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Abstract. In this paper, we design a parallel Constraint Programming (CP) method to 

solve Constraint Satisfaction Problems (CSP). We use some attributes induced by the CP 

model of a CSP to improve the load balancing procedure embedded in the parallel tree-

based search algorithm. Load balancing is improved by using specialized branching 

heuristics and workload estimators based on the CP model. More precisely, solution 

counting is used as an approximation of the computational size of the tasks in the parallel 

CP solver. This approximation of the workload of a task improves the work decomposition 

or work splitting procedure as well as the distribution of the tasks in the parallel algorithm. 

Experimental results indicate that this information speeds up the parallel exploration of the 

search tree. 
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1 Introduction

Constraint Programming (CP) is a useful computational approach to solve com-
binatorial problems. It is used by several exact and heuristic solvers and has
shown good performance when solving hard Constraint Satisfaction Problems
(CSP)[37]. CP explores a search tree to find one or many solutions to the
problem. In this paper, we use parallel computing to speed up the search for
solutions. Since CP uses the well known Backtracking or Depth-First Search
(DFS) procedure, the speedups obtained by the parallel CP solver depend on
the idle time due to load imbalance, on the search overhead and on the commu-
nication overhead [23]. Load imbalance appears in a parallel CP solver since it
is difficult to estimate the workload of the tasks and equally distribute them to
the processors. The search overhead is the amount of extra work performed by
the parallel algorithm in terms of the number of nodes explored. More precisely,
it is defined as the ratio between the number of nodes explored by the parallel
algorithm and the one explored by the sequential algorithm. The communica-
tion overhead is the amount of time wasted by the processors in communication
and synchronization. In this paper we focus on the load imbalance problem
and propose new branching heuristics and workload estimators to improve load
balancing in a parallel CP solver.

We use some attributes of the CP model to improve the decomposition of the
search space and the load balancing. More precisely, we use solution counting
to approximate the size of the tasks in a parallel CP solver. Solution counting
was already used by Zanarini and Pesant as a constraint-centered heuristics to
guide the search for a solution to a CSP [39]. These heuristics exploit solution
counting information extracted from individual constraints in order to guide the
search toward parts of the search tree that are more likely to contain a large
number of solutions.

The main contribution of this paper is to show that solution counting can
be used as an estimator of the size of a task in a parallel CP solver and that it
provides an efficient procedure to split the workload on parallel and distributed
architectures. Even though we focus on solution counting for individual con-
straints and not for the overall problem, experimental results show that this
information leads to a much more balanced workload compared to traditional
tree splitting based on standard branching heuristics.

Another contribution is to show that the search strategy used in the CP
solver can be modified to better fit on a parallel architecture. We propose
specialized heuristics which use solution counting to decompose the problem
into a set of disjoint tasks of approximately the same computational size. In
every other parallel CP solver proposed [25, 33, 20], the search strategy attempts
to reproduce the serial search.

Finally, we design a parallel CP solver which can be used on top of any
sequential CP solver. Most of the parallel CP solvers presented in the literature
were developed from their sequential CP solver designers, giving them direct
access to the internal data structures. In our work, we use parallel computing
on top of the CP solver without direct access to its internal data structures.
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We apply our method to the problem of finding all the solutions of a com-
binatorial problem. Finding all the solutions to a CSP can be interesting in
applications where the user wants to compare many of them and make his own
choice. Finding all the solutions to a CSP is also interesting for metaheuristics
algorithms. These algorithms use local moves to evaluate the neighborhood of
a solution. Some local moves imply exploring a large neighborhood [34]. This
neighborhood can be modeled as a CSP and solved by enumerating all solutions
to this model [26]. Another application appears in the hardware and software
verification where the designers want to verify their conformities with the spec-
ifications [5].

In Section 2 we present related work about tree based search paralleliza-
tion strategies and CP. Section 3 presents the task generation and distribution
procedures used in our parallel CP-based search. Section 4 describes the special-
ized branching heuristics and the workload estimators based on the CP model
proposed. Section 5 presents some implementation details about the parallel
architecture used. Section 6 presents and analyzes computational results on
the Quasigroup With Holes problem. Section 7 concludes and presents some
extensions of this work.

2 Related Work

2.1 Tree Based Search Parallelization Strategies

Several tree based search algorithms have been parallelized. Backtracking [23],
Depth-First Search (DFS) [22, 15, 31], Iterative Deepening [6] and Branch-and-
Bound algorithms (B&B) [32, 24, 35, 9, 18, 3, 29] were studied to find effective
parallel counterparts. Most of the solutions proposed use a decomposition of
the search tree search. Our method is inspired by these parallel algorithms and
particularly by the parallel B&B algorithm and by the parallel DFS.

The Branch and Bound algorithm consists of an implicit enumeration method
for solving optimization problems. It proceeds by a decomposition or a subdi-
vision, which is done by the branching operation, of the set of feasible solutions
into several subsets. Each of these subsets define a subproblem that is solved
by the bounding operation which gives a bound on the optimal value of each
of these subproblems. This bound is used by the algorithm to fathom some
subproblems if they cannot improve the solution quality according to the best
solution known (the incumbent).

Parallel B&B algorithms can be classified according to three strategies [9].
First, the operations on the subproblems can be done in parallel. Bounding
and branching operations are then decomposed and sub-operations are done
simultaneously on several processors. The second parallel strategy is to build
the search tree in parallel by computing several subproblems simultaneously.
Thirdly, several B&B trees, defined by different branching or bounding opera-
tions, can be traversed in parallel. In this paper, we focus on the second parallel
strategy.
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Several strategies were also developed to parallelize the DFS algorithm. Ac-
cording to the literature on parallel DFS [22, 15, 31], two important issues must
be answered when parallelizing DFS: how to generate the tasks and how to
distribute them?

The task generation procedure defines what a task is in the parallel algo-
rithm. The procedure also defines when the tasks are generated. Two examples
found in the literature on parallel DFS are the tree-splitting (also known as
stack-splitting) [22] and the search-frontier splitting (also known as fixed-packet
DFS) [31, 17].

As depicted in Figure 1, in the tree-splitting procedure, every pending node
in the search tree is a task of the parallel tree-based search algorithm. The tasks
are created through the branching procedure of the tree-based search algorithm.
Task generation is then dynamically applied on each node of the search tree.

In a search-frontier splitting the tasks are defined by exploring a part of the
search tree until a given number of tasks are created. The task generation pro-
cedure is performed at the beginning of the parallel tree-based search. The tasks
generated by this procedure are the sharing units of the parallel algorithm. The
number of tasks is then statically fixed and a task cannot be re-split. Search-
Frontier splitting is represented in Figure 2. A possible strategy for the task
generation procedure is to explore the search tree in a breadth-first search man-
ner until a given depth is reached [31, 17]. The depth of the tasks generated is
then equal. After the task generation procedure, the task solving operation is
asynchronously performed on the processors.

The task distribution procedure defines how the workload is balanced dur-
ing the parallel tree-based search. The workload can be balanced only at the
beginning of the search: this strategy is known as static load balancing. The
workload can also be balanced at the beginning and during the search when a
processor becomes idle: this strategy is known as dynamic load balancing.

In a static load balancing procedure, the task generation procedure must de-
fine at least nProc (the number of processors used) tasks. The task distribution
procedure will assign them on the processors. For example, in a search-frontier
splitting strategy with static load balancing (Figure 2), a first set of tasks is gen-
erated by the task generation procedure. This set of tasks is split into nProc
subsets and distributed to the processors. The static load-balancing implies that
the tasks are solved asynchronously on each processor without communications
or work exchanges. It means that an idle processor cannot request work from a
busy one.

In a dynamic load balancing procedure, the workload of a busy processor
can be shared with an idle one. A more sophisticated protocol than the one
used in static load balancing must be defined to perform these work exchanges.
First, when an idle processor requests work from a busy one, a work-partitioning
procedure defines how to split the workload of the busy processor into two parts.
This procedure often uses an approximation of the workload of a task to equally
split the work pool. After work partitioning, the first part of the workload is
kept by the busy processor and the second part is sent to the idle processor.

Work partitioning depends on the parallel strategy used. In the tree-splitting
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strategy (Figure 1), the donor or the busy processor will split in two parts its
set of pending nodes. Additional features can be used to improve this work-
partitioning procedure. As shown in Figure 1, a cutoff depth can be added
to avoid sharing pending nodes which represent few amount of work [22]. In a
tree-splitting with cutoff depth, only the pending nodes with a depth lower than
the cutoff are candidates to be shared with an idle processor. For example, in
Figure 1 the nodes 3, 4, 5 and 6 are the pending nodes of processor p0 which
receives a work request from processor p1. Since the cutoff depth is three, 5 and
6 are the only candidates for sharing with p1.

root

1 6

2 5

3

cutoff depth

root

1

5

root

6

Impact of the work partitioning pro-
cedure on the work pool of p0 (left)
and p1 (right)

P0 P1

Task generation procedure

3 5

Work pool on p0

6

Work-partitioning procedure

4

Work pool on p0
Work pool on p1

4

6
3 54

2

3 4

branching

Figure 1: Tree-splitting procedure and cutoff depth

In search-frontier splitting with dynamic load balancing, the donor or the
busy processor will split its set of tasks (generated at the beginning by the task
generation) into two equal parts. Figure 2 presents this procedure. In this
example, processor p0 receives a work request from processor p1. The work pool
of p0 is {i, k,m, o, q} and the approximation of the workload is equal for each
task. The five tasks are then split into two subsets: three tasks for processor p0

and two tasks for processor p1.
Another important issue in a dynamic load-balancing procedure is the ini-

tiation of the work exchanges. The dynamic load-balancing procedure must
define the communication rules between the idle and the busy processors. In
the literature [14], this choice can be made through a target variable which can
be global (global round robin) or local (asynchronous round robin) that defines
the processor to request work from. After each request the target variable is
incremented ((target + 1) mod nProc). The choice of the busy processor can
also be random (random polling). These communication rules can be applied
to tree-splitting as well as to search-frontier splitting.
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(indivisible tasks or fixed packets)

Solving on p0 Solving on p1

Initial task generation tree

An initial task generation procedure

with nProc = 2. The initial work-

partitioning is also performed.

p0: i,k,m,o,q

Work-partitioning on p0 after

receiving a work request from

p1. The work pool of p0 is

{i, k,m, o, q}.

Work-partitioning procedure

p1: o,q

Solving on p0 Solving on p1

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q

p0: a,c,e,g,i,k,m,o,q p1: b,d,f,h,j,l,n,p

p0: i,k,m

Task generation procedure

Figure 2: Search-frontier splitting procedure

2.2 Constraint Programming

Constraint Programming aims to solve combinatorial problems. It uses the
constraints of the problem to narrow the search space. CP shows good perfor-
mances for solving CSPs. For example, CP was already used in scheduling [2],
sport scheduling [7], bioinformatics [38], financial portfolio design [8] and soft-
ware verification [5]. Several CP applications can also be found in Wallace [37].
CP is also a good candidate for hybridizations with other methods, in the field
of operations research, like Integer Programming [21] or metaheuristics [36]. It
can also be used as a subproblem solver to handle the subproblem part of a
column generation procedure [13].

In CP, a problem P is stated as three sets: P = (X,D,C) such that X is the
variable set, D the set of the domains of possible values for each variable and
C the set of constraints which restrict the variable-value assignments. A CSP
and a search procedure are used to describe a CP program. The constraints
of the CP program removes inconsistent values v ∈ Di from the set of possible
values Di when v cannot be a consistent assignment to Xi according to C and
the state of every Dj such that j 6= i (inference or constraint propagation).
Research made by the CP community on the constraints substructures (binary,
linear, global constraints . . . ) allows CP programs to detect the inconsistencies
and will explore a smaller search space than an exhaustive search.

The CP program uses the search procedure to branch on variable-value as-
signment and, by doing that, builds the search tree. Two choices must be made
by the search procedure: which is the next variable to assign and which is the
value to assign to this variable? These choices are known as variable and value
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branching heuristics and have an impact on the time spent to find a solution or
all the solutions to the CSP. Some general branching heuristics were developed
like choosing the variable with the minimal domain size (MinDom) or choosing
the value with the minimal number of conflicts with the constraints of the CSP
(MinConflicts).

Three CP solvers were adapted to parallel computing. Notice that these
solvers build the search tree in parallel by computing several subproblems si-
multaneously. These parallel CP solvers use the tree splitting decomposition
procedure.

ILOG Parallel Solver was presented in 1999 by Perron [25] and is a paral-
lel implementation of the search procedure used in ILOG Solver. Unexplored
(“open”) nodes of the search tree are distributed over a set of local work pools,
one for each processor. A communication layer prevents and solves the starva-
tion problem (which appears if a processor becomes idle) and balances the load
by exchanging nodes between the processors’ local work pools when starvation
appears. It also detects termination. Few details are given about when and how
the nodes exchanges are performed. This parallel solver uses a shared memory
architecture and the use of a distributed computing architecture is one of the
perspectives of this work.

A parallel implementation of the Mozart solver was presented in 2000 by
Schulte [33]. It uses a manager / worker architecture such that the manager
initiates the work, collects the solutions, receives the job requests, sends the
shared requests and detects termination. Each worker explores its subtree,
sends its new solutions, and shares its work with an idle processor. A processor
chooses the highest node in its search tree when sharing its work with an idle
one. The depth of a node is then the estimation of its computational size. In
this case, a manager is dedicated to load balance the parallel search.

Parallel COMET was presented in 2007 by Michel et al. [20] and is a parallel
implementation of the search procedure used in COMET. The authors used a
shared memory architecture. A local work pool is assigned to each processor
and a global work pool allows work stealing between processors. Work stealing
is used as a communication protocol between an idle processor and a busy one.
A shared variable steal is used to notify that a processor is idle. When this
variable becomes true, a processor generates some new nodes and puts them on
the global work pool for sharing with the idle one. The choice of the subproblem
to share is based on its depth in the search tree.

3 The Parallel CP-Based Search Architecture

The parallel CP-based search architecture used is inspired by the search-frontier
splitting parallel strategy for DFS. However, we made our own parallelization
strategy to better fit with some particularities of our parallel CP search. The
parallelization strategy generated an initial set of tasks and distributed them on
the processors as in search-frontier splitting. However, a task is not an indivisible
piece of work and can be re-splitted during the search. Several particularities
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of our parallel CP search have motivated this strategy.
First, remember that we want to perform parallelism on top of the CP solver

without accessing its internal elements like the search tree, the variables, the
domains of possible values and the constraint propagators. In this case, using
a tree-splitting strategy is definitely prohibited since we do not have access
to the tasks or the sharing units of the parallel search (node of the search
tree). Secondly, remember that we want to use solution counting of individual
constraints of the problem to generate and to distribute the tasks. Solution
counting procedure implies additional computations which are not always useful
to solve the problem. Considering this, defining a huge number of tasks at the
beginning of the search, as performed in search-frontier splitting, would imply
additional parallel cost which increases the parallel runtime and decreases the
parallel speedup.

For these reasons, we performed a task generation procedure which dynam-
ically generates the tasks during the parallel CP-based search exploration. In
our parallel CP-based search procedure, some tasks or subtrees rooted at a node
(or a task) are completely explored by the CP solver which is used as a black-
box as in search-frontier splitting. During this operation, the CP solver handles
the constraint propagation and the search procedure. Some other tasks are
kept available for sharing with an eventually idle processor. As in tree-splitting,
these tasks are created by a branching heuristic. This specialized branching
heuristic aims to generate tasks with an approximately equal workload and can
be different from the one used in the task solving procedure.

In the following, we describe our task generation procedure and our task
distribution procedure. Two procedures generate the parallel tasks: the initial
task generation procedure and the task solving procedure. Notice that, each task
t is represented by a set of k variable-value equalities {x1(t) = d1, . . . , xk(t) =
dk} which represent its path from the root node.

The initial task generation procedure performs a breadth-first search on the
search tree to generate at least nProc tasks. This operation is performed only
on one processor. During this operation, a n-ary tree is traversed. The CP
solver is used as a black-box to propagate the constraints of the problem. A
specialized branching heuristic, which will be defined in Section 4, chooses the
next variable to expand. The goal of this heuristic is to generate tasks with an
approximately equal workload.

Figure 3 represents the initial tasks generation. Gray nodes are pending
nodes or tasks generated. From the root node, a variable xi ∈ X is chosen
according to a heuristic h. Since the domain of xi is {a, b, c, d} four tasks are
generated. According to the number of processors nProc the task generation
will explore the tasks {xi = a} and {xj = b} until enough tasks are available.

The task solving procedure also deals with the generation of new tasks. Its
responsibility is to keep work available for sharing with an eventually idle pro-
cessor. We handle this problem by performing work-partitioning before com-
puting the last task in a work pool. In this case, work-partitioning is performed
by applying the specialized branching heuristic on this task. After performing
work-partitioning, the processor will compute one of the new tasks generated.
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P = (X, D, C)

root
Select a variable xi ∈ X ac-
cording to a heuristic and the
possible values remaining in
the domains after inference

Select a variable xj ∈ X/ {xi}
according to a heuristic and the
possible values remaining in the
domains after inference

c da

d
e f e f

b

Figure 3: Initial Task Generation

Figure 4 represents this operation on a last task which is {(xi = b), (xj = f)}.
In this example, the branching operation is performed and two new tasks are
created. The first task is sent to the CP solver which explores the entire subtree
rooted at this node. The second one is kept as “available for sharing”.

P = (X, D, C)

root
Select a variable xk ∈
X/ {xi, xj} according to a
heuristic and the possible values
remaining in the domains after
inference

f

b

g h

Figure 4: Last task computation before solving

Briefly, we can state that a task is defined as an open node generated by a
specialized branching heuristic. The task generation procedure is performed at
the beginning of the search and during the search by branching on the last task
available in a work pool before solving it.

The task distribution procedure uses a bin packing procedure to split the
initial set of tasks into nProc subsets (beginning of the search) or into two
subsets (when a processor receives a work request from an idle one). Indeed,
the task distribution problem can be modeled as a bin packing problem where
the bins are the processors, the objects are the tasks, and an object volume
corresponds to a task weight [19]. A weight function w(t), which will be defined
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later, is used to compute the size of a task (Section 4). The set of tasks assigned
to processor p or its work pool is denoted by Ωp and the sum of the weights
of these tasks is denoted by L(Ωp) =

∑
t∈Ωp

w(t). The objective is to find an

assignment of the objects (tasks) to the bins (processors) in such a way that
the volume (weight) in each bin is about the same. We use the minimization
of the standard deviation over the workload of the processors as the objective
function. A similar problem, where the objective is to minimize the makespan,
is the minimum multiprocessor scheduling problem [11, 1, 4].

The distribution of the tasks to the processors is not a part of the CSP to
solve. It also represents additional computations which increase the parallel
runtime and decrease the parallel speedup. Consequently, we chose to use a
heuristic algorithm. Algorithm 1 describes this task distribution procedure. As
found in the literature on the minimum multiprocessor scheduling problem, the
Largest Processing Time algorithm (LPT) can be used to solve the tasks distri-
bution problem. Moreover, this algorithm gives a sharp bound ( 4

3
− 1

3×nProc
)

to the optimal value of the minimum multiprocessor scheduling problem [11].
The particularity of our method is to allow task generation by performing the
branching operation on the heaviest task to better balance the workload. The
procedure sorts the tasks in the work pool of a busy processor in decreasing
order of their weights. It assigns each of them to the least loaded processor ac-
cording to their current workload L(Ωp). The algorithm selects the least loaded
processor since it will be the first idle processor according to the approxima-
tion of the workload. When an assignment of the tasks to the processors is
defined, the algorithm computes the standard deviation (σ) on the weights of
all processors. The standard deviation must be less than or equal to a given
threshold th. Notice that if the bin packing procedure is not able to distribute
the tasks equally enough, according to the weight of the tasks generated and
the threshold used, it calls the specialized branching operation on the heaviest
task in the work pool and re-executes the bin packing procedure until the tasks
can be distributed (line 10-12).

4 CP Based Branching Heuristics and Workload

Estimators

A question remains open when considering the parallel CP based architecture:
which heuristic is used to generate the tasks (branching or node expansion) and
which workload estimator can be used in the distribution procedure? In the
next section we present the concept of solution counting which is proposed as
an answer.

4.1 Solution Counting

Counting solutions of CSPs at the constraint level was proposed by Pesant [28]
and adaptation to a constraint-centered heuristic was proposed by Zanarini and
Pesant [39]. The main idea is to use information about the number of solutions
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Algorithm 1 Task distribution procedure

Require: a processor k s.t. the work pool Ωk has to be split
a set of idle processors V
a threshold th

Ensure: a work pool Ωp for all p ∈ V s.t. σ({L(Ωp) s.t. p ∈ V }) ≤ th
1: T ← Ωk

2: Ωk ← ∅
3: V ← V ∪ k
4: loop

5: for all t ∈ T sorted decreasingly by w(t) do

6: choose a processor p ∈ V s.t. L(Ωp) is minimal
7: Ωp ← Ωp ∪ t
8: end for

9: if σ({L(Ωp) s.t. p ∈ V }) > th then

10: Select task t ∈ T s.t. w(t) is maximal
11: Split t into t1, . . . , tl
12: T ← T ∪ {t1, . . . , tl}
13: else

14: return Ωp s.t. p ∈ V
15: end if

16: end loop

of individual global constraints to guide the search procedure. The concepts of
solution count and solution density are presented in the following:

Definition 1 (solution count) Given a constraint γ(x1, . . . , xn) and respective
finite domains Di 1 ≤ i ≤ n, we denote by #γ(x1, . . . , xn) (or simply #γ) the
number of solutions of constraint γ.

Definition 2 (solution density) Given a constraint γ(x1, . . . , xn) and respective
finite domains Di 1 ≤ i ≤ n, a variable xn in the scope of γ and a value d ∈ D,
we will call

τ(xi, d, γ) =
#γ(x1, . . . , xi−1, d, xi+1, . . . , xn)

#γ(x1, . . . , xn)

the solution density of pair (xi, d) in γ.

The authors presented several procedures to compute #γ(x1, . . . , xn) for the
AllDifferent constraint [30] and for the Regular constraint [27]. Since counting
for the AllDifferent constraint is #P-complete, the authors presented a heuristic
algorithm based on sampling. In the case of the Regular constraint, the filtering
algorithm based on dynamic programming provides data structures which are
used to exactly count the number of solutions [39].

They used three search heuristics to guide the search for a solution. These
heuristics use solution count to follow a “fail-first principle.” The Maximum So-
lution Density (MaxSD) heuristic chooses the variable-value assignment (xi, d)
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such that τ(xi, d, γ) is maximum for some constraint γ. The Minimum Solu-
tion Count-Maximum Solution Density (MinSC:MaxSD) heuristic chooses the
variable-value assignment (xi, d) such that the variable xi is in the scope of the
constraint γ which minimizes #γ and the value d maximizes τ(xi, d, γ). Finally,
the Smallest Domain-Maximum Solution Density (MinDom:MaxSD) heuristic
chooses in the set of minimum domain size variables the variable-value assign-
ment (xi, d) such that τ(xi, d, γ) is maximum for some constraint γ.

The authors tested these heuristics on the Quasigroup with Holes problem
(Partial Latin Square) and the Nonogram problem. The heuristic MinSC:MaxSD
performs well on the nonogram problem and MaxSD performs well on the Quasi-
group with Holes problem. They reduce significantly the average number of
backtracks and the average solution time in comparison with classical branch-
ing heuristics. These results motivate the use of solution counting as a workload
estimator in the load balancing procedure of a parallel CP search.

4.2 Task Generation and Workload Estimators Based on

Solution Counting

In this section, we describe the heuristic used to generate the tasks and the
weight function used to estimate and to balance the workload during the task
distribution to the processors. We suggest specialized heuristics used in the
initial task generation phase and before to solve the last node in a work pool.
These heuristics do not follow the typical branching heuristics used in CP. The
branching heuristics used in CP aim to find solutions quickly, not to split the
tree into subtrees of similar computational size. A novelty of our work is to
modify the branching heuristic and use solution count and solution density in
order to generate tasks of approximately equal size.

We propose three heuristics that will be described in the following. Two
heuristics exploit solution count to choose a constraint γ of the problem with
a maximum or a minimum solution count #γ. Maximizing the solution count
aims to choose a part of the model in which a lot of solutions are found, possibly
making it easier to distribute them among processors. Minimizing the solution
count can be seen as a “fail-first choice” of the constraint.

After choosing this constraint γ, the heuristics choose a variable xi, in
the scope of γ, which minimizes the standard deviation σ over the densities
τ(xi, d, γ) of all values d ∈ Di (see Algorithms 2 and 3, where σ(W ) denotes
the standard deviation over all numbers in set W ). The aim of minimizing
the standard deviation is to generate subtrees with approximately the same
size. MinConstMinSTD denotes the heuristic which chooses the constraint
with the minimum number of solutions and the minimum standard deviation
over the densities. MaxConstMinSTD denotes the heuristic which chooses the
constraint with the maximum number of solutions and the minimum standard
deviation over the densities.

With these two heuristics, the weight of a variable-value assignment xi = d
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is equal to the solution density for this assignment:

w({xi = di}) = τ(xi, di, γ)

Algorithm 2 MinConstMinSTD - min #γ and min σ(τ(xi, d, γ))

input: X ′ ⊆ X, D′ ⊆ D and C the set of constraints
output: a variable branching decision var

1: minSTD ←∞
2: Choose γ ∈ C such that #γ is minimal
3: Let S = {xi ∈ X ′ | |D′

i| > 1 and xi is in the scope of γ}
4: for all variables xi ∈ S do

5: W ← {τ(xi, d, γ) | d ∈ D′

i}
6: if σ(W ) < minSTD then

7: var ← xi

8: min← σ(W )
9: end if

10: end for

11: return var

Algorithm 3 MaxConstMinSTD - max #γ and min σ(τ(xi, d, γ))

input: X ′ ⊆ X, D′ ⊆ D and C the set of constraints
output: a variable branching decision var

1: minSTD ←∞
2: Choose γ ∈ C such that #γ is maximal
3: Let S = {xi ∈ X ′ | |D′

i| > 1 and xi is in the scope of γ}
4: for all variables xi ∈ S do

5: W ← {τ(xi, d, γ) | d ∈ D′

i}
6: if σ(W ) < minSTD then

7: var ← xi

8: minSTD ← σ(W )
9: end if

10: end for

11: return var

We propose a third heuristic, MinDomMinSTD, which minimizes the size
of the domain of a variable as a first selector, and uses the standard deviation
over the densities of the possible values of a variable as a tie breaker. Algorithm
4 describes this heuristic.

In this case, the weight of each variable-value assignment is equal to :

w({xi = di}) =

∑
γ∈Γ

τ(xi, di, γ)

|Γ|

such that Γ is the set of constraints on the variable xi.
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These three heuristics compute the weight of a task t as the product of the
weights of the assignments representing the task:

w(t) =

k∏

j=1

w({xj(t) = dj})

These three heuristics are compared with the MinDom heuristic which
chooses to expand the variable with the minimum domain size. In this case,
the weight of each variable-value assignment xi = d is equal to 1/|Di| and the
weight of a task is also computed as the product of each variable-value assign-
ment in the task.

Algorithm 4 MinDomMinSTD - min |Di| and min σ(τ(xi, d, γ))

input: X ′ ⊆ X, D′ ⊆ D and C the set of constraints
output: a variable branching decision var

1: minSTD ←∞
2: Let S = {xi : |D′

i| > 1 and minimum }
3: for all xi ∈ S do

4: for all λ ∈ C : xi is in the scope of λ do

5: W ← {τ(xi, d, λ) | d ∈ D′

i}
6: if σ(W ) < minSTD then

7: var ← xi

8: minSTD ← σ(W )
9: end if

10: end for

11: end for

12: return var

5 Implementation of the Parallel CP-Based Ar-

chitecture

Computations are distributed over a set of task pools; one for each processor.
The processors communicate by a message passing interface and a processor
initiates the search by performing the initial task generation and by using the
Bin Packing procedure to distribute the tasks on the processors.

A ring topology is used to handle termination and work exchanges but other
topologies could be used depending on the number of processors and the speed
of the network. In our case, we tested the algorithm on a 16 processor architec-
ture which is organized as four nodes of quad processors. We use a ring since
the communication is fast on this architecture and the number of processors is
low. Termination detection is handled by adding the state (running, waiting
and stop) of each processor into the token exchanged. The waiting state of a
processor is used to notify the other processors of its starvation and to initiate
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Figure 5: Thread architecture and pool management

work exchanges. When a processor receives the token with waiting as its own
state it detects termination. The information about the approximated work-
load on the processors is also added in the tokens exchanged. This way, an
idle processor will receive work from the most busy processor according to this
approximation.

Since we used the CP solver as a black-box, we have no guarantee on when
a given task will be completely solved. A processor can be requested for work
while it performs the task solving procedure. This is the reason why we isolate
the parallel communication from the CP solving procedure. The multi-threaded
architecture used is shown in Figure 5. Parallelism is handled by a communica-
tion thread named SHARE. Another thread SOLV E is used to perform the
solving procedure on each task. Since a thread is dedicated to communicate
with other processors, the processor can share available work with an idle pro-
cessor even if it already called the computation of a task. The algorithm is then
completely asynchronous.

The two threads are created on the same processor and communicate to-
gether by a shared Pool of tasks. The SHARE thread adds tasks when it re-
ceives work from another processor. It also performs the distribution procedure
when receiving a work request from another processor. The SOLV E thread
performs the computation of the parallel CP tasks by using the CP solver as
a black-box and returns the number of solutions found. Mutual exclusion is
handled by mutex in the pthread protocol.

6 Experimental Results

The objective of our computational experiments is to show that the specialized
branching heuristics and the workload estimators proposed have a positive im-
pact on the running time of the parallel algorithm. These experimentations will
show the improvement in the parallel speedups.

We tested our parallel CP solver on the Quasigroup with Holes (QWH)
problem. The QWH problem is a challenging benchmark which is well-studied
by the CP community [10]. In the QWH problem, the solver must fill an n× n
grid with a value between 1 and n such that each value appears exactly once
in each row and once in each column. The problem is modeled by using an
AllDifferent constraint for each row and for each column. We solved 60 QWH
instances with a grid order of 12 and 40% of pre-filled cells. We generated
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30 completely random instances and 30 balanced instances following Gomes et
al. [10]. Random instances are generated by randomly removing some values
from a complete QWH problem. Balanced instances are generated by removing
some values from a complete QWH problem in such a way the number of holes
is approximately the same for each row and for each column.

Following Michel et al. [20], we evaluate the parallel CP solver by enumer-
ating all the feasible solutions of each of these instances. Rao and Kumar also
used an enumeration of all the feasible solutions of the hacker’s problem to
evaluate efficiency of parallel backtracking [23].

Our CP solver for the QWH problem uses the minimum domain as variable
branching heuristic and the minimum conflict as a value selector during the
solving phase. Following preliminary experiments, the threshold used in the
bin packing algorithm of the task distribution procedure is equal to 0.02. We
tested the algorithm with 2, 4, 6, 8, 12 and 16 processors. We use the message
passing interface (MPI) and parallel architecture with 16 processors (4 Quad-
Core, Intel Xeon X7350, 2.93 GHz) and 16 GB DIMMs. The operating system
used is Centos 5.0 and we use ILOG Solver 6.2 as the CP solver. We performed
each test ten times since we run an asynchronous algorithm.

We use several performance measures to rank the search heuristics described
in Section 5. Recall that the motivation of this paper is to speedup the CP search
for solutions by improving load balance and decreasing idle time on the proces-
sors. The first performance measure used to rank the specialized branching
heuristics and the workload estimators is the percentage of processor utiliza-
tion. The percentage of utilization for a processor p named U(p) is defined as
:

U(p) =
Ttot(p)− Tidle(p)

Ttot(p)

such that U(p) is the percentage of processor utilization, Ttot(p) is the elapsed
time on processor p and Tidle(p) is the idle time on processor p. The idle time
on a processor (Tidle(p)) is the sum of each time a processor spends between
the moment it sends a work request and the moment it receives some tasks. A
timer is added in the SHARE thread to count the idle time.

Another important load balance measure is the number of work exchanges
needed during the search. A work exchange counter is also added in the SHARE
thread.

Achieving load balancing is an important goal of the procedure. However,
attention must be paid to the parallel search overhead factor. The parallel search
overhead factor is the ratio between the number of operations performed by the
parallel algorithm and the number of operations performed by the sequential
algorithm. Parallel search overhead is one cause of the speedup anomalies in
parallel Branch-and-Bound algorithms [16] and in parallel DFS algorithms [23].
In this work, the number of operations used to compute the parallel search
overhead is the number of choice points explored during the search.

Finally, we also presented the parallel speedups obtained by each branching
heuristic and workload estimator. The speedup of a multi-processor system
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Figure 6: Balanced instances - Processors percentage of utilization

where P is the set of processors used is compute as :

S(P ) =
TSEQ

TP

such that TSEQ is the time spent by the best sequential algorithm known and
TP is the time spent by the parallel algorithm tested.

We performed two different comparisons of the specialized branching heuris-
tic and workload estimators proposed. First, we present the performance mea-
sures of the initial task generation procedure without work exchanges (static
load balancing). Secondly, we present the performances of the specialized
branching heuristic and workload estimators with work exchanges (dynamic
load balancing).

6.1 Initial Task Generation Performance Measurement

Figures 6 and 7 present the percentage of processor utilization depending on the
branching heuristic used for balanced and random instances respectively. Ac-
cording to this load balancing measures, the three branching heuristics which use
solution counting give a better distribution of the workload than the MinDom
heuristic.

The percentage of processor utilization has an impact on the parallel speedups
as we can observe in Figures 8 and 9. As we expect from a static load balancing
procedure, the speedups are sublinear and processor utilization decreases when
the number of processors increases. The heuristics MinConstMinSTD and
MinDomMinSTD, which give better percentage of processor utilization, give
better parallel speedups than the MinDom heuristic. This is not the case of
the MaxConstMinSTD which gives a better percentage of processor utilization
but a lower parallel speedups than MinDom.
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Figure 7: Random instances - Processors percentage of utilization
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Figure 9: Random instances - Parallel Speedups

This situation can be explained by the parallel search overhead factor. Fig-
ures 10 and 11 present the parallel search overhead depending on the branching
heuristic used. We observe that the branching choices made by the splitting
algorithm have an impact on the size of the search tree explored. In the case
of MaxConstMinSTD, we did not use a “fail-first” criterion at the top of the
tree. A “fail-first” criterion consists of choosing the variable value assignment
such that the search is more likely to fail or backtrack. By doing this, the
search space (number of choice points explored by the search procedure) would
be smaller and fail would appear at the top of the search tree [12]. This is the
reason why MaxConstMinSTD gives a better load balance but a worst solv-
ing time than the MinDom heuristic. For this reason, the MaxConstMinSTD
heuristic will not be used during the dynamic load balancing experimentations.

6.2 Dynamic Load Balancing Performance Measurement

In the case of a dynamic load balancing, the branching heuristic and the work-
load estimator have an impact on the speedups by increasing the percentage of
processor utilization and by decreasing the number of work exchanges needed.
The percentage of processor utilization is presented in Figures 12 and 13.

By using solution counting based branching heuristics the processors per-
centage of utilization is higher than the MinDom heuristic. The choice of a
heuristic depends on the kind of instances to solve. MinDomMinSTD works
better on balanced ones while MinConstMinSTD gives good results on random
ones. The two heuristics also reduces the number of work exchanges performed
during the search as shown in Figure 14 and 15.

These load balancing measures have an impact on the parallel speedups as
shown in Figures 16 and 17. We observe that the parallel speedups increase
by using the branching heuristics and workload estimators based on solution
counting. The work exchanges are enough to balance the workload on balanced
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Figure 10: Balanced instances - Parallel Search Overhead
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Figure 12: Balanced instances - Processor percentage of utilization with dynamic
load balancing
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Figure 13: Random instances - Processor percentage of utilization with dynamic
load balancing

20

A Load Balancing Procedure for Parallel Constraint Programming

CIRRELT-2008-32



0
20
40
60
80

100
120
140
160
180
200
220
240
260

2 4 6 8 12 16
nProc

nb
 w

or
k 

ex
ch

an
ge

s
MinDom
MinConstMinSTD
MinDomMinSTD

Figure 14: Balanced instances - Number of work exchanges

0
20
40
60
80

100
120
140
160
180
200
220
240
260

2 4 6 8 12 16
nProc

nb
 w

or
k 

ex
ch

an
ge

s

Figure 15: Random instances - Number of work exchanges

21

A Load Balancing Procedure for Parallel Constraint Programming

CIRRELT-2008-32



0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16
nProc

sp
ee

du
p

MinDom
MinConstMinSTD
MinDomMinSTD
Linear

Figure 16: Balanced instances - Parallel speedups

QWH instances. In this particular case, a speedup improvement of 0.19 with
8 processors, 0.56 with 12 processors and 0.57 with 16 processor is observed.
The speedups are almost the same when using a number of processors between
2 and 6.

The improvement is better on random instances which needs more work
exchanges than the balanced ones. In this particular case, MinConstMinSTD
gives better results than MinDomMinSTD when using more than 8 processors.
These two heuristics also work better than MinDom. The sublinear speedups
are caused by the communication costs and the parallel task tree management.

7 Conclusion and Future Work

We have studied several heuristics developed to improve load balancing in a
parallel CP solver. The experimentations show that the use of solution count-
ing as a workload estimator can improve the work decomposition and the load
balance over a multiprocessor architecture. Attention must be paid to the par-
allel search overhead factor when using a specialized branching heuristic during
tasks generation. Also, randomly generated QWH instances take better ad-
vantage of the specialized branching heuristics and workload estimators than
balanced instances.

As extensions to this work, we propose to use solution counting to estimate
the workload when solving combinatorial optimization problems. In this case,
the workload must be approximated as a function not only of solution density,
but also of the bound computed at any node in the search tree.
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[30] Jean-Charles Régin. A filtering algorithm for constraints of difference in
csps. In Proceedings of the 12th National Conference on Artificial Intelli-
gence, volume 1, pages 362–367, CA, USA, 1994. American Association for
Artificial Intelligence.

25

A Load Balancing Procedure for Parallel Constraint Programming

CIRRELT-2008-32



[31] A. Reinefeld and V. Schnecke. Work load balancing in highly parallel depth-
first search. In Proceedings of Scalable High Performance Computing Con-
ference, pages 773–780, TN, USA, 1994. IEEE Computer Science Press.

[32] Catherine Roucairol. Parallel computing in combinatorial optimization.
Computer Physics Reports, 11:195–220, 1989.

[33] Christian Schulte. Parallel search made simple. In Proceedings of TRICS:
Techniques foR Implementing Constraint programming Systems, Singapore,
2000.

[34] Paul Shaw. Using constraint programming and local search methods to
solve vehicle routing problems. In Proceedings of the 4th International
Conference on Principles and Practice of Constraint Programming, volume
1520 of Lecture Notes in Computer Science, pages 417–431. Springer, 1998.

[35] H. Trienekens and A. de Bruin. Towards a taxonomy of parallel branch
and bound algorithms. Technical Report EUR-CS-92-01, Department of
Computer Science, Erasmus University Rotterdam, 1992.

[36] P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT
Press, MA, USA, 2005.

[37] Mark Wallace. Practical applications of constraint programming. Con-
straints, 1(1/2):139–168, 1996.

[38] Sebastian Will, Anke Busch, and Rolf Backofen. Efficient sequence
alignment with side-constraints by cluster tree elimination. Constraints,
13(1):110–129, 2008.

[39] Alessandro Zanarini and Gilles Pesant. Solution counting algorithms for
constraint-centered search heuristics. In Proceedings of the 13th Inter-
national Conference on Principles and Practice of Constraint Program-
ming, volume 4741 of Lecture Notes in Computer Science, pages 743–757.
Springer, 2007.

26

A Load Balancing Procedure for Parallel Constraint Programming

CIRRELT-2008-32


	CIRRELT-2008-32pp
	CIRRELT-2008-32-abstract
	CIRRELT-2008-32



