of the Canadian research community. Accordingly, this paper provides
a biased and partial view on metaheuristics and is by no means a survey of the field. For a
broader view on metaheuristics, the reader is referred to the following books, monographies
and edited volumes [1, 3, 11, 23, 30, 33, 34, 59, 60, 63, 74, 77, 83, 90, 96, 97, 102, 104, 105,
106, 117].

In the following, metaheuristics are divided into two categories: single solution based
metaheuristics, where a single solution and search trajectory is considered, and population
based metaheuristics, where many solutions evolve concurrently. Within each category,
it is also possible to distinguish between primarily constructive metaheuristics, where a
solution is built from scratch, through the introduction of new elements at each iteration,
and improvement metaheuristics that iteratively modify a solution. In Sections 2 and 3, the
constructive metaheuristics are the greedy randomized adaptive search procedure and ant
colony optimization, respectively. The others can be considered as primarily improvement
metaheuristics.

2 Single Solution Based Metaheuristics

In this class of metaheuristics, a single solution is worked on and a single search trajectory
is followed in the solution space.

2.1 Variable Neighbourhood Search (VNS)

We start our review with VNS, as it was designed and developed in the mid 1990’s by
Hansen and Mladenović [92] at the Groupe d’études et de recherche en analyse des décisions

(GERAD) in Montreal. The basic idea is that an efficient metaheuristic can be obtained by
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systematically changing the neighbourhood of a local search heuristic. In practice, nested
neighbourhoods that are increasingly distant from the current solution are explored until
an improvement is found.

Variable neighbourhood search works as follows. A solution is randomly generated in
the first neighbourhood of the current solution, from which a local descent is performed. If
the local optimum obtained is not better than the incumbent (best known solution), then
the procedure is repeated with the next neighbourhood. The search restarts from the first
neighbourhood when either a solution that is better than the incumbent has been found
or every neighbourhood structure has been explored. A popular variant is the determin-
istic Variable Neighbourhood Descent where the best neighbour of the current solution is
considered instead of a random one (and no local descent is performed on this neighbour).
The best neighbour automatically becomes the new current solution if an improvement is
obtained, and the search is then restarted from the first neighbourhood. Otherwise, the
next neighbourhood is considered. The search stops when all neighbourhood structures
have been considered without improvement. At this point, the solution is a local optimum
over all neighbourhood structures.

An interesting development proposed by Hansen, Mladenović and Perez-Brito is the
Variable Neighbourhood Decomposition Search where the kth neighbourhood consists of fix-
ing all but k attributes (or variables) in the current solution [72]. The local descent is then
performed on the k free variables only. Another variant is the skewed VNS where the eval-
uation of the current local optimum is biased with the distance from the incumbent [65].
The idea is to favor the exploration of distant solutions from the incumbent to diversify
the search. More recently, hybrids with tabu search have been reported [67], where either
tabu search is used within VNS or conversely. In the first case, the local descent in VNS is
replaced by a tabu search while, in the second case, different neighbourhood structures are
exploited by the tabu search. Finally, several ways to parallelize VNS have been reported in
the literature [25, 67]. One natural approach is to generate many random neighbours from
the current solution (either in the same neighbourhood or in different neighbourhoods) and
to assign each neighbour to a different processor to perform the local descent. A somewhat
different approach consists in applying cooperative search principles: several search threads
perform VNS simultaneously and exchange information when they encounter globally im-
proving solutions.

VNS has been applied to many classical combinatorial optimization problems, including
the traveling salesman, quadratic assignment, p-median, graph coloring and maximum clique
problems, and also to industrial problems like oil pipeline and radar code design [66]. Surveys
and tutorials about VNS and VND may be found in [67, 68, 69, 70, 71].

2.2 Tabu Search (TS)

The principles of TS come from the work of Fred Glover. The origins of the name Tabu

Search itself are traced back to the seminal 1986 paper in which Glover also coined the term
metaheuristics [56].

Tabu search is basically a deterministic local search strategy where, at each iteration,
the best solution in the neighbourhood of the current solution is selected as the new current
solution, even if it leads to an increase in solution cost. As opposed to a pure local descent,
the method can thus escape from local optima. A short-term memory, known as the tabu
list, stores attributes of recently visited solutions to avoid short-term cycling. Typically, the
search stops after a fixed number of iterations or after a maximum number of consecutive
iterations without any improvement to the incumbent. Detailed descriptions of TS can be
found in [43, 44, 50, 57, 58, 60, 61].
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Starting from the simple search scheme described above, a number of refinements have
been proposed over the years. These include:

• Intensification and diversification. Intensification focuses the search in a promising
region of the search space. Conversely, diversification drives the search toward unex-
plored regions. These features are typically implemented via different forms of medium
to long-term memories.

– Frequency memories record how often certain solution attributes are found in
previously visited solutions. Neighbourhood solutions that contain elements with
high frequency counts can then be penalized to allow the search to visit other
regions of the search space. This mechanism provides a form of continuous di-
versification by introducing a bias in the evaluation of neighbourhood solutions
at each iteration. Solutions with high frequency counts may also be deliberately
excluded from solutions to induce more radical diversification.

– Adaptive memories [109] provide a means to both diversify and intensify the
search. Such memories contain a pool of previously generated elite solutions,
which can be used to restart the search. This is usually done by taking different
fragments of elite solutions and by combining them to generate a new starting
solution, similarly to some population based metaheuristics (see section 3). In-
tensification or diversification is obtained depending if the fragments are taken
from solutions that lie in a common region of the search space or not. Adaptive
memories provide a generic paradigm for guiding local search and can be coupled
with different types of metaheuristics [116].

– Path relinking [62] is a mechanism that generates new solutions by exploring tra-
jectories between elite solutions. Starting from one of these solutions, it generates
a path in the neighbourhood space leading to another solution, called the guiding
solution. This can be done by selecting modifications that introduce attributes
found in the guiding solution. This mechanism can be used to diversify or inten-
sify the search, depending on the path generation mechanism and the choice of
the initiating and guiding solutions.

– Strategic oscillation [60] requires defining an oscillation boundary, which is often
a feasibility boundary. Then, the search is allowed to go for a specified depth
beyond the boundary before turning around. When the boundary is crossed again
from the opposite direction, the search goes beyond it for a specified depth before
turning around again. By repeating this procedure an oscillatory search pattern
is produced. It is possible to vary the amplitude of the oscillation to explore a
particular region of the search space. For example, tight oscillations favor a more
thorough search around the boundary.

• Reactive tabu search. This approach provides a mechanism for dynamically adjusting
the search parameters, based on the search history [6]. In particular, the size of the
tabu list is automatically increased when some configurations are repeated too often
to avoid short-term cycles (and conversely).

• Probabilistic TS. This approach is aimed at introducing randomization into the search
method [60]. This can be achieved by associating probabilities with moves leading
to neighbourhood solutions, based on their evaluation. As a complete neighbour-
hood evaluation is often too computationally expensive, randomization can also be
introduced through the design of a candidate list strategy, where only a subset of
neighbourhood solutions is considered.
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Tabu search is a very popular metaheuristic in North America. Thus, a substantial
number of developments and applications are reported in Canada, in particular at the Centre

for research on transportation (CRT). We only emphasize a few in the following.

The TABUROUTE algorithm of Gendreau, Hertz and Laporte [47] was one of the first
truly effective implementations of TS for solving the Vehicle Routing Problem (VRP). In
this problem, customers must be served by vehicles of finite capacity, through routes that
start and end at a central depot, with the objective of minimizing the total distance traveled
by the vehicles. The neighbourhood structure is defined through the removal of a customer
from a route followed by its reinsertion into another route that contains at least one of its
nearest neighbours, using the generalized insertion heuristic GENI [46]. The tabu search
implementation also contains features that were quite innovative at the time. As the search
is allowed to explore the infeasible domain, two penalty terms are included in the objective
to account for the capacity and maximum route length constraints. These penalties are each
weighted by a self-adjusting parameter as follows: every 10 iterations, each parameter value
is divided by 2 if the 10 previous solutions were all feasible, to allow the search to reach the
infeasible domain, or multiplied by 2 if they were all infeasible, to drive the search toward
the feasible domain. Also, the diversification strategy penalizes customers that were moved
frequently in the past to allow to search to consider alternative moves. To this end, an
artificial term is added to the objective, which is proportional to the absolute frequency of
movement for the customer being considered. Finally, TABUROUTE exploits false starts,
where several initial solutions are generated and a limited search is carried out from each
one. The best solution observed at the end then becomes the true starting point of the tabu
search.

The Unified Tabu Search Algorithm (UTSA) of Cordeau, Gendreau and Laporte [20] was
developed to provide a simple, yet efficient, search framework. The distinctive features of
UTSA come from easily adaptable neighbourhood structures based on solution attributes,
coupled with a dynamic adjustment of a few parameters. The proposed framework thus
provides both generality and flexibility. It was successfully applied to different types of
vehicle routing problems [20, 21, 22]. A tabu search heuristic that follows similar principles
is also described in [4].

A tabu search heuristic for the vehicle routing problem with time windows (VRPTW)
is reported in [115]. Here, a time interval is associated with each customer to constrain
the service time. The tabu search exploits a CROSS exchange neighbourhood, which is
a generalization of the 2-opt* exchanges of Potvin and Rousseau [100]. Both types of
exchanges are now widely used to create neighbourhood structures for problems with time
windows. The 2-opt* consists in exchanging the end parts of two routes, while preserving
their original orientation (as the time windows induce an implicit orientation on each route).
The CROSS exchanges generalize this idea by exchanging segments of consecutive customers
of varying length between the two routes.

Recently, Desaulniers et al. have developed an exact problem-solving approach for the
VRPTW based on column generation and tabu search [29]. In the proposed algorithm,
TS is used to quickly identify columns (feasible routes) with a negative reduced cost in a
first stage, while an exact dynamic programming algorithm is applied later to generate the
remaining columns.

Le Bouthillier et al. [84, 85] have proposed a parallel algorithmic scheme where different
metaheuristics explore the search space concurrently and communicate through a central
warehouse made of elite solutions (i.e., an adaptive memory). When a metaheuristic returns
its best solution found, the latter is included in the warehouse if it is better than its worse
solution. This warehouse is then used to provide new starting points for the metaheuristics.
Under this paradigm, different tabu and genetic searches are run in parallel to solve the
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VRPTW. The authors show that their parallel scheme is competitive with state-of-the-art
approaches on Solomon’s and Gehring and Homberger’s data sets [42, 114].

A number of TS implementations for transportation network design problems have also
been developed at the CRT. As such problems often involve both integer location and
continuous flow variables, they offer a variety of opportunities for the application of TS.
First, from any feasible set of values for the location variables, one can retrieve optimal values
for the flow variables by solving the associated transportation problem. The tabu search
can thus be used to explore the set of feasible vectors of location variables, by alternatively
closing and opening locations, with any solution in that search space being completed by
computing the associated optimal flow variables, see [26, 51, 53]. One could also decide
to search the extreme points of the set of feasible flow vectors, retrieving the associated
location variables by simply noting that a location must be opened whenever some flow
is allocated to it. This kind of approach is used in [24] for the fixed-charge capacitated
multicommodity network design problem. In [54], cycle-based neighbourhoods are exploited
for solving the same problem. Here, two different paths associated with the same origin-
destination pair are selected and the flow on one of these paths is transferred to the other. A
number of arcs are then opened or closed depending on the resulting flow. It is worth noting
that telecommunications network design problems have also been addressed by Canadian
researchers and the interested reader is referred to [5, 7, 14, 15, 55] for details.

An interesting tabu search implementation for a real-world problem in the steel industry
has been developed at the University of Toronto [88]. The goal here is to produce coils by
scheduling steel slabs through a hot strip mill under multiple and conflicting objectives and
constraints. A solution is made up of blocks, where each block is a sequence of slabs, that are
processed in a particular order. The authors introduce a so-called cannibalization procedure
within the TS, where a bad subsequence of slabs in a given block is exchanged with a good
subsequence in another block, using CROSS exchanges [115]. An application of TS for a
real-word forest management problem is also reported by Richards and Gunn [107, 108]. In
this work, TS is used to explore different harvest period assignments.

Metaheuristics have been perceived, for quite a long time, as too slow to handle real-time
contexts where quick response times are required. But this has proved to be false. In fact,
the first real-time applications of tabu search come, for a large part, from Canada. Real-time
vehicle routing applications motivated from courier services are found in [45, 48, 78, 79],
while a real-time ambulance redeployment problem is reported in [49]. Also, an interesting
military application with very stringent response time requirements is described in [10]. In
this case, the tabu search manipulates operating scenarios encoded as tree structures.

2.3 Simulated Annealing (SA)

Simulated annealing was developed in the early 1980’s [13, 81]. It is a randomized local
search procedure where a modification to the current solution leading to an increase in
solution cost can be accepted with some probability. This algorithm is motivated from an
analogy with the physical annealing process used to find low-energy states of solids. In
condensed matter physics, annealing denotes a process in which a solid is first melted by
increasing its temperature; this is followed by a progressive temperature reduction aimed
at recovering a solid state of lower energy. If the cooling is done too fast, widespread
irregularities emerge in the structure of the solid, thus leading to relatively high energy
states. Conversely, a careful annealing through a series of levels, where the temperature
is held long enough at each level to reach equilibrium, leads to more regular structures
associated with low-energy states. Basically, the process is less likely to get trapped in a
high-energy state when the temperature is prevented from getting too far from the current
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energy level.

In a combinatorial optimization context, a solution corresponds to a state of the physical
system and the solution cost to the energy of the system. At each iteration, the current
solution is modified by randomly selecting a move from a particular class of transformations
(which defines a neighbourhood of solutions). If the new solution provides an improvement,
it is automatically accepted and becomes the new current solution. Otherwise, the new so-
lution is accepted according to the Metropolis criterion, where the probability of acceptance
is related to the magnitude of the cost increase and a parameter called the temperature. Ba-
sically, a move is more likely to be accepted if the temperature is high and the cost increase
is low. The temperature parameter is progressively lowered, according to some predefined
cooling schedule, and a certain number of iterations are performed at each temperature
level. When the temperature is sufficiently low, only improving moves are accepted and
the method stops at a local optimum. As opposed to most metaheuristics, this method
asymptotically converges to a global optimum (assuming an infinite number of iterations).
Finite-time implementations, however, do not provide such a guarantee.

Developments around this basic search scheme have focused on a number of issues [2,
73]. For example, deterministic variants like threshold accepting [35] and record-to-record
travel [36] have been studied. In these variants, a transition is accepted if it does not increase
the cost by more than some predefined value; the transition is rejected otherwise. The pre-
defined value is progressively reduced as the search progresses. Research work has also been
devoted to the design of static and dynamic cooling schedules aimed at increasing the speed
of convergence, without compromising solution quality. Finally, substantial efforts have
taken place on hybridization with other metaheuristics and on parallel implementations.

It should be observed that SA is popular in Europe but has not induced a sustained
research activity in North-America, as opposed to VNS and TS.

2.4 Greedy Randomized Adaptive Search Procedure (GRASP)

Multi-start local search methods repeatedly apply a local search from different initial solu-
tions. The use of a quick greedy heuristic to generate starting solutions looks attractive,
if the greedy solutions are different enough to allow for a good sampling of local optima.
Semi-greedy or randomized greedy heuristics have thus been proposed in the late 1980’s to
add variability to greedy heuristics, which led to the search scheme known as GRASP. The
latter is a multi-start procedure designed by Feo and Resende [37, 38], where each restart
applies a randomized greedy construction heuristic to generate an initial solution, which is
then improved through local search. This is repeated for a given number of restarts and the
best overall solution is returned. At each step of the construction heuristic, the elements
not yet incorporated into the partial solution are evaluated with a greedy function, and the
best elements are kept in a so-called restricted candidate list (RCL). One element is then
randomly chosen from this list and incorporated into the solution. Through randomization,
the best current element is not necessarily chosen, thus leading to a diversity of solutions.

One shortcoming of GRASP comes from the fact that each restart is independent of
the previous ones, thus preventing the exploitation of information from previously obtained
solutions to guide the search. Some recent developments are thus aimed at providing such
capabilities. One example is the reactive GRASP [101], where the size of the RCL is
dynamically adjusted, depending on the quality of recently generated solutions. Another
example is the use of memories to guide the search. In Fleurent and Glover [39], a pool of elite
solutions is maintained to bias the probability distribution associated with the elements in
the RCL. Intensification or diversification can be obtained by either rewarding or penalizing
elements that are often found in the pool of elite solutions. Such a pool can also be used to
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implement path relinking [62], by generating a search trajectory between a randomly chosen
elite solution and the current local optimum [82].

Other recent developments propose hybrids where the construction step is followed by
more sophisticated local search procedures, in particular variable neighbourhood search [89].
Parallel implementations are also reported, mostly based on the distribution of the restarts
over multiple processors.

Quite surprisingly, the research community in Canada has mostly ignored this meta-
heuristic for reasons that remain unclear. This is particularly surprising given that GRASP
was designed and developed in the United States. One exception is found in the work
of Gendron, Potvin and Soriano [52], where a GRASP-like approach iteratively constructs
new solutions for a network design problem, based on information gathered from previously
generated solutions.

3 Population Based Metaheuristics

This class of metaheuristics explicitly works with a population of solutions (rather than
a single solution). In such a case, different solutions are combined, either implicitly or
explicitly, to create new solutions.

3.1 Ant Colony Optimization (ACO)

It is well known that ants can manage to find shortest paths from their nest to food sources.
The medium used for communication among the ants is a chemical compound, known as
pheromone, which is laid down in various quantities on the ground. While an isolated ant
would more or less wander randomly, an ant detecting a pheromone trail will follow it (with
some probability) and will strengthen it with its own pheromone. Through this positive
reinforcement loop, the probability that ants will follow that path in the future increases
with the number of ants that previously followed it. It has been shown experimentally that
this mechanism can give rise to the emergence of shortest paths (as the pheromone tends
to accumulate faster on these paths). In ACO, at each cycle, a number of artificial ants
sequentially construct solutions in a randomized and greedy way. Each ant chooses the next
element to be incorporated into its current partial solution on the basis of some heuristic
evaluation and the amount of pheromone associated with that element. The pheromone
represents the memory of the system, and is related to the presence of that element in
previously constructed solutions (in the same way as the strength of a pheromone trail is
related to how many ants previously chose to follow that path). Randomization is used to
allow the construction of a variety of different solutions. Basically, a probability distribution
is defined over all elements that can be incorporated into the current partial solution, with a
bias in favor of the best elements. In particular, an element with a good heuristic evaluation
and a high level of pheromone is more likely to be selected. Each time an element is selected
by an ant, its pheromone level is updated by first removing a fraction of it, to mimic
pheromone evaporation, and then by adding some new pheromone. When all ants have
constructed a complete solution, the procedure is restarted with the updated pheromone
levels. This is repeated for a fixed number of cycles or until the search stagnates.

Since the original ant system framework described in [31] for solving the Traveling Sales-
man Problem, refinements have been integrated into this general iterative scheme to lead to
the ACO. These refinements provide mechanisms to either intensify or diversify the search.
For example, more pheromone may be associated with elements found in the incumbent, to
favor a more intense search around that solution. Conversely, the pheromone levels may be
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reduced for some elements, to force the construction of diversified solutions. For a precise
description and historical perspective on ACO, see [33].

Important developments with regard to this metaheuristic are the Hybrid Ant Sys-

tem [41], where the pheromone trails are used to guide a local search heuristic rather than
a construction heuristic, the use of multiple ant colonies that interact by exchanging in-
formation about good solutions [40, 91], the coupling of ACO with local search to further
improve the solutions constructed by the ants and the design of parallel implementations
where subcolonies evolve on different processors.

In Canada, an interesting development to the ant system [32] was proposed by Hoos at
the University of British Columbia in 2000 [75]. Together with Stützle, he developed the
so-called Max-Min Ant System. In this variant, premature convergence is avoided through
a simple mechanism that forces the pheromone strength to lie within a minimum and max-
imum value. Also, some form of intensification is provided by allowing only the best ants
to add pheromone during the pheromone update. Hoos has also worked for the last fif-
teen years on the design and empirical analysis of stochastic local search algorithms, from
rather simple constructive and iterative improvement procedures to more complex meta-
heuristics [76]. Another interesting development in Canada comes from the work of Le
Louarn, Gendreau and Potvin [87] who proposed more powerful ants that construct tours
based on the generalized insertion heuristic GENI [46]. With regard to real-world applica-
tions, Gravel et al. describe an ant-based system for a production problem in the aluminum
industry [64], while an application in computational molecular biology by Shmygelska and
Hoos is reported in [113].

3.1.1 Evolutionary Algorithms (EAs)

Evolutionary algorithms represent a large class of problem-solving methodologies, with ge-
netic algorithms (GAs) being the most widely known [74]. These algorithms are motivated
by the way species evolve and adapt to their environment, based on the Darwinian principle
of natural selection. Under this paradigm, a population of solutions (often encoded as a
bit or integer string, referred to as a chromosome) evolves from one generation to the next
through the application of operators that mimic those found in nature, namely, selection of
the fittest, crossover and mutation. Through the selection process, which is probabilistically
biased toward the best elements in the population, only the best solutions are allowed to
become parents and to generate offspring. The mating process, called crossover, then takes
two selected parent solutions and combine some of their features to create one or two off-
spring solutions. This is repeated until a new population of offspring solutions is created.
Before replacing the old population, each member of the new population undergoes small
random perturbations via the mutation operator. Starting from a randomly or heuristi-
cally generated initial population, this renewal cycle is repeated for a number of iterations,
and the best solution found is returned. Details about this metaheuristic can be found
in [63, 90, 94].

Genetic algorithms have been successfully applied to many combinatorial optimization
problems, although this success has often been achieved by departing from the classical
scheme outlined above. In particular, the encoding of solutions into chromosomes is ei-
ther completely ignored (by working directly on the solutions) or specifically designed for
specialized crossover and mutation operators. The distinctive feature of GAs remains the
exploitation of a population of solutions and the creation of new solutions through the re-
combination of good attributes of two parent solutions. Many single solution metaheuristics
now integrate this feature (e.g., via adaptive memories). There is also a clear connection be-
tween recombination, where an intermediate solution is generated from two parent solutions,
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and path relinking [103].

One of the main improvements comes from the observation that, although the population
improves on average over the generations, the algorithm often fails to generate near-optimal
solutions. Thus, some form of intensification is needed, and this is usually achieved in
modern GAs by considering powerful local search operators as a form of mutation. That
is, rather than introducing small random perturbations into the offspring solution, a local
search is applied to improve the solution until a local optimum is reached (this combination
of GA and local search is often called a memetic algorithm [93]).

Fined-grained and coarse-grained parallel GAs are also widely used [12]. In the former
case, each solution is implemented on a different processor and is allowed to mate only with
solutions that are not too distant in the underlying connection topology. This approach
may be implemented in a totally asynchronous way, with each solution evolving indepen-
dently of the others. Restricting the pool of mating candidates to a subset of the population
has beneficial effects of its own, by allowing good attributes to diffuse more slowly into
the population, thus preventing premature convergence to grossly suboptimal solutions. In
coarse-grained implementations, subpopulations of solutions evolve in parallel until migra-
tion of the best individuals from one subpopulation to another takes place to refresh the
genetic pool. This so-called island model however requires some form of synchronization.

Canadian researchers have been active in the development of GA applications, in partic-
ular in the field of vehicle routing. Potvin and Bengio [99] report one of the first application
of genetic algorithms to the VRPTW. In this work, the objective is to minimize the number
of vehicles first and, for the same number of vehicles, to minimize the total distance. The
authors apply the crossover and mutation operators directly on the solutions, thus avoiding
the problematic issue of encoding a solution into a chromosome (an idea later adopted by
Berger et al. [9], see below). The crossover operator, where two routes from two different
solutions are exchanged, followed by a repair operator to transform the offspring solution
into a valid and feasible solution, was adopted by many researchers in the following years.
The authors also recognized the need to minimize the number of vehicles through special
mutation operators that try to empty routes with only a few customers. The authors re-
ported at the time the best cumulative number of vehicles and found many new best known
solutions on Solomon’s test set [114].

At the Defence Research Establishment Valcartier, Berger et al. [9] developed a few years
later a GA with a crossover and a mutation operator inspired by the ruin and recreate prin-
ciple [111] and the large neighbourhood search [112]. Their approach consists of removing a
number of customers from a solution and to create a new solution by reinserting these cus-
tomers in some (hopefully) better way. An innovative approach is also proposed to handle
the hierarchical objective of the VRPTW. Basically, the authors relax the capacity and time
window constraints and evolve two populations of solutions with a fixed number of vehicles.
Each solution in the first population contains m vehicles, among which at least one solution
is feasible, with the objective of minimizing the total distance. Each solution in the second
population contains m − 1 vehicles with the objective of minimizing constraint violations.
As soon as a feasible solution with m − 1 vehicles is found in the second population, this
population is duplicated and replaces the first population. Then, each solution in the second
population is transformed into a solution with one fewer vehicle. This is repeated until no
feasible solution can be found in the second population with the given number of vehicles.
A parallel master-slave implementation of this algorithm is also reported in [8]. Ombuki et
al. [95] from Brock University in Ontario, address the issue of minimizing the number of
vehicles versus minimizing the total distance by handling the VRPTW as a true bi-ojective
problem. Namely, a solution dominates another if it is better for one objective and better
or equal for the other objective. Then, they exploit ideas from multi-objective GAs [27] to
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approximate the Pareto front of the VRPTW.

In the transportation domain at large, B. Abdulhai, who holds the Canada Research
Chair in Intelligent Transportation Systems (ITS) at the University of Toronto, used GAs
and other adaptive methods to address ITS-related topics, like estimating origin-destination
traffic matrices, detecting freeway incidents and optimizing traffic signal control at street
intersections [80, 86, 110].

A memetic algorithm where TS is used to perform the local search is reported in [19] for
the Generalized Quadratic Assignment Problem (GQAP). Here, an assignment of weighted
facilities to sites must be determined so that the sum of assignment costs and traffic costs
between facilities is minimized and the total weight of all facilities assigned to the same site
does not exceed the site capacity. Subsets of cohesive (close) and non-cohesive (far) sites
are first identified for every site. Then, given two parent solutions and a so-called pivot site,
the assignment of facilities to the corresponding cohesive and non cohesive sites are taken
from the parent with the best evaluation and the other parent, respectively. The solution
is completed by randomly assigning the remaining facilities. This procedure is repeated
using every site as the pivot site and the best solution is returned. The TS then improves
this solution using a neighbourhood structure where facilities are moved from one site to
another.

A facility layout problem is addressed with a GA by Delmaire, Langevin and Riopel [28].
In this application, the position and dimension of departments along a corridor (spine) must
be determined. A GA first explores the possible orderings of departments along the spine,
using order-based crossover and mutation operators, like those developed for the TSP [98].
Each ordering is then given to a linear program that produces a complete solution by
locating and determining the dimension of each department. Using a similar approach,
Cheung, Langevin and Delmaire develop a GA that explores possible values for integer
variables in mixed integer non-linear programming problems [18]. For a given set of values
for these integer variables, a grid search algorithm [17] is used to determine the values of the
real variables. Finally, a multi-buyer Joint Replenishment Problem (JRP) is solved with a
GA in [16]. The JRP is a multi-item inventory problem where policies for the replenishment
of a group of items that are jointly ordered from a single supplier are designed to minimize
the inventory and setup costs over the planning horizon. When a multi-branch firm has all
its branches ordering the same group of items from the supplier, the multi-buyer variant is
obtained. In this work, the GA evolves the replenishement cycle times of every item and
branch.

4 Conclusion

In spite of the recent advances in the performance of mathematical programming software,
realistically-sized instances of many important operations research problems, in particu-
lar, combinatorial ones, remain intractable for exact solution approaches and must thus be
tackled using approximate solution techniques. Among these, metaheuristics stand out as
the family of methods that is the most effective and the most susceptible to deliver near-
optimal solutions. Metaheuristics are thus of prime importance for the operations research
community in Canada who has to face routinely large instances of difficult problems in
application areas such as logistics, transportation, telecommunications networks, manufac-
turing, forestry, mining, health care and other services. Not surprisingly, the importance
of metaheuristics for the operations research community has led to a large number of very
significant contributions to this area from Canadian researchers.
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