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Abstract. In today’s industrial context, competitiveness is closely associated to supply 
chain performance. Coordination between business units is essential to increase this 
performance, in order to produce and deliver products on time to customers, at a 
competitive price. While planning systems usually follows a single straightforward 
production planning process, this paper proposes that partners adapt together their local 
planning process (i.e. planning behaviours) to the different situations met in the supply 
chain environment. Because each partner can choose different behaviour and all 
behaviours will have an impact on the overall performance, it is difficult to know which is 
preferable for each partner to increase this performance. Using agent-based technology, 
simulation experiments have been undertaken to verify if multi-behaviour planning agents 
who can change planning behaviours to adapt to its environment can increase supply 
chain performance. These agents have been implemented in an agent-based planning 
platform, using a case study illustrating a lumber supply chain. The performance analysis 
shows that advanced planning systems can take advantage of using multiple planning 
processes, because of the dynamic context of supply chains. 
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1. Introduction     

New economic challenges and recent trends regarding globalization have forced companies of many 

industries, including the Canadian lumber industry, to question aspects of their organizations. Many of 

them have reengineered their organizational processes and business practices and adopted supply chain 

management best practices. One aspect studied by many researchers recently is supply chain planning, 

which deals with the management of customer orders through the supply chain. Each partner involved 

must decide quantities to produce, production and delivery dates, distribution modes, and allocate 

resources to each product needed, with respect to production capacities and transportation delays. 

Coordination between production partners is essential in a supply chain context in order to deliver 

products on time to customers and at a competitive price. As changes occur all the time in such a 

complex system, production centers have to react to deviances and create new plans, while 

coordinating changes with partners.  

 

In this paper, we address the adaptation of supply chain production planning systems to handle 

changes. Decentralized approaches are typically used to increase adaptation, giving different partners 

the responsibility to plan their production locally. The challenge of these approaches is to provide 

coordination schemes insuring coherent supply chain behaviour and global competitiveness. Agent-

based technology provides a natural approach to model supply chain networks and describe specific 

planning agents. In such distributed planning systems, global performance is directly linked to how 

well the agents perform together. However, when different planning processes can be used by each 

agent to plan local production, it becomes difficult (or impossible) for each agent to identify the 

preferable one, especially in the dynamic context of supply chains. In fact, the local planning process 
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(we term it here planning behaviour) leading to the highest performance for the supply chain can 

change with the environmental conditions. It then becomes necessary to use agents with the ability to 

adopt different planning behaviours and be able to learn the preferable one in various situations.  

 

In order to handle this problem, multi-behaviour agents have been proposed (Forget et al. 2008a). 

These planning agents can adapt by selecting a planning behaviour according to the status of the supply 

chain. Here, a planning behaviour is defined as a planning process used by an agent to solve a planning 

problem. Using simulations, these agents can test the impacts on the supply chain performance of using 

a specific behaviour, depending on various factors such as customer demand and partners’ behaviours 

as well. Depending on the observed results, agents can coordinate their actions by choosing a coherent 

team behaviour specifying a specific planning behaviour for each agent, leading to the best supply 

chain performance. We term team behaviour the combination of all agents’ individual planning 

behaviours of agents in the supply chain.  

 

This paper presents the simulation methodology and the performance analysis of an implementation of 

multi-behaviour agents in a lumber supply chain case study. Section 2 provides a literature review on 

supply chain planning and agent related subjects. In Section 3, the simulation methodology is detailed, 

including descriptions of the agent-based experimental platform, the multi-behaviour agent model, the 

lumber supply chain study case and the design of experiments. In Section 4, a performance analysis is 

presented. Finally, Section 5 concludes and provides an overview of intended future work. 
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2. Literature Review 

2.1 Distributed Supply Chain Planning 

Traditionally, centralized planning systems have been used for production planning in a single 

company, with a single or several facilities. Offering a complete and aggregated view of production 

activities, they usually use optimization algorithms to find near-optimal production plans. In a 

distributed context like supply chains, where multiple partners work together to deliver goods to final 

customers, planning rapidly becomes difficult, if not impossible, to solve centrally. Centralized 

planning systems tend to be rigid under dynamic system environments and are less likely to succeed 

than distributed approaches (Alvarez, 2007). Also, supply chain partners are usually reluctant to share 

private information that can be crucial to their competitiveness.  

 

Different organizational paradigms have been studied to operate distributed systems, such as fractal 

factory, bionic manufacturing, holonic manufacturing and the NetMan paradigm (see Frayret et al., 

2004 for a review). These paradigms are generic frameworks that can be used to design distributed 

manufacturing systems. They differ from each other in the way they handle specific problems, manage 

information and coordinate actions. In fact, in the context of supply chains, these distributed 

approaches have contributed to the development of agent-based supply chain planning systems. Agent-

based planning systems are computer systems made from a collection of software agents, with specific 

roles and goals, interacting with each other to make the best decisions according to the situation and 

their goals in order to carry out their part of the planning task (Marik et al., 2001). Agent-based systems 

focus on implementing individual and social behaviours in a distributed context, using notions such as 

autonomy, reactivity and goal-directed reasoning (Bussmann et al., 2004).  
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Several articles present reviews of research projects related to planning, scheduling and control, using 

agents (Shen et al., 2006; Caridi & Cavalieri, 2004, Frayret et al., 2007; Moyaux et al., 2006a). Among 

these projects, Montreuil (Montreuil et al., 2000) presented NetMan, which is an operation system for 

networked manufacturing organizations that aims to provide a collaborative approach to operations 

planning in the context of a motor coach company. In the NetMan platform, the agents possess models 

of their supplier and customer permitting an anticipation of the impacts of the agent’s decision on its 

neighbouring agents. The ExPlanTech multi-agent platform (Pechoucek et al., 2005) provides decision-

making support and simulation capabilities to distributed production planning. Relying on 

communication agents, project planning agents, project management agents and production agents, the 

platform uses negotiation, job delegation and task decomposition to solve production coordination 

problems. In order to reduce communication traffic, social knowledge is precompiled and maintained, 

which represents information about other agents. The FORAC agent-based planning platform (Frayret 

et al., 2007) presents an architecture combining agent-based technology and operation research-based 

tools. The platform is designed to plan supply chain operations and simulate supply chain activities. 

Each agent can be designed with specific planning algorithms and is able to start a planning process at 

any time, following a change in its environment. The agent’s environment is made up of the other 

supply chain agents, demand information from customers and supply availabilities from suppliers. 

More details of this platform are given in Section 3.1.  

 

2.2 Coordination in Supply Chains 

Without coordination, a group of agents can quickly degenerate into a chaotic collection of individuals 

(Shen et al., 2006). The coordination between planning centers is essential because decisions 

concerning production planning are interdependent and have an impact on partners (Moyaux et al., 
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2006a). These interdependencies need to be managed, which requires the building of coordination 

mechanisms to maintain a certain level of coherence between the different decision centers. These 

coordination mechanisms can in fact be understood as rules that partners use to carry out their own 

planning activities. Different categories of coordination mechanisms have been identified by Frayret et 

al. (2004) in the context of distributed systems. These categories propose to overcome certain limits of 

previous classification schemes in order to include new forms of coordination mechanisms encountered 

in agent-based manufacturing systems, including a distinction between coordination before and during 

activities. 

 

Negotiation is a common supply chain coordination approach, where partners look at finding mutual 

agreement on planning issues. Jiao et al. (2006) argue that negotiation is crucial to successfully 

coordinate different supply chain entities. Various negotiation strategies can be deployed, including 

contract-based negotiation, market-based negotiation, game theory-based negotiation, plan-based 

negotiation and AI-based negotiation (Shen et al., 2001). Dudek and Stadtler (2005) proposed a 

negotiation-based scheme between two supply chain partners, using a convergence mechanism based 

on exchange of local associated costs. Different agent-based manufacturing systems using negotiation 

have been proposed (see Shen et al., 2001; Shen et al., 2006). Among them, Jiao et al. (2006) present 

an agent-based framework that enables multi-contract negotiation and coordination of multiple 

negotiation processes in a supply chain. Monteiro et al. (2007) proposed a new approach to coordinate 

planning decisions in a multi-site network system, using a planning agent and negotiation agents. The 

negotiator agent is responsible for limiting the negotiation process and facilitating cooperation between 

production centers. Chen et al. (1999) proposed a negotiation-based multi-agent system for supply 

chain management, describing a number of negotiation protocols for functional agent cooperation. 
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While most of these agent-based supply chain planning approaches use specific coordination and 

optimization mechanisms to produce coherent production plans, they can be insufficient to face 

changing conditions. In many situations, it can be advantageous to use a different approach, more 

adapted to the state of the environment. This raises the need for adaptive multi-behaviour agents, who 

can adapt their planning behaviour to their environment and change their local coordination and 

optimization mechanisms. 

 

2.3 Adaptive Agent-based Planning 

When the environment is characterized by high levels of variability, which is often the case of supply 

chains (e.g. supply quality variability, demand volatility, poor delivery reliability and new production 

introduction), planning agents are expected to create or review production plans continuously. In some 

situations, it can be advantageous for agents to adapt to the context. Adaptation can be over their local 

planning behaviours, where each agent adapts itself individually, or it can be done as a team, where 

agents collaborate to adapt to the situation together. Different adaptive agent models have thus been 

proposed in the literature, some of which were specifically designed to improve the performance of the 

supply chain.  

 

One of the most well known is the InteRRaP architecture (Muller, 1997). This layer-based agent model 

provides an approach to react and deliberate when confronted with changing situations, using different 

cognitive capability levels. Depending on the situation, the agent can use a reactive response, local 

planning or collaboration planning with other agents. The Agent Building Shell (ABS) (Fox et al., 

2000) is a collection of reusable software components and interfaces needed for any agent involved in a 

supply chain management system. The ABS is geared to handle changes caused by stochastic events in 
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a supply chain. An interesting simulation is presented using ABS agents to analyze the impact of 

coordination in supply chains when facing changes. Another adaptive agent model is the tri-base 

acquaintance model (3bA) (Marik et al., 2001). It provides the possibility of dealing with changes in a 

global perspective instead of resolving problems from a local perspective. This is accomplished by 

using information about other agents without the need for a central facilitator. These authors present 

some applications to supply chains and they define the social knowledge needed to increase the 

efficiency of agents. In the MetaMorph adaptive agent-based architecture (Maturana et al., 1999), 

mediator agents are used to facilitate the coordination of heterogeneous agents. These mediators 

assume the role of system coordinators and encapsulate various mediation behaviours (or strategies) to 

break decision deadlocks. Jeng et al. (2006) proposed an agent-based framework (Commitment-based 

Sense-and-Respond framework – CSR) which is an adaptive environment for continuous monitoring of 

business performance and reacting to changes, using multiple decision agents. An application to the 

microelectronic supply chain is presented. 

 

The multi-behaviour agent is an adaptive agent model presented by Forget et al. (2008a) and has been 

designed to give the agents alternative behaviours to face different situations more efficiently, 

individually or as a team. While mono-behaviour agents construct plans using the same planning 

behaviour continuously, multi-behaviour agents can learn which planning behaviours to adopt in many 

different situations, depending on the environment, and change its behaviours when needed. The multi-

behaviour agent presents three basic behaviour categories, inspired by the coordination mechanisms 

found in the literature (Shen et al., 2001; Frayret et al., 2004; Moyaux et al., 2006a, Schneeweiss, 

2003). These categories are identified as Reaction, Anticipation and Negotiation. The reaction 

behaviours are simple sequences of planning tasks (or planning task flow) using local information and 
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no feedback. Anticipation behaviours are based on the use of anticipation functions that approximate 

other agents’ decision models in order to offer superior or improved plans to them. Negotiation 

behaviours are more complex task flows involving feedback loops to find an acceptable compromise 

for both negotiating agents. Figure 1 presents the multi-behaviour agent model.  

 

 

Figure 1. Multi-behaviour agent model 

 

Basically, when facing a state change in its environment, the agent must select the planning behaviour 

to adopt, using different selection criteria, such as available time to make a decision, chance of success 

of a particular task flow and source of the perturbation. Researchers have presented several approaches 

to select the best task flow in a shop floor context, using case-based reasoning and heuristic search 

techniques (Aytug et al., 2005). The multi-behaviour agent uses a rule-based reasoning approach where 

it learns through simulations and run-time experience which planning behaviour offers the best 

performance for various situations. For these experiments, we focused on simulating various reaction 

behaviours. Also, the implementation of the learning ability has not been performed yet, focusing our 

efforts on verifying the performance gain of using multiple behaviours. For a detailed description and 
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examples of planning behaviours, the reader is refered to Forget et al. (2008a). A design framework for 

multi-behaviour agents is presented in Forget et al. (2008b). 

 

These agent architectures all offer the possibility of adapting their planning behaviour when certain 

situations occur, some individually and others as a team. Some of them know beforehand which 

behaviour must be used for each situation, while other agents successively try different alternatives. 

More advanced agents compile the performance of past experiences and learn from it: these are 

learning agents. 

 

2.4 Learning in Supply Chain Planning 

Adaptive agents in supply chain show many promising features. However, linking behaviours and 

supply chain performance with environmental conditions can be a difficult task. The main reason is that 

most changes in manufacturing environments are not predictable in advance (Shen et al., 2006). This 

raises the need for agents that cannot only adapt but also learn (Weiss and Sen, 1996). Agents then are 

able to recognize and analyze the current situation and apply the most appropriate behaviour instead of 

trying each of them, one at the time. Alonso et al. (2001) argue that learning is the most crucial 

characteristic of intelligent agent systems. 

 

Many researchers have investigated learning agents, from defining fundamental issues of intelligent 

learning agents, (Schleiffer, 2005) to designing learning techniques for multi-agent systems (Alonso et 

al., 2001; Weiss and Sen, 1996). Shen et al. (2000) present a research review related to the 

enhancement of agent-based manufacturing systems through learning, including the use of learning in a 

more general manufacturing context. Among them, mediator agents in the agent-based architecture 
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MetaMorph (Maturana et al., 1999) use two learning mechanisms, learning from history and learning 

from future, in order to enhance the manufacturing system’s performance and responsiveness. 

Crawford and Veloso (2007) recently studied how agents can learn to negotiate strategically to reach 

better performance in agent-based meeting scheduling. To create adaptive and learning agents, Fox et 

al. (2000) use the Markov decision processes in conversation protocols. Each action included in the 

protocol has a probability to cause a transition to a determined state. From obtained results, the agent 

updates probabilities, which changes agent behaviour over time. In a case where multiple agents 

cooperate and coordinate their actions, they can learn together how to solve a joint task and maximize 

their utility: it is called cooperative multi-agent learning. Panait and Luke (2005) present a complete 

review of this topic, including team learning and concurrent learning. Basically, team learning involves 

a single agent learning for an entire group, specifying the set of behaviours for every member, while 

concurrent learning describes the use of multiple agents, where each one is responsible for a certain 

learning space. Multi-behaviour agents use team learning to learn which planning behaviour to use in 

various situations. 

 

3. Simulation methodology 

Using agent-based technology, simulation experiments have been undertaken to verify if multi-

behaviour planning agents that can change planning behaviours to adapt to its environment can increase 

supply chain performance. These agents have been implemented in an agent-based planning platform, 

using a case study illustrating a lumber supply chain. In this section, we describe the agent-based 

experimental planning platform used for simulation and then, a description of the lumber supply chain 

case study is provided. In the following, the design of the experiment is detailed. 
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3.1 Agent-based planning platform 

With the purpose of developing a new approach for planning the lumber supply chain, the FORAC 

Research Consortium has developed an experimental Internet-based planning platform built on an 

agent-based architecture for advanced planning and scheduling (Frayret et al., 2007). This platform 

allows different production centers to independently react to changes and plan production, while 

maintaining feasibility and coordination with one another. By distributing planning decisions among 

specialized planning agents geared up with adapted optimization tools and by providing coordination 

mechanisms, the platform increases supply chain reactivity and performance. Another major capability 

of the platform concerns simulation functions. It becomes possible for supply chain designers or 

production managers to simulate changes in certain aspects of the supply chain. These simulations can 

be strategic (e.g. adding a new partner, building a new plant, moving production resources to another 

plant), tactical (e.g. changing decoupling point, adding new machinery) and operational, such as the 

number of work shifts and the number of employees. In this paper, the simulation functions of the 

platform are used at the operational level, in order to simulate multiple production planning behaviours. 

 

The agent-based architecture presented is based on a functional division of planning domains, inspired 

by the SCOR model proposed by the Supply Chain Council (Stephens, 2000). Figure 2 presents an 

example of a simple supply chain, dividing activities among specialized production planning agents 

(sawing agent, drying agent and finishing agent), a source agent, a deliver agent and a warehouse agent. 

Each of these agents is responsible for supporting the planning of its production center in terms of 

production output each day. The suppliers and customers are represented as software agents or human 

planners, depending on the degree of simulation required. The implementation of the experimental 

platform was carried out with the collaboration of a consortium of Canadian lumber companies. A 
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supply chain configuration has been developed in order to address the planning of sawing, drying and 

finishing activities inside a lumber mill and real data was used to test performance. 

 

 

Figure 2. Supply chain example from the FORAC planning platform 

 

The agents’ planning problems are radically different with regard to their nature, both in terms of 

production philosophy and constraints. In order to individually plan for the different production agents, 

planning algorithms have been developed to resolve the three operations planning/scheduling problems. 

In practice, the planning models have been designed in order to take advantage of some of the 

specificities of the overall planning context. The objective is to minimize lateness for delivery to the 

final customer. The sawing agent uses a mixed integer linear programming model (MIP) solved with 

ILOG CPLEX. It is designed to identify the right mix of log types and cutting patterns to use during 

each shift in order to control the output of the overall divergent production process. For the drying 

problem, a constraint programming approach was designed as an anytime algorithm, solved using 

ILOG SOLVER (Gaudreault et al., 2006). Finally, a MIP model was designed to address this finishing 

planning problem and is resolved using ILOG CPLEX. 
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If a change occurs in the supply chain operations, any agent can initiate collaboration with other agents 

by sending a revised demand or supply plan. For example, collaboration can be triggered by an agent 

who has received a new demand. To this end, agents are continuously monitoring their environment 

and reacting to changes. Because of the interaction context, an agent’s environment is also made up of 

all messages received from other agents specifying a new or modified requirement plan, a new or 

modified replenishment plan, a contingency situation, or a high priority requirement to process. For a 

more detailed description, the reader is referred to Frayret et al. (2007) 

 

3.2 Lumber supply chain study case 

In order to simulate multi-behaviour agents, an industrial study case has been created. Inspired by a real 

lumber supply chain, decisions were made concerning the number of partners, production centers, 

capacity, initial inventory, number of products and demand orders. The production planning agents 

(sawing, drying and finishing) have been parameterized following realistic industrial examples in terms 

of production lines, production hours and production processes specific to the lumber industry (e.g. 

cutting patterns). A total of 45 different products are available to customers, corresponding to different 

lengths and quality of lumber pieces. An initial inventory has been determined for each production 

center, corresponding to approximately one week of production at full capacity. 

 

More precisely, the sawing production center uses one general sawing line for 8 feet to 16 feet lengths, 

working 7 days per week, 16 hours per day. The maximum capacity for this production center is 233 

million FBM (Foot Board Measure) per year when the most efficient processes are used. The drying 

production center is composed of unlimited air dry spaces, 5 small kiln dryers and two large kiln 

dryers. Air dry spaces are outside zones where green lumber can dry slowly. Air dried products usually 
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lead to a higher quality final product, but take longer to be dried. Small kiln dryers have a loading 

capacity of 137,000 FBM and are open all year around (7 days per week, 24 hours per day). Large kiln 

dryers have a loading capacity of 237,000 FBM and are also open all year. Finally, the finishing 

production center uses one line, working 7 days per week, at 16 hours per day. Its maximum capacity is 

219 million FBM per year. Table 1 presents the production center details. 

 

Table 1. Production centers details 

 

 

3.3 Design of experiments 

The details of the experiment design are presented as follows. We describe the inputs, which are the 

environmental conditions, the controllable variables, which are the team behaviours, and the outputs of 

the experiments, which are the results for different performance indicators. The main objective of these 

experiments is to verify if, for various environmental conditions, the best results are obtained with 

mono-behaviour agents (using the same team behaviour in every situation) or with multi-behaviour 

agents where team behaviours are adapted. 
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3.3.1 Inputs 

The system was submitted to different demand order variations. Two design factors describing demand 

orders have been used: (1) contract proportion (contract demand versus spot demand in terms of 

volume) and (2) demand intensity. For the contract proportion factor, we distinguish a contract demand 

(regular demand from a contract customer, providing a premium bonus) with a spot demand (one-time 

order, irregular frequency). When a supplier is late for a spot demand, it is considered lost because the 

customer usually changes supplier. However, in the case of a contract demand, it is not lost, but a 

penalty for each day is charged. Five different contract proportions have been used in the simulation, 

which are 0%, 25%, 50%, 75% and 100% of contract orders. In the lumber industry, some companies 

have a majority of contracts (close to 100% of contracts), while others prefer to rely only on spot 

market (0% of contracts). The demand intensity factor represents the percentage of production capacity 

required to answer the demand. Three levels of demand intensity have been used, which are 50%, 

100% and 150%. The demand intensity of 100% has been estimated by pushing an infinity of supply 

into the supply chain and observing the maximum production output that can be produced. For the two 

extremes, a demand intensity of 50% is common when the economic context is running slowly, while 

an intensity of 150% is possible in periods of economic growth. When the demand intensity varies, 

both contract and spot demand are affected. 

 

Basically, in each experiment, planning agents have to prepare a production plan for the following 30 

days, knowing a set of incoming demand orders spread over the horizon. These demand orders follow a 

specific combination of demand intensity and contract demand proportion. A total of four demand sets 

from customers were generated by a random demand generator, in order to perform four replications of 

every experiment. This generator creates random demand, according to predetermined settings such as 
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distribution functions of demand quantity, minimum/maximum limits, random errors and seasonality.  

It offers the possibility of adding variability to the system by confronting the multi-behaviour agents 

with different patterns and situations. Every product can be set in a different manner to follow a 

different demand pattern. Also, for different customers, a product can have different demand patterns. 

Values have been determined following examples available from the lumber industry. More details on 

the demand generator can be found in Lemieux et al. (2008). 

 

3.3.2 Controllable variables 

In order to respond to the different inputs, controllable variables can be modified, creating different 

reaction planning behaviours for each planning agent. We identified four controllable variables that can 

be modified in the planning system, which are scheduling strategy, priority, penalty and coordination 

mechanisms. The first three variables can be classified as optimization variables while the last one 

modifies the coordination mechanism. The planning algorithm used by an agent can be parameterized 

to present two different scheduling strategies: just-in-time (JIT) or forward. JIT scheduling aims to plan 

orders at the latest possible date without being late, while the forward scheduling plans orders as soon 

as possible. Priority drives the weight of spot versus contract orders. Here, three cases are studied: spot 

orders with priority over the contract orders, contract orders with priority over the spot orders, and 

finally, spot and contract orders with equal priority. Penalty is a penalty factor that can be applied only 

on backorders or set equal to inventory holding costs. These three optimization variables presented here 

can be modified for all agents in the same time or only some of them, generating different production 

plans. Table 2 resumes the variables. 
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Table 2. Optimization variables 

 

 

Another way to change the planning behaviour is to modify the coordination mechanism between 

agents. Two mechanisms are studied: downstream and two-phase. Downstream planning is 

characterized by plans which are constrained by the downstream supply. In this case, the products 

harvested in the forest dictate what will be processed in the supply chain, without using information on 

customer demand. Two-phase planning is a coordination mechanism using the downstream planning 

combined with an upstream planning approach. This approach involves a hierarchy of subproblems that 

implicates each agent twice. The agent first makes a temporary plan to compute its supply needs and 

sends this information to its supplier. In turn, the supplier tries to satisfy this demand and responds with 

a supply plan that does not necessarily meet all demand (e.g., some deliveries may be planned to be late 

or some products can be replaced by substitutes). The agent can generate a second production plan 

constrained by the supply plan. Figure 3 presents the coordination mechanisms between the three 

production planning agents. 

 

 

Figure 3. Coordination mechanisms 

Scheduling strategy Priority Penalty
Just-In-Time Priority on spot Penalty BO

Forward Priority on contract Equal penalty inventory/BO
Equal priority spot/contract

Planning logics

Drying 
Agent

Sawing 
Agent

Finishing 
Agent

Downstream

Two-phase Drying 
Agent

Sawing 
Agent

Finishing 
Agent
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3.3.3 Fractional Factorial Experiment 

Combining these controllable variables, we identified nine different planning behaviours mixes, 

presenting a variety of team behaviours for the supply chain (see Table 3). The three optimization 

variables presented in the last section have been applied to a different agent: the planning algorithm 

variable has been applied to the drying agent, the priority variable to the deliver agent and the penalty 

variable to the finishing agent. The coordination mechanism variable has been applied to the entire 

team. This selection of team behaviours makes the experiment a fractional factorial experiment and is 

based on the experience of managers and researchers.  

 

Table 3. Team behaviours used in experiments 

 

 

3.3.4 Outputs 

In order to analyze the different team behaviours, different outputs have been identified, showing 

different levels of supply chain performance. Depending on the choice of a specific performance 

indicator, the preferable team behaviour may differ. In certain environments, a specific team behaviour 

can dominate others for all indicators, but in another, the same behaviour can show poor results. Here, 

the results are analyzed regarding four performance indicators: (1) total lateness on contract-based 
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orders, (2) supply chain inventory, (3) adjusted revenues and (4) delivery performance on spot-based 

orders. Total lateness is the quantity of backorders (BO) for contract-based orders. It is expressed as 

the quantity of FBM (Foot Board Measure) multiplied by the number of days late. Supply chain 

inventory is the sum of the average of FBM in inventory, per month. The adjusted revenues are based 

on revenues generated by the sales of products to customers, where inventory holding costs and 

lateness penalties are subtracted. A penalty cost is associated with lateness in contract-based orders 

(1.5% per day for backorder) and a premium bonus is given for the fulfilled contract-based order (5%). 

A daily inventory holding cost of 0.5% of market value is charged. This indicator is partial since it does 

not include production costs but is sufficient to compare planning behaviours. Finally, the spot delivery 

performance is the percentage of spot orders delivered on time. 

 

4. Performance analysis 

4.1 Team behaviour performance 

Using the different demand sets generated, four replications were produced. We used the average of all 

replications to draw graphs and observed the evolution of the performances. Figures 4-7 present the 

team behaviour performances in various conditions (demand intensity and contract proportion), for 

different performance indicators (total lateness, supply chain inventory, adjusted revenues and delivery 

performance on spot). In each graph, depending on the set of environmental conditions, each team 

behaviour follows a different performance evolution. This implies that the preferable team behaviour is 

not always the same and that there is an advantage to considering all of them instead of choosing the 

same for all situations.  
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Figure 4. Performance for contract lateness 

 

Figure 5. Performance for average inventory
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Figure 6. Performance for adjusted revenues 

 

Figure 7. Performance for spot delivery
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In Figure 4, the three graphs present the performance evolution in term of lateness. Because the team 

objective is to minimize this indicator, behaviours 5 and 9 offer the best performances in most 

conditions. But when the proportion of contracts approaches 100% contracts (especially for 100% and 

150% demand), behaviour 6 offers the best results. In Figure 5, for the average inventory performance 

indicator, the supply chain team still aims to minimize this indicator. Behaviour 8 gives the best results 

at 50% and 150% demand for all contract proportions, but at 100% demand, behaviours 2 and 4 seem 

to perform better most of the time. Figure 6 presents results for the adjusted revenues performance 

indicator. This analysis is particularly interesting since it combines information from lateness and 

inventory data. As we can see, at 50% demand, behaviour 9 is dominant. But when the demand 

intensity grows to 100% and 150%, behaviour 3 gradually offers the highest performance. Finally, the 

three graphs in Figure 7 present the delivery performance for spot demand. This time, behaviour 7 is 

dominant for a 50% demand (but followed very closely by behaviour 1) and behaviour 3 is dominant 

for 100% and 150% demand. 

 

While it can be hazardous to explain the reasons behind the evolutions of each behaviour and why a 

behaviour performs better for a specific situation, a hypothesis can be proposed. For example, in the 

adjusted revenues curves (Figure 6), as the demand intensity increases, behaviour 3 becomes more and 

more interesting to select. In fact, behaviour 3 is characterized by downstream team coordination, 

instead of a two-phase coordination like the other behaviours. This specificity gives bad results when it 

is important to fit the production to the demand (in low demand intensity context) but can be 

advantageous when demand is so important that merely every product can be sold (in high demand 

intensity). 
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4.2 Similar behaviours 

In some situations, behaviour performances are very similar and it can be difficult to determine without 

any doubt which behaviour is preferable. The study of the standard deviations of the preferable 

identified behaviours for the four replications tested (vertical lines in Figures 4-7) shows that some 

behaviours are too close to be significantly different. This happens when the preferable behaviour 

standard deviation includes other behaviours. In these situations, there would be not only one 

preferable behaviour but a sub-group of preferable behaviours, from which the planning agent can 

choose. The similarities of behaviours are particularly clear in Figures 5 and 6 at a 50% demand (top 

graphs). In these cases, almost all behaviours are equivalent for all contract proportions. This means 

that for a low degree of capacity usage, no planning behaviour is preferable. 

 

Conclusions from a standard deviation study can vary depending on the number of replications. It is 

possible that the strong standard deviations presented in Figures 5 and 6 may decrease (or increase) 

from the results obtained here from four replications by going through more replications. 

  

4.3 Knowledge matrix 

Performances are gathered in a knowledge matrix, including the preferable team behaviours for the 

different environmental conditions. This matrix is imbedded in the agent and can be updated by run-

time learning. Table 4 presents an example of such a matrix derived from this simulation. When a sub-

group of preferable behaviours is identified (instead of a single behaviour), the others are also added. In 

this knowledge matrix, the team behaviour with the best performance observed is written first, followed 

by similar behaviours between brackets. While this matrix presents, for clarity purposes, only four 
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intervals of contract proportion, a multi-agent can directly use the performance curves to calculate the 

preferable behaviour for a specific environmental condition. 

Table 4. Knowledge matrix 

 

 

4.4 Penalty factor analysis 

While experimenting different demand patterns gives interesting insights on which behaviours to adopt, 

it could be also interesting to modify the lateness penalties, contract bonuses and inventory holding 

costs in order to better understand their impact on the behaviour to adopt. When one or many of these 

variables are modified, the preferable team behaviour indeed changes. For example, a downstream 

planning strategy is known to imply a high degree of late deliveries to customers, mainly because the 

customers’ demand is not used to plan production. When the lateness penalty is rather negligible, this 

strategy can be used. Otherwise, if the lateness penalty increases the situation can change. Figure 8 

presents such an evolution, presenting the adjusted revenues curves for 100% demand, using a lateness 

penalty of 3.5% of product value per day instead of 1.5% (used in previous simulations). In this 

example, we can see that behaviour 3 considerably reduced its advantage over the other behaviours, 

compared to results presented in Figure 8 for a demand intensity of 100%. These behaviour 
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performance changes are linked to the fact that any change in the system has an impact on the 

performance indicator. Simulation is interesting here because it is often not trivial to forecast the 

impact of each planning behaviour. 

 

 

Figure 8. Performance for adjusted revenues with lateness penalty of 3.5% 
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While Figures 4 to 8 present an analysis of the preferable team behaviour considering a single 

performance indicator at the time, it is possible to analyze simultaneously the performance of many 

indicators.  Often, there is no totally dominant behaviour for both performance indicators and multi-

behaviour agents must make a selection, based on rules predefined by the system designer. This kind of 

analysis is particularly interesting when there is not a single performance indicator the planning agent 

must follow. One can argue that the adjusted revenues indicator must be prioritized over all others. This 

can be true in many situations, but in a long term relationship with customers, high lateness and poor 
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spot delivery performance can lead to the loss of customers and reputation. Also, in the lumber 

industry, high levels of inventory can lead to losses due to the degradation of the material (insect 

infestation, wood crackling, mould, fire, etc.).  

 

4.6 Potential gains 

For the different environment conditions and performance indicators, it is possible to compare the 

performance results of the preferable team behaviour with worst team behaviour and the average 

performances of all team behaviours. This gives the maximum potential gain and the average expected. 

Table 5 presents the results for the different environmental conditions. As an example, for the adjusted 

revenues, at a demand intensity of 100% and a proportion of 50% of contract, we obtain a maximum 

potential gain of 7.8% and an average expected gain of 5.2% by using the preferable team behaviour. 

When the demand intensity increases to 150% (for the same contract proportion), the maximum 

potential gain and the expected gain rises respectively at 36.6% and 31.6%. Also, because the 

simulation covers a 30-day period, these potential gains are recurrent. 

 

These results give an, the possible gains grow dramatically, suggesting the importance of managing 

planning behaviours insight into the potential gains for the supply chain’s use of multi-behaviour 

agents to adapt to environmental changes. As the demand level rises for under capacity situations. 

These benefits cannot be ignored, even more in an industry such as the lumber industry where profits 

are made of thin margins. Following this idea, supply chain planning systems should strongly consider 

using different planning behaviours in order to adapt to the highly dynamic nature of supply chains. 
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Table 5. Gains to select the best behaviours compared to the average results 

 

 

5. Conclusion 

Designers of planning systems often do not consider the possibilities of using different planning 

behaviours to deal with the dynamic aspect of business. This paper proposes an approach that breaks 

free from the hypothesis that planning must always be conducted the same way. By using multi-

behaviour agents in an agent-based planning platform, the system designer can provide planning agents 

with the ability to adapt their planning behaviours according to changes in their environment.  

 

In this paper, we presented a performance analysis of multi-behaviour agents in supply chain planning. 

Simulation results are presented from an application to the lumber supply chain. Various team 

behaviours have been tested in different environmental conditions and have presented different 

performance levels. We extended our proposition by presenting possible profit gains by using the best 

team behaviour in every situation instead of using the same one all over the entire horizon. Preliminary 
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powerful tool to reach appreciable gains when implemented in an agent-based supply chain planning 

system such as the FORAC experimental platform. 

 

The next step intended in this research is to develop the learning ability of the multi-behaviour agent. 

Different learning technologies can be implemented and compared to help the agent to update its 

preference over time. This is very promising and could lead to an even more agile supply chain. 

Finally, anticipation and negotiation planning behaviours can be developed and simulated in order to 

exploit to the maximum all the multi-behaviour agent possibilities.  
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