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Abstract. This paper approaches the problem of modeling optimization problems 

containing substructures involving constraints on sequences of decision variables. Such 

constraints can be very complex to express with Mixed Integer Programming (MIP). We 

suggest an approach inspired by global constraints used in Constraint Programming (CP) 

to use formal languages for the modeling of such substructures with MIP. More precisely, 

we first suggest a way to use automata, as the CP regular constraint does, to express 

allowed patterns for the values taken by the constrained sequence of variables. Secondly, 

we present how context free grammars can contribute to formulate constraints on 

sequences of variables in a MIP model. Experimental results on both approaches show 

that they can not only facilitate the modeling, but also give models easier to solve by MIP 

solvers compared to classical MIP formulations. 
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1. Introduction

Given a sequence of n decision variables Xi, each with a finite domain Di, i = 1, . . . , n, a

constraint on such a sequence is a set of n-tuples L ⊆ D1 × . . .×Dn called a language. The

constraint over the sequence is satisfied when the tuple 〈X1, . . . , Xn〉 ∈ L belongs to the

language. Such constraints arise in many optimization and satisfaction problems. In this

paper, we focus on shift scheduling problems, where a sequence of activities (work activities,

break, lunch, rest) must be assigned to a set of employees. In these problems, the difficulty

lies in building shifts that comply with work regulations such legal placement of breaks and

lunches, and transitions between activities.

In this paper, we study how to model constraints on sequences of decision variables using

a Mixed Integer Programming (MIP) framework. Our approach is inspired by global con-

straints in Constraint Programming (CP) that use formal languages. First, we suggest using

automata to represent constraints on sequences of decision variables, as the CP regular [22]

constraint does. From the automaton, we automatically generate a network flow model

that can be included into any MIP model involving constraints on sequences of decision

variables. Second, we propose a way to use context-free grammars instead of automata to

describe the constraints on sequences of decision variables. To apply this to MIP, we use an

and/or graph structure associated to the CP grammar constraint [24, 28, 25] and derive the

associated linear constraints.

These approaches allow MIP to benefit from CP expressiveness in modeling, by au-

tomatically generating MIP models from intuitive modeling tools, such as automata and

context-free grammars. Furthermore, our experimental results on a shift scheduling model

show that they can not only facilitate the modeling, but also give models easier to solve by

MIP solvers compared to classical MIP formulations.

The paper is organized as follows. In Section 2, we present a literature review on shift

scheduling problems. Section 3 presents some background material on formal languages

and their use in CP. In Sections 4 and 5, we introduce our two approaches to model con-

strained sequences of decision variables: the MIP regular and the MIP grammar constraints

respectively. Finally, in Section 7, we compare different formulations on a shift scheduling

problem.
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2. Shift Scheduling Problems

Given a planning horizon divided into periods of equal length, a set of employees and a

demand for different activities (work activities, lunch, break, rest) at each period, the shift

scheduling problem consists of assigning an activity to each employee at each period in such

a way that the demands are met, while optimizing an objective and satisfying several rules

(including some that can be expressed as constraints on sequences of decision variables). In

this context, a shift is a sequence of activities corresponding to a countinuous presence at

work (that may include lunch and break, but not rest periods). A schedule (also called a

tour) is a sequence of shifts and rest periods, over the whole planning horizon, that satisfies

all the rules associated to an employee. A pattern is a sequence of activities that respects

some of the rules over a subset of the planning horizon.

Mathematical programming models for shift scheduling problems can be divided into

three categories (see [15, 14] for recent surveys on shift scheduling and related problems):

the compact assignment formulations, the explicit set covering formulations and the implicit

set covering formulations. Compact assignment formulations [18, 4, 5] use decision variables

to assign activities to each employee at each period. In the explicit set covering formulations,

the decision variables represent all possible shifts and the problem is to select a subset of them

which covers the demands. The number of shifts being potentially large, different methods

were proposed to select good subsets. Most notably, the column generation method efficiently

solves this kind of problems (see for instance [19, 8, 12]).

Implicit set covering formulations were introduced and developed by Moondra [21], Bech-

told and Jacobs [6, 7], Thompson [30], Aykin [2, 3], and Rekik et al. [27, 26]. In these models,

shift types, specified by starting and ending times, are not directly associated with break

positions at first. For instance, one can independently decide how many employees are going

to work from 8am to 4pm and how many employees are going to be on break at 10am. Ad-

ditional constraints, named forward and backward constraints, are necessary to guarantee

the existence of a valid schedule which can later be reconstructed with a polynomial-time

algorithm. The main advantage of this approach is that the number of decision variables is

significantly reduced compared to explicit set covering formulations.

Network flow formulations were used for different generalizations of shift scheduling prob-

lems. Çezik et al. [9] propose a MIP formulation for the Weekly Tour Scheduling Problem.

It handles the weekly horizon by combining seven daily shift scheduling models in a net-
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work flow framework, which handles the demands for each day. Millar and Kiragu [20] and

Ernst et al. [13] use a layered network to represent allowed transitions between a set of a

priori patterns (series of nights for instance) to develop complete schedules. Sodhi [29] stud-

ies the problem of assigning a type of shift (day, evening, night) to each day of a planning

horizon of several weeks. The model combines predefined weekly patterns to create a com-

plete schedule by using a directed graph with nodes representing allowed weekly patterns

and arcs corresponding to allowed week-to-week transitions between these patterns. A MIP

model is then used to find an optimal cyclic path to cover all the weeks of the schedule.

In this paper, we present two different generic ways to capture and model a large set of

rules that can be expressed as constraints on sequences of decision variables. We compare

the resulting formulations to a compact assignment model for a shift scheduling problem.

3. Background Material

Before we define our modeling approaches, we introduce important definitions related to

formal languages theory (for more details on the subject, see Hopcroft et al. [16]).

3.1. Automata and the CP Regular Constraint

A deterministic finite automaton (DFA) is described by a 5-tuple Π = 〈Q, Σ, δ, q0, F 〉 where:

• Q is a finite set of states;

• Σ is an alphabet;

• δ : Q× Σ→ Q is a transition function;

• q0 ∈ Q is the initial state;

• F ⊆ Q is a set of final states.

An alphabet is a finite set of symbols. A language is a set of words, formed by symbols

over a given alphabet. Regular languages are languages recognized by a DFA. A word is

recognized by a DFA if by processing its symbols one by one from the initial state using the

transitions, we find ourselves in a final state after we process the last symbol.

A non-deterministic finite automaton (NFA) distinguishes itself from a DFA by its set of

transitions δ. In fact, a transition is no longer a function but a set of triplets : δ ⊆ Q×Σ×Q.

3
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A transition 〈q1, j, q2〉 ∈ δ indicates that reading the symbol j from state q1 can lead to state

q2. However, it is possible that another transition from q1, 〈q1, j, q3〉 ∈ δ, leads to another

state q3, hence the non-determinism of the automaton. DFAs and NFAs strictly encode the

same languages. However, NFAs can encode some languages with exponentially fewer states

than DFAs.

Example 1 Let Σ = {a, b, c} be an alphabet. Π, represented in Figure 1, is a DFA recog-

nizing a regular language over this alphabet. This DFA recognizes, for instance, the words c,

cccc, aba, aabba, but does not recognize ac and ab.

1 2 3 4

5

a b a

aba

c c

Figure 1: DFA Π with each state shown as a circle, each final state as double circle, and
each transition as an arc.

Pesant [22] introduced the constraint Regular([X1, . . . , Xn], Π) which is satisfied if the

automaton Π recognizes the sequence of decision variables X1, . . . , Xn.

3.2. Context-free Grammars and the CP Grammar Constraint

A context-free grammar G is a tuple 〈Σ, N, S, P 〉 where Σ is the alphabet of characters

also called the terminal symbols, N is a set of non-terminal symbols, S ∈ N is the starting

symbol, and P is a set of productions of the form A → w where A ∈ N is a non-terminal

symbol and w is a sequence of terminal and non-terminal symbols. We use capital letters

for non-terminal symbols and lower case letters for terminal symbols. A parsing tree is a

tree where each leaf is labeled with a terminal and each inner-node is labeled with a non-

terminal. The root is labeled with the starting symbol S. The children of a node A, when

listed from left to right, form a sequence w such that the production A→ w belongs to the

grammar. A grammar recognizes a sequence if and only if there exists a parsing tree where

the leaves, when listed from left to right, reproduce this sequence. Any grammar can be

written in its Chomsky normal form i.e., any production either generates two non-terminals
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or one terminal. A context-free language is the set of sequences accepted by a context-free

grammar.

Context-free grammars are more expressive than automata since any regular language

can be encoded with a context-free grammar but not every context-free language can be

encoded with an automaton [16].

Quimper and Walsh [24], and Sellmann [28] introduced the constraint grammar([X1, . . . , Xn], G)

which is satisfied if the grammar G recognizes the sequence of decision variables X1, . . . , Xn.

Given a context-free grammar G, Quimper and Walsh [25] build a Boolean formula that

returns true for every sequence recognized by the grammar and false for any other sequence.

This Boolean formula is encoded in an and/or graph where each leaf corresponds to an

assignment Xi = t that can either be true or false. An or-node is true if one of its children

is true. An and-node is true if all its children are true. The root is true if the grammar G

accepts the sequence encoded by the leaves. Their algorithm (see Algorithm 1) builds the

and/or graph and is based on the CYK parser (see [10, 17, 31]) that takes as input a grammar

written in its normal Chomsky form. The and/or graph embeds every possible parsing tree

of a grammar. Each or-node N(A, i, j) in the graph is assigned to true if the non-terminal

A produces the sub-sequence Xi, . . . , Xi+j−1. The nodes set to true in a solution form a

parsing tree. Example 2 describes the and/or graph of a simple grammar.

Example 2 Consider the following simple grammar taken from [25].

S → AB A→ aA | a B → bB | b

Algorithm 1 builds the graph depicted in Figure 2.

Quimper and Walsh [25] show how context-free grammars can be enhanced by imposing

some constraints on a production A→ BC. For instance, a non-literal can be constrained to

produce a sequence of a given length or only be produced at given positions. Such constraints

simply remove some nodes in the and/or graph.

4. MIP Regular

The use of automata to express constraints on values taken by sequences of variables is very

useful in CP. Equivalent constraints can be very complex to formulate in a MIP 0-1 compact

model. The aim of our work in this section is precisely to propose a way to formulate
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for all non-terminals A do
for i ∈ [1, n] do

Create or-node N(A, i, 1)1

for A→ t ∈ G do
Create the leaf node N(t, i, 1) if it does not already exist.
Create an and-node with child N(t, i, 1) and parent N(A, i, 1).

for j ∈ [2, n] do
for i ∈ [1, n− j + 1] do

for all non-terminals A do
Create or-node N(A, i, j)
// Create a list of children composed of and-nodes
Children(N(A, i, j))← {N(B, i, k) ∧N(C, i + k, j − k) |2

k ∈ [1, j), A→ BC ∈ G,
Children(N(B, i, k)) 6= ∅,
Children(N(C, i + k, j − k)) 6= ∅}3

Delete any node that does not have N(S, 1, n) for ancestor.4

Algorithm 1: This algorithm based on the CYK parser [10, 17, 31] constructs a graph
embedding all possible parsing trees of sequences of length n recognized by the grammar
G.

MIP 0-1 compact models by using automata. Our approach is inspired by the CP regular

constraint [22].

First, we introduce the following 0-1 decision variables:

xij =

{
1, if position i ∈ I of the sequence is assigned to value j ∈ Di,
0, otherwise.

where I = {1, 2, . . . , n} represents the set of positions in the sequence and Di, the set of

values that can be assigned to this position.

To obtain a graph structure representing all sequences of length n recognized by an

automaton, we use the following property of regular languages:

• Let L1 and L2 be two regular languages. Then L1 ∩ L2 is a regular language.

Given this property, if we have an automaton A1 that encodes a set of constraints on

the values taken by a sequence of variables and an automaton A2 that encodes the language

specifying all sequences of length n on the same set of values, the conjunction of A1 and A2

results in an automaton A recognizing all sequences of length n recognized by A1. Automaton
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∧

∨

∧

∨

∧ ∧

∨

∧ ∧∧

∨ ∨ ∨

N(S, 1, 3)

N(A, 1, 2) N(B, 2, 2)

N(A, 1, 1) N(A, 2, 1) N(B, 3, 1)

N(a, 1, 1) N(a, 2, 1) N(b, 2, 1) N(b, 3, 1)

Figure 2: And/or tree constructed by Algorithm 1 on the grammar of Example 2 and a
sequence of length n = 3.

A has a special structure. It is a directed layered graph, with n + 1 layers and no cycles.

Each layer potentially contains all states of A1. Let N1, N2, . . . , Nn+1 be the sets of states

of each layer. We note that N1 has a single element, the initial state of A1, and that Nn+1

is a subset of the set of final states of A1. Pesant [22] shows how to build A.

Since A recognizes all sequences of length n recognized by A1, our modeling approach

uses this structure to derive a network flow formulation. The correspondence between the

automaton A and the graph G used for the network flow model is direct. First, a state

k ∈ N i, 1 ≤ i ≤ n + 1, is a node in G and a transition in A is an arc in G. A transition

between a state k ∈ N i and a state l ∈ N i+1 labeled with symbol j defines a unique arc in

G representing the value j assigned to position i in the sequence. For all such arcs in G,

we have a flow variable fijkl (see [1] for details on network flow theory). Notice that if A1

is a DFA, the index l is not needed, but our approach also applies to an NFA. Finally, we

identify s, the unique element of N1, as the source node, and we link each node k ∈ Nn+1

to a sink node t with an arc labeled with the flow variable f(n+1)kt. We also define a 0-1

variable w that specifies if the constraint is active or not. The value of w corresponds to the

amount of flow (0 or 1) entering and leaving the graph.
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Example 3 Let Π be the automaton of Example 1 represented in Figure 1. Let π5 be the

automaton depicted in Figure 3 representing all sequences of length n = 5 on alphabet Σ =

{a, b, c}. Then, Figure 4 presents automaton A = Π ∩ π5 and Figure 5, the associated graph

G.

1 2 3 4 5 6c c c c c
b b b b b
a a a a a

Figure 3: Automaton π5 recognizing all sequences of length 5 on alphabet Σ = {a, b, c}

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

a

c a

b b b

a

b b

a a a

a a

c c c c

Figure 4: Automaton A = Π ∩ π5

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

f1a12
w

t

f1c15

f2a22
f2b23

f3a22

f2c55 f3c55 f4c55 f5c55 f65t

f64t

w

f3b23 f4b23
f3b33 f4b33
f3a34 f4a34 f5a34

f4a44 f5a44

Figure 5: Graph G associated to automaton A

The network flow problem on G is a set of linear constraints, the flow conservation

equations, ensuring that for each node in the graph, the amount of flow entering and leaving
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the node is the same. An arc from k ∈ N i to l ∈ N i+1 with label j is defined as a quadruplet

(i, j, k, l). For each node k ∈ N i, we introduce the sets of outgoing and incoming arcs:

∆+
ik = {(i, j, k, l)|l ∈ N i+1 and < k, j, l >∈ δi},

∆−
ik = {(i− 1, j, l, k)|l ∈ N i−1 and < l, j, k >∈ δi−1},

where δi is the set of transitions at layer i, 1 ≤ i ≤ n + 1. The MIP formulation of the

regular constraint is then written as follows:

∑
(j,l)|(1,j,s,l)∈∆+

1s

f1jsl = w, (1)

∑
(j,l)|(i−1,j,l,k)∈∆−

ik

f(i−1)jlk =
∑

(j,l)|(i,j,k,l)∈∆+
ik

fijkl, ∀i ∈ {2, . . . , n} , k ∈ N i, (2)

∑
(j,l)|(n,j,l,k)∈∆−

(n+1)k

fnjlk = f(n+1)kt, ∀k ∈ Nn+1, (3)

∑
k∈Nn+1

f(n+1)kt = w, (4)

xij =
∑

(k,l)|<k,j,l>∈δi

fijkl, ∀i ∈ {1, . . . , n} , j ∈ Di, (5)

fijkl ∈ {0, 1} ∀i ∈ {1, . . . , n} , < k, j, l >∈ δi, (6)

f(n+1)kt ∈ {0, 1} ∀k ∈ Nn+1. (7)

Constraints (5) link the decision variables x with the flow variables. Note that in the case

where the MIP regular constraint is the only constraint in the model, the decision variables

x and constraints (5) are not needed in the model. Without these, the resulting model is a

pure network flow formulation that reduces to the determination of a path between s and t

in an acyclic network, which can be solved very efficiently by a specialized algorithm [1]. In

the case where the MIP regular constraint is part of a larger model, constraints (5) allow

to formulate the rest of the model using the decision variables x.

Thus, introducing a MIP regular constraint to a MIP model induces the addition of a

set of flow conservation linear constraints (1)-(4) and linking constraints (5) to the model.

We use a procedure with the following signature:

AddMIPRegular(Π(Q,Σ,δ,q0, F ), n, x, w, M),
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to add the linear constraints associated with a MIP regular constraint to a model M , given

a DFA Π, the decision variables x subject to the constraint, the length of the sequence n

formed by these variables and the amount of flow w entering the graph.

5. MIP Grammar

As we did with regular languages, we derive a MIP that accepts any sequence belonging

to a context-free language. The model directly comes from the and/or graph presented in

Section 3.2. Each node N(A, i, j) in the and/or graph corresponds to a MIP 0-1 variable

X(A, i, j). A leaf node N(t, i, 1) is associated to the MIP 0-1 decision variable xit. The

variable xit is equal to one if and only if the node N(t, i, 1) is true. A leaf node is considered

as an or-node in the graph. In the following, the notations Nor and Nand refer to general or-

node and and-node, while the notations Xor and Xand refer to their associated 0-1 variables.

As we did for the MIP regular constraint, we introduce a 0-1 variable w that specifies if the

constraint is active. When w = 0, every variable xit must be assigned to zero.

The constraints on the variables of the MIP depend on the relationship between the

corresponding nodes in the and/or graph. There is one significant difference between the

MIP and the and/or graph. When there exist more than one parsing tree for a sequence, all

nodes in the and/or graph that belong to at least one parsing tree are set to true, while for

the MIP, one parsing tree is arbitrarily selected and all its variables are set to one. All other

variables, including those that belong to other parsing trees, are set to zero. Choosing an

arbitrary parsing tree simplifies the MIP without changing the solution space. Indeed, only

one parsing tree is necessary to prove that a sequence belongs to a context-free language.

We now present the constraints representing a MIP of a grammar.

Let Nor be an or-node other than a leaf node. Let c(Nor) be its children’s label. The

following constraint forces Xor to be equal to one if exactly one of the variables associated

to the children of Nor is equal to one:

Xor =
∑

n∈c(Nor)

Xand,n (8)

A node belongs to a parsing tree only if exactly one of its parent belongs to the parsing

tree. Let Nor be an or-node and p(Nor) be its parents label. We have the following equality:
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Xor =
∑

n∈p(Nor)

Xand,n (9)

Finally, we force the root of the directed acyclic graph (DAG) to be assigned to one if

and only if the constraint is active, i.e. when w = 1:

X(S, 1, n) = w (10)

.

Lemma 1 Constraints (8), (9), and (10) are satisfied if and only if the and/or graph eval-

uates to true.

Proof: Observe that all parents and children of an or-node are and-nodes and all parents

and children of an or-node are and-nodes. And-nodes have a unique parent.

(=⇒) Suppose there exists a valid assignment of every node in the and/or graph such

that the root is assigned to true. Quimper and Walsh [25] showed that there exists at least

one parsing tree whose nodes in the graph are assigned to true. We arbitrarily select one

such parsing tree and set to one every variable whose corresponding or-node belongs to

the parsing-tree. Consider an or-node in the parsing tree. Among all its children assigned

to true, we arbitrarily select one and-node and set its corresponding variable to one. All

unassigned variables remaining in the MIP are set to zero. The constraint (8) is satisfied

since an or-node is set to one if exactly one child is set to one. The constraint (9) is also

satisfied since in the parsing tree, each node has only one parent (except for root). Finally,

constraint (10) is satisfied since the root node is set to one.

(⇐=) Suppose the MIP is feasible. For every variable assigned to one, we assign the

corresponding node to true. By constraints (8), every or-node has one child set to true. By

constraint (9), every or-node has one parent set to true. This parent is an an-node that has

either one or two children. In either case, constraint (9) ensures that a node that has a parent

set to true is also set to true. Therefore, the children of an and-node set to true are also set

to true. Finally, notice that the root node of the tree is set to true thanks to constraint (10).

We proved that every variable set to one in the MIP have its corresponding node set to true

in the graph. We now prove that values set to zero in the MIP can be assigned to Boolean

values in the graph. We set to false every leaf node whose corresponding MIP variable is
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set to zero. Every unassigned node is evaluated using a bottom-up approach, i.e., and-nodes

are assigned to true if both children are true and or-nodes are assigned to true if at least

one child is true. Therefore, we obtain a valid assignment of Boolean values in the and-or

graph.

Since Quimper and Walsh [25] proved that the grammar recognizes a sequence if and

only if the and/or graph evaluates to true, we conclude that the grammar accepts only the

sequences satisfying the MIP.

Theorem 1 The constraints (8), (9), and (10) are satisfied if and only if the grammar

recognizes the sequence s for which N(s[i], i, 1) = 1.

6. Comparison Between MIP Regular and MIP Gram-

mar

It is interesting to compare MIP regular obtained from an automaton Π with the MIP

grammar obtained from a context-free grammar G that encodes the same language recognized

by Π. We recall how to automatically generate the grammar G from the transitions of the

automaton Π. The states of the automaton form the set of non-terminals of the grammar and

the alphabet symbols form the set of terminals. The starting non-terminal of the grammar

is the initial state of the automaton. Each transition in the automaton is associated with a

production in the grammar as follows. If S1 is the state at the beginning of a transition, S2

is the state at the end of this transition, and α is the associated alphabet symbol, then the

production S1 → αS2 is added to the grammar. If S2 is a final state then the production

S1 → α is also added to the grammar.

The and/or graph produced with such a grammar has the following properties. The only

productions having two literals on their right-hand side have the form S1 → αS2, i.e. a

non-terminal produces a terminal followed by a non-terminal. The parsing trees produced

by this grammar are therefore unbalanced trees where the left child of a node is necessarily

a leaf labeled with a terminal symbol. For instance, the production S1 → αS2 creates in a

parsing tree a node S1 with a left-child α and a right-child S2. The or-nodes in the graph

created from a sequence of n characters are either of the form N(P, t, n − t + 1) for the

inner-nodes or the form N(α, t, 1) for the leaf nodes.

The and-or graph associated to a regular grammar has a similar structure to the layered

graph used to model the MIP regular. The or-node N(P, t, n− t + 1) in the and/or graph
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f3b23 f4b23
f3b33 f4b33

f4a34 f5a34

f3a22

∧

∨

∨

N(2,4,2)

N(3,5,1)

N(b,4,1)

O4,2

O5,3

x4,b

A4,2,3,b

Figure 6: The relation between the arc (4, b, 2, 3) from the layered graph of MIP regular

depicted in Figure 5 and the corresponding nodes in the and/or graph. The label of each
node is written at the left and the associated 0-1 variable at the right.

corresponds to the node P ∈ N t in the layered graph of the MIP regular. An and-node with

left child N(α, t, 1), right child N(Q, t + 1, n− t) and parent N(P, t, n− t + 1) corresponds

to the arc (t, α, P, Q) in the layered graph of the MIP regular. Figure 6 shows the relation

between the arc (4, b, 2, 3) from the layered graph of MIP regular depicted in Figure 5 and

the corresponding nodes in the and/or graph.

The similarities between both graphs lead to similarities in the corresponding MIPs. Let

Ot,A be the 0-1 variable associated to the inner node N(P, t, n − t + 1) and xt,α be the 0-1

variable associated to the leaf node N(α, t, 1). Let At,P,Q,α be the 0-1 variable associated to

an and-node whose parent is N(P, t, n − t + 1), whose left child is the leaf node N(α, t, 1),

and whose right child is the node N(Q, t+1, n− t). Figure 6 shows some nodes in an and/or

graph and their corresponding variables.

Equations (8) and (9), when applied on the inner node N(P, t, n− t+1), lead to the two

following equations:

Ot,P =
∑
Q,α

At,P,Q,α (11)

Ot,P =
∑
Q,α

At+1,Q,P,α (12)

These two equations lead to the following one, which is strictly equivalent to the flow

conservation constraint (2) in the MIP regular:
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∑
Q,α

At,P,Q,α =
∑
Q,α

At+1,Q,P,α (13)

Equation (9), when applied on the leaf node N(P, t, 1), gives the following equation,

which is equivalent to constraint (5) in the MIP regular:

xt,α =
∑
P,Q

At+1,P,Q,α (14)

Constraints (8) and (10) on the root node N(S, 1, n) lead to the following equations,

which are equivalent to constraint (1):

w = O1,S =
∑
Q,α

A1,S,Q,α (15)

The MIP grammar is therefore equivalent to the MIP regular when the grammar encodes

a regular language. However, notice that we have a 0-1 variable for each or-node in the MIP

grammar, while there is no such variable associated to the states of the layered graph in the

MIP regular.

7. Case study

7.1. Problem Definition

To evaluate the quality of our modeling approaches for constrained sequences of decision

variables, we present computational results on complete shift scheduling problems described

in [11]. The benchmarks are randomly generated, but are based on rules from a real-world

shift scheduling problem. The demand curves come from a retail store. The objective is to

create an optimal employee schedule for one day that satisfies the work regulation rules and

the demands for each work activity.

The one day planning horizon is decomposed into 96 periods of 15 minutes each. We

introduce the following notations before we define the problem:

• E : set of available employees.

• W : set of work activities.
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• J : set of all activities (J = W ∪ {l, p, o})

where l = lunch, p = break, o = rest.

• I = {1, 2, . . . , n} : set of periods. I ′ = I \ {1}.

• Fi ⊆ J : set of activities that are not allowed to be performed at period i ∈ I.

• cij: cost for an employee to cover an activity j ∈ W \ Fi at period i ∈ I.

Work Regulation Rules:

1. Activities j ∈ Fi are not allowed to be performed at period i ∈ I.

2. If an employee is working, he must cover between 3 hours and 8 hours of work activities.

3. If a working employee covers at least 6 hours of work activities, he must have two 15

minute-breaks and a lunch break of 1 hour.

4. If a working employee covers less than 6 hours of work activities, he must have a 15

minute break, but no lunch.

5. If performed, the duration of any activity j ∈ W is at least 1 hour (4 consecutive

periods).

6. A break (or lunch) is necessary between two different work activities.

7. Work activities must be inserted between breaks, lunch and rest stretches.

8. Rest activities have to be assigned at the beginning and at the end of the day.

Demand Covering

1. The required number of employees for activity j ∈ W \ Fi at period i ∈ I is dij.

Undercovering and overcovering are allowed. The cost of undercovering activity j ∈
W \ Fi at period i ∈ I is c−ij and the cost of overcovering activity j ∈ W \ Fi at period

i ∈ I is c+
ij.

The following sections present four ways of modeling this problem. The first model is a

compact assignment MIP formulation that does not exploit the MIP regular constraint nor

the MIP grammar constraint. The second model uses the MIP regular constraint and the

third and fourth, the MIP grammar constraint.
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7.2. A Compact Assignment MIP Model

Decision Variables

xeij =

{
1, if employee e ∈ E covers activity j ∈ J at period i ∈ I,
0, otherwise.

Work Regulation Rules:

Rule 1:

xeij = 0, e ∈ E, i ∈ I, j ∈ Fi. (16)

Rule 2:

we =

{
1, if employee e ∈ E is working,
0, otherwise.

∑
j∈J

xeij = we, e ∈ E, i ∈ I, (17)

12we ≤
∑
i∈I

∑
j∈W\Fi

xeij ≤ 32we, e ∈ E. (18)

Rules 3 and 4:

ue =

{
1, if employee e covers at least 6 hours of work activities,
0, otherwise.

∑
i∈I

∑
j∈W\Fi

xeij − 8ue ≤ 24, e ∈ E, (19)

∑
i∈I

∑
j∈W\Fi

xeij ≥ 23ue, e ∈ E, (20)

∑
i∈I

xeip = ue + we, e ∈ E, (21)∑
i∈I

xeil = 4ue, e ∈ E. (22)

Rule 5:

veij =

{
1, if employee e ∈ E starts activity j ∈ J at period i ∈ I,
0, otherwise.
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veij ≥ xeij − xe(i−1)j, e ∈ E, i ∈ I, j ∈ W \ Fi ∪ {o} , (23)

veij ≤ xeij, e ∈ E, i ∈ I, j ∈ W \ Fi ∪ {o} , (24)

veij ≤ 1− xe(i−1)j, e ∈ E, i ∈ I, j ∈ W \ Fi ∪ {o} , (25)

xei′l ≥ veil, e ∈ E, i ∈ I, i′ = i, i + 1, i + 2, i + 3, (26)

xei′j ≥ veij, e ∈ E, i ∈ I, i′ = i, i + 1, i + 2, i + 3, j ∈ W \ Fi. (27)

Rule 6:

veij ≤ 1−
∑

j′∈W\Fi−1

xe(t−1)j′ , e ∈ E, i ∈ I ′, j ∈ W \ Fi. (28)

Rule 7:

xeip ≤ 1− xe(i−1)j, e ∈ E, i ∈ I ′, (29)

xeip ≤
∑

j∈W\Fi−1

xe(i−1)j, e ∈ E, i ∈ I ′, (30)

xeip ≤
∑

j∈W\Fi+1

xe(i+1)j, e ∈ E, i ∈ I ′, (31)

veil ≤ 1− xe(i−1)p, e ∈ E, i ∈ I ′, (32)

veil ≤
∑

j∈W\Fi−1

xe(i−1)j, e ∈ E, i ∈ I ′, (33)

veil ≤
∑

j∈W\Fi+1

xe(i+1)j, e ∈ E, i ∈ I ′. (34)

Rule 8:

v−ei =


1, if employee e ∈ E covers at least one working activity

beginning before period i ∈ I;
0, otherwise.

v+
ei =


1, if employee e ∈ E covers at least one working activity

beginning after period i ∈ I;
0, otherwise.
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v−ei ≤
∑
i−<i

∑
j∈W\Fi−

vei−j, e ∈ E, i ∈ I ′, (35)

v−ei ≥
∑

j∈W\Fi−

vei−j, e ∈ E, i ∈ I, i− < i, (36)

v+
ei ≤

∑
i+>t

∑
j∈W\Fi+

vei+j, e ∈ E, i ∈ I ′, (37)

v+
ei ≥

∑
j∈W\Fi+

vei+j, e ∈ E, i ∈ I, i+ > i, (38)

xeio ≤ (1− v−ei) + (1− v+
ei), e ∈ E, i ∈ I. (39)

Demand Covering

∑
e∈E

xeij − s+
ij + s−ij = dat, t ∈ T, a ∈ W \ Ft. (40)

Objective Function

min
∑
i∈I

∑
j∈W\Fi

(
∑
e∈E

cijxeij + c+
ijs

+
ij + c−ijs

−
ij). (41)

7.3. A MIP Regular Model

To observe the impact of modeling with the MIP regular constraint, we include several rules

of the problem in a DFA and we formulate the other rules and the objective function as stated

in the previous section. Work regulation rules 1 to 4 and demand covering constraints are

formulated as in the compact assignment model, and work regulation rules 5 to 8 are included

in the DFA. We use the DFA suggested by Demassey et al. [12] for the same problem. The

DFA presented in Figure 7 is for the problem with two work activities (a and b on the figure).

It is easily generalized for any number of work activities. Let us denote Πn the DFA for the

problem with n work activities.

We insert a MIP regular constraint for each employee e ∈ E to the model. This con-

straint ensures that the covering of the activities a ∈ A for each t ∈ T for any employee

e ∈ E is a word recognized by the DFA Π|W |. To add this constraint, we use the procedure

presented in Section 4:

AddMIPRegular(Π|W |, |T |, xe, we, M), ∀e ∈ E. (42)
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Figure 7: DFA Π2 for two activities

where M is the model presented in the previous section without work regulation constraints

5 to 8, and the variables xe and we have the same interpretation as in this model.

7.4. MIP Grammar Models

To test the MIP Grammar constraint on this problem, we tried two different grammars.

First, we used a grammar encoding the DFA presented in Section 7.3 with the same linear

constraints as in the two previous models for work regulation rules 1 to 4 and the demand

constraints. We call this model the partial MIP grammar model. This grammar is obtained

from the automaton Π as described in Section 6.

Then, we used a context-free grammar presented in [25] that encodes all work regulation

rules. It only uses the demand constraints as side constraints. This second grammar, leading

to the complete MIP grammar model, can be expressed as follows:

R→ O | o L→ lL | l

A→ aA | a G→ A

P → GpG Q→ PpG

F → PLP | QLG | GLQ S → RPR | RFR

where R, A, P , F , L, G, Q are non-terminals, S is the starting non-terminal. Terminals o, p,

l represent rest, break and lunch periods respectively. Terminal a represents a work-activity.
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Several rules of the model are handled with a set of restrictions on the productions of

the grammar. These rules are dealt within the construction of the and/or graph.

As for the MIP regular model, a MIP grammar constraint is posted for each available

employee on a sequence length of |T | in both models.

7.5. Computational Results

Experiments were run on a 2.4 GHz Dual AMD Opteron Processor 250 (where only one

processor was used) with 3 GB of RAM, using the MIP solver CPLEX 10.0. Tables 1 to 4

present the results for the four formulations presented in the last sections for the problem

with one work activity and 12 available employees (10 instances). In the tables, the Time

and V alue on the LP refer to the results for the LP relaxation of the models. These results

were obtained without CPLEX presolve to allow comparing the LP relaxation lower bounds

of the different models. The symbol “>” means that CPLEX could not find the solution

of the LP relaxation within a time limit of 3600 seconds. The results on the MIP were

obtained with CPLEX default parameters on the given models. In particular, the branch-

and-bound algorithm is stopped when the objective value is within 1% of optimality, which

explains the differences in the MIP objective values of two models for which CPLEX stops

within the 3600 seconds elapsed time limit. The symbol “>” means that no integer solution

was found within this time limit. |C| and |V | are, respectively, the number of variables and

the number of constraints in the MIP model after CPLEX presolve.

Note that the three models using formal languages lead to a faster computation than the

compact assignment MIP model on all instances in our benchmarks. The LP relaxations for

the MIP regular and the partial MIP grammar models are the same since they contain the

same constraints, as explained in Section 6. We observed in our experiments that CPLEX

presolve does not eliminate the variables associated to the or-nodes. Therefore, there are

more variables in the partial MIP grammar model than in the MIP regular model. Observe

that the LP relaxation bounds of these two formulations are never worse than the LP bounds

of the compact assignment model, and are stronger on 4 out of the 10 instances.

We did not observe any advantage to include all the constraints in a single grammar as

we did for the complete MIP grammar model. Indeed, the partial MIP grammar model and

the MIP regular model lead to a faster computation. However, this complete grammar has

been proved successful in a local search framework [23].
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Table 1: Results for the classical MIP model

LP MIP
Id LP Value LP Time |C| |V | MIP Value MIP Time

1 138,8952 36,53 29871 4040 172,6670 2142,17
2 162,9396 104,73 56743 5104 > >
3 168,8223 89,06 56743 5104 > >
4 131,6560 32,95 45983 4704 152,2240 3610,00
5 143,7443 63,61 40447 4360 171,9930 3610,01
6 129,0947 36,65 40447 4360 137,5180 3616,57
7 148,4681 38,26 45887 4608 > >
8 147,2002 90,49 56743 5104 > >
9 142,4836 27,15 36175 4156 182,5370 3607,76
10 145,9563 36,89 45983 4704 149,1810 3611,72

Table 2: Results for the MIP regular model

LP MIP
Id LP Value LP Time |C| |V | MIP Value MIP Time

1 138,8952 15,95 1491 1856 172,6670 1,03
2 162,9396 13,32 2719 3976 164,1370 40,09
3 168,8223 15,70 2719 3976 169,0120 64,64
4 131,6560 19,15 2183 3144 133,3830 46,39
5 144,4182 30,81 1915 2728 145,4640 14,03
6 133,0766 12,34 1915 2728 135,2180 3,28
7 149,2739 26,55 2183 3144 150,6810 5,99
8 147,2002 12,81 2719 3976 148,0470 131,77
9 142,4836 11,84 1759 2416 182,5370 16,14
10 146,2410 23,66 2183 3144 147,5030 20,22
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Table 3: Results for the partial MIP grammar model

LP MIP
Id LP Value LP Time |C| |V | MIP Value MIP Time

1 138,8952 34,63 1683 2060 172,6665 1,16
2 162,9396 31,67 3040 4285 163,9210 66,26
3 168,8223 41,62 3040 4285 170,5663 46,74
4 131,6560 42,89 2459 3408 133,1414 98,00
5 144,4182 52,52 2143 2956 145,2850 21,83
6 133,0766 57,56 2143 2956 135,1286 1,56
7 149,2739 44,03 2456 3405 150,7675 53,82
8 147,2002 47,63 3040 4285 148,0467 263,43
9 142,4836 27,46 1957 2614 182,4833 12,91
10 146,2410 37,19 2458 3408 147,6853 19,28

Table 4: Results for the complete MIP grammar model

LP MIP
Id LP Value LP Time |C| |V | MIP Value MIP Time

1 > 3612,35 2727 6356 172,6665 7,42
2 > 3610,68 35419 190480 > >
3 > 3615,64 35419 190480 > >
4 > 3614,92 19163 84672 133,0630 1850,38
5 > 3609,11 10387 41464 145,8830 322,57
6 > 3618,18 10387 41464 134,8178 130,21
7 > 3618,83 19163 84672 151,2082 1662,75
8 > 3611,39 35419 190480 > >
9 > 3614,71 5503 21580 182,5370 1015,10
10 > 3610,10 19163 84672 147,0870 1313,28
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8. Conclusion

We presented two new modeling approaches to express constraints on sequences of deci-

sion variables in MIP. These approaches are inspired by two CP constraints using formal

languages: the regular constraint and the grammar constraint. The MIP version of the

regular constraint uses an automaton to model the rules on the sequence of decision vari-

ables and transform it into a set of linear constraints representing a network flow problem

in the graph. The MIP version of the grammar constraint uses an and/or decomposition of

the parsing tree of all the sequences accepted by a context-free grammar and translates the

logical clauses associated with the tree into linear constraints on 0-1 variables.

From a modeling point of view, both approaches allow the design of complex rules on

sequences of variables to be handled with formal languages tools (an automaton or a context-

free grammar) instead of directly into linear constraints. This process generates automati-

cally a set of linear constraints that can be managed by any MIP solver. With this approach,

the modeling of many complex rules is simplified and experimental results show that the re-

sulting formulations can be strong.
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