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Abstract. This paper develops an efficient heuristic to solve two typical combinatorial 
optimization problems frequently met when designing highly reliable systems. The first 
one is the redundancy allocation problem (RAP) of series-parallel binary-state systems. 
The design goal of the RAP is to select the optimal combination of elements and 
redundancy levels to maximize system reliability subject to the system budget and to the 
system weight. The second problem is the expansion-scheduling problem (ESP) of multi-
state series-parallel systems. In this problem, the study period is divided into several 
stages. At each stage, the demand is represented as a piecewise cumulative load curve. 
During the system lifetime, the demand can increase and the total productivity may 
become insufficient to assume the demand. To increase the total system productivity, 
elements are added to the existing system. The objective in the ESP is to minimize the 
sum of costs of the investments over the study period while satisfying availability 
constraints at each stage. The heuristic approach developed to solve the RAP and the 
ESP is based on a combination of space partitioning, genetic algorithms (GA) and tabu 
search (TS). After dividing the search space into a set of disjoint subsets, this approach 
uses GA to select the subspaces, and applies TS to each selected subspace. Numerical 
results for the test problems from previous research are reported and compared. The 
results show the advantages of the proposed approach for solving both problems. 
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1 Introduction

During the last decades, reliability optimization has attracted a great number of researchers,
due to the critical importance of designing highly reliable systems in various industrial contexts.
One option to improve system reliability or availability is to include redundant elements in par-
allel. Nevertheless, resources are usually required for any enhancement leading to constrained
optimization problems. In general these problems are nonlinear integer programming problems,
of combinatorial nature and NP-hard. For example, the redundancy allocation problem (RAP)
was shown to be NP-hard in [3]. In recent works a major focus is on the development of heuristic
methods that are based on meta-heuristics to solve reliability optimization problems [34].

The present contribution develops an efficient approach based on meta-heuristics to solve two
problems of system reliability optimization, namely the redundancy allocation problem (RAP)
of series-parallel binary-state systems (Problem 1), and the expansion-scheduling problem (ESP)
of series-parallel multi-state systems (Problem 2). Problems 1 and 2 are chosen as typical rep-
resentatives from binary-state reliability and multi-state reliability problems, respectively. The
proposed heuristic approach combines genetic algorithms (GA), tabu search (TS), and the idea
of space partitioning (SP). Because of such a combination, it is said to be hybrid. We call it
space partitioning/tabu-genetic (SP/TG), SP and TG being acronyms of Space Partitioning and
Tabu-Genetic, respectively.

The remainder of the paper is organized as follows. In Section 2, we present briefly a description,
a literature review, and a mathematical formulation for problems 1 and 2. Section 3 develops our
SP/TG approach. In Section 4, we apply this approach to solve problems 1 and 2. The test
problems and the numerical results are presented in Section 5. Finally, some concluding remarks
are given in Section 6.

2 Two typical reliability design optimization problems

2.1 The redundancy allocation in series-parallel binary-state systems

2.1.1 Problem description and literature review

Using binary-state reliability modeling, Problem 1 assumes that a system and its elements
may experience only two possible states: good and failed. We also assume that failed elements
are not repaired. Other classical assumptions include that all redundancy is active, and that the
failures of individual elements are mutually s-independent. The system consists of components in
series. Each component contains a number of elements connected in parallel. Different elements
can be placed in parallel (i.e., element mixing is allowed). A component of index i is functioning
correctly if at least ki of its elements are operational (k -out-of n:G component redundancy). This
series-parallel system is a logic diagram representation. For each component, there are various
element versions, which are proposed by the suppliers in the market. Each element is characterized
by its cost, its weight and its reliability according to its version. Redundancy allows reliability
improvement, but increases the total cost. The design goal is to select the optimal combination
of elements and redundancy levels so that the total reliability is maximized, subject to budget
and to weight constraints. This is a complex combinatorial optimization problem, which is very
important in many industrial applications. It has been studied in many different forms, and by
considering numerous approaches and techniques.
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Assuming element mixing is not allowed, the RAP of binary-state series-parallel systems has
been solved using exact methods (in [1, 6] using dynamic programming approach, in [2, 7, 10, 22]
using integer programming and in [25] using mixed-integer and nonlinear programming). In [21],
Nakagawa and Miyazaki have also proposed an exact algorithm named N&M to solve 33 variations
of the Fyffe problem [6]; they have shown that their algorithm found optimal solutions for 30 of
them. But, the algorithm did not converge to a feasible solution for the 3 other cases.

When element mixing is permitted, the problem becomes very complex due to the enormous
size of the search space. To solve the problem, Coit and Smith [4] used a genetic algorithm while
allowing to search in infeasible regions. A linear approximation for RAP with multiple element
choices has been suggested by Hsieh [13]. An efficient tabu search has been developed in [14] to
solve the RAP, while the ant colony optimization meta-heuristic was used in [17]. To the best of
our knowledge, the best-published results have been provided by ant colony meta-heuristic with
the degraded ceiling in [20] and by variable neighbourhood search in [18].

2.1.2 Mathematical formulation

Notation for Problem 1

n number of components in the system
i index for component, i ∈ {1, 2, ..., n}
mi number of available elements choices for component i

ki minimum number of elements in parallel required for component i

k (k1, k2, ..., kn)
pi total number of elements used in component i

nmax maximum number of elements in parallel
j index (type) for element
xij number of element of type j used in component i

xi (xi1, xi2, ..., ximi
)

X a string of dimension L =
n

∑

i=1

mi which defines the entire system structure,

X = (x11, x12, ..., x1m1
, x21, x22, ..., x2m2

, ..., xn1, xn2, ..., xnmn
)

Mij maximum number of elements of version j in parallel belonging to component i

rij reliability of element of version j belonging to component i

cij cost of each element of version j in component i

wij weight of each element of version j in component i

R(xi|ki) total reliability of system, given ki

Ri(xi|ki) reliability of component i, given ki

Ci(xi) total cost of component i

Wi(xi) total weight of component i

C0 cost limit
W0 weight limit
mnli maximum number of local iterations without improvement
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The RAP formulation is given by:

maximize R(xi|ki) =
n

∏

i=1

Ri(xi|ki) (1)

subject to
n

∑

i=1

Ci(xi) ≤ C0, (2)

n
∑

i=1

Wi(xi) ≤ W0, (3)

mi
∑

j=1

xij ≤ nmax, i = 1, 2, ..., n, (4)

mi
∑

j=1

xij ≥ ki, i = 1, 2, ..., n, (5)

xij ∈ {0, 1, ...,Mij}, i = 1, 2, ..., n; j = 1, 2, ...,mi. (6)

The objective function (1) represents overall reliability of the series-parallel system. The system
reliability is calculated by the product of n component reliabilities represented by Ri(xi|ki). The
value Ri(xi|ki) is the reliability of component i given the minimum number of elements in parallel
required for component i to function, i.e., xi.

Constraints (2) and (3) represent, respectively, the budget and the weight constraints. Con-
straint (4) specifies that, the number of elements to be included into component i cannot be higher
than a pre-selected maximum number nmax. Constraint (5) represents the k-out-of n:G constraint.
Constraint (6) specifies that, for each component i, number of elements of each type j is identified
by integers from 0 to a maximum number of elements available in the market.

2.2 The expansion-scheduling of series-parallel multi-state systems

2.2.1 Problem description and literature review

The expansion-scheduling problem (ESP) of a series-parallel multi-state system was introduced
by Levitin in [27]. The system is called a multi-state system (MSS) because it is considered to
have a range of performance levels from perfect functioning to complete failure. In the formulation
of the ESP of a series-parallel MSS, the system study horizon is divided into several periods. At
each period the demand distribution is predicted in the form of a cumulative demand curve. As in
many industrial cases the demand increases with time, the design problem concerns expansions (or
reinforcements) to adjust the system productivity (or capacity) to the demand. This is ensured by
adding elements which are chosen from the list of products available in the market. It is assumed
that any failed element is repaired. These elements are binary-state and are characterized by their
cost, productivity and own availability. The MSS availability is defined as the ability to satisfy
consumer demand. The initial structure of the system may be given at the initial stage or it
may be empty. The objective is to minimize the sum of investment-cost over the study period
while satisfying availability constraints at each stage. The developed algorithm has to answer the
following questions:
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1. What elements must be added to the system?

2. Into which system-components the additional elements should be included?

3. At which period stage each element should be added?

The ESP is a difficult large-scale optimization problem due to the enormous size of the search
space. It can be seen as a more complicated extension of the RAP. In fact, the single stage series-
parallel MSS expansion-scheduling problem corresponds to the RAP of MSS. A good and extensive
review of MSS literature can be found for example in [28] and [29]. The RAP for series-parallel
MSS was first introduced in [30], where the universal moment generating function (UMGF) method
was used for the reliability calculation [31]. Following these works, genetic algorithms were used in
[15] and [16] for finding the minimal cost configuration of a series-parallel MSS under reliability or
availability constraints. The others existing solution techniques of the RAP of MSS are ant colony
optimization [35], a heuristic algorithm in [33] and tabu search [24]. The expansion-scheduling (or
expansion planning) problem for multi-state series-parallel systems is more recent and has not been
sufficiently studied. The only existing solution techniques of this problem are genetic algorithms
[27] and an ant colony optimization algorithm in [35].

2.2.2 Mathematical formulation

Notation for Problem 2

Γ number of expansion stages
γ stage number, 1 ≤ γ ≤ Γ
Jγi a number which identifies version (version number or index) of element to be included

into component i at stage γ, Jγi ∈ {1, 2, ...,Max(Jγi)}
Max(Jγi) maximum number of versions available in the market for element to be included into

component i at stage γ

J a matrix (Jγi), 1 ≤ γ ≤ Γ, 1 ≤ i ≤ n, which specifies version numbers to be
included to each component at each stage in the system

Hγi number of elements to be included into component i at stage γ

Max(Hγi) maximum Hγi allowed (i.e., the upper bound of Hγi)
H a matrix (Hγi), 1 ≤ γ ≤ Γ, 1 ≤ i ≤ n, which specifies the numbers of ele-

ments to be included into each component in the system at each stage γ, Hγi ∈
{1, 2, ...,Max(Hγi)}

Y a matrix (Yγl), 1 ≤ γ ≤ Γ, 1 ≤ l ≤ 2n of dimension 2nγ, which defines the entire
expansion planning. For 1 ≤ l ≤ n, the components of the matrix Y are those of H.
For n + 1 ≤ l ≤ 2n, the components of the matrix Y are those of J. This matrix is
denoted by Y = (H,J)

Cγ(Y) system expansion cost at stage γ, Cγ(Y) = Cγ(H,J)

C(Y) total system expansion cost, C(Y) =
Γ

∑

γ=1

Cγ(Y)

Aγ(Y) stationary availability index of the overall multi-state series-parallel system at stage
γ

A0 a specified minimum required level of system availability index
ρ interest rate
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t(γ) time (in years) from initial stage to stage γ

j index for element version (j = Jγi)
Aij binary-state availability of element of version j belonging to component i

Cij cost of each element of version j in component i

Wij nominal performance level of element of version j in component i

A0
ij binary-state availability of element of version j belonging to i at stage 0

W 0
ij nominal performance level of element of version j in component i at stage 0

K number of partitioned intervals at each stage
k index for partitioned intervals
T (γ) MSS operation period at stage γ

Tk(γ) a partitioned interval in T (γ), T (γ) =
K

∑

k=1

Tk(γ)

Wk(γ) required MSS performance level for Tk(γ)
m number of MSS state, m ∈ {1, 2, ...,M}, 1 is the worst state and M is the best state
Wm MSS steady-state performance level associated with m

W (t) output performance level of the MSS at time t, W (t) ∈ {W1, ...,WM}
pm lim

t→∞
[Pr(W (t) = Wm)]

Str0 initial system structure
q amplification parameter in the penalized objective function

The global period to be examined is divided into several stages. Each stage γ begins t(γ) years
after the stage 0. The total operation period at each stage is divided into K intervals of durations
(T1(γ), T2(γ), ..., TK(γ)), (γ = 1, 2, ..., Γ) (Tk(γ) = 0 for redundant intervals), and each interval
has a required demand level (W1(γ),W2(γ), ...,WK(γ)), (γ = 1, 2, ..., Γ). We consider an initial
structure of the series-parallel system which consists of n components which are independent
and connected in series. Each component i (i = 1, 2, ..., n) is composed of actively redundant
elements connected in parallel. Each element is characterized by its availability, its unit cost and
its performance. Redundancy allows availability improvement, but increases the total cost. The
objective is to minimize the sum of the costs of the investments over the study period, subject to
availability constraints at each stage. At each stage, it is considered that once an element selection
is made, only the same element type can be used to provide redundancy. That is, at each stage, for
each component, one has to select one element type to be included and to determine the number
of redundant elements. Figures 1–3 illustrate the expansion process in the ESP by considering an
example. In reference [27], the ESP was studied for a power-station coal transportation system
which supplies boilers, and which has 5 basic system-components.

Component 2 Component 3Component 1

Figure 1: Initial structure of MSS
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Component 2 Component 3

Element 3

Element 3

Component 1

Element 1 Element 5

Figure 2: MSS structure for the first period

Component 1 Component 2 Component 3

Element 1

Element 1

Element 6

Element 6

Element 5

Element 5
Element 3

Element 3

Figure 3: MSS structure for the second period

The total cost is calculated by adding the costs of the system expansion at each stage. For
each system structure defined as a matrix Y = (Yγl), 1 ≤ γ ≤ Γ, 1 ≤ l ≤ 2n, such as Y=(H,J),
the cost of the system expansion at stage γ is given by [27]:

Cγ(Y) =
1

(1 + ρ)t(γ)

n
∑

i=1

HγiCiJγi
. (7)

Thus, the total cost is given by:

C(Y) =
Γ

∑

γ=1

1

(1 + ρ)t(γ)

n
∑

i=1

HγiCiJγi
. (8)

The availability of total system at stage γ is given by [27]:

Aγ(Y) =

K
∑

k=1

P (WS(γ) ≥ Wk(γ))Tk(γ)

K
∑

k=1

Tk(γ)

, (9)
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where, P (WS(γ) ≥ Wk(γ)) is the probability that the total system capacity WS(γ) at stage γ is
not less than the demand level Wk(γ).

The problem formulation is given by:

minimize C(Y) = C(H,J) =
Γ

∑

γ=1

1

(1 + ρ)t(γ)

n
∑

i=1

HγiCiJγi
(10)

subject to

Aγ(H,J) ≥ A0, γ = 1, 2, ..., Γ, (11)

Hγi ∈ {0, 1, ...,Max(Hγi)}, i = 1, 2, ..., n; γ = 1, 2, ..., Γ, (12)

Jγi ∈ {1, ...,Max(Jγi)}, i = 1, 2, ..., n; γ = 1, 2, ..., Γ. (13)

The objective (10) is to minimize the total cost. Eq. (11) represents the availability constraint.
Constraint (12) specifies that, at each stage γ, the number of elements to be included into com-
ponent i is an integer which cannot be higher than a pre-selected maximum number Max(Hγi).
Constraint (13) specifies that, at each stage γ, for each component i, versions are identified by
integers from 1 to a maximum number of versions available in the market. Given the solution
structure (Y = (H,J)), the identical elements constraint is verified automatically. To estimate the
availability function Aγ(H,J) we will use the U-function (universal z-transform) technique [31].
This mathematical technique is also called universal moment generating function (UMGF). It was
proven to be very effective for high dimension combinatorial problems in [28] and [29]. For more
details about MSS availability evaluation by using the UMGF method, the reader is referred to
[31] or [29]. This method is used in [27] to calculate the availability function Aγ(H,J).

3 The space partitioning and tabu-genetic approach

The main idea of our approach consists in dividing the search space into a set of disjoint
subsets, selecting subspaces by using genetic algorithms, and applying tabu search to each selected
subspace. Each of these will now be described in more detail.

Dividing the search space into a set of disjoint subspaces

A given solution can be defined either as a vector or a matrix. It can be also defined as a
string. We define an address which characterizes this solution. This address is usually an integer
identifier which may depend on the system structure and parameters. It has to be chosen such
that a set of solutions have the same address. In fact, we define each search subspace as the set
of solutions which have the same address. The collection of non-empty search subspaces forms a
partition of the search space.

Selecting subspaces by using genetic algorithms

When the number of subspaces is huge, the objective of this step is to locate promising search
subspaces. The basic idea of the genetic algorithms is to evolve a population of individuals. Each
individual in the population is represented as a string of finite integer numbers and represents only
one region in the search space (i.e., solutions which have the same address). We define the fitness
of a given individual. At each iteration, two individuals are randomly selected and produces a new
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solution (offspring) using a 2-points crossover procedure. The new solution is compared with the
worst solution in the population. The better solution joints the population and the worse one is
discarded. This version of GA is named GENITOR or “steady-state GA”. It was developed in
[26] and used in [16] and [27] for MSS reliability optimization. In general, GENITOR outperforms
the basic “generational GA”.

Applying tabu search to each selected subspace

The role of this step is to look (in each subset selected by GA) for solutions by using an efficient
TS. We define the neighbourhood structure. At each iteration of TS, the local transformations
(or moves), that can be applied to the current solution, define a set of neighbouring solutions in
a selected subspace as: Neighbourhood(current solution) = {new solution obtained by applying a
single move to the current solution}. The move is chosen in such a way that the solution address
does not change after a local transformation of the solution and the search process remains in the
same subspace.

At each iteration, the best solution in a subset of Neighbourhood(current solution) is selected
and considered as a tabu solution for some next iterations. This subset (referred to as the effec-
tive neighbourhood) is generated by eliminating the tabu solutions from Neighbourhood(current
solution). Tabus are stored in a short-term memory of the search (tabu list). A previously visited
solution is added to the tabu list in order to forbid the repetition of configurations. That is, tabus
are used to prevent cycling when moving away from local optima through non-improving moves.
The size of the tabu list (denoted by length) is an important parameter regarding the efficiency
of the heuristic, but its best value is not easy to be determined. A dynamic length is used, as it
is usually found that it is more efficient to use a variable size tabu list [8, 24]. The termination
criterion used can be specified in terms of a maximum number of local iterations without finding
an improvement in the best-known solution.

As an important additional feature of our proposed TS, we use a penalty function while al-
lowing infeasible solutions. This penalty function discourages, but allows, the TS algorithm to
search into the infeasible boundary region. The idea of exploring around boundaries is known to
be efficient for past implementations to solve the RAP of series-parallel systems. For example, the
authors of [5] in their use of GA observed that better final feasible solutions could be found by
permitting the exploration of the infeasible region, but by penalizing those solutions on the basis of
the infeasibility degree. This idea is also used in [14, 17, 20] for solving the RAP of series-parallel
binary-state systems with other meta-heuristics, in [19] for reliability optimization of a series sys-
tem with multiple-choice and budget constraints, and in [24] for solving the RAP of series-parallel
multi-state systems with TS. In TS, allowing infeasible solutions is a well-known idea [9, 11, 12].
An interesting way to find correct weights for constraint violations is to use self-adjusting penalties,
i.e., weights are adjusted dynamically on the basis of the recent history of the search. Weights are
increased if only infeasible solutions were encountered in the last few iterations, and decreased if
all recent solutions were feasible; see [9] for further details. Penalty weights can also be modified
systematically to drive the search to cross the feasibility boundary of the search space and thus
induce diversification. This technique, known as strategic oscillation, was first introduced in [11]
and used since in several successful TS procedures. In the sequel, the TS algorithm applied to
subspaces will be called TS-Sub.
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The general algorithm

The general algorithm can then be summarized as follows (see also Figure 4):

Step 1. Generate randomly an initial population of Ns solutions and consider a

set E initially empty.

Step 2. Select randomly two solutions named parent 1 and parent 2.

Step 3. Use 2-points crossover procedure to produce a new solution named child

or offspring.

Step 4. If address (offspring) is in E (i.e., we have already applied TS-Sub

to this subspace), pass to step 6.

Step 5. If address (offspring) is not in E, the best offspring is calculated

by applying TS-Sub, and the address of the new solution is added to E

(to avoid applying TS-Sub to the same subspace more than once).

Step 6. Decode the new offspring and compare its solution with the worst

solution in the population. The better solution joins the population

and the worse one is discarded. Equivalent solutions are eliminated.

If the population contains only one solution, regenerate randomly new

solutions in the population.

Step 7. Repeat steps (2 to 6) Nrep times.

Step 8. Terminate the GA after Nc genetic cycles.

The proposed SP/GA approach tends to provide a balance between diversification and inten-
sification. First, the selection of subspaces by GA allows the identification of promising regions
in the search space. One intended role of the used GA is to facilitate the exploration by guiding
the search to unvisited subspaces. This leads to a diversification in subspaces. Second, the in-
tended role of TS is to search carefully and intensively around good solutions found in the past
search. This leads to intensification by exploiting each subspace selected by GA. Furthermore, as
explained in Section 3, when using a penalty function while allowing infeasible solutions, we induce
diversification by encouraging exploration of the boundary of the feasible region.

4 Application of the proposed SP/TG approach

4.1 Application to the RAP

A given solution is defined by a system structure which is defined as a string X of dimension

L =
n

∑

i=1

mi. The address of X is defined by:

address(X) =
L

∑

l=1

Xl. (14)

As a simple illustrative example, let consider a system of 2 components in series. Component 1
contains 2 elements of version 5 and 1 element of version 3 in parallel, and component 2 contains
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     Child (offspring)

Population

        Parent 1            Parent 2

Address (offspring)

is in E? 

YesNo

          New child

       Apply TS−Sub

E=E+{address (new child)}

Figure 4: General algorithm

3 elements of version 9 in parallel. The address of X is simply obtained by summing the total
number of elements (used in the system). That is, address(X) = 1 + 2 + 3 = 6.

A search subspace of address r, denoted by Sr is defined as the set of solutions which have the
same address, equal to r.

It follows from the above definitions that the lower bound of r is n and its upper bound is given
by:

N =
n

∑

i=1

mi
∑

j=1

Mij. (15)

Note that (Sr)n≤r≤N is a partition of the search space S.

To let the GA look for the solution with maximum total reliability and with W ≥ W0 and
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C ≥ C0, the fitness of a given individual is defined by:

F =
n

∏

i=1

Ri(xi|ki).
(

W

W0

)α

.

(

C

C0

)β

. (16)

By introducing a penalty function, we aim at encouraging the algorithm to explore the feasible
region and infeasible region that is near the border of feasible area and discouraging, but allowing,
search further into infeasible region.

In the previous subsection, the search space S has been partitioned into (N −n + 1) subspaces
(Sn, Sn+1, ..., SN ). To apply TS to a given subspace Sri

(n ≤ ri ≤ N), let define the neighbourhood
structure. At each iteration of TS, the local transformations (or moves), that can be applied to
the current solution X, define a set of neighboring solutions in Sri

as:
neighbourhood (X) = {series-parallel structures obtained by applying a single move to X}.

The move applied to X consists in changing the number of elements in parallel by adding and
subtracting one, if possible, for any component. In this way, address(X) does not change after a
local transformation of X and the search process remains in the same subspace. The penalized
objective function to be minimized is given by F in Eq. (16).

4.2 Application to the ESP

Given an expansion plan for a system as a matrix Y = (H,J), (Y = (Yγl), 1 ≤ γ ≤ Γ, 1 ≤ l ≤ 2n),
the address of Y is defined by:

address(Y) =
Γ

∑

γ=1

2n
∑

l=1

Yγl. (17)

For example, let consider the system such as the initial structure is empty, n = 3, Γ = 3,

H =







2 1 1
1 0 1
1 0 0





, J =







3 1 5
1 6 5
2 1 3





 and Y =







2 1 1 3 1 5
1 0 1 1 6 5
1 0 0 2 1 3





.

The address of Y is simply obtained by summing the total number of elements (added in the
total system) with the sum of version numbers, i.e., address(Y) = 34.

A search subspace of address r, denoted by Sr is defined as the set of solutions which have the
same address, equal to r.

It follows from the above definitions that the lower bound of r is 0 and its upper bound is given
by:

N =
Γ

∑

γ=1

n
∑

i=1

[Max(Hγi) + Max(Jγi)]. (18)

(Sr)0≤r≤N is a partition of the search space S.

The fitness of a given individual is defined as follows [27]:

F =
Γ

∑

γ=1

1

(1 + ρ)t(γ)

n
∑

i=1

HγiCiJγi
+ q

Γ
∑

γ=1

max{0, A0 − Aγ(H,J)}. (19)
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In the previous subsection, the search space S has been partitioned into (N + 1) subspaces
(S0, S1, ..., SN ). To apply TS to a given subspace Sri

(0 ≤ ri ≤ N), let us define the neighbourhood
structure. At each iteration of TS, the local transformations (or moves), that can be applied to the
current solution Y, define a set of neighboring solutions in Sri

as: neighbourhood(Y) = {expansion
plan for a system obtained by applying a single move to Y}.

The move applied to Y consists in changing the number and the version of elements by
adding and subtracting one, if possible, for any component of the solution matrix Y = (H,J),
( Y = (Yγl), 1 ≤ γ ≤ Γ, 1 ≤ l ≤ 2n). In this way, address(Y) does not change after a local
transformation of Y and the search process remains in the same subspace. Each single move can
be applied in three different ways:

1. Changing the number of elements in components (Hγ1l1 → Hγ1l1 + 1 and Hγ2l2 → Hγ2l2 − 1);

2. Changing version numbers in components (Jγ1l1 → Jγ1l1 + 1 and Jγ2l2 → Jγ2l2 − 1);

3. Changing both number of elements and version numbers in components (Hγ1l1 → Hγ1l1 + 1
and Jγ2l2 → Jγ2l2 − 1) or (Hγ1l1 → Hγ1l1 − 1 and Jγ2l2 → Jγ2l2 + 1).

The penalized objective function to be minimized is given by F in Eq. (19).

5 Computational results

For both problems, the algorithm was implemented in C++. The numerical tests were com-
pleted on an Intel Pentium IV 3000 MHz DEC station 5000/240 with 1024 Mbytes of RAM running
under Linux.

5.1 Redundancy allocation problem (RAP)

5.1.1 Test problems for the RAP

The test problems, used to evaluate the performance of the SP/TG algorithm when applied to
the RAP, were originally proposed by Fyffe et al. in [6] and modified by Nakagawa and Miyazaki
in [21]. Fyffe et al. [6] considered a system with 14 components and specified constraint limits
of 130 units of system cost, 170 units of system weight and suppose 1-out-of n:G component re-
dundancy. Nakagawa and Miyazaki [21] developed 33 variations of the Fyffe problem, where the
cost constraint C is set to 130 and the weight constraint W is decreased incrementally from 191
units to 159 units. The element cost, weight and reliability values, as originally presented in [6],
are reproduced in Table 1. For each component, there are three or four element choices.

Component i Element choices
Choice 1 Choice 2 Choice 3 Choice 4
ri1 ci1 wi1 ri2 ci2 wi2 ri3 ci3 wi3 ri4 ci4 wi4

1 0.90 1 3 0.93 1 4 0.91 2 2 0.95 2 5
2 0.95 2 8 0.94 1 10 0.93 1 9 - - -
3 0.85 2 7 0.90 3 5 0.87 1 6 0.92 4 4
4 0.83 3 5 0.87 4 6 0.85 5 4 - - -

13

An Efficient Heuristic for Reliability Design Optimization Problems

CIRRELT-2009-05



Component i Element choices
Choice 1 Choice 2 Choice 3 Choice 4
ri1 ci1 wi1 ri2 ci2 wi2 ri3 ci3 wi3 ri4 ci4 wi4

5 0.94 2 4 0.93 2 3 0.95 3 5 - - -
6 0.99 3 5 0.98 3 4 0.97 2 5 0.96 2 4
7 0.91 4 7 0.92 4 8 0.94 5 9 - - -
8 0.81 3 4 0.90 5 7 0.91 6 6 - - -
9 0.97 2 8 0.99 3 9 0.96 4 7 0.91 3 8
10 0.83 4 6 0.85 4 5 0.90 5 6 - - -
11 0.94 3 5 0.95 4 6 0.96 5 6 - - -
12 0.79 2 4 0.82 3 5 0.85 4 6 0.90 5 7
13 0.98 2 5 0.99 3 5 0.97 2 6 - - -
14 0.90 4 6 0.92 4 7 0.95 5 6 0.99 6 9

Table 1: Data for RAP test problems [6]

5.1.2 Size of the search space and number of subspaces for the RAP

As in [18], the generation of initial solutions were controlled in a range between ki and Mij −4
(inclusive). The total number of different solutions to be examined and the number of subspaces
are simply given by the following equations:

Size of the search space =
n

∏

i=1

mi
∏

j=1

Mij. (20)

Number of subspaces =
n

∑

i=1

mi
∑

j=1

Mij − n + 1. (21)

Let us consider that different types of elements are allowed to reside in parallel, and assume
that (Mij = 8 ∀j, 1 ≤ j ≤ mi, and ∀i, 1 ≤ i ≤ n). This means simply that a maximum number
of 8 s-identical elements are allowed for each component. In this case, the search space size is
849 ≈ 2.1044, while the number of subspaces is 371.

5.1.3 Parameter settings for the RAP

Preliminary numerical tests were used to set the values of the parameters. Different data
are randomly generated and used to calibrate the parameters. Once the values of the parameters
are set for these preliminary data, they are used for the variations of the problem instances to be
solved in this paper. In this way, we avoid any parameter overfitting. The parameters’ values are:
Ns = 50, Nrep = 50, Nc = 10, mnli = 200, α = 1 and β = 0.3.

5.1.4 Comparing the best solutions of SP/TG and existing methods for the RAP

The performance of the SP/TG heuristic is compared with the best-known heuristics for the
RAP from previous literature, namely the genetic algorithm (GA) in [4], the linear approximation
(LA) approach in [13], the tabu search (TS) algorithm in [14], the ant colony optimization (ACO)
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in [17], the variable neighbourhood search (VNS) approach in [18], and the ant colony optimization
coupled with the degraded ceiling algorithm (ACO/DC) in [20]. Ten runs of our algorithm were
made using different random seeds for each problem instance. The best feasible solution over ten
runs was first used for comparison. The results of the best solutions (i.e., configuration, reliability,
cost and weight) obtained by SP/TG for each of the 33 instances, are presented in Table 2. Table
3 gives a comparison between the best solutions of SP/TG and the best solutions obtained by the
methods in references [4, 13, 14, 17, 18, 20]. Note that in these references, whenever the proposed
algorithm is of a stochastic nature, 10 trials were performed and the best solution (among these
10 trials) was used as the final solution. The maximum reliability identified by these algorithms
was then used to compare its performance to other algorithms. In Table 3, the best results
are in boldface, indicating that generally SP/TG out-performed the existing approaches. More
specifically, Table 3 shows that:

1. In 25 of the 33 test cases, the solutions found by our algorithm are better than those found
by the genetic algorithm in [4], while the rest (i.e., 8 cases) are as good as those they found.

2. Our algorithm out-performed the linear approximation approach in Hsieh [13] for all in-
stances.

3. In 7 of the 33 test cases, the solutions found by our algorithm are better than those found
by the tabu search algorithm in [14], while the rest (i.e., 26 cases) are as good those they
found.

4. In 9 of the 33 test cases, the solutions found by our algorithm are better than those found by
the ant colony optimization in [17], while the rest (i.e., 24 cases) are as good as those they
found.

5. Our algorithm outperformed the variable neighbourhood search approach proposed in [18]
for 6 instances, while the rest (i.e., 27 instances) are as good as those they found.

6. In 2 of the 33 test cases, the solutions found by our algorithm are better than those found
by the ant colony optimization coupled with the degraded ceiling algorithm in [20], while the
rest (i.e., 31 cases) are the same as those they found.

No Solution encoding (X) C(X) W (X) R(X)
1 333,11,444,3333,222,22,111,1111,12,233,33,1111,11,34 130 191 0.986811
2 333,11,444,3333,222,22,111,1111,11,233,33,1111,12,34 130 190 0.986416
3 333,11,444,3333,222,22,111,1111,23,233,13,1111,11,34 130 189 0.985922
4 333,11,444,3333,222,22,111,1111,23,223,13,1111,12,34 130 188 0.985378
5 333,11,444,3333,222,22,111,1111,13,223,13,1111,22,34 130 187 0.984688
6 333,11,444,333,222,22,111,1111,23,233,33,1111,22,34 129 186 0.984176
7 333,11,444,3333,222,22,111,1111,23,223,13,1111,22,33 130 185 0.983505
8 333,11,444,333,222,22,111,1111,33,233,33,1111,22,34 130 184 0.982994
9 333,11,444,333,222,22,111,1111,33,223,33,1111,22,34 129 183 0.982256
10 333,11,444,333,222,22,111,1111,33,333,33,1111,22,33 130 182 0.981518
11 333,11,444,333,222,22,111,1111,33,233,33,1111,22,33 129 181 0.981027
12 333,11,444,333,222,22,111,1111,33,223,33,1111,22,33 128 180 0.980290
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No Solution encoding (X) C(X) W (X) R(X)
13 333,11,444,333,222,22,111,1111,33,223,13,1111,22,33 126 179 0.979505
14 333,11,444,333,222,22,111,1111,33,222,13,1111,22,33 125 178 0.978400
15 333,11,444,333,222,22,111,113,33,223,13,1111,22,33 126 177 0.977596
16 333,11,444,333,222,22,33,1111,33,223,13,1111,22,33 124 176 0.976690
17 333,11,444,333,222,22,13,1111,33,223,33,1111,22,33 125 175 0.975708
18 333,11,444,333,222,22,13,1111,33,223,13,1111,22,33 123 174 0.974926
19 333,11,444,333,222,22,13,1111,33,222,13,1111,22,33 122 173 0.973827
20 333,11,444,333,222,22,13,113,33,223,13,1111,22,33 123 172 0.973027
21 333,11,444,333,222,22,13,113,33,222,13,1111,22,33 122 171 0.971929
22 333,11,444,333,222,22,13,113,33,222,11,1111,22,33 120 170 0.970760
23 333,11,444,333,222,22,11,113,33,222,13,1111,22,33 121 169 0.969291
24 333,11,444,333,222,22,11,113,33,222,11,1111,22,33 119 168 0.968125
25 333,11,444,333,22,22,13,113,33,222,11,1111,22,33 118 167 0.966335
26 333,11,44,333,222,22,13,113,33,222,11,1111,22,33 116 166 0.965042
27 333,11,444,333,222,22,11,113,33,222,11,1111,22,33 117 165 0.963712
28 333,11,44,333,222,22,11,113,33,222,11,1111,22,33 115 164 0.962422
29 333,11,44,333,22,22,13,113,33,222,11,1111,22,33 114 163 0.960642
30 333,11,44,333,22,22,11,113,33,222,13,1111,22,33 115 162 0.959188
31 333,11,44,333,22,22,11,113,33,222,11,1111,22,33 113 161 0.958035
32 333,11,44,333,22,22,11,111,33,222,13,1111,22,33 112 160 0.955714
33 333,11,44,333,22,22,11,111,33,222,11,1111,22,33 110 159 0.954565

Table 2: Results of the best solutions obtained by SP/TG

No W0 GA1 LA2 TS3 ACO4 VNS5 ACO/DC6 SP/TG
1 191 0.98675 0.986711 0.986811 0.986745 0.98681 0.986811 0.986811
2 190 0.98603 0.986316 0.986416 0.985905 0.98642 0.986316 0.986416
3 189 0.98556 0.985724 0.985922 0.985773 0.98592 0.985922 0.985922
4 188 0.98503 0.985031 0.985378 0.985329 0.98487 0.985378 0.985378
5 187 0.98429 0.984153 0.984688 0.984688 0.98467 0.984688 0.984688
6 186 0.98362 0.983879 0.984176 0.983801 0.98418 0.984176 0.984176
7 185 0.98311 0.983387 0.983505 0.983505 0.98351 0.983505 0.983505
8 184 0.98239 0.982204 0.982994 0.982994 0.98299 0.982994 0.982994
9 183 0.98190 0.981466 0.982256 0.982206 0.98226 0.982225 0.982256
10 182 0.98102 0.979690 0.981518 0.981468 0.98147 0.981518 0.981518
11 181 0.98006 0.979280 0.981027 0.980681 0.98103 0.981027 0.981027
12 180 0.97942 0.978327 0.980290 0.980290 0.98029 0.980290 0.980290
13 179 0.97906 0.978055 0.979505 0.979505 0.97951 0.979505 0.979505
14 178 0.97810 0.976878 0.978400 0.978400 0.97838 0.978400 0.978400
15 177 0.97715 0.975400 0.977474 0.977596 0.97760 0.977596 0.977596
16 176 0.97642 0.974975 0.976690 0.976494 0.97669 0.976690 0.976690
17 175 0.97552 0.973500 0.975708 0.975708 0.97571 0.975708 0.975708
18 174 0.97435 0.972328 0.974788 0.974926 0.97493 0.974926 0.974926
19 173 0.97362 0.970531 0.973827 0.973827 0.97381 0.973827 0.973827
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No W0 GA1 LA2 TS3 ACO4 VNS5 ACO/DC6 SP/TG
20 172 0.97266 0.969232 0.973027 0.973027 0.97303 0.973027 0.973027
21 171 0.97186 0.967896 0.971929 0.971929 0.97193 0.971929 0.971929
22 170 0.97076 0.966776 0.970760 0.970760 0.97076 0.970760 0.970760
23 169 0.96922 0.965612 0.969291 0.969291 0.96929 0.969291 0.969291
24 168 0.96813 0.964150 0.968125 0.968125 0.96813 0.968125 0.968125
25 167 0.96634 0.962990 0.966335 0.966335 0.96634 0.966335 0.966335
26 166 0.96504 0.961210 0.965042 0.965042 0.96504 0.965042 0.965042
27 165 0.96371 0.959923 0.963712 0.963712 0.96371 0.963712 0.963712
28 164 0.96242 0.958601 0.962422 0.962422 0.96242 0.962422 0.962422
29 163 0.96064 0.957317 0.959980 0.960642 0.96064 0.960642 0.960642
30 162 0.95912 0.955547 0.958205 0.959188 0.95919 0.959188 0.959188
31 161 0.95803 0.954101 0.956922 0.958034 0.95804 0.958034 0.958035
32 160 0.95567 0.952953 0.955604 0.955714 0.95567 0.955714 0.955714
33 159 0.95432 0.950800 0.954325 0.954564 0.95457 0.954564 0.954565

Table 3: Comparison of the best solutions among heuris-
tics

1 GA genetic algorithm [4]
2 LA linear approximation [13]
3 TS tabu search [14]
4 ACO ant colony optimization [17]
5 VNS variable neighborhood search [18]
6 ACO/DC ant colony optimization and degraded ceiling [20]

5.1.5 Robustness of the SP/TG algorithm for the RAP

To measure the robustness of the SP/TG algorithm, the standard deviations and the average
reliability, over ten runs in each instance, are given in Table 4. We remark from this table that
for each instance, the standard deviation is very low. This implies that the proposed method is
robust. The low standard deviation of SP/TG can be interpreted as a sign of insensitivity to the
initial solution and the random number seed.

Average
No W0 Max R Mean R Std dev evaluations
1 191 0.986811 0.986811 0.000000 327,749
2 190 0.986416 0.986416 0.000000 386,116
3 189 0.985922 0.985922 0.000000 227,884
4 188 0.985378 0.985327 0.000091 480,042
5 187 0.984688 0.984593 0.000161 169,061
6 186 0.984176 0.983762 0.000764 213,086
7 185 0.983505 0.983465 0.000127 151,248
8 184 0.982994 0.982964 0.000009 133,120
9 183 0.982256 0.982081 0.000490 263,815
10 182 0.981518 0.981002 0.001124 285,481
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Average
No W0 Max R Mean R Std dev evaluations
11 181 0.981027 0.980425 0.000390 231,039
12 180 0.980290 0.979630 0.000892 205,258
13 179 0.979505 0.978908 0.000449 195,794
14 178 0.978400 0.978151 0.000403 203,054
15 177 0.977596 0.977596 0.000000 184,477
16 176 0.976690 0.976651 0.000083 247,013
17 175 0.975708 0.975562 0.000308 282,445
18 174 0.974926 0.974675 0.000528 207,254
19 173 0.973827 0.973461 0.000743 183,166
20 172 0.973027 0.972591 0.000702 183,513
21 171 0.971929 0.971191 0.000952 228,454
22 170 0.970760 0.970090 0.000549 193,096
23 169 0.969291 0.968919 0.000743 170,768
24 168 0.968125 0.967766 0.001137 216,559
25 167 0.966335 0.965544 0.002500 286,547
26 166 0.965042 0.964826 0.000452 253,756
27 165 0.963712 0.963712 0.000000 216,990
28 164 0.962422 0.962422 0.000000 179,041
29 163 0.960642 0.960642 0.000000 303,201
30 162 0.959188 0.959138 0.000106 190,968
31 161 0.958035 0.958035 0.000000 242,367
32 160 0.955714 0.955714 0.000000 211,747
33 159 0.954565 0.954565 0.000000 190,198

Table 4: Maximum reliability, average reliability, stan-
dard deviation and average evaluation of the SP/TG al-
gorithm

5.1.6 Comparing the computational effort of SP/TG and existing methods for the
RAP

When considering the computational effort, the proposed algorithm requires less number of
iterations (i.e., generated solutions, during the whole search process) than TS in [14] and requires
a larger number of iterations than GA in [4, 5] and VNS in [18]. From the previous literature, the
numbers of iterations given for the following methods are:

• the number of solutions generated in GA [4, 5] is 48,000 (a population size of 40 chromosomes
and 1200 generations),

• TS in [14] evaluated an average of 350,000 solutions,

• the ACO algorithm in [17] needs about 100,000 evaluations or more,

• the ACO/DC approach needs about 150,000 evaluations or more,

• the average number of evaluations used by VNS in [18] is around 120,000.
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For each instance, the average numbers of solutions evaluated by SP/TG over ten runs are given
in the last column of Table 4. The number of solutions evaluated by our SP/TG is approximately
231,645 on average (obtained by averaging the values in the last column of Table 4).

Furthermore, our approach is compared to the others with a similar amount of evaluations as
follows: for each test case, we stop our algorithm after the number of evaluations needed for the
other algorithm to reach its best solution, and we compare the solution of our algorithm over ten
runs with this best solution. The results from this comparison are as follows:

• SP/TG solutions are better than GA solutions in 18 of the 33 test cases. GA solutions are
better than SP/TG solutions in 9 of the 33 test cases.

• SP/TG solutions are better than ACO solutions in 7 of the 33 test cases. ACO solutions are
better than SP/TG solutions in 6 of the 33 test cases.

• SP/TG solutions are better than VNS solutions in 3 of the 33 test cases. VNS solutions are
better than SP/TG solutions in 5 of the 33 test cases.

• SP/TG solutions are better than ACO/DC solutions in 1 of the 33 test cases. ACO/DC
solutions are better than SP/TG solutions in 3 of the 33 test cases.

• SP/TG solutions are better than TS solutions in 7 of the 33 test cases, while the rest are as
good those they found.

5.2 Expansion-scheduling problem (ESP)

5.2.1 Test problems for the ESP

The test problems, used to evaluate the performance of the SP/TG algorithm when applied
to the ESP, were proposed by Levitin in [27]. The system to be optimized is a power-station
coal transportation system which supplies boilers, and which has 5 basic components connected
in series. Each component may contain a set of parallel elements. For each component, different
elements types are available. Each element is considered as a binary-state unit, while the system
is a MSS with series-parallel structure. Two cases are considered:

• The case where the initial structure-set is empty (Str0 = ∅). In this case, the problem is to
determine the initial system structure as well as its expansion plan.

• The case where the initial system structure exists at stage 0 (Str0 = Str∗0). In this case, the
problem is to determine the system expansion plan.

The reader is referred to reference [27] for all the input data including:

• The characteristics of available elements, i.e., cost, availability and nominal capacity values.

• The data of the “piecewise cumulative boiler system demand curves” at 5 stages and times
from the present to the beginning of these future stages.

• The initial system structure to be used in the second case above.
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5.2.2 Size of the search space and number of subspaces for the ESP

As in [27], the generation of initial solutions were controlled in a range between 0 and 6. The
total number of different solutions to be examined and the number of subspaces are simply given
by the following equations:

Size of the search space =
Γ

∏

γ=1

n
∏

i=1

Max(Jγi)Max(Hγi). (22)

Number of subspaces =
Γ

∑

γ=1

n
∑

i=1

Max(Jγi) + Max(Hγi) + 1. (23)

Let us consider that different types of elements are allowed to reside in parallel, and assume that
((Hγi) = 6 ∀γ, 1 ≤ γ ≤ Γ, and ∀i, 1 ≤ i ≤ n). This means simply that a maximum number of 8
elements are allowed for each component. In this case, the search space size is 3, 25.625.1018 ≈ 1038,
while the number of subspaces is 296.

5.2.3 Parameter settings for the ESP

To avoid parameter overfitting, a procedure similar to that used for the RAP was used again.
That is, preliminary numerical tests were used to set the values of the ESP parameters. Different
data are randomly generated and used to calibrate the parameters. Once the values of the param-
eters are set for these preliminary data, they are used for the problem instances to be solved. The
parameters’ values are: Ns = 500, Nrep = 200, Nc = 100, mnli = 200, q = 500.

5.2.4 Comparing the best solutions of SP/TG and existing methods for the ESP

While a large number of methods have been proposed for the RAP, the only existing methods
to solve the ESP are a genetic algorithm (GA) in [27] and an ant colony optimization algorithm
in [35]. However, the best-known results are those obtained by the genetic algorithm in [27].
Therefore, the performance of the SP/TG heuristic applied to the ESP is compared with this GA.
The system availability of the final solution is rounded to three digits after the decimal point, in
order to compare our results with those obtained in [27]. Ten runs of SP/TG algorithm were made
using different random seeds for each problem instance. Tables ?? and ?? show the best expansion
plans (among the ten runs) obtained for Str0 = Str∗0 and Str0 = ∅, with three different desired
values of A0 (A0 = 0.950, A0 = 0.970 and A0 = 0.990). Cost figures are in millions of dollars.
The interest rate ρ is chosen to be 0.1. Expansion of each component i at stage γ is presented in
the form Xiγ(Jiγ). Table 7 gives a comparison between the best solutions of SP/TG and the best
solutions obtained with GA in [27], where the number of runs used is 100 and the best solution over
these runs are given. By executing our heuristic over only 10 trials, the obtained results should be
a fortiori conclusive. The percent that one solution improves upon another is defined in terms of
objective function as:

MPCI = 100% ×
(Minimal GA Cost - Minimal SP/TG Cost)

Minimal GA Cost
.

In Table 7, the best results are in boldface, indicating that SP/TG out-performed the existing
approaches. More specifically, Table 7 shows that, in terms of the best objective function (minimum
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over 10 runs), in 5 of 6 test problems, the solutions found by our algorithm SP/TG are better
than those found by GA in [27], while in the remaining instance both algorithms returns the same
solution.

A0 i γ = 1 γ = 2 γ = 3 γ = 4 γ = 5
C(1) = 0.645 C = 4.127

Aγ 0.950 0.951 0.959 0.952 0.960
1 1(4)
2 2(5) 1(5) 1(5)

0.950 3 1(4) 1(2)
4 1(7) 1(7)
5 1(3) 1(4)

C(1) = 3.323 C = 6.484
Aγ 0.970 0.971 0.986 0.972 0.970

1 1(6) 1(6) 1(6) 1(6)
2 1(3) 1(5) 1(5) 2(5)

0.970 3 1(4) 1(2)
4 2(7)
5 1(3) 1(4)

C(1) = 5.503 C = 7.834
Aγ 0.991 0.991 0.990 0.996 0.995

1 1(6) 1(6) 2(6)
2 1(5) 2(5) 1(5) 1(5)

0.990 3 1(2) 1(3)
4 1(7) 1(7) 1(7)
5 1(3) 1(3)

Table 5: The best solution found by SP/TG algorithm
among the 10 runs (Str0 = Str∗0)

A0 i γ = 1 γ = 2 γ = 3 γ = 4 γ = 5
C(1) = 10.160 C = 14.578

Aγ 0.952 0.960 0.951 0.951 0.950
1 3(4) 2(6)
2 2(3) 1(5) 1(5) 1(3) 1(5)

0.950 3 1(1) 1(2)
4 3(7) 1(9) 1(9) 1(7)
5 2(3) 1(3) 1(3)

C(1) = 12.727 C = 16.909
Aγ 0.970 0.971 0.970 0.996 0.971

1 3(4)
2 3(3) 2(5) 1(5)

0.970 3 2(2) 1(4) 1(2)
4 4(7) 1(9)
5 3(3) 1(3)
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A0 i γ = 1 γ = 2 γ = 3 γ = 4 γ = 5
C(1) = 17.285 C = 19.270

Aγ 0.994 0.993 0.990 0.996 0.991
1 3(4)
2 2(3) 1(4) 3(5)

0.990 3 3(2) 1(3)
4 3(7) 1(9) 1(7)
5 3(3) 1(3)

Table 6: The best solution found by SP/TG algorithm
among the 10 runs (Str0 = ∅)

Str0 A0 Minimal SP/TG Cost Minimal GA Cost %MPCI

0.950 4.127 4.127 00.00
Str0 = Str∗0 0.970 6.484 6.519 00.54

0.990 7.834 7.859 00.32
0.950 14.578 14.606 00.19

Str0 = ∅ 0.970 16.909 17.206 01.72
0.990 19.270 19.350 00.41

Table 7: Total costs for the proposed and existing algo-
rithms for the ESP

5.2.5 Robustness of the SP/TG algorithm for the ESP

To measure the robustness of the SP/TG algorithm when applied to the ESP, the standard
deviations and the average minimal cost, over ten runs in each instance, are given in Table 8. We
remark from this table that for each instance, the standard deviation is low. This confirms that
the proposed method is robust.

Average
Str0 A0 Min cost Mean cost Std dev evaluations

0.950 4.127 4.135 0.008 1,267,647
Str0 = Str∗0 0.970 6.484 6.532 0.104 1,614,513

0.990 7.834 7.862 0.030 1,827,918
0.950 14.578 14.587 0.006 3,140,892

Str0 = ∅ 0.970 16.909 17.558 0.219 2,484,106
0.990 19.270 19.474 0.246 2,937,715

Table 8: Minimum cost, average cost, standard deviation
and average evaluation of the SP/TG algorithm
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5.2.6 Comparing the computational effort of SP/TG and existing methods for the
ESP

For each instance, the average numbers of solutions evaluated by SP/TG over ten runs are
given in the last column of Table 8. The number of solutions evaluated by the proposed SP/TG
is 2, 2.106 on average (obtained by averaging the values in the last column of Table 8). As it
is reported in [27] that the number of solutions generated in GA is 2.106, the SP/TG algorithm
requires only 10 % more computational effort to get the high quality solutions shown above.

5.3 Convergence

The convergence curves of SP/TG were drawn for all the test cases, showing similar behaviour
in all these cases. Figures 5 and 6 show for example these curves for the first instance of each
problem (W0 = 191 for the RAP, and A0 = 0.950; Str0 = Str∗0 for the ESP). We remark that even
if the solutions of our algorithm are not good during the first iterations of the search process, they
become quickly very good.

Figure 5: An example of convergence curve for the RAP

6 Conclusion

This paper developed an efficient approach, called SP/TG, to solve two reliability optimiza-
tion problems for series-parallel systems. The first one is the redundancy allocation problem for
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Figure 6: An example of convergence curve for the ESP

series-parallel binary-state systems, and the second one is the expansion-scheduling problem of
series-parallel multi-state systems. The newly developed SP/TG approach combines GA, TS and
the idea of partitioning the search space. After an appropriate division of the search space into
a set of disjoint subspaces, the role of GA is to select the subspaces, while TS is applied to each
selected subspace. By combining two meta-heuristics, the SP/TG provides a balance between
diversification and intensification. For both problems, the experimental results showed that the
solutions found by the SP/TG approach are better than or are comparable with the best-published
results from the literature. As this hybrid approach has been successful for solving two typical de-
sign optimization problems from binary-state and multi-state reliability, it may represent a general
approach to solve other reliability optimization problems where it is possible to properly partition
the search space. Current works concern the application of the SP/TG approach developed in this
paper to other reliability optimization problems.
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