
 
 

 
 

   
    

_____________________________   
 
ADS: An Adaptive Search Strategy 
for Efficient Distributed Decision 
Making   
      

      Jonathan Gaudreault 
      Gilles Pesant 
       Jean-Marc Frayret  
      Sophie D’Amours     
        

                                
November 2008 
 
 

CIRRELT-2008-49 
 
 
 
 
 
 
 
 
 
 
 



 

ADS: An Adaptive Search Strategy for Efficient  
Distributed Decision Making 

Jonathan Gaudreault1,2,*, Gilles Pesant1,3, Jean-Marc Frayret1,3, Sophie D’Amours1,2 
 

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation  
(CIRRELT) 

2 Département de génie mécanique, Pavillon Adrien-Pouliot, Université Laval, Québec, Canada     
G1K 7P4 

3 Mathematics and Industrial Engineering Department, École Polytechnique de Montréal, C.P. 
6079, succursale Centre-ville, Montréal, Canada H3C 3A7 
 

 
Abstract. This paper concerns distributed decision-making in hierarchical settings. For 

this class of problems, the coordination space can be naturally modeled as a tree. A 

collective of agents can thus perform a distributed tree search in order to coordinate. 

Previous results have shown that search strategies based on discrepancies (e.g. LDS) 

can be adapted to a distributed context. They are more effective than chronological 

backtracking in such setting. In this paper we introduce ADS, an adaptive backtracking 

strategy based on the analysis of discrepancies. It enables the agents to collectively and 

dynamically learn which areas of the tree are most promising in order to visit them first. 

We evaluated the method using a real coordination problem in an industrial supply chain. 

This makes it possible for the team of agents to obtain high-quality solutions much more 

quickly than with previous methods. 

Keywords. Supply chain coordination, multi-agent, distributed search, discrepancy, 

adaptive. 

Acknowledgements. This work was funded by the FORAC Research Consortium and the 

Natural Sciences and Engineering Research Council of Canada (NSERC). 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 
 
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
_____________________________ 

* Corresponding author: Jonathan.Gaudreault@cirrelt.ca 
 
Dépôt légal – Bibliothèque et Archives nationales du Québec, 
                     Bibliothèque et Archives Canada, 2008 

© Copyright  Gaudreault, Pesant, Frayret, D’Amours and CIRRELT, 2008 



1 Introduction 

Within the scope of this paper, we are interested in multiagent coordination in hierarchical settings. These 
are distributed optimization problems showing the following characteristics: (1) the global problem is 
naturally decomposed into subproblems, (2) there exists a sequence defined a priori in which the 
subproblems must be solved, (3) various agents are responsible for the subproblems, and (4) each 
subproblem is defined according to the solutions adopted for the preceding subproblems. Schneeweiss 
describes many such problems in [1]. Organizational Distributed Decision Making and Supply Chain 
Coordination are among the main application domains. 

In such a context, the capacity of a team of agents to identify good solutions is related to the coordination 
mechanism used. The most commonly used mechanisms can be described as heuristics. The best known are 
certainly upstream planning and other related approaches [2]: subproblems are solved one after another, 
according to the predefined sequence. By doing so, agents obtain one and only one solution that may not be 
optimal from a global point of view. 

In an optimization context, it is advisable to consider several alternative solutions. To this end, the 
coordination space can be modeled as a tree [3]. A team of agents can thus perform a distributed tree search 
in order to coordinate. The capacity of the team to find high-quality solutions quickly depends on the search 
strategy used. Section 2 provides more details on this concept.  

In the present work, we put forward the hypothesis that there exist backtracking strategies that are 
particularly effective in a situation of hierarchical distributed problems. Section 3 introduces an adaptive 
search strategy called ADS. During the search process, agents collectively and dynamically identify the 
most promising areas of the tree in order to explore them first. This allows agents to systematically search 
the solution space (thus looking for the optimal solution) but aims at producing good solutions in a short 
amount of time. The algorithm is evaluated (Section 4) on a real coordination problem in an industrial 
supply chain, and for synthetic problems in order to allow more general conclusions. Finally, Section 5 
situates our approach in relation to others that use related techniques, but in the context of classical global 
optimization. 

2 Background 

2.1 Distributed Decision Making in a Hierarchical Context 

Figure 1 illustrates a coordination problem in the context of a supply chain. The protagonists (agents) are 
faced with a common optimization problem. The cooperation of each facility is needed to produce and 
deliver the products ordered by external customers. However, different alternatives are possible regarding 
the parts to use, the manufacturing processes to follow, the scheduling of operations and the choice of 
transportation. Therefore, supply chain partners must coordinate their local decisions (e.g. what to do, 
where and when), with the common objective of delivering the products ordered by an external customer 
with the least possible delay. This can be referred to as collaborative production planning (see [4]) or the 
supply chain coordination problem [5]. 

Product
flow

Factory
1

External
customer

Product
flow

Factory
2

Product
flow

Factory
3

 
Figure 1. Product flow for a simple supply chain 

The general assignment of responsibilities to agents and the decomposition of the overall problem into 
subproblems are usually determined by the business context or by a long-term agreement in force in the 
industry. This decomposition can be illustrated using a workflow diagram. As an example, Figure 2 
illustrates the application of a mechanism based on the exchange of demand plans and supply plans to the 
preceding case. This mechanism is called two-phase planning [6]. Each unit is responsible for establishing 
two things: an ideal demand plan for raw material, and the actual production plan, produced once the 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 1



“answer” from the supplier is received. The sequence according to which agents intervene is shown in 
Figure 2. Because there are more subproblems than agents, here the term hierarchy refers to the sequence 
of subproblems, rather than a sequence of agents. 

Planning
demand

plan
demand

plan

supply
plan Replanning

supply
plan

supply
plan

123

4

Planning

Replanning

Planning

demand
plan

supply
plan

5

External
customer

6

Factory 1 Factory 2 Factory 3

 
Figure 2. Two-phase planning protocol as coordination mechanism for the previous supply chain 

In [1], Schneeweiss describes a general framework in order to model these kinds of problem hierarchies. 
According to this framework, the decision taken at a given level (top) is interpreted by the following level 
(bottom) as a parameter of the subproblem bottom. Stated otherwise, the subproblem bottom is defined as a 
function of the top decision. This can be generalized for situations with more than two subproblems. The 
subproblems are solved sequentially, from top to bottom, which is termed upstream planning [2,7].  This 
supposes that for each subproblem, the corresponding agent has access to a specific model/algorithm which 
allows solving the subproblem. 

By doing so, the collective considers only one global solution which is unlikely to be optimal. This is why 
we termed these kinds of approaches hierarchical coordination heuristics. Of course, the better the top 
agent's ability to anticipate the reaction of the bottom agent is, the better the global solution will be (see [8] 
for a computational study). However, more general coordination mechanisms can be considered. 

The following section recalls how hierarchical coordination heuristics can be generalized in order to 
consider a larger solution space. 

2.2 Hierarchical Distributed Constraint Optimization (HDCOP) 

The algorithms used in industry to make each local decision usually allow producing alternative solutions 
[4]. By considering each of these as an alternative proposition for the next agent, we can represent the 
coordination space as a non-binary tree of fixed depth (see Figure 3) [3]. 

This tree has one level per type of subproblem. For example, if we want to generalize the two-phase 
planning approach, each level of the tree will correspond to one of the boxes in Figure 2. Each node on a 
specific level represents an instance of that subproblem type (defined by decisions for previous 
subproblems). Each arc is an alternative and feasible solution to the subproblem. The number and order of 
these arcs depend on the local algorithm used by the agent. Each leaf of the tree (i.e., a solution of a 
subproblem of the last/lower level) is a solution to the global problem. 

Alternative global solutions 
(propositions to the external customer)

… …

… …

…

…

Demand from the external customer

Alternative  local solutions
…

… …

1X

Alternative  local solutions

Alternative  local solutions

Alternative  local solutions

2X

3X

4X

5X

 
Figure 3. Coordination Space for HDCOP 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 2



The problem is then modeled as a Hierarchical Distributed Constraint Optimization Problem (HDCOP). 
We reproduce here the definition taken from [3]: The global problem is defined by a vector of 
subproblems: [ ],...,= 1 MX X X . Each subproblem iX  comes under the responsibility of an agent 

( ) { },...,∈ =� i 1 NX A A A . For each subproblem iX  the agent ( )� iX  has a solver � i  producing a vector 

iS  of alternative solutions: →�
i i

i(X ) S  where � �
� �� �

i

i i i
1 S

S = S ,...,S . These local solutions are not known a 

priori; they are revealed one after another by the solver. Eventually one gets selected. We will denote it by 
i
*S . Agents look for the vector *,...,� �� �

1 M
*S S  minimizing an objective function ( )*,...,� �� ��

1 M
*S S . Each 

subproblem iX  is defined by the chosen solutions for the previous subproblems: ( )� �≤� ��
i j

i *X = S 1 j<i . 

 

2.3 Distributed Search as Coordination Mechanism 

The previous formulation for the coordination problem calls for its optimization using a standard tree 
search algorithm. Because of the nature of the coordination problem at hand, such an algorithm must satisfy 
three conditions. First, it must be distributed. Second, it must respect the business relationships between the 
partners. Finally, it must take into account that the tree is not fully defined a priori. That is, (1) the 
alternative solutions (arcs) of the local subproblems are not known before being produced by the local 
solver, and (2) the specific instances of each subproblem (node) are not known either, because they depend 
on the solution obtained for previous subproblems. The tree will therefore be ‘revealed’ progressively 
during the search process. 

The simplest method for the agents to collectively explore this coordination space is to perform what 
Hirayama and Yokoo term Synchronous Branch and Bound (SyncBB) [9].  Agents solve their subproblems 
in sequence: the first one solves its subproblem and sends its decision to the second agent, and so on. In the 
case of a dead-end, or when an agent has considered all of its local solutions, this agent sends a message 
back to the previous agent, asking for an alternative proposition (this is termed chronological 
backtracking). This backtracking message contains the value of the best solution found so far. It is used 
during search to ‘prune’ the tree. The method is said to be complete, as it returns the optimal solution if 
given enough time. 

Agent B

Agent A

(ii) (iii) (iv) (v) (vi)(i) (vii) (viii)

Alternative
global solutions

 
Figure 4. Example of execution trace for SyncBB 

2.4 Discrepancy-based Backtracking Policies 

In centralized contexts, chronological backtracking is often outperformed by other backtracking strategies, 
for example those based on the computation of discrepancies [10,11] such as Limited Discrepancy Search 
(LDS). The next section describes LDS. We then recall how this idea can be used in a distributed context. 

2.4.1 LDS – Discrepancies in Centralized Contexts 

Limited Discrepancy Search (LDS) was the first search method based on discrepancies. It was developed 
for centralized combinatorial problems and was introduced by Harvey and Ginsberg in [10,12]. The basic 
idea is based on the observation that for many problems, the leaves of the tree (solutions) do not all have 
the same expected quality. That is, the expected quality is related to the number of times one branches to 
the right when going from the root of the tree to that leaf (the number of discrepancies of the leaf). Figure 5 
shows a simple tree and the number of discrepancies associated to each leaf. 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 3



0 1 1 2 1 2 2 3  
Figure 5. Binary tree (two arcs per node) with the associated number of discrepancies for each leaf. It corresponds to 

the number of times one branches to the right when going from the root to that leaf (dotted arcs on the figure). 

Harvey measured that for many problems the expected quality of a leaf decreases when the number of 
discrepancies increases [12]. The explanation for this relation is as follows. In most trees, the arcs 
(alternative local solutions, in our case) are ordered according to a criterion. Therefore, each move ‘to the 
right’ is a move against that criterion. Consequently, he proposed an iterative procedure (LDS) that aims to 
first visit the leaves with fewest discrepancies. Another effect of applying LDS is that the solutions visited 
in a given period of time will be from more different parts of the tree than those produced using 
chronological backtracking. For non-binary trees, they proposed to count the discrepancies as follows: the 
i-th arc followed at a given level counts as 1i − discrepancies [11]. 

LDS was introduced as an iterative search procedure, but the same concept is often used to define a 
backtracking strategy (or policy) to be used within a generic centralized search engine [13]: The number of 
discrepancies can be computed for any node of the tree, not just for the leaves. When backtracking 
conditions occur (we encounter a global solution and aim for another) the solver ‘backjumps’ to the node 
already visited for which the next unvisited child has the fewest discrepancies. 

2.4.2 SyncLDS - Discrepancies in Distributed Contexts 

The simplest method for a team of agents to perform a distributed LDS is called SyncLDS [3]. The search 
is performed in a scheme similar to SyncBB, except that when a global solution is found, the agent 
detecting that condition sends a message to other agents asking each of them to identify the 
subproblem/node under its jurisdiction for which the next child has the smallest number of discrepancies. 
This can be seen as a kind of bid. The agent that detects the need for backtracking gives control to the agent 
with the smaller bid. The next global solution is reached from that point by solving the remaining sequence 
of subproblems. 

We evaluated this method (SyncLDS) in [3]. It allowed considerable improvement of solution quality and 
computation time for a distributed supply chain problem in the forest products industry. The following is 
the main reason why it outperformed SyncBB: Once the first global solution is found, SyncBB tries 
enumerating every other alternative solution for the last subproblem without considering other options for 
the previous subproblems. By doing so, it persists in exploring only minor variations of the first global 
solution. In contrast with this, SyncLDS explores rapidly different areas of the tree. 

In the same paper, we proposed another distributed implementation of LDS called MacDS. This 
implementation allows agents to work concurrently, which speeds up computation. However, in the 
remainder of this article we will not address the question of concurrency. Emphasis is put on the 
comparative evaluation of backtracking strategies only. 

3 Proposed Method: Adaptive Discrepancy-based Search (ADS) 

In the previous section, we recalled that SyncLDS outperforms SyncBB because it allows rapidly visiting 
different areas of the tree. This leads us to formulate the following hypothesis: If it were possible to identify 
interesting areas in a dynamic way, and to first concentrate our efforts on them, the effectiveness of the 
search process would be improved. 

In this section, we introduce an adaptive search strategy called ADS. During the search process, agents 
collectively and dynamically identify the most promising areas of the tree in order to explore them first. It 
allows agents to systematically search the solution space (thus looking for the optimal solution) but aims at 
producing good solutions in a short amount of time. 

The strategy exploits the fact that the tree is not binary. Since each subproblem (node) has many solutions 
(arcs), we have to backtrack many times to each node during the search process. Each time we will do so, 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 4



we will measure how beneficial it has been to produce an i-th solution for the corresponding subproblem 
(that is, how beneficial it has been to allow an additional discrepancy). We then seek to extrapolate for 
which node it would be more profitable to produce other local solutions, and how many should be 
generated before it becomes better to pass on to another node.  

The basic concepts are introduced informally in Section 3.1. We will then introduce a model that allows 
extrapolating the contribution associated to performing an i-th discrepancy at a given node (3.2). Finally, 
we will define a backtracking strategy that uses this information (3.3), and a protocol that allows agents to 
implement it in a distributed scheme (3.4). 

3.1 Main Idea 

We will consider a fictive minimization problem represented by a non-binary tree. Figure 6i shows the part 
of the tree that is known after reaching the first global solution. Let us suppose this solution’s quality (as 
measured by the objective function) is equal to 1.0. At that moment, three nodes are candidates for 
backtracking (a, b and c). Backtracking to any of them would lead to a new global solution having a 
number of discrepancies equal to 1. If we were to apply an LDS policy, we would not have a preference for 
any of them. Let us suppose we backtrack to each of them in turn. We then get three new solutions of 
quality 1.2, 0.6 and 0.9 (subfigure ii). 

We now have 6 nodes (a to f) that are candidates for backtracking1. Again, these nodes are of equal interest 
from the point of view of an LDS policy (each would lead to a leaf having 2 discrepancies). However, we 
can see that for node c, the second arc led us to a leaf for which the solution quality is worse than for the 
first arc (1.2 > 1.0). For node b, the second arc produces an improvement of 0.4 (1.0 – 0.6). For node a, the 
improvement is 0.1 (1.0 – 0.9).  

In short, although nodes a, b and c are equally appealing from an LDS point of view, when considering 
recent history it seems more interesting to produce a third solution from node b. As for nodes d, e and f, we 
have no information available but they could lead to promising areas. We thus have to make a choice 
between exploiting available information (and choosing node b) or exploring new areas. The following 
sections develop this idea. 

1.0

a

b

c

 

- 0.1

1.0 1.2 0.6 0.9

1.0

1.0

1.0

1.2

0.6

0.9

0.9

0.90.6

- 0.4

- 0.0

a

b

c d

e

f

 

(i) (ii) 

Figure 6. Illustrating the main idea 

3.2 Extrapolate the Effect of Performing an i-th Discrepancy at a Given Node 

Let us suppose that a search is in progress. An i-th global solution has just been found and we need to 
backtrack in order to explore alternative solutions. Let nodeList  be the list of nodes node  that are 
candidates for backtracking (i.e. nodes for which there are unexplored local solutions for their local 
subproblems). For each node nodeList∈ , we will denote by n  the number of local solutions already 

                                                           
1 Nodes a, b and c are still candidates since the tree is non binary (there are more than two solutions for each subproblem) 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 5



explored (i.e. number of arcs exiting from this nodes already explored). We will define the following terms 
in the context of a specific node : 

Definition 1 : ( )Child i  corresponds to the node headed by the i-th arc of node . It is defined for 

0... 1i n= − . ( )Child i  may be a leaf or an internal node. As an example, on Figure 6ii, for node b we have 

2n = , ( )Child 0 corresponds to node c and ( )Child 1 to node d. 

Definition 2 : ( )NextLeaf i  corresponds to the first leaf we would encounter performing a depth-first 

search in the subtree having ( )Child i  as its root. If ( )Child i  is a leaf, then ( )NextLeaf i  returns this leaf. 

Otherwise we have ( ) ( ) ( )Leaf : Child .NextLeaf 0i i= . 

Definition 3 : ( )ArcValue i  corresponds to the quality of the first global solution that can be reached by 

following arc i. That is ( ) ( )ArcValue : NextLeaf .i i score= .  

As an example, each arc on Figure 6ii is labeled by its value. One might use other definitions for 
( )ArcValue  (e.g. best solution in the subtree). However, the definition we proposed has the following 

advantage. Each time we backtrack to a node, we can measure the quality of the followed arc as soon we 
reach the next leaf (that is before the next backtrack) and this value remains unchanged for the rest of the 
search, which limits model updates. 

Definition 4 : [ ]bestToDate  is a vector of size n such as [ ] ( )
0

min ArcValue
j

i
bestToDate i i

=
= .  

Figure 7 illustrates the relationship between ( )ArcValue  and [ ]bestToDate . It shows a node for which 

4n =  (subfigure i). Each arc 0...3i =  is labeled by its value ( )ArcValue i . Subfigure ii illustrates the 

apparent difficulty of extrapolating a value for ( )ArcValue 4 . In contrast, [ ]bestToDate is monotonic non-

increasing (iii). It seems easier to extrapolate a value for [ ]4bestToDate . 

 

1 .6 .9 .21 ?
 

( )ArcValue i  

?
i  

[ ]bestToDate i  

? i  

(i) (ii) (iii) 

Figure 7. Relation between ( )ArcValue  and [ ]bestToDate  

Definition 5: ( )F . We will suppose a continuous function ( )F + +→� �  that approximates 

[ ]bestToDate . It will be generated by an algorithm ( )A , using the already known value for 

[ ]bestToDate . Formally, [ ]( ) ( )( )A 0... 1 FbestToDate n + +− → →� � . 

Our principal concern is not to find a function which explains well the values in the known range, but rather 
to extrapolate a new one outside the known range. Generally, extrapolation represents an additional 
challenge in comparison to interpolation (generation of new points inside the range) [14]. However, 
considering our definition for [ ]bestToDate , algorithm ( )A  can limit itself considering only monotonic 

functions. For example, if one puts forward the hypothesis that [ ]bestToDate  decreases from its initial 

value ( )( )ArcValue 0  by a constant rate β  until it reaches an inferior limit α , algorithm ( )A  must then 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 6



produce a function with the following form: ( ) ( )( )F : ArcValue 0 ii e βα α−= − + . Figure 8 illustrates this 

situation. The role of algorithm ( )A  is then to estimate the value of parameters α  and β  for a given 
node. This could be done, for example, by achieving a least squares curve fitting with the Gauss-Newton 
Algorithm or the Levenberg-Marquardt Algorithm [14,15]. 

( )ArcValue 0

α

( )F i

i

( )( )ArcValue 0 ie βα α−− +

 

Figure 8. A first model for function ( )F i  

Definition 6 : [ ]improvement . Let us consider a node and two of its consecutive arcs, 1i −  and i . They 

respectively lead to leaves having quality [ ]1arcValue i −  and [ ]arcValue i . The value of [ ]improvement i  

corresponds to the improvement effected at the level of [ ]bestToDate :  

[ ] [ ] [ ]1improvement i bestToDate i bestToDate i= − −  

Definition 7 : ( )Improvement . In a similar way, we will define the function ( )Improvement i  as being 
the expected improvement associated to the generation of an i-th local solution for the subproblem 
associated to current node, according to our approximation ( )F  for [ ]bestToDate  : 

( ) ( ) ( )Improvement : 1i F i F i= − −  

For a given node node for which n local solutions have been generated, we are particularly interested in the 
value ( )Improvement n . This value is the extrapolation we seek, indicating whether an additional local 

solution (arc) is believed to lead to a global solution ( )( )NextLeaf n  better than the one associated to the 

previous arcs. For simplification, we will write ( )Improvement  in place of ( )Improvement n  in the rest of 
the text. 

3.3 Backtracking Strategy Exploiting the Model 

The strategy we propose is the following. As in SyncBB and SyncLDS, the first global solution is obtained 
by solving the subproblems sequentially. For the first few backtracks, we select a node using an LDS 
policy. When we have backtracked at least once for each level of the tree, we can start using the model of 
the previous section in order to choose the node to backtrack to. The nodes will be compared according to 
their ( )Improvement  value2.  

By definition, ( )Improvement  can only be computed for nodes for which at least two arcs have been 
explored. Consequently, only the nodes meeting this condition are considered. We also suppose there is a 
threshold value ε beyond which the improvement is significant in the application domain. Besides this 
value, we suppose it is preferable to explore other nodes. In practice, we can use ε=0. When not enough 
nodes qualify according to the previous conditions (less than 2), we apply an LDS policy to select a node. 

                                                           

2 We use ( )Improvement  rather than ( )F  as the weight criterion for the following reason. Using ( )F , a node having generated a 

good solution in the past would thence be preferred even if it started generating bad solutions. 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 7



Doing so increases the number of nodes which will qualify in the future, and represents an opportunity to 
discover new promising nodes. No node (even if its expected improvement is below ε) is discarded forever. 
The exploration of its remaining arcs is postponed until no other node seems more interesting. The method 
is complete (exploring the same search space as SyncBB or SyncLDS) but aims at producing good 
solutions in a short amount of time. 

Each time a new global solution is found, the model must be updated. This dynamically modifies the 
priority given to the nodes, and by doing so, brings about the adaptive character of the strategy. Section 
3.3.1 presents the pseudocode performing this update. Section 3.3.2 presents the pseudocode of a node 
selector applying the proposed strategy. 

3.3.1 Updating the Model 

Let us suppose that a global solution (leaf) has just been obtained. One must then update the vector 
[ ]bestToDate  and the function ( )F  for certain ancestors of this leaf. Figure 9 presents the pseudocode 

achieving this update. The function UpdateModel receives as arguments the quality of the leaf (score) 
and its unique identifier p[]. It is a vector of integers representing the path that would lead to the leaf in the 
corresponding global tree. The element p[j] defines, for a level j, which arc should be followed when 
going from the root to that leaf.  The function Card returns the length of the vector. Finally, we recall that 
nodeList contains the nodes available for backtracking. Each node is defined by a tuple 
<p[], bestToDate[], F()>. 

The main loop navigates along the path p[], from the leaf to the root. For the leaf’s parent node, we always 
update [ ]bestToDate  and ( )F . As for the upper nodes along the path, the update is not always 
necessary. Consider a node node and its i-th child child such as they are both on the path leading to leaf. If 
leaf is not the first leaf in the subtree rooted by child, then ( ).NextLeafleaf node i≠  and this leaf’s score is 

of no use in the computation of node’s ( )ArcValue i  and [ ]bestToDate i   (according to Definitions 3 and 
4). In this case, the nodes on the path that are above node do not need to be updated. 

Procedure UpdateModel(p[], score) 
 do 
 { 
  i := p[Card(p)-1]; 
  remove last element from p; // p is now the path of the parent 
  node := select node in nodeList : (node.p = p); // node is that parent 
  if (i = 0) node.bestToDate[0] := score; 
  else node.bestToDate[i] := Min(node.bestToDate[i-1], score); 
  node.F := A(node.bestToDate); 
 } 
 while ((Card(p) > 0) and (i = 0)) 

Figure 9. Updating [ ]bestToDate  and ( )F  when a global solution is found 

3.3.2 Node Selector Implementing the Strategy 

This section describes a node selector implementing the strategy. Figure 10 presents the pseudocode (see 
SelectNode). Since the model is unusable as long as a minimum of information has not yet been 
accumulated, the first backtracks are produced by virtue of an LDS policy. This is done by giving priority 
to the nodes for which the next global solution created will have a total number of discrepancies inferior to 
or equal to 1. We also prefer the LDS policy if too few nodes meet the ADS selection criteria (enforced by 
FilterADS). Nodes for which n is equal to zero also have priority as this corresponds to normal descent of 
the tree (when no backtracking is required). The function CompareLDS allows applying the LDS policy. It 
compares two nodes and returns the one of highest priority. The arguments of this function are: the path in 
the global tree of the next local solution each node would generate (thus, the concatenation of p[] and n as 
a new vector). In the case of equality, the equivalent of a chronological backtrack is applied to separate 
between the nodes (CompareBT). 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 8



Function SelectNode(nodeList) 
 nodeListADS:= FilterADS(nodeList) 
 if (Card(nodeListADS) < 2) 
 or (∃ node in nodeList) : ((SumOfDisc(node)+node.n ≤ 1) or (node.n = 0)) 
   candidate := select node in nodeList according to function CompareLDS()  
  else  
   candidate := select node in nodeListADS : node.Improvement() is maximal  
  return candidate 
 
Function FilterADS(nodeList) 
  return all node in nodeList : (node.n >= 2) and (node.Improvement() > ε) 
 
Function SumOfDisc(node) 
  return Σ(j=0..Card(node.p[])-1) node.p[j] 
 
Function CompareLDS(p1, p2) 
 t1 := Σ(j=0..Card(p1)-1) p1[j] 
 t2 := Σ(j=0..Card(p2)-1) p2[j] 
 if (t1 < t2) return p1 
 else if (t2 < t1) return p2 
 else return CompareBT(p1, p2) 
 
Function CompareBT(p1, p2) 
 depth := Min(Card(p1), Card(p2)) 
 j := 0 
 while (p1[j] = p2[j] and j < depth) j := j+1 
 if (j < depth) 
  if (p1[j] ≤ p2[j]) return p1 else return p2 
 else 
  if (Card(p1) ≥ Card(p2)) return p1 else return p2 

Figure 10. Node selector implementing the ADS strategy 

3.4 Synchronous Adaptive Discrepancy-based Search (SyncADS) 

This section introduces a protocol (SyncADS) allowing agents to perform distributed search while applying 
the previous adaptive backtracking strategy (ADS). Strictly speaking, the global tree exists nowhere, but 
the global solutions will be visited in the same order as if one was carrying out centralized search in the 
equivalent tree. As in SyncBB and SyncLDS, only one agent at a time is active. The transition from one 
agent to the other takes place by the exchange of messages that could be seen as the transmission of a 
privilege (or token). The term synchronous refers to the fact that an agent cannot select/change the solution 
for his local problem asynchronously (that is at any moment).  

Each agent manages a list of nodes/subproblems under its authority (nodeList) and executes the 
pseudocode in Figure 11. The main procedure (MsgProposition) is activated when the agent receives a 
proposition from the previous one (or from the external customer). This proposition is denoted by a couple 
<d,p[]>. The element d represents the decisions for the previous subproblems and p[] is a vector of 
integers representing the path leading to the corresponding node in the global tree. Upon receiving this 
message, the agent creates a node corresponding to the new subproblem to solve and then adds it into 
nodeList. It then begins solving this instance of the subproblem (Work), finds a first solution and sends it 
to the next agent as a proposition (send MsgProposition). If there is no following agent, then we have 
on hand a solution for the global problem. The agent then updates its model (UpdateBestToDate and 
F()), informs its predecessors about the new solution quality (the message MsgGlobalSolQuality is 
propagated upward) and starts the cooperative backtracking mechanism (CooperativeBacktracking).  

In function CooperativeBacktracking, each agent is asked to identify which node under its authority 
would be locally chosen (each agent selects it using the SelectNode function in Figure 10). Agents are 
also asked to count how many nodes qualify according to the ADS filtering criteria. Knowing that 
information, the calling agent can identify the node/subproblem with highest priority (using code similar to 
Figure 10 SelectNode). It then gives control to the agent responsible for that subproblem 
(MsgBacktrack). Please note that agents do not really send nodes as we do in pseudocode. They only need 
to communicate the vector p[] and the value n. 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 9



WhenReceive MsgProposition(<d,p[]>) do 
 nodeList.add(<d, p[], n=0>) 
 Work(node) 
 
Procedure Work(node) 
 proposition := NextSolution(node); 
 if (proposition ≠ ∅) 
  node.n := node.n+1 
  if (Successor(node) ≠ ∅) 
   send MsgProposition(<proposition, node.p[]+[node.n-1]>) to Successor(node) 
  else 
   UpdateBestToDate(node, node.n-1, proposition.score); 
   node.F := A(node.bestToDate[]) 
   if (node.n = 1) send MsgQuality(score, node.p[]+node.n-1) to Predecessor(node) 
   CooperativeBacktracking() 
 else  
 nodeList.remove(node) 

  CooperativeBacktracking() 
 
Procedure UpdateBestToDate(node, i, score) 
 if (i = 0) node.bestToDate[0] := score 
 else node.bestToDate[i] := Min(node.bestToDate[i-1], score) 
 
WhenReceive MsgQuality(score, p[]) do 
 node := select node in nodeList : p[] begins with node.p[] 
 i := p[Card(node.p)-1] 
 UpdateBestToDate(node, i, score) 
 if (i = 0) and (Predecessor(node) ≠ ∅)  
  send MsgQuality(score, p[]) to Predecessor(node) 
 
Procedure CooperativeBacktracking() 
 send MsgAskNbADSQualifiedNodes to Everybody // including itself 
 nbQualifiedNodesADS := Σ answer from Everybody 
 send MsgAskBestLocalNode() to EveryBody 
 answers := all answer from EveryBody : (answer ≠ ∅) 
 if (nbQualifiedNodesADS < 2) 
 or (∃ node in answers) : ((SumOfDisc(node)+node.n ≤ 1) or (node.n = 0)) 
   candidate := select node in answers[] according to function CompareLDS()  
  else  
   candidate := select node in answers[] : node.Improvement() is maximal  
  send MsgBacktrackADS(node) to Agent(answer) 
 
WhenReceive MsgAskNbADSQualifiedNodes() do return Card(FilterADS(nodeList)) 
 
WhenReceive MsgAskBestLocalNode() do return SelectNode(nodeList) 
 
WhenReceive MsgBacktrack(node) do Work(node) 

Figure 11. Pseudocode for SyncADS 

4 Evaluation 

We will first apply the proposed approach to a real industrial supply chain problem in the forest products 
industry. We will evaluate the gains associated with the use of the proposed strategy, as well as the quality 
of the predictive model. Then we will evaluate the algorithm for synthetic problems, in order to generalize 
the obtained results.    

4.1 Industrial Evaluation 

We will use the same case and the same data as in [3]. It is a real coordination problem in an industrial 
supply chain producing softwood lumber. Figure 12 introduces the production units involved: (1) the 
sawmilling facility, where logs are cut into various sizes of rough pieces of lumber; (2) the drying facility, 
which reduces moisture level of the lumbers and (3) the finishing facility, where lumber is planed 
(surfaced), trimmed and sorted. We wish to synchronize activities between facilities (e.g. what to do, where 
and when). The objective is to minimize tardiness for delivery to the external customer. 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 10



Logs Green Lumber
(rough)

Dried Lumber
(rough)

Sawmilling
Facility

(1)

Drying
Facility

(2)

Finishing
Facility

(3)

Dried Lumber
(finished)  

Figure 12. Lumber production supply chain. 

Each facility uses a specialized local solver to plan its operations. The local solvers were previously 
developed by FORAC, a consortium of companies and researchers. The solvers have now been 
commercialized by the company Synaptas. In the base case, the facilities use two-phase planning as the 
coordination mechanism (see Section 2.1 and Figure 2). As the local solvers can produce alternative local 
solutions, this situation allows the use of distributed search as described in Section 2.2.  

Sawmilling produces multiple types of lumber at the same time (co-production) from a single product type 
in input (divergence). Sawing operations are planned using a Mixed Integer Linear Programming model. It 
is designed to identify the right mix of log types and cutting patterns to use during each shift in order to 
control the output of the overall divergent production process. Many setup configurations are possible for 
the plant during each shift. Each configuration limits the log types and cutting patterns that can be used.  

Wood drying operations planning is batch-oriented and aims at finding the type of rough lumber to put in 
the kiln dryers and the drying processes to implement. The problem is described thoroughly in [16]. 
Constraint programming [17] and Depth-bounded Discrepancy Search (DDS) [18] are used in order to 
produce alternative local solutions.  

Finally, wood finishing operations planning aims at finding what dry lumber type and how much of it 
should be finished, taking into account setup time and sorting booth constraints. It is a divergent 
transformation process with co-production. It also uses constraint programming and DDS. 

More information about this supply chain problem can be found in [6]. 

4.1.1 Methodology 

Synchronous Branch and Bound (SyncBB) and SyncLDS were compared for the previous problem in [3]. 
Even for a large computation time, SyncBB persisted in exploring only minor variations of the first 
solutions (see Section 2.4.2). In contrast, SyncLDS allows better sampling of the solution space as LDS 
rapidly explores different areas of the tree. In consequence, the quality of the solutions found by SyncBB 
stops improving after a short computation time, while continuing to improve with SyncLDS - until it finally 
reaches a plateau within an hour’s time. We will make the assumption that the part of the tree explored 
during this period of time is a good sample of the solution space. Here, our algorithm (SyncADS) will be 
compared to SyncLDS using the same trees.  

We will also evaluate different predictive models ( )F  to be used for the extrapolation of [ ]bestToDate . 

First, the model in Section 3.2 based on parameters α  and β  (hereafter model 1). We recall it makes the 

assumption that [ ]bestToDate  decreases according to a constant rate β  until it reaches a plateau α . We 

then have ( ) ( )( )F : ArcValue 0 ii e βα α−= − + . Second, a simplified version where it is supposed that 

[ ]bestToDate  decreases until reaching zero: ( ) ( )F : ArcValue 0 ii e β−=   (model 2). Other models have 
been considered (e.g. second-degree polynomial) but preliminary testing showed their predictive capacity 
was rather poor although interpolation capacity was good. 

The advantage of model 2 over model 1 (if it happens to allow obtaining good results) is that there is only 
one parameter to fit, and this can be done using simple linear regression. However, we used the Levenberg-

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 11



Marquardt Algorithm (LMA) in order to update all our models3. This standard non-linear least-squares 
minimization method [14] has the following advantage over the Gauss-Newton Algorithm. Although for 
both algorithms we need to provide initialization values for the parameters, LMA is less dependent on the 
quality of the initialization values. In our experiments, we used the following initial values: 0.5β =  and 

0α = .  

4.1.2 Results 

Table 1 compares time needed to get the best solution. It shows the reduction of computation time (%) 
achieved when using SyncADS instead of SyncLDS for the four industrial cases from [3]. Model 1 allowed 
an average reduction of 48.3%, in comparison with 44.5% for model 2.  

Table 1. Computation time needed to get best solution – Reduction (%) made possible by SyncADS (vs SyncLDS) 

Model Case #1 Case #2 Case #3 Case #4 Average 

( ) ( )( )1. : ArcValue 0 iF i e βα α−= − +  47.6 % 36.2 % 55.2 % 54.2 % 48.3 % 

( ) ( )2. : ArcValue 0 iF i e β−=  42.9 % 30.9 % 50.2 % 54.2 % 44.5 % 

Table 2 presents the average reduction of computation time needed to get solutions of intermediate quality. 
This indicator was proposed to verify that SyncADS allows obtaining solutions of intermediate quality (not 
just the best one) for a computation time equal or less than SyncLDS4. The reduction is smaller than for the 
previous indicator. Indeed, the more one is ready to accept poor solutions, the more the advantage of 
SyncADS over SyncLDS diminishes. For both algorithms it takes less time to find poor solutions than good 
solutions; SyncADS then has less time to learn and to distinguish itself over SyncLDS. We even have a 
result (case #2 with model 1) for which SyncADS is on average 7.7% slower than SyncLDS for 
intermediate solutions, while being 36.2% quicker to get the best solution. We will study this relationship 
between the performance of ADS and computation time further in Section 4.2. 

Table 2. Average reduction (%) of the computation time needed to get solutions equal or better than SyncLDS 

Model Case #1 Case #2 Case #3 Case #4 Average 

( ) ( )( )1. : ArcValue 0 iF i e βα α−= − +  28.7 % -7.7 % 46.6 % 44.3 % 28.0 % 

( ) ( )2. : ArcValue 0 iF i e β−=  24.0 % 12.7 % 42.9 % 43.6 % 30.8 % 

4.1.3 Quality of the Models 

We have seen in the previous section that SyncADS allowed better performance than SyncLDS for the 
industrial problem. In our opinion, two elements explain this result. First (hypothesis 1), the models 
proposed for ( )F  model well [ ]bestToDate  and allow good extrapolation of further values. Second 

(hypothesis 2), the curve/profile for [ ]bestToDate  is relatively different from one node to another (i.e. 

there is some subproblems instances for which it is more worthwhile to generate alternative local 
solutions). Indeed, if this curve had been identical for all the nodes, it would be futile to choose the 
backtracking candidate on the basis of this; an LDS strategy would give equivalent results. 

In order to verify hypothesis 1, we measured the gap between the forecasts of the models (i.e. the values 
returned each time ( )F i  is called) and the actual values of [ ]bestToDate i  known a posteriori. We 

measured an average error of 1.6% for model 1 and 3.6% for model 2. The model with the best 
extrapolation is also the one that gave the best results in Section 4.1.2. 

                                                           
3 We use the following implementation: Levenberg-Marquardt.NET, by Kris Kniaz. See http://kniaz.net 

4 This metric is calculated in the following way. Let us consider the execution of SyncLDS. The quality of the “best solution to the  
global problem found up to now” evolved over time. For any level of quality reached by SyncLDS, we evaluate the time necessary to 
SyncADS to reach a solution that is equal or better. 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 12



To verify hypothesis 2, we proceeded as follows. For each node we characterized its vector [ ]bestToDate  

using a single value β . We took the values in [ ]bestToDate  (they are all known after the search) and best 

fit them. Figure 13 shows the distribution for β  in the industrial data. The trend line shows the distribution 

is close to be exponential ( )12.718xe− , defined for the interval [ ]0, ... ,0.5 . Let us recall that nodes for which 

β  is close to zero corresponds to subproblems instances for which it has been unprofitable to generate 
alternative solutions (these are therefore very numerous in our industrial case). Nodes with a bigger β  
have more potential. The strategy seeks to dwell on these in priority. 

0%

20%

40%

60%

80%

[0 … 0.1[ [0.1 ... 0.2[ [0.2 … 0.3[ [0.3 … 0.4[ [0.4 … 0.5[

12.718xe−

2 0.98R =

β  

Figure 13. Distribution of the values β  for the nodes of the studied trees 

In a similar way, for each node we observed the last value in the vector [ ]bestToDate  in order to estimate 

α . For our node population, values for α  are distributed more or less uniformly between ( )ArcValue 0  

and ( )0.5 ArcValue 0× . 

4.2 Evaluation with Synthetic Data 

In the trees corresponding to our industrial coordination problems, there are some node/subproblems for 
which it is worth more to produce alternative solutions (these are the nodes for which we measured large 
β ). The performance of our approach is strongly related to the distribution of the values for β . Here, we 
will generate new datasets that will be more or less favorable to our algorithm, in order to study some of its 
characteristics. We will also study the impact of the distribution for δ , and the impact of the number of 
subproblems (that is, the depth of the tree). 

We will suppose minimization problems such as the first leaf of the tree corresponds to a solution with 
quality equal to 1. For each node, we randomly choose a value for parameter β  using the probability 

distribution ( )PR : xx e γβ −= = . For our industrial cases we measured 12.718γ = −  but we will try other 

values. In a similar way, the values for α  will be randomly chosen using a uniform distribution defined 
between 0 and [ ]arcValue 0δ × . Knowing values β  and α  for each node, we can calculate the quality of 

other leaves using model 1. The trees are generated dynamically during search. The total number of nodes 
will depend on the computation time allowed to the search. 

To introduce our evaluation framework, we will first study the following case. We have trees 
corresponding to a hierarchy of 4 subproblems types, generated using 10γ =  (considering 0 0.5β≤ ≤ ) 
and 0δ = . This case was chosen because it allowed producing solutions really close to 0 within reasonable 
computation time. Figure 14i shows the quality of the best solution found so far, according to computation 
time (measured as the number of visited nodes) for SyncLDS and SyncADS. We can see that for large 
computation time, both allow very good solutions. Subfigure (ii) presents the reduction in computation time 
allowed by SyncADS (in comparison with SyncLDS) for equal solution quality. As an example, obtaining a 
solution with a score equal to 0.4 (i.e. a reduction of the objective function of 60%) takes approximately 
half the time using SyncADS. We can also point out that that the relative advantage of SyncADS decreases 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 13



for scores very close to 0. For both methods the score tends to 0 for large computation time (subfigure i) 
and the relative advantage tends to diminish. 

Solution quality according to computation time Reduction of computation time (%)  
to reach solution of a given quality (ADS vs LDS) 

  
(i) (ii) 

Figure 14. Comparison of SyncLDS and SyncADS for trees of depth=4, with [ 10γ = ; 0 .5β≤ ≤ ; 0δ = ] 

The next experiment (Figure 15) shows how the number of subproblems (that is, the depth of the tree) 
affects the performance. Subfigures (i) and (ii) shows solution quality according to computation time for 
SyncLDS and SyncADS (for depth=50, 100, 150). Subfigure (iii) shows the reduction in computation time 
permitted by ADS. Two details receive our attention. With ADS, the quality of the solutions improves more 
gradually and continuously according to computation time. However, at the beginning of the search the 
results for ADS are identical to those for LDS. This corresponds to the initialization phase of our algorithm, 
where backtracking is performed like LDS. We can see (subfigure ii) that we quickly reach a plateau 
(especially noticeable for depth=150). The end of this plateau corresponds to the end of the initialization 
phase.  

Quality according to computation time (SyncLDS) Quality according to computation time (SyncADS) Reduction of computation time (%)  
to reach solution of a given quality (ADS vs LDS) 

   

(i) (ii) (iii) 

Figure 15. Impact of the number of subproblems (depth=50, 100, 150), with [ 10γ = ; 0 .5β≤ ≤ ; 0δ = ] 

The results shown in Figure 16 demonstrate the impact of parameter γ . Once again, we have assumed the 

values of β  to be between 0 and 0.5 according to an exponential distribution xe γ− . With 0γ = , the values 
β  are chosen from a uniform distribution. The higher γ  is, the fewer nodes there are with high β . Stated 
otherwise, the greater γ  is, the fewer nodes there are for which it is profitable to produce a great number of 
discrepancies. It should thus be more difficult to find good solutions (hypothesis 1) and the search for and 
detection of ‘profitable’ nodes should be worthwhile (hypothesis 2). The subfigures (i) and (ii) confirm 
hypothesis 1; for a same strategy, the quality curves are less and less good as γ  grows. Subfigure (iii) 
confirms hypothesis 2; the greater γ  is, the more the ADS strategy has a significant advantage over the 
LDS strategy. These results empirically illustrate the following intuitive idea: the rarer the ‘promising’ 
nodes are, the more searching for and remaining with them is worthwhile. Even for 0γ = , we can observe 
an advantage of ADS over LDS. This is because there is still variability in the tree (and thus some nodes 
are more interesting than others) even if the β  values are taken from a uniform distribution5. 

                                                           

5 If we use the same value β  for any node in the tree, then ADS reports the same results as LDS (not shown on the chart) 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 14



Quality according to computation time (SyncLDS) Quality according to computation time (SyncADS) Reduction of computation time (%)  
to reach solution of a given quality (ADS vs LDS) 

 
(i) (ii) (iii) 

Figure 16. Impact of parameter γ  (0, 1, 10, 15, 100), with [ 0 .5β≤ ≤ ; depth=10; 0δ = ] 

Finally, the last experiment illustrates the impact of parameter δ . Let us recall that the α  values of the 
nodes (the value towards which [ ]bestToDate i  tends for the high i ) are chosen between [ ]0arcValue  and 

[ ]0arcValueδ ×  according to a uniform distribution. When we have 0δ = , then for every node the value 

( )Next Leaf i  tends toward 0 for a high i . The higher δ  is, the more variability there is in the tree and the 

more the learning becomes profitable. This is illustrated by the results in Figure 17. 

Quality according to computation time (SyncLDS) Quality according to computation time (SyncADS) Reduction of computation time (%)  
to reach solution of a given quality (ADS vs LDS) 

  
(i) (ii) (iii) 

Figure 17. Impact of parameter δ  (0, 0.25, 0.50, 0.75), with [ 10γ = ; 0 .5β≤ ≤ ; depth=10] 

5 Related Work 

This section situates our approach in relation to others that use related learning techniques in the context of 
classical global combinatorial problems. But first, let us recall the major difference between our context 
and the one of combinatorial optimization (other than the fact that our problem is a distributed one). For 
classical combinatorial problems, it is the solving algorithm that constructs the tree (by choosing the order 
in which variables are instantiated and the order in which values are tried). Learning can then be used in 
order to establish a strategy for variable ordering and value ordering. In the context of hierarchical decision 
making, the sequence of sub-problems (equivalent to the sequence of variables) is determined in advance 
and the sequence of local-solutions (equivalent to value ordering) depends on local criteria of each decision 
maker (see problem definition in Section 2.2). Our room for manoeuvre is limited to the backtracking 
strategy. However it is relevant to establish a parallel between these approaches. 

Firstly, we distinguish between two major currents: (1) the training approach, and (2) the adaptive 
approach. The first approach (1) consists in training a system for the resolution of a particular family of 
problems. In its basic form, the system achieves what a practitioner would do manually, that is to configure 
a solver for a particular context [19]. For example, using a set of training problems, the system could 
determine which variable ordering heuristics and value ordering heuristics are best for a given family of 
problems. The ACE system [20] uses a similar but more advanced approach. After the training phase, it 
attributes weights to different heuristics according to their pertinence. Once in production, the system will 
have the different heuristics vote for the next variable to instantiate, taking their weight into account. The 
performance obtained can be better than that of individual heuristics. Other approaches can be used. As an 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 15



example, the system proposed in  [21] studies a set of trees in order to identify the cuts that can be carried 
out on all these trees while still being assured that good solutions can be found. After training, these cuts 
are applied to the new problems submitted to the system. 

The adaptive approach (2) concerns the development of systems that dynamically react and adjust during 
the resolution of a particular instance of a problem [22]. This approach is often put to good use for 
constraint satisfaction problems (CSP). Many apply what is called Learning from failure. When a 
constraint is violated during the descent of the tree, the conditions of that failure are analyzed with the view 
of making the most of this knowledge throughout the remainder of the search. For example the techniques 
of nogood recording and clause learning seek to avoid redoing combinations of variable/value affectations 
that are mutually inconsistent. Others try to learn during the search which variables are the most difficult to 
instantiate, in order to change dynamically the order of variables (e.g. YIELDS [23]). In Impact Based 
Search (IBS), the impact of variables is measured by observing how their instantiation reduces the size of 
the search space [24]. In [25] and [26], each time a constraint causes a failure, the priority of variables 
implicated in this constraint is increased. In [27], another approach for variable ordering is proposed, but 
for the context of Weighted CSP.   

Regarding backtracking strategy, approaches where the system learns to evaluate the quality of nodes are of 
particular interest for us. Ruml has made an interesting proposal regarding this. While a basic LDS strategy 
gives the same importance to any discrepancy, BLFS [28] dynamically attributes different weights to 
discrepancies according to their depth. For a binary tree, BLFS will define two parameters for each level of 
the tree. One corresponds to the “cost” of branching to the left, and the other to the right. The value of a 
leaf is reckoned to be equal to the sum of the costs along the path from the root to this leaf. By knowing the 
value of a certain number of leafs, BLFS uses a linear regression in order to establish the value of the 
parameters. The model is not used in order to define a backtracking strategy. Instead, the algorithm 
proceeds to a series of successive descents in the tree. At each run, it tries to reach a leaf using a path that 
minimizes the costs. The branching choices are made stochastically in order to avoid always taking the 
same path. Ruml has achieved very good results with this algorithm (see [29]). The limits of this approach 
are the following. The branching factor must be the same for each node on the same level, and one can say 
nothing about the cost of a supplementary discrepancy at a given node as long as at least as much has been 
done at another node on the same level. Moreover, the impact of performing an i-th discrepancy at a given 
node is supposed to be the same for all other nodes on the same level. And this hypothesis was not met for 
our industrial problem. 

6 Conclusion 

We proposed an adaptive search strategy for efficient distributed decision making in hierarchical contexts 
(ADS). Agents collectively and dynamically identify the most promising areas of the tree in order to 
explore them first. It allows agents to systematically search the solution space (thus looking for the optimal 
solution) but aims at producing good solutions in a short amount of time.  

We applied the method to a real industrial coordination problem in the Canadian forest industry. It reduced 
computation time needed to get the best solution by nearly half. As well, we have evaluated ADS for 
synthetic problems. It allowed evaluating the performance of the algorithm for a wide range of problems, 
according to how difficult it is to find nodes/subproblems leading to good global solutions. It also allowed 
evaluating the performance for coordination situation with more agents. 

As future work, we plan to do a comparative evaluation of LDS and ADS strategies in a context where 
agents work concurrently (rather than sequentially). The algorithm called Multi-agent Concurrent 
Discrepancy Search (MacDS) [3] allows applying an LDS strategy in a concurrent context (each global 
solution is produced sequentially, but the agents work simultaneously on many solutions). It could be 
adapted in order to apply the ADS strategy. Such an algorithm would search in several areas of the tree at 
the same time, which would further improve the capacity of ADS to identify promising nodes. 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 16



References 
 [1]  C. Schneeweiss. Distributed Decision Making, New York: Springer, 2003.  

 [2]  R. Bhatnagar, P. Chandra and S. K. Goyal. "Models for multi-plant coordination", European Journal of 
Operational Research, vol. 67, 1993, pp. 141-160. 

 [3]  J. Gaudreault, J. M. Frayret and G. Pesant. "Discrepancy-based Method for Hierarchical Distributed 
Optimization", Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence, 
2007. 

 [4]  C. Kilger and B. Reuter. "Collaborative Planning" in: Supply Chain Management and Advanced Planning, H. 
Stadtler and C. Kilger Eds. New York: Springer, 2005, pp. 259-278.  

 [5]  A. Fink. " Supply Chain Coordination by Means of Automated Negotiations Between Autonomous Agents" in: 
Multiagent-Based Supply Chain Management, B. Chaib-draa and J. P. Müller Eds. New York: Springer, 2006. 
pp. 450 

 [6]  J. M. Frayret, S. D'Amours, A. Rousseau, S. Harvey and J. Gaudreault. "Agent-based Supply Chain Planning in 
the Forest Products Industry", International Journal of Flexible Manufacturing Systems, vol. 19, 2007. 

 [7]  G. Dudek and H. Stadtler. "Negotiation-based collaborative planning between supply chains partners", 
European Journal of Operational Research, vol. 163, 2005, pp. 668-687. 

 [8]  C. Schneeweiss and K. Zimmer. "Hierarchical coordination mechanisms within the supply chain", European 
Journal of Operational Research, vol. 153, 2004, pp. 687-703. 

 [9]  K. Hirayama and M. Yokoo. "Distributed partial constraint satisfaction problem", International Conference on 
Principles and Practice of Constraint Programming, LNCS #1330, 1997, pp. 222-236. 

 [10]  W. D. Harvey and M. L. Ginsberg. "Limited discrepancy search", International Joint Conference on Artificial 
Intelligence, 1995, pp. 607-613. 

 [11]  C. Le Pape and P. Baptiste. "Heuristic control of a constraint-based algorithm for the preemptive job-shop 
scheduling problem", Journal of Heuristics, vol. 5, 1999, pp. 305-325. 

 [12]  W. D. Harvey. "Nonsystematic backtracking search". Ph.D. thesis, Stanford University, California, 1995. 

 [13]  J. C. Beck and L. Perron. "Discrepancy-Bounded Depth First Search", Workshop on Integration of AI and OR 
Technologies for Combinatorial Optimization Problems, 2000, pp. 7-17. 

 [14]  W. H. Press. Numerical recipes the art of scientific computing, Cambridge: Cambridge University Press, 2007.  

 [15]  D. W. Marquardt. "An algorithm for least-squares estimation of nonlinear parameters", Journal of the Society 
for Industrial and Applied Mathematics, vol. 11, 1963, pp. 431-441. 

 [16]  J. Gaudreault, J. M. Frayret, A. Rousseau, and S. D'Amours. "Combined planning and scheduling in a divergent 
production system with co production", Université Laval, CENTOR, DT-2006-JMF-1, 2006. 

 [17]  I. J. Lustig and J. F. Puget. "Program Does Not Equal Program: Constraint Programming and Its Relationship to 
Mathematical Programming", Interfaces, vol. 31, 2001, pp. 29-53. 

 [18]  T. Walsh. "Depth-bounded discrepancy search", International Joint Conference on Artificial Intelligence, 1997, 
pp. 1388-1393. 

 [19]  F. Hutter, D. Babic, H. H. Hoos and A. J. Hu. "Boosting verification by automatic tuning of decision 
procedures", Formal Methods in Computer Aided Design, 2007, pp. 27-34. 

 [20]  S. L. Epstein, E. C. Freuder and R. J. Wallace. "Learning to support constraint programmers", Computational 
Intelligence, vol. 21, 2005, pp. 336-371. 

 [21]  E. Breimer, M. Goldberg, D. Hollinger and D. Lim. "Discovering optimization algorithms through automated 
learning", Graphs and Discovery. DIMACS Working Group Computer-Generated Conjectures from Graph 
Theoretic and Chemical Databases, 12-16 Nov. 2001, 2005, pp. 7-25. 

 [22]  R. Battiti, M. Brunato and F. Mascia. Reactive Search and Intelligent Optimization, Springer (In press), 2008.  

 [23]  W. Karoui, M.-J. Huguet, P. Lopez and W. Naanaa. "YIELDS: a yet improved limited discrepancy search for 
CSPs", Proceedings of the 4th International Conference on the Integration of AI and OR Techniques in 
Constraint Programming for Combinatorial Optimization Problems, 2007, pp. 99-111. 

 [24]  P. Refalo. "Impact-based search strategies for constraint programming", International Conference on Principles 
and Practice of Constraint Programming, LNCS #3258, 2004, pp. 557-71. 

 [25]  F. Boussemart, F. Hemery, C. Lecoutre and L. Sais. "Boosting systematic search by weighting constraints", 
Proceedings of the 16th European Conference on Artificial Intelligence, 2004, pp. 146-150. 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 17



 [26]  D. Grimes and R. J. Wallace. "Learning from failure in constraint satisfaction search", 2006 AAAI Workshop, 
Jul 16-20 2006, 2006, pp. 7-14. 

 [27]  N. Levasseur, P. Boizumault and S. Loudni. "A value ordering heuristic for weighted CSP", Proceedings of the 
19th IEEE International Conference on Tools with Artificial Intelligence, 2007, pp. 259-62. 

 [28]  W. Ruml. "Adaptive Tree Search". Ph.D. thesis, Harvard University, 2002. 

 [29]  W. Ruml. "Heuristic Search in Bounded-depth Trees: Best-Leaf-First Search", Working Notes of the AAAI-02 
Workshop on Probabilistic Approaches in Search, 2002. 

 

ADS: An Adaptive Search Strategy for Efficient Distributed Decision Making

CIRRELT-2008-49 18




