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1 Introduction

The origins of arc routing can be traced back to the 1730’s when Euler studied
the Königsberg bridge problem (from the name of a city in Prussia) which led to
the notion of Euler cycles and Euler graphs. In 1962, the Chinese mathematician
Kwan Mei-Ko proposed a problem whose name was later derived from his origins:
the classical Chinese Postman Problem (CPP) [24]. Later on, various extensions
of the CPP were reported in the literature, in particular the capacitated arc routing
problem (CARP). In this network problem, a subset of required arcs, with some
demand on each arc, must be served at least cost by a fleet of capacity constrained
vehicles initially located at a central depot.

As opposed to the CPP, the CARP is NP-hard and was first addressed with rel-
atively simple heuristics [5, 6, 13, 26, 27]. Then, several metaheuristics were
adapted to this problem like simulated annealing [10], tabu search [1, 3, 17], ge-
netic algorithms [19, 21], ant colony optimization [8] and variable neighborhood
search [16].

The main variants of the CARP are:

• CARP with multiple depots (M-CARP). Here, the vehicle routes can start
from and end at several depots. This problem is addressed in [4] by first
dividing the service area into smaller areas and by locating a depot within
each area. Then, routes are designed with the augment-insert CARP heuris-
tic [27] to serve all required arcs. In [1], the problem is transformed into a
multiple center capacitated minimum spanning tree problem with arc con-
straints, which is then solved with tabu search. Ghiani et al. [12] consider a
variant of the problem where intermediate facilities (salt boxes) are available
to replenish the vehicles along their routes.

• CARP with time windows (CARPTW). In this variant, each required arc has a
time window for the beginning of service. This problem has not been studied
much in literature, although some early work can be found in [2, 9]. Wohlk
presented a node routing and an arc routing formulation for the CARPTW in
her thesis [30]. She also proposed a column generation approach to find good
lower bounds. Recently, the authors in [28] proposed a greedy randomized
adaptive procedure with path relinking for the CARPTW. It is worth noting
that in both [28] and [30] the time windows are hard and vehicles are allowed
to wait before beginning the service.

• Periodic CARP. Here, the required arcs must be served a number of times
over a given time horizon. This problem is found in [20] where a genetic
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algorithm is proposed to solve it.

• Stochastic CARP. In this variant, the demand on the required arcs is a random
variable [11].

In this paper, a new variant is considered where a time-dependent piecewise linear
service cost is associated with each required arc. This problem is motivated by
winter gritting applications, where the timing of each intervention is crucial. That
is, if the intervention is too early or too late, the cost in time and material increases.
Also, the vehicle is not allowed to wait along its route. This problem was first
studied in [29] where small instances were solved with an exact algorithm. We are
not aware of any other work on this problem, although a special case would the
CARP with (soft) time windows when the service cost is flat and minimal within a
given time interval and linearly increases on both sides of this interval.

In the following section, the problem is first precisely defined. Then, a heuristic
approach to this problem is introduced in Section 3, based on a variable neighbor-
hood descent. Computational results are reported in Section 4 and a conclusion
follows.

2 Problem definition

Let G = (V,A) be a directed graph whereV is the vertex set andA is the arc set.
It is assumed thatA is partitioned into a subset of required arcsA1, which must
be served, and another subset of arcsA2 which is used for traveling purposes only.
With each required arce ∈ A1 is associated a demandde, a lengthle, a travel time
tte, a service timeste, a travel costtce and a time-dependent piecewise linear service
cost functionsce(Te), whereTe is the time of beginning of service on arce. The
arcs inA2 have a length, a travel time and a travel cost only. Note that the service
time is typically larger than the travel time because it takes more time to serve an
arc than to travel along it.

A set of K identical vehicles with capacityQ is available to serve the required
arcs. These vehicles are located at a central depot from which each vehicle serves
a single route that starts from and ends at the depot. Also, the vehicles are not
allowed to wait along their route. The objective is to serve all required arcs in the
graph with least-cost feasible routes, where the cost is the sum of service cost and
travel cost (or deadhead cost).

Figure 1 shows typical piecewise linear service cost functions for the required arcs.
Note that the function in Figure 1(a) is a degenerate form of the one shown in Fig-
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Figure 1: Different arc service cost functions

ure 1(b), where the optimal service time reduces to a single point. The function
shown in Figure 1(b) was used in our computational experiments, due to its sim-
ilarity with soft time windows, but other piecewise linear forms could be used as
well, like the one shown in Figure 1(c).

Let Rk be the route traveled by vehiclek, which is made of required arcs(e1, ...,el)
and non-required (or deadhead) arcs(el+1, ...,el+p). These deadhead arcs come
from the shortest paths to travel from one required arc to the next. The route cost
is then

C(Rk) =
l

∑
i=1

scei(T
k

ei
)+

l+p

∑
i=l+1

tcei , (1)

whereT k
ei

is the time of beginning of service on each required arcei, i = 1, ..., l,
served by vehiclek. Since there is no waiting time along the route, the time of
beginning of service on each required arc can be derived from the starting timeT k

0
of vehiclek at the depot [29]. The route cost can thus be written as:

C(Rk) =
l

∑
i=1

scei(T
k
0 )+

l+p

∑
i=l+1

tcei = sck(T
k
0 )+ tck. (2)
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Figure 2 illustrates such a cost function. In this example, the minimum route cost
is obtained for any starting time between 5 and 6 time units.

)

0
k

C(R

5 6

k

T

Figure 2: Route cost function

3 Problem-solving methodology

In the first phase, an initial solution is obtained with either an insertion heuristic or
an adaptation of the Clarke and Wright heuristic [7]. In the second phase, a vari-
able neighborhood descent (VND), a streamlined variant of variable neighborhood
search (VNS) [15, 25], is applied to the initial solution to improve it. The basic
idea is to perform a local descent based on a number of different neighborhoods.
That is, when a local optimum is reached with the current neighborhood, the search
resumes with a different neighborhood to escape from the current local optimum.
This is repeated until the current solution cannot be improved anymore, that is,
when the solution is a local optimum over every neighborhood considered. This
approach was applied, for example, in [16] to solve the CARP using neighborhood
structures previously proposed in [17].

3.1 Initial Solution

Savings heuristic

This heuristic in based on the Clarke and Wright savings heuristic [7]. Initially,
each required arc is served by a single route that starts and ends at the depot. Then,
at each iteration, the pair of routes associated with the largest savings are merged
together. This is repeated until no further merging is feasible. Given two routesR1
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andR2, the savingsS12 is equal toC(R1)+C(R2)−C(R12), whereR12 is the route
obtained whenR2 is appended toR1.

Insertion heuristic

This is a classical sequential insertion heuristic, where the routes are constructed
one by one. First, a route is created for serving the closest (unserved) required
arc from the depot. Then, at each iteration a new unserved required arc is inserted
into the current route, until no additional insertion is feasible. At this point, the
procedure is repeated with a newly created route. The next arc to be added to the
current route during the insertion procedure is the (feasible) one that incurs the
least additional cost to the route.

3.2 Neighborhood structures

Each neighborhood is explored using a first-improvement local descent. These
neighborhoods are described in the following in increasing order of complexity. It
is worth noting that the last procedure, called shorten, does not really generate a
neighborhood structure. It is aimed at reducing as much as possible the travel cost
of the current routes.

Arc move

Here, a required arc is removed from one route and inserted between two other re-
quired arcs in the same route or in another route. All such moves are systematically
considered until an improvement is found. The procedure is then repeated with the
improved solution until a local optimum is reached. An arc move is illustrated in
Figure 3. In this figure, the arcs shown are required arcs while the dotted arcs stand
for one or more deadhead arcs on the shortest path from one required arc to the
next. Clearly, after moving arc(v1 j,v1k), the shortest paths betweenv1 j andv1l, v2 j

andv1 j, v1k andv2k are introduced into the solution to reconnect the two routes.

Cross exchanges

Given a pair of routes in the current solution, two sequences of arcs are exchanged.
The two sequences contain exactlym required arcs, 1≤ m ≤ M, whereM is a
parameter. This is illustrated in Figure 4 form = 2. Basically, a sequence of
arcs in the first route, made of the two required arcsv1 j andv1k plus the arcs on
the shortest path between them, is exchanged with a sequence in the second route
made of the two required arcsv2 j and v2k. In the case of the second route,v2k

is visited immediately afterv2 j, so there is no deadhead arc. For a givenm, all
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Figure 3: Arc move

possible exchanges on every pair of routes are systematically considered until an
improvement is found. The procedure is then repeated with the improved solution
until a local optimum is reached.

V 1i V V

V V V V

1j 1l

2i 2j 2k 2l

V 1i V 1j V 1k V 1l

V 2i V 2j V V 2l2k

V 1k

 (b)(a)

Figure 4: Cross exchange

Block exchanges

Here, sequences made of consecutive required arcs (i.e., sequences with no dead-
head arcs in-between), called blocks, are identified and exchanged between two
routes. The number of required arcs in a block is not limited and two blocks can
be exchanged even if they do not contain the same number of required arcs. Note
that exchanges involving two blocks with the same number of required arcsm, for
1≤m≤M, are discarded because they also belong to the previous cross exchange
neighborhoods. For every pair of routes, all possible block exchanges are con-
sidered until an improvement is found. The procedure is then repeated with the
improved solution until a local optimum is reached.

Shorten

In [17], a shorten procedure for the undirected CARP is reported to reduce the
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travel cost of a route. This procedure has been adapted for the directed case as
follow. When an arc is crossed twice, once for serving it and once for traveling on
the shortest path between two other required arcs, it might be possible to improve
the route by inverting the order of the two activities on this arc. This is illustrated
in Figures 5 and 6. In the first case, the service is postponed after the travel on arc
(vi,v j) while, in the second case, the travel is postponed after the service. In our
context, even if an improvement in travel cost is observed, there is no guarantee
that the solution is better overall, due to the service costs. Basically, the procedure
is applied sequentially to every required arc which is crossed twice. After process-
ing a required arc, the new solution is kept if it is better overall than the current
solution. The shorten procedure then proceeds with the next required arc with this
new solution.

V i V j V i V j

V i V j

V Vk l
V k V l

V k V l

(a) (b)

(c)

Figure 5: Shorten procedure (service before travel)

3.3 Variable neighborhood descent

The complete algorithm is described in pseudo-code in the following, where:

• N1 is the arc move neighborhood.

• N2 to NM+1 are the cross exchange neighborhoods withm = 1,...,M.
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Figure 6: Shorten procedure (travel before service)

• NM+2 is the block exchange neighborhood.

• sN j is a local optimum solution based on neighborhoodN j, j = 1,...,M+2.

VND algorithm

Step 0: Initialization

Create an initial solutionsN0.

Step 1: Loop

For j = 1, ...,M + 2 do:

starting fromsN j−1, perform a local descent based on neighborhoodN j

and letsN j be the local optimum obtained.

if sN j is different fromsN j−1 thensN0← sN j and go to Step 1.

Step 2 : Shorten

Apply shorten tosNM+2 to obtainsshort

If sshort is better thansNM+2 thensN0← sshort and go to Step 1; else returnsNM+2.
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In this procedure, Step 2 is reached and the shorten procedure is appliedonly when
the M + 2 neighborhoods are explored without any improvement to the starting
solution. If the shorten procedure improves the solution, the loop in Step 1 is
restarted with the improved solution; otherwise the best solution found is returned.
In the computational results, this variable neighborhood descent algorithm is ap-
plied twice, using the savings and the insertion heuristics to generate an initial
solution. The best of the two runs is then the final result of VND.

4 Computational Results

The undirected CARP instances of Golden et al. [14] and Li and Eglese [22, 23],
found at http://www.uv.es/∼belengue/carp.html, have been used to test our VND.
In these instances, the length, travel time and travel cost are the same. To use these
classical instances, edges were first replaced by arcs, that is, every edge(vi,v j) was
replaced by two arcs(vi,v j) and(v j,vi). Then, assuming that(vi,v j) is a required
edge in the CARP instance, the best known routes for this instance were used to
choose an appropriate orientation for the corresponding required arc (i.e., to select
either(vi,v j) or (vi,v j) as the required arc). Then, we applied Dijkstra’s algorithm
to compute the shortest path between all pairs of required arcs. Finally, a service
cost function was defined on each required arc. This function is similar to the
one shown in Figure 1(b). It has an optimal time interval where the service cost
corresponds to the travel cost in the original CARP instance. Then, on both sides
of this optimal interval, the service cost increases linearly based on slope values of
-1 and 1. Note that the computational tests reported in the following have all been
obtained on a computer with a 3 GHz Intel Pentium IV processor.

4.1 Preliminary study

Our first results were obtained on Golden et al. instances [14] in which the graphs
contain up to 27 nodes and 51 required arcs. The results are shown in Table 1,
using an objective function with an equal weight on service and travel costs. In
these instances, the optimal time interval on each required arc was determined by
considering the best known solutions for the corresponding CARP instance. That
is, these intervals were set in such a way that the best routes for the CARP also
incur the minimum service costs. Thus, every required arc can be visited within its
optimal time interval.
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For each instance, Table 1 shows the number of vehicles and total route cost (ser-
vice cost plus travel cost) for VND. The last two columns report the number of
vehicles and total route cost for the routes of the best known solutions in the cor-
responding CARP instances. We can see that our algorithm has always generated
the right routes, namely those where each required arc is served within its optimal
time interval. This is a strong indication that our algorithm behaves appropriately.

Instance VND Best known
#Veh. Route #Veh. Route

Cost Cost

gdb1 5 316 5 316
gdb2 6 339 6 339
gdb3 5 275 5 275
gdb4 4 287 4 287
gdb5 6 377 6 377
gdb6 5 298 5 298
gdb7 5 325 5 325
gdb8 10 350 10 350
gdb9 10 303 10 303
gdb10 4 275 4 275
gdb11 5 395 5 395
gdb12 7 458 7 458
gdb13 6 536 6 536
gdb14 5 100 5 100
gdb15 4 58 4 58
gdb16 5 127 5 127
gdb17 6 91 6 91
gdb18 5 164 5 164
gdb19 3 55 3 55
gdb20 4 121 4 121
gdb21 6 156 6 156
gdb22 8 200 8 200
gdb23 10 233 10 233

Table 1: Results on Golden et al. instances
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4.2 Results with service cost functions of type 1

In this subsection, we report results obtained again on Golden et al. instances,
but with another way of setting the optimal time interval for each required arc.
Here, the time horizon is divided into three parts (early, intermediate, late) and
the optimal time interval for each required arc belongs to exactly one of these
three sub-horizons. We also provide a comparison with the recent adaptive multi-
start local search algorithm of Ibaraki et al. [18] for solving vehicle (node) routing
problems with soft time window constraints that can be used to model our service
cost functions. For this purpose, each arc routing problem was first transformed
into an equivalent node routing problem, using the technique reported in [29].

As opposed to our arc routing problem, waiting times along the routes are allowed
in [18]. The service cost functions, with their optimal time interval, have thus
been set to prevent any waiting time to be beneficial (e.g., when the next location
can be reached within its optimal service time if a sufficiently long waiting time
takes place at the current location). Also, two objective functions are considered
in [18] and the second one, which is closer to ours, was selected. It involves a
weighted sum of service cost, travel cost and overcapacity. The latter component
penalizes capacity constraint violations, as the algorithm is allowed to go into the
infeasible domain. We observed that the algorithm failed to find a feasible solution
on some instances with the default value of 1 for the weighting coefficients. The
weight associated with overcapacity was thus increased to force feasible solutions
to emerge.

Each instance was first solved with our VND approach. Then, each instance was
solved with the algorithm of Ibaraki et al., based on the number of vehicles obtained
with VND (the number of vehicles is an input to the algorithm of Ibaraki et al.). For
each instance, Table 2 shows the number of vehicles, total route cost (service cost
plus travel cost), and CPU time in seconds to reach the best solution with VND.
The last three columns display the same numbers for the code of Ibaraki et al. The
CPU time to the best solution was preferred over the total CPU time, because the
algorithm of Ibaraki et al. often finds its best solution early, even when it runs for
a long time. In the case of our algorithm, the two values are similar because the
VND is basically a descent approach where the best solution is generated toward
the end of a run (only one additional pass through the neighborhoods is needed to
confirm that no further improvement is possible).

The results in Table 2 show that the algorithm of Ibaraki et al. ended up with a
solution with fewer vehicles than the number provided in input on instances gdb8
and gdb13. Although our algorithm is not specifically designed to minimize the
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number of vehicles, we introduced this consideration into the objective by adding
a penalty whenever an arc that leaves the depot is used. As expected, the new
solutions obtained often use fewer vehicles, but at the expense of additional route
costs, as shown in Table 3. The number of vehicles, total route cost and CPU time
in seconds to reach the best solution with the algorithm of Ibaraki et al., using the
reduced number of vehicles in input, are also shown in the last three columns of
Table 3. Now, the algorithm of Ibaraki et al. could not save any additional route.

The results in Table 3 indicate that, for the same number of vehicles, an average
reduction of 1.5% on the total route cost is obtained. Furthermore, the time to get
to the best solution with VND is six times faster on average when compared with
the algorithm of Ibaraki et al. (although this figure mostly comes from the large
gaps observed for gdb22 and gdb23).

4.3 Results with service cost functions of type 2

In these new experiments, the optimal time interval for service is set to[0,x], where
x is interpreted as a soft deadline. This parameter was set to three different values,
depending on the required arc. This approach is directly motivated by winter grit-
ting operations where different priorities are associated with highways, roads close
to schools, etc. The results are shown in Tables 4 and 5, using the format of Ta-
bles 2 and 3. Once again, when the VND algorithm was applied without explicitly
considering the number of vehicles, the algorithm of Ibaraki et al. ended up with
fewer vehicles on 5 different instances (see Table 4). The new results in Table 5
have been obtained by introducing a penalty for the use of any arc that leaves the
depot, as it was done for Table 3. In this case, the algorithm of Ibaraki et al. could
not save any additional route over the solutions produced by VND.

The results in Table 5 indicate that, for the same number of vehicles, an average
reduction of 3.8% on the total route cost is obtained. Furthermore, the time to
obtain the best solutions with VND is about four times faster on average when
compared with the algorithm of Ibaraki et al.
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Instance VND Ibaraki et al.
#Veh. Route CPU #Veh. Route CPU

Cost Time Cost Time
(s) (s)

gdb1 5 322 0.03 5 326 0.02
gdb2 6 343 0.14 6 346 0.12
gdb3 6 303 0.02 6 310 0.02
gdb4 5 321 0.02 5 323 0.02
gdb5 6 423 0.06 6 437 0.11
gdb6 5 350 0.16 5 351 0.02
gdb7 5 348 0.18 5 351 0.02
gdb8 13 368 0.63 11 375 1.43
gdb9 12 398 1.35 12 398 11.15
gdb10 5 309 0.06 5 312 0.05
gdb11 7 435 0.87 7 436 0.45
gdb12 7 464 0.03 7 480 0.04
gdb13 9 591 0.07 8 593 0.06
gdb14 5 105 0.07 5 105 0.02
gdb15 4 60 0.05 4 61 0.08
gdb16 6 131 0.05 6 133 0.10
gdb17 8 93 0.04 8 101 0.44
gdb18 5 165 0.56 5 169 0.15
gdb19 4 63 0.01 4 63 0.01
gdb20 6 125 0.02 6 125 0.02
gdb21 7 164 0.12 7 164 0.21
gdb22 15 219 0.31 15 220 0.22
gdb23 12 241 0.57 12 241 13.20

avg. 7.1 275.7 0.23 7.0 279.1 1.22

Table 2: Results on Golden et al. instances
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Instance VND Ibaraki et al.
#Veh. Route CPU #Veh. Route CPU

Cost time Cost time
(s) (s)

gdb1 5 322 0.03 5 326 0.02
gdb2 6 343 0.14 6 358 0.12
gdb3 5 324 0.03 5 326 0.03
gdb4 5 321 0.02 5 323 0.02
gdb5 6 423 0.07 6 437 0.11
gdb6 5 350 0.13 5 351 0.02
gdb7 5 348 0.18 5 351 0.02
gdb8 11 369 0.66 11 375 1.24
gdb9 11 384 1.45 11 398 3.32
gdb10 5 309 0.06 5 312 0.05
gdb11 6 424 0.87 6 438 0.22
gdb12 7 464 0.03 7 480 0.04
gdb13 7 600 0.26 7 605 0.15
gdb14 5 105 0.08 5 105 0.02
gdb15 4 60 0.06 4 60 0.12
gdb16 5 134 0.06 5 137 2.20
gdb17 5 115 0.20 5 106 0.29
gdb18 5 165 0.60 5 165 0.15
gdb19 3 69 0.01 3 71 0.01
gdb20 5 131 0.05 5 133 0.23
gdb21 7 164 0.13 7 164 0.21
gdb22 9 255 0.41 9 258 14.08
gdb23 12 241 0.60 12 241 13.20

avg. 6.3 279.1 0.26 6.3 283.5 1.55

Table 3: Results on Golden et al. instances with penalty on number of vehicles
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Instance VND Ibaraki et al.
#Veh. Route CPU #Veh. Route CPU

Cost Time Cost Time
(s) (s)

gdb1 6 370 0.08 6 387 0.15
gdb2 6 415 0.20 6 415 0.26
gdb3 5 331 0.10 5 352 0.17
gdb4 5 352 0.03 5 356 0.02
gdb5 6 430 0.20 6 437 0.06
gdb6 7 375 0.07 6 396 0.23
gdb7 5 336 0.04 5 357 0.13
gdb8 12 399 0.82 11 421 1.71
gdb9 10 379 1.73 10 396 6.78
gdb10 7 321 0.09 6 329 0.17
gdb11 9 467 1.14 8 478 13.49
gdb12 7 515 0.13 7 530 0.13
gdb13 9 584 0.11 9 601 0.24
gdb14 6 105 0.03 6 105 0.17
gdb15 4 60 0.07 4 60 0.18
gdb16 8 135 0.06 8 135 0.10
gdb17 9 95 0.09 7 97 0.59
gdb18 5 194 0.71 5 204 2.82
gdb19 4 63 0.01 4 66 0.02
gdb20 5 127 0.03 5 127 0.07
gdb21 6 225 0.45 6 225 6.03
gdb22 8 297 0.75 8 321 6.04
gdb23 10 327 1.22 10 341 17.87

avg. 6.9 300.1 0.35 6.7 310.3 2.48

Table 4: Results on Golden et al. instances
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Instance VND Ibaraki et al.
#Veh. Route Time #Veh. Route Time

Cost to best Cost to best
(s) (s)

gdb1 5 379 0.12 5 406 0.07
gdb2 7 385 0.14 7 407 0.13
gdb3 5 331 0.14 5 352 0.17
gdb4 4 360 0.02 4 372 0.03
gdb5 6 430 0.13 6 437 0.06
gdb6 6 373 0.07 6 396 0.18
gdb7 5 336 0.04 5 357 0.13
gdb8 11 404 0.81 11 421 0.86
gdb9 12 357 2.01 12 385 9.60
gdb10 5 311 0.24 5 331 0.09
gdb11 8 455 1.20 8 478 2.09
gdb12 7 515 0.13 7 530 0.13
gdb13 8 595 0.08 8 601 0.46
gdb14 6 105 0.04 6 105 0.17
gdb15 4 60 0.09 4 60 0.18
gdb16 8 135 0.04 8 135 0.10
gdb17 5 109 0.15 5 107 2.88
gdb18 5 194 0.69 5 204 2.82
gdb19 3 64 0.01 3 68 0.02
gdb20 6 125 0.08 6 126 0.07
gdb21 6 225 0.45 6 225 6.03
gdb22 10 256 0.52 10 262 1.64
gdb23 12 277 1.92 12 280 11.50

avg. 6.7 294.8 0.39 6.7 306.3 1.71

Table 5: Results on Golden et al. instances with penalty on number of vehicles
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The service cost functions of type 2, which are closer to real applications, were also
integrated into the instances of Li and Eglese [22, 23]. Given that manual trans-
formations are required to transform undirected instances into directed ones (e.g.,
for choosing an adequate orientation of the required arcs, based on the best known
solution for the undirected CARP instance) our tests are restricted to a subset of 12
instances. In these instances, the graphs all have 77 nodes and up to 98 required
edges.

The results are summarized in Table 6 in the usual format, with the introduction of
a penalty on any arc that leaves the depot. We note that the algorithm of Ibaraki et
al. has generated fewer vehicle routes on the last seven instances, while the num-
ber of vehicles in the VND solutions could not be reduced further, even through
an increase in the penalty (but note, once again, that our algorithm was not really
designed to minimize the number of vehicles). Thus, neither algorithm really dom-
inates the other here, since the VND solutions have a smaller total route cost, while
the solutions of Ibaraki et al. use fewer vehicles, on average.

Instance VND Ibaraki et al.
#Veh. Route CPU #Veh. Route CPU

Cost Time Cost Time
(s) (s)

egl-e1-A 5 3705 6.55 5 3775 29.92
egl-e1-B 7 4618 4.88 7 4674 3.13
egl-e1-C 10 5917 3.75 10 5990 85.26
egl-e2-A 7 5270 20.80 7 5272 86.17
egl-e2-B 10 6567 15.57 10 6582 70.31
egl-e2-C 15 8742 9.02 14 8744 120.77
egl-e3-A 9 6662 27.73 8 6687 80.11
egl-e3-B 13 8460 23.57 12 8511 31.19
egl-e3-C 18 10937 22.79 17 10978 119.20
egl-e4-A 10 7064 34.70 9 7082 45.71
egl-e4-B 15 9625 41.53 14 9686 244.08
egl-e4-C 22 12890 27.06 20 12938 170.26

avg. 11.8 7540.3 19.82 11.1 7576.6 90.50

Table 6: Results on Li and Eglese instances with penalty on number of vehicles

17

A Variable Neighborhood Descent for Arc Routing Problems with Time-Dependent Service Costs

CIRRELT-2008-27



5 Conclusion

In this paper, we have considered a CARP with time-dependent service costs. To
solve this problem, a heuristic method based on a variable neighborhood descent
was proposed. Using instances derived from two benchmark data sets, the method
was shown to be fast and competitive when compared with a recently reported
algorithm. Future work will now be aimed at introducing perturbation mechanisms
into the heuristic search to get a more global exploration of the solution space (at
a computational cost, though). We also want to consider a dynamic variant of this
problem where the service cost functions are regularly updated due to the arrival
of new information, like meteorological forecasts in the case of winter gritting
applications.
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