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Abstract. This paper investigates the robustness of different tactical planning and control 

policies for a softwood supply chain using an agent-based environment that simulates a 

distributed APS (advanced planning and scheduling) system and its corresponding supply 

chain operations. Simulations were modelled using a novel agent-based methodology 

combined with a robust experimental design approach and an industrial dataset obtained 

from two companies in Québec, Canada. Experimental results provide insights about the 

dynamic relations among factors related to control levels, planning methods and planning 

horizon lengths. In addition, they give indications on how to obtain an optimum robust 

configuration of these parameters so as to minimize the impact of uncertainties related to 

supply, manufacturing and demand. 
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1. Introduction  

The softwood lumber supply chain in Canada is going through of the most difficult 

times in its history. It is under great pressure and is compelled to respond to a new set 

of market requirements in terms of lower operational costs and improved service 

levels. It is also faced with a set of new supply and manufacturing constraints, such as 

reduced cutting rights and aging machinery, which impact productivity. 

To improve its business performance and re-establish its market position, 

academics and practitioners are trying to identify different tactics for this industry 

sector. Influenced by strategic planning, supply chain tactics define mid-term plans 

constraining how operations will be planned and executed. We know from practice 

that implementing an efficient and effective supply chain tactic is a difficult task since 

it includes many parameters, possible interactions among them and several 

uncertainties that disturb supply chain performance. As well, it is known that testing 

different planning and control tactics in practice can be quite costly and sometimes 

infeasible. 

In order to respond to these needs, we are performing simulation studies in the 

domain of the softwood lumber industry to help better understand how certain 

relevant planning and control tactical policies contribute to the performance of the 

entire supply chain.  In addition, we have investigated how these policies should be 

adjusted to obtain a robust system taking into consideration environmental 

uncertainties related to demand unpredictability, supply instability and manufacturing 

variability. The selected policies are control levels, planning methods and planning 

horizons. In this study the viewpoints of both customers and the company are 

analyzed through specific performance indicators. 
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With the goal of performing realistic experiments, we employed a novel 

advanced supply chain planning system called the FORAC experimental planning 

platform. It is able to mimic complex supply chain behaviours through agent-based 

planning and simulation. Our research is based on a case study inspired by two real 

lumber companies, providing a realistic test case that represents an industrial-scale 

situation. The whole of the modelling effort followed an agent-based modelling 

methodology, combined with a robust experimentation design approach.  

Despite the fact that both results and methodology are validated for the lumber 

industry, we strongly believe that other industry sectors (e.g., food and chemical 

industries) can benefit from this approach and from the experience gained from this 

case, mainly those that have important stochastic behaviours in terms of supply, 

demand and manufacturing operations, as well as those having divergent production 

processes. 

This paper is organized as follows. Section 2 presents a literature review in the 

domain and Section 3 introduces the FORAC experimental planning platform. Next, 

Section 4 explains the simulation problem. Section 5 details the methodology 

employed to model and implement the case. Section 6 explains how the experiments 

were specified, while Section 7 details how all parameters of the experiments were 

designed and implemented in the simulation platform. Section 8 presents and 

discusses the statistics of the case. Finally, Section 9 outlines some final remarks and 

conclusions. 

2. Literature Review 

Supply chain planning basically covers three decision levels: strategic planning, 

tactical planning and operational planning. Named hierarchical production planning 
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by Hax & Meal (1973), this is a typical approach carried out in many research papers 

until today (Thomas et al. 2008). 

Strategic planning reflects long-term and broad-based decisions to support the 

mission, vision and objectives of an organization, such as supply chain network 

design. Tactical planning defines general ‘rules-of-the-game’, such as production and 

distribution lot sizes, inventory safety stock levels, production levels, capacity levels, 

staffing levels, funding levels, and so forth, to achieve the intermediate goals and 

objectives in order to support the organization’s strategic plan. Tactical plans and 

policies are used as planning constraints at the operational level. Operational level is 

basically related to decisions of floor managers for the day-to-day operations, 

detailing specific actions that lead to the achievement of tactical objectives. 

Operational plans are more detailed than strategic and tactical plans and cover a 

shorter time horizon (APICS 2008). In this paper, we are interested in exploring the 

tactical level.  

The literature on supply chain modelling and simulation at the tactical level is 

vast and covers many problems and several different solution approaches. 

Traditionally, mathematical programming methods are employed. Ouhimmou et al. 

(2008) propose a supply chain tactical planning problem for a furniture company to 

define manufacturing and logistics policies that will allow the company to have 

competitive service levels at minimum costs. They employed a mixed-integer 

programming model and heuristics to solve it, using data from an industrial case. 

Comelli et al. (2008) propose an approach to synchronize financial and physical flows 

in supply chains at tactical level, allowing for budgeting in production planning with 

APS (advanced planning and scheduling) tools. Thomas et al. (2008) present a 

procedure for tactical supply chain planning based on mathematical programming to 
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produce stable master production schedules following a robust reference plan policy 

generated through sales and operations planning procedures. Based on the known 

MIT’s Beer Game, von Lanzenauer & Pilz-Glombik (2002) propose a mixed-integer 

programming model to support tactical decision level covering ordering, producing 

and transportation. They compare analytical results obtained from their model with 

human decision making, indicating that significant gains can be obtained through the 

use of analytical models. The reader is referred to Comelli et al. (2006) for a literature 

review on models for supply chain tactical planning, mainly related to lot sizing 

problems. 

Landeghem & Vanmaele (2002) highlight the limitation of tactical planning 

approaches in the literature, as well as in the APS sector, to deal with uncertainties. 

Uncertainty and robustness are normally treated through a combination of 

mathematical modelling with simulation techniques, such as Monte Carlo simulation, 

scenario-based simulation, sensitivity analysis and, sometimes, discrete-event 

simulation. For example, Landeghem & Vanmaele (2002) developed a tactical 

planning method embedded with a Monte Carlo simulation approach for the 

assessment of uncertainties in supply chains. Genin et al. (2007) compare three 

tactical planning approaches so as to evaluate which one is the most robust. Supply 

chain plans were generated through traditional mathematical planning models, and 

perturbations were introduced through random demand generation to evaluate the 

total cost of the plans and service levels. Beaudoin et al. (2007) employ a tactical 

planning approach for wood procurement planning. They developed a mathematical 

deterministic model (mixed-integer programming), which does not address robustness 

explicitly, but employs a set of mechanisms to assess a posteriori several alternative 

plans. 
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Van Eck (2003) explains that traditional approaches for coping with 

uncertainties are limited, and Stadtler (2005) argues that management of uncertainties 

is a significant limitation for conventional APS systems. The most important reasons 

are probably related to the reactiveness of the approach and the complexity of creating 

these solutions. A more pro-active approach is needed to find solutions which are less 

sensitive to the uncertainties of parameters. A way of doing this is to include 

uncertainties in the model itself so that the algorithms could attempt to reduce 

variability (Van Eck 2003). Many efforts have been made to overcome this drawback, 

such as the emergence of APS employing stochastic programming. This technique 

puts together models for optimum resource allocation as well as models of 

randomness to produce a robust decision-making approach. 

For example, Sodhi (2005) demonstrates how stochastic modelling can be 

useful in a tactical supply chain planning context for a particular electronics company. 

As mentioned by the author, the work is only a starting point in developing model-

aided processes to manage risk. Despite their potential, at tactical and operational 

levels, the sizes of stochastic programming models problems may still be hard to 

solve, especially in APS contexts. Genin et al. (2007) explain that stochastic 

programming is an interesting approach, but it still does not succeed in solving real-

size problems. The problem is the growth of the model size when several scenarios 

are evaluated in a multi-period model. Some recent works now demonstrate that real-

scale problems can be considered tractable in some cases, such as the one for the 

sawmill industry from Kazemi et al. (2008). 

Our work employs a different methodology from the field of artificial 

intelligence, known as the multi-agent approach. It is one of most recent models for 

advanced supply chain planning. In this case, agent-based modelling is used to 
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encapsulate one or more supply chain optimization models together with the main 

elements from discrete-event simulation (occurrence of uncertain events over time); to 

develop what is called d-APS (distributed-APS) systems, according to Santa-Eulalia 

et al. (2008). These systems possess four main advantages over traditional 

approaches. First of all, their distributed characteristic facilitates modelling 

heterogeneous planning domains of different supply chain partners, allowing for 

complex interaction schemas to be created so that a compromise between local and 

global solutions can be found. Second, they are able to exhibit intelligent behaviours, 

which are integrated into their management applications. Inspired from distributed 

artificial intelligence, d-APS systems demonstrate decision autonomy and proactive 

abilities and are able to learn from their previous experiences. Third, uncertainties are 

naturally modelled in agents’ behaviours due to their ability to incorporate discrete-

event simulation mechanisms. Finally, these systems provide a very powerful 

simulation environment for testing different supply chain planning concepts, methods, 

tools, and technologies. 

Since the 90s, several agent-based approaches explicitly mention the use of 

optimization procedures or finite capacity planning models to perform supply chain 

planning. For example, Swaminathan et al. (1998) provide a supply chain modelling 

framework containing a library of modular and reusable software components that 

represents different kinds of supply chain agents, their constituent control elements 

and their interaction protocols. Sauter et al. (1999) propose an architecture, called 

ANTS (Agent Network for Task Scheduling), that consists of a supply chain planning 

system composed of agents inspired by human intuition and insect colonies. Sadeh et 

al. (1999) put forward an agent architecture called MASCOT (Multi-Agent Supply 

Chain cOordination Tool) for coordinated supply chain planning and scheduling 
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across the entire supply chain. Montreuil et al. (2000) introduce the NetMAN 

approach, which is a network-oriented organizational concept where a manufacturing 

business dynamically organizes its operations by configuring and activating a 

distributed network composed of interdependent responsible manufacturing centres. 

Gjerdrum et al. (2001) present multi-agents incorporating mathematical programming 

for the manufacturing components, to form a platform where simulations can be 

performed for demand-driven supply chain networks. Baumgaertel & John (2003) 

present an agent-based simulation architecture for supply networks, incorporating 

APS components and using finite domain constraint technology. As for us, we employ 

the d-APS called the FORAC experimental planning platform, described by Frayret et 

al. (2007), which is agent-based and encompasses concepts of autonomy and 

cooperation to deal with distributed decision making problems that naturally reside in 

supply chains. To our knowledge, this is the first and only d-APS system capable of 

capturing business scenarios for the forest products industry. According to Azevedo et 

al. (2004), despite the fact that the agent-based approach is particularly interesting for 

tactical problems, there are few applications for more tactical and less structured 

problems in enterprise networks. Many of the multi-agent approaches found in the 

literature are oriented to specific applications of an operational nature. The FORAC 

experimental planning platform is specifically useful for simulations at the tactical 

decision level, as demonstrated by Cid-Yanez et al. (2008). This platform is explained 

in the following. 

3. FORAC Experimental Planning Platform 

In the FORAC experimental planning platform, a set of planning agents, using 

advanced planning tools based on operations research technology, individually 

produce operational plans. Agents collectively interact with each other to carry out 
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functionalities that synchronize their plans across the network to create a feasible 

operational schedule and enhance global performance. Some planning agents have 

been developed to represent an internal supply chain. Figure 1 depicts the agents 

implemented for the present case study. 

Sawing Drying Finishing

Deliver Customers

Sawing* Drying* Finishing*

SourceSupply Propagation
Production Updates

Demand Propagation
Legend

Inventories

 

Figure 1: Implemented agents for the case study. 

 

The agents implemented are: deliver agent (manages all relationships with the 

business unit’s external customers and fulfils all commitments with them); three 

agents (sawing, drying and finishing) responsible for carrying out production planning 

functions, each one being in charge of a part of the overall planning functions by 

means of specialized planning capabilities; source agent (manages the relationship 

with all the business units’ suppliers, forwarding procurement needs to the right 

suppliers), customer agent (generates the demand for products and evaluates supply 

chain offers). In addition, each agent responsible for production planning has a 

counterpart agent responsible for executing the production plan (sawing*, drying* and 

finishing*), referred to as execution agents. 

Figure 1 can be understood through its flow of materials: logs are sawn into 

green rough lumber, which are transformed into dry rough lumber, and finally 

transformed into dry planed lumber during the finishing process. Arrows represent the 
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basic planning and control process. Essentially, this process is divided into five basic 

steps: 

1) Production update: before starting a planning cycle, all planning agents update 

their inventory level states. In fact, all execution agents (sawing*, drying* and 

finishing*) receive the last planned inventory for the current period from the 

planning agents (sawing, drying and finishing). The execution agents perform 

perturbations on the inventory level to represent the stochastic behaviour of the 

execution system and send the perturbed information back to their respective 

planning agents. This perturbation in the execution system can be seen as an 

aggregated representation of what happens on the shop floor, i.e., a set of 

uncertainties that make the manufacturing system have a stochastic output, which 

is ultimately reflected in the physical inventory level of the supply chain; 

2) Demand propagation: with the planned inventory updated, all agents are ready to 

perform operations planning. The first planning cycle is called demand 

propagation because the customer demand is transmitted across the whole supply 

chain. First, the deliver agent receives customers’ orders for finished products 

(dry planed lumber) and sends this demand to the finishing agent. If no products 

are available in stock, the finishing agent will perform an infinite capacity 

planning for this demand and will send its requirements in terms of dry rough 

lumber to the drying agent. The drying agent now performs its planning 

operations using also an infinite capacity planning logic, and its requirements in 

terms of green rough lumber will be sent to the sawing agent. Following this, 

sawing executes an infinite capacity planning process to generate its needs of 

logs, which are transmitted to the source agent. The source agent will confirm 
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with sawing whether all requirements will be sent on time. Now, the supply 

propagation starts; 

3) Supply propagation: based on the supply offer from the source agent, sawing now 

performs finite capacity planning in a way that respects the demand from drying 

in terms of green rough lumber (pull planning approach), and respects its own 

limitation in terms of production capacity. In addition, sawing tries to identify 

whether it still has some available capacity to perform a push planning approach. 

If there are resources with available capacity, sawing allocates more production 

based on a price list to maximize the throughput value, meaning that it makes a 

complementary plan to occupy the additional capacity with products of high 

market prices. The sawing plan containing products to answer drying demands 

and products to occupy the exceeding capacity is finally sent to drying. Drying, in 

return, uses the same planning logic (first a pull and after a push planning logic) 

and sends an offer to the finishing agent. Finishing performs the same planning 

approach and sends an offer to the deliver agent. Deliver send its offer to the 

customer agent. In summary, the general idea of supply propagation is to perform 

finite capacity planning, where part of the capacity can be used to fulfil orders 

(pull approach) and part of it to push products to customers so as to better occupy 

capacity. 

4) Demand acceptation: the customer agent receives offers from deliver and 

evaluates whether they satisfy all its needs. Part of this offer can be accepted by 

the customer and part can be rejected, for example because it will not arrive at the 

desired time. This information is sent to the deliver agent. Now, as part of the 

demand is not necessary anymore, deliver will send the adjusted demand for the 

finishing in the form of a new demand propagation step with fewer product 
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volumes. This new demand will be propagated backwards to the source agent. 

Next, from source this demand will be forwarded in the form of a supply 

propagation step up to the deliver agent. During the demand propagation, all 

planning agents will have more available capacity to be occupied with high 

market price products. The planning cycle finishes here. 

5) Time advancement: due to the fact that the FORAC platform uses the rolling 

horizon approach, after the end of a planning cycle involving these four steps, the 

simulation time moves ahead for the next planning period. In this case, the next 

planning period is the next “replanning date”, which is delimited by the control 

level (replanning frequency). It can vary within any time period, from a day to 

several months, and it depends on the interest of the supply chain planner. The 

planning cycle (i.e., the above-mentioned four steps) is repeated at each 

replanning date until the end of the simulation horizon. 

These five steps represent the basic logic of operations planning. Some 

mechanisms useful for simulation during these five steps are detailed hereafter. 

Perturbations in the platform are performed through a traditional random 

number generation approach. As a lot of data was needed a fast and flexible generator 

was employed. The selected uniform number generator was the Mersenne Twister 

(Matsumoto & Nishimura 1998), which provides random numbers for a considerably 

long period without slowing down the algorithm. The transformation of the random 

numbers into random variables follows a simple method for discretizing the density 

function of the probability distribution desired. Simulation analysts can select 

different probability distribution functions, such as normal, exponential or triangular. 

More details about number generation are found in Lemieux et al. (2008). 
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Another important issue is how agents perform their planning activities. Both 

demand propagation and supply propagation for each agent are geared up with 

specialized optimization models. They are depicted in Table 1 in terms of objective 

functions, processes, planning parameters and optimization methods, according to 

Frayret et al. (2007) and Lemieux et al. (2008). 

Table 1: Planning engines for each agent. 

 Sawing Agent Drying Agent Finishing Agent 
Objective: Demand 
Propagation Minimize lateness Minimize lateness Minimize lateness 

Objective: Supply 
Propagation Maximize production value Maximize production value Maximize production value 

Processes features 

Divergent product flow; 
coproduction; alternative process 
selection; only compatible processes 
can be executed within the same 
production shift 

Divergent product flow; 
coproduction; alternative process 
selection 

Divergent product flow; 
coproduction; alternative process 
selection; only compatible 
processes can be executed within 
the same production shift 

Planning 
parameters 

Machine capacity calendar; frozen 
jobs; maximum sales per product; 
inventory costs;  raw products costs 

Machine capacity calendar; 
frozen jobs; operations cost 

Machine capacity calendar; frozen 
jobs; exploitation mode in the 
solution tree (for the optimization 
method – see next line); minimum 
production lead-time per family 

Optimization 
method Mixed Integer Programming Constraint programming Heuristic 

 

The planning approaches described in Table 1 are radically different with 

regard to their nature, as explained by Frayret et al. (2007). In sawing, for both 

demand and supply propagations, planning activities are designed to identify the right 

mix of log type in order to control the overall divergent production process. What 

changes for the demand and supply propagations are their objective functions and 

constraints. Drying, on the other hand, is batch-oriented and tries to find 

simultaneously the best type of green rough lumber to allocate to the dryers and the 

best drying process to implement. The optimization model of this agent is described 

thoroughly in Gaudreault et al. (2006). In this approach, what is interesting is that it 

tries to find a feasible solution in a short time, but if more time is available, it will try 

to find a better one using a search algorithm through the solution tree. Finishing 
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employs a heuristic approach to find out what rough dry lumber type will be used and 

how much it should be planed considering setup time. For more details on how 

planning engines work, the reader is referred to Frayret et al. (2007). 

Another issue concerning simulation functioning is the time advance 

mechanism used to manage all of these uncertain events and planning activities. We 

opted for a central simulation clock, which aims at guaranteeing that all agents are 

synchronized so that none of them are late or in advance. In this case, all agents use 

the same simulation clock instead of each having its own clock. This was used to 

simplify the time management effort. The general functioning logic is simple. The 

simulator has a list of all agents participating in the simulation and their 

corresponding state, which can be “busy” or “standby”. When at least one agent is 

busy (sometimes more than one could be working in parallel), time advances in real-

time. When all agents are on standby, time advances according to the simulation list. 

This means that the simulator looks for the next action to be accomplished and 

advances the simulation time to the realization moment of this action. Next, the 

simulator asks the concerned agent to perform this action. As the case here is set to 

perform planning activities for each replanning date (as will be discussed later), the 

simulation always advances to the next replanning moment. This central clock 

management mechanism implies that when an agent needs to perform a new action, it 

adds this action (with its respective time of occurrence) in the simulation list. This 

action can be triggered immediately or later, depending on its time of occurrence. 

Finally, it is important to give details about the data set employed for this case. 

In order to create a complete case for this simulation study, most data were obtained 

from two industrial partners, both softwood lumber producers. When no data were 

available, we used expert people (researchers or practitioners from the industry) and 
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also expert systems (basically Optitek©) to estimate lacking figures. For example, due 

to the heterogeneous nature of the raw material (trees), it is hard to predict the output 

(lumber volume) of the wood transformation process. Optitek© can be used to 

simulate this possibility (Zhang & Tong 2005). 

Lemieux et al. (2008) explain the main characteristics of the proposed supply 

chain, including products, processors, capacities, and processes. A process defines 

how an operation is performed and what input is required for a particular operation. 

For example, in sawing operations, a process is an association of log and cutting 

patterns, consuming inputs (a group of logs) and producing outputs (green rough 

lumber, sawdust, chips) using a certain resource (a processor, i.e. a sawing line in this 

case). Every time an agent performs planning activities, it has to allocate one process 

to a processor, and this decision depends on general manufacturing conditions, such 

as demand, capacity availability, etc. 

The FORAC experimental planning platform and its industrial data set were 

used to help us answer some simulation questions, as explained next. 

4. Simulation Problem 

In this study we are interested in understanding the impact of alternative tactical 

policies related to the control level, planning horizon and planning method. 

The control level represents the frequency at which one updates information 

about inventory levels, supply quantities from vendors and demand requested by 

clients. This control notion proposes to link the planning process to the execution of 

the operations. When it is time to perform an update, the planning system triggers a 

“replanning process”, i.e., it updates all system information and it plans again all 

operations for the current planning horizon. In the case of the FORAC experimental 
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planning platform’s execution agents, all manufacturing perturbations are captured at 

the inventory level in order to represent the stochasticity of the production process. As 

all manufacturing uncertainties (machine breakdowns, unpredictable production 

yields, etc.) will ultimately impact on the planned inventory level, this represents an 

aggregate manner to introduce manufacturing perturbations for analysis at the tactical 

decision level. It is important to note that perturbations occurring today will impact 

future planning and execution processes, i.e. uncertain events are accumulated over 

time. In addition, uncertainties are propagated across the supply chain, meaning that 

events at the sawing level will later disturb drying and finishing. The planning agents 

employed here are designed to cope with these perturbations by adjusting their plans 

at each replanning period.  

The second factor, the planning horizon, represents the amount of future time  

that will be considered when preparing a plan. The way these plans are calculated 

depends on the planning method employed. The planning method stands for the 

approach (or algorithm) used to produce a plan. A set of algorithms exist and, for 

example, traditional softwood lumber industries employ a classical forward planning 

method, which is performed by humans. By using this method, all operations are 

planned for the earliest moments (i.e., the first available time slot) with respect to the 

delivery date. A more complicated method would include other planning criteria. For 

instance, the “urgency-directed forward planning” is also based on a traditional 

forward planning scheme, but it employs an additional criterion to select which job 

will be planned first. This criterion is the “urgency” of the customer order, which can 

take into consideration the remaining time before the due date. 

Thus, the present study aims to guide us in answering the following research 

questions: 
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1) Do the control level, planning horizon and planning method really contribute 

to supply chain performance? 

2) Does one policy influence the others, i.e., do they interact? 

3) What are the optimum planning horizons, planning methods and control levels 

to be implemented to minimize the impact of uncertainties in this supply 

chain? 

Analyses have to consider the company’s and customer’s points of view. This means 

that we will have to select KPI (key performance indicators) representing both 

aspects. 

The following section explains how we will approach this simulation problem. 

5. Methodology 

In order to translate our simulation problem into simulation requirements and then 

into a simulation environment (in this case the FORAC experimental planning 

platform) we used the methodology schematized in Figure 2. 

Focus of 
the Paper

 
Figure 2: Modelling methodology employed for the case. 
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As one can see in Figure 2, we organized the whole modelling process 

according to two mains aspects (Santa-Eulalia et al. 2008): “the modelling view” 

(vertical axis) and the “methodological phases” of the development process 

(horizontal axis). The modelling view comprises four main issues: supply chain 

(refers to the supply chain planning problem without thinking in terms of agents); 

agent (the supply chain domain problem is translated into an agent-based view); 

infrastructure (refers to a specific model in order to define how an agent system can 

be supported by computing resources, e.g., integrating infrastructure, and hardware); 

experimentation (refers to models guiding the design of experiments, i.e., how to 

manipulate factors to have the desired responses for the simulation). 

As for the methodological phases (horizontal axis), the framework adheres to 

the methodology for simulation of distributed systems developed by Galland et al. 

(2003), which comprises the following phases: analysis (abstract description of the 

modelled system containing the simulation requirements); specification (translation of 

the information derived from the analysis into a formal model); design (creating a 

data-processing model that describes in more detail the specification model); 

implementation (translation of the model resulting from the design phase into a 

specific software platform); simulation (use of the simulation model by customers 

according to a set of experimental plans).  

In the grid of Figure 2, three basic methodological approaches were employed 

together. First, the FAMASS (FORAC Architecture for Modelling Agent-based 

Simulation for Supply chain planning), based on the premises of Santa-Eulalia et al. 

(2008) and Santa-Eulalia (2009), covers the supply chain and agent level. At F1, we 
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model the supply chain planning problem by using a distributed decision logic. 

During F2, these models are converted into agent-based simulation requirements, 

capturing the social and individual aspects of the multi-agent system. These agent-

based requirements are specified in F3, and then the system is designed in F4. F3 and 

F4 are inspired from Labarthe et al. (2007). The object-oriented approach in Figure 2 

was used to create models detailing how the system has to be coded. First, at O1 we 

model the main classes to be implemented and the manner in which they synchronize 

messages with other classes, as well as with system infrastructure (databases, etc.). At 

the O2, the FORAC experimental planning platform is implemented using C++, the 

Microsoft .NET© C# language and, in order to put into operation the optimization 

mechanisms, we employed the Ilog OPL Studio© (which includes Cplex© and 

Solver©). 

The focus of the present paper is on the third methodological approach, 

schematized in Figure 2 and inspired by the Taguchi Robust Design (Taguchi 2005). 

We performed in T1 the experimental design, manipulating factors and levels, 

interactions, responses, and uncertainties through orthogonal arrays, so that scenarios 

are specified and quantities of runs and replications are defined. At T2, we detailed 

these parameters by deciding how they would be configured in the system (e.g., 

modelling stochastic perturbations to represent the desired uncertainties). Finally, at 

T3 we executed all simulation runs and analyzed the simulation data through the 

statistical approaches proposed by Taguchi (Taguchi 2005). 

Why we decided to employ an approach based on Taguchi Robust Design, as 

well as how we performed the three corresponding steps (T1, T2 and T3) are 

explained next. 
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5.1 Taguchi Robust Design 

Despite the fact that simulation is a powerful tool for investigating the different 

behaviours of a given system (i.e., “what if” question), it does not provide a solution 

for optimizing a system (i.e., “what’s best”), while keeping robustness in mind. To 

address this problem, we employed an optimization-oriented experimental design to 

determine the optimum region for the combination of the system parameters. To 

design the experiments and analyze data, we employ the Taguchi Robust Design 

Methodology (Taguchi 2005). 

The Taguchi approach was used in several studies in the area of supply chain 

management for studying optimal regions. For example, Genin et al. (2007) evaluate 

the robustness of multi-facilities tactical planning using a linear programming model 

coupled with a simulation model for a steel tubes supply chain. Shang et al. (2004) 

used Taguchi’s method for optimizing service levels and total costs using factors 

related to supply chain capacity, delayed differentiation approaches and cooperation 

strategies under uncertainties related to demand and inventory holding costs. Veza et 

al. (2003) applied Taguchi’s robust design for optimizing total costs of the system and 

backorders of a TV set supply chain. Grubić & Veza (2004) used exactly the same 

approach in a generic supply chain. Kleijnen et al. (2002) applied Taguchi’s view (not 

its statistical methods) in a case study for the mobile communications industry at 

Ericsson in Sweden.  

This indicates that Taguchi’s approach for designing robust experiments has 

proven to be of great value. Shang et al. (2004) explain that other optimization-

oriented experimental design methods can be used (solely or combined with Taguchi), 

especially RSM (Response Surface Methodology). The problem underlying RSM 

approaches is that they cannot optimize qualitative variables, such as the planning 
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method. One of Taguchi’s main drawbacks is that it does not fully take interaction 

factors into account, due to limitations in the linear graph of the orthogonal arrays. 

But, if the experimenter has reasons to believe that first order interactions (i.e., one-

to-one factor interactions) are strong, this approach is of great applicability 

(Montgomery 1991). 

The methodology can be summarized as three basic steps: 

• T1. Specifying the experiments: before performing F1, the FAMASS approach 

provides us with general guidance for the classical experimental design, 

helping analysts to identify factors, levels, interactions and responses. Initially, 

by performing a screening approach, important factors are selected, as well as 

their respective levels. In addition, the simulation analysts have to consider 

whether interactions between these factors exist or not. Factors can be 

controllable (policy factors) and/or uncontrollable (noise factors, which 

managers have no control over, but that can be manipulated during the 

experiments). During the FAMASS phase, simulation analysts also have to 

select certain responses, i.e. KPI, to be used during the experiments. Based on 

the information provided by the FAMASS approach, we need to define at T1 

the orthogonal arrays to be used for the inner (controllable factors) and outer 

array (noise factors). These arrays will guide the simulation preparation, 

organizing factor levels for each experiment, quantities of simulation runs and 

replications. 

• T2. Designing experimental parameters: in this phase we detail the simulation 

parameters defined in T1. First, one has to define how factors and their 

respective levels have to be operationalized. For example, if factor levels 
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require different stochastic number generation approaches, one has to decide 

how they will be modelled. The same problems arise for uncertainties. For 

example, it would be important at this moment to decide how perturbations on 

the shop floor operations should be represented. Finally, how KPI are 

calculated and gathered is also discussed at T2. 

• T3. Collecting and analyzing data: at this phase, one executes the experiments, 

i.e. a set of simulations is run in order to gather the selected KPI. After the 

simulation execution, data analysis is performed using an adapted version of 

the analysis of variance (ANOVA) approach, which guides analysts to identify 

the most influential factors, possible interactions between factors and to define 

the optimal configuration for control factors. In addition, plots are used to 

define the optimum region. Finally, the last step is to perform a confirmatory 

experiment, which allows verifying whether the optimal configuration is 

reliable for a given confidence interval. 

The next subsection explains how this methodology is used for the softwood lumber 

case study. 

 6. Specifying the Experiments (T1) 

Shang et al. (2004) suggest that a typical supply chain consists of n-vector 

controllable parameters, θ, and m-vector uncontrollable parameters, ξ. The 

performance of the supply chain can be expressed as Vsc(θ, ξ). Since Vsc(θ, ξ) depends 

on θ and ξ to optimize the supply chain one needs to find arg max Vsc(θ, ξ). Thus, this 

simulation experiment aims to identify the optimal θ*: 

Vsc(θ*, ξ) = arg max Vsc(θ, ξ)  [1] 
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In the present simulation study, the controllable factors are θ = {c, h, m}, 

where 

• c  {7 days, 14 days, 21 days} represents the control level that simulation 

analysts can test. 

• h  {21 days, 42 days, 63 days} represents the planning horizon duration. 

• m  {forward planning, urgency-directed forward planning} represents the 

planning method used. 

This provides us with three controllable factors. Two of them have three levels 

and one has two levels. As we also believe that all these factors may interact, we test 

whether all first order interactions are present, i.e. c x h, c x m and h x m. When 

interactions exist, the effect of one factor depends on the level of other factors. 

             Despite the fact that noise factors are not controlled by managers in the real 

world, they can be in a simulation experiment. According to Davis (1993), a supply 

chain is under uncertainty of supply, manufacturing process and demand. By testing 

these three uncertainties, it is possible to determine the best setting of the controllable 

factors to minimize negative impacts on the supply chain performance. The 

uncertainties considered in this experiment are ξ = {s, m, d}, where: 

• s  {profile 1, profile 2} represents the supply uncertainty. 

• p  {low perturbation, high perturbation} represents manufacturing 

uncertainties. 

• d  {optimist, pessimist} represents the demand uncertainty. 

Agent-Based Experimental Investigations of the Robustness of Tactical Planning and Control Policies in a 
Softwood Lumber Supply Chain

CIRRELT-2009-49 22



This provides us with three noise factors on two levels each. It is important to 

explain that s and d are determinist uncertainties. On the other hand, manufacturing 

uncertainties are of a stochastic nature in our model. In the following section we will 

provide more details on how these uncertainties were determined. 

Finally, in terms of responses of the experiments, two KPI were selected, 

backorders (B) and daily average inventory (I). B is of great relevance for measuring 

customer satisfaction, while I is related to the company’s point of view. 

In an attempt to organize all these modelling decisions in a simple diagram, 

the simulation experiment is summarized in Figure 3 using a fishbone diagram. 

 

Figure 3: Experimental definitions. 

 

Figure 3 indicates that the two KPI selected (backorders and daily average 

inventories) are influenced by factors related to the control system (control level) and 

planning system (planning horizon and planning method). In addition, as one factor 

can potentiate the others, interactions among these factors are to be tested. The 

diagram also indicates that the system is influenced by three uncertainties related to 

supply, manufacturing and demand. 
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Thus, based on the experimental definitions shown in Figure 3, we performed 

the experimental design using orthogonal arrays. Taguchi developed orthogonal 

arrays, linear graphs and triangular tables to provide the maximum amount of 

information with the lowest quantity of trials. Using Taguchi’s orthogonal arrays 

logic, we selected the L27 design for the controllable factors. This orthogonal array is 

useful for 3 to 13 controllable factors and can be used to capture interactions as well. 

It provides 13 columns for the factors and interactions and 27 lines for the possible 

combination of factors, creating 27 experimental scenarios. This array was used with 

a mixed-levels approach, since two factors have three possible levels and one factor 

can assume only two levels. We could employ a more cost-effective inner array (e.g., 

L18), but this would limit our study in terms of interactions analysis. As we are 

interested in knowing whether our factors interact with each other and how, L27 

provides a good compromise. As for the outer array, we used a L4 which is indicated 

for three two-level factors. The outer array will provide guidance for having four 

replications. The total number of experiments is 108. 

This kind of experiment is very often a terminating simulation (Shang et al. 

2004), which starts at a prescribed initial state in time (in our case, January 1), and 

terminates when the system reaches a prescribed terminal state or time (in our case, 

six months, or June 30). The simulation results reflect a planning horizon that is 

sufficiently broad to cover several replanning periods at the tactical level, traditionally 

varying from one to three months. 

The following section explains how each simulation parameter was set. 
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7.  Designing Experimental Parameters (T2) 

In this section we explain how to configure experimental parameters, notably how 

uncertainties and KPI are modelled. 

Two determinist supply profiles s exist. The first represents a situation where 

we provide the supply chain system with a higher distribution of logs favouring high-

priced products, i.e. 2x6 end products. On the contrary, profile 2 provides the supply 

chain system with tree logs of a higher distribution of lower price end products (2x3 

and 2x4 lumber products). This represents a situation where we are not always sure 

about the kind of supply that will be available to the company.  

As for manufacturing uncertainties m, two possible stochastic levels were 

selected. The first represents a situation where the manufacturing system is better 

controlled (low perturbations); while the other refers to a manufacturing system less 

controlled (high perturbations). In the selected situation, the probability P of having a 

“low perturbation” is twice the probability of having a “bigger perturbation”: 

P(“High Perturbation”) = 2 P(“Low Perturbation”)   [2] 

For both cases we employed a triangular distribution function with parameters 

a, b, c, where: 

P(a ≤ inventory ≤ c) = 4 P(c ≤ inventory ≤ b)    [3] 

The impact of a manufacturing perturbation in this case is captured at the 

inventory level. The model aims at representing a real situation of manufacturing 

perturbation, where the probability of having inventory under the planned levels (due 

to machine breakdown, raw material problems, absenteeism etc.) is higher than 

having inventory over the planned levels. In this case, we choose a factor of 4. In 

addition, the perturbed inventory depends on the control level introduced in the 
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manufacturing system. When inventory updates occur at a frequency of 21 days, the 

inventory level will include the accumulated perturbations for each of the previous 21 

days. On the other hand, if a shorter updating frequency is used, say 7 days, only a 

third of the perturbations are counted when the inventory is updated. Thus, we 

considered that the probability P of occurrences of the manufacturing uncertainty is 

given by: 

P(“control level = 14 days”) = 2 P(“control level = 7 days”)  [4] 

P(“control level = 21 days”) = 3 P(“control level = 7 days”)  [5] 

As for demand uncertainty d, two basic market situations were chosen. Based 

on the demand forecast, we created an optimistic demand representing 110% of the 

forecast, as well as a pessimistic demand representing 90% of the forecast. The 

forecasted demand for this case was generated in accordance with the supply chain 

capacity so that the capacity is filled to slightly over 100%. In addition, to respect the 

demand seasonal profile from the real world, we applied a sigmoidal seasonality 

factor for each product. 

Finally, in terms of responses of the experiments, two KPI were selected, 

backorders (B) and daily average inventory (I), which are calculated as follows1: 

( ) ( ) ( )( )∑
∈

=
productsfinishedp

pp bfmorderstotaldayslatebfmorderslatedaysB
_

__*_   [6] 

( ) ( ) ( )( )∑
∈

=
productsfinishedp

p dayshorizonplanningbfmdayeachinventorydaysbfmI
_

___/  [7] 

Note that both KPI are calculated for the products p  {finished products} to 

evaluate the performance of the entire supply chain. Three product families were 

                                                 
1   “bfm” (board feet measurement) is a common unit of measurement used in the lumber or timber 
domain, which represents 144 cubic inches of wood (1 foot x 1 foot x 1 inch). 
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selected, representing the most common products of this supply chain, i.e. 2x3, 2x4 

and 2x6 lumber products. 

These experimental designs guide us to create a set of simulation models in the 

FORAC experimental planning platform. Before using these models for simulation 

purposes, we performed several verification and validation steps to guarantee their 

reliability. During the verification steps, we checked if the results of the models could 

be considered logical. For example, we tested much higher uncertainties, compared 

with those proposed here, to verify how the planning system reacts. As for the 

validation tests, we compared the results of some preliminary experiments with 

planning results of the companies used as reference. The validation was conducted 

during over 18 months of close collaboration with the planning manager and his team. 

Outputs from the model were therefore validated in both an industrial context and a 

changing environment. 

8. Collecting and Analyzing Data (T3) 

We ran the 108 proposed experiments and gathered both Bij and Iij (scenario i and 

replication j). To analyze the data, we employed the Signal-To-Noise (SN) ratio 

measurement, as proposed by Taguchi. Signal represents the average value of 

responses and corresponds to the desired component. Noise is a measure of variability 

and represents the undesirable component. The largest SN ratio, measured in dB, 

gives the best setting. A larger SN indicates that the target (signal) is respected with a 

reduced dispersion of noise. The SN ratio is applied for Bij and Iij. Both backorder and 

daily average inventory have to be minimized, thus the appropriate Taguchi approach 

is the “smaller-is-better”, calculated as follows: 

( ) ⎟⎟
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⎝
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Where, i represents the experiment number, j the replication (trial) number and 

Ni the number of trials for the experiment i, i.e. {a, b, c, d}. Taguchi’s method 

analyzes the experimental results (after SN transformation) through ANOVA 

(analysis of variance), plots and summary measures. This allows determining which 

controllable factors are significant, whether factors interactions are present, as well as 

the optimal level for each factor. The software employed for performing these 

analyses is Optimum®. The SN ratio is applied for Bij and Iij, presented in Table 2 and 

the ANOVA for the experiments is presented in Table 3 and Table 4. The contribution 

of all factors and interactions is summarized in Figure 4. 
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Table 2: SN ratios for Bij (in days) and Iij (in bfm). 

Experiment  Bi1  Bi2  Bi3 Bi4 Ii1 Ii2 Ii3  Ii4 
1  0.092  0.262  0.217 0.234 250 314.50 271 969.70 314 426.80  420 602.70

2  0.329  0.454  0.394 0.219 208 088.80 227 162.04 371 697.70  158 488.20

3  0.334  0.258  0.289 0.146 401 686.60 174 794.08 732 363.30  773 137.10

4  0.209  0.256  0.334 0.175 381 497.60 245 196.48 269 675.30  638 233.40

5  0.219  0.368  0.338 0.268 661 180.60 168 444.51 335 023.40  112 306.90

6  0.214  0.238  0.270 0.234 437 088.30 99 125.43 265 602.60  1 261 063.00

7  0.201  0.288  0.442 0.223 228 438.00 331 501.70 120 508.30  176 862.30

8  0.289  0.369  0.333 0.193 357 918.30 393 301.09 375 651.70  387 715.00

9  0.202  0.231  0.222 0.228 805 320.10 310 277.74 656 375.00  876 689.80

10  0.313  0.530  0.534 0.656 276 090.30 432 133.87 225 652.10  769 648.80

11  0.447  0.394  0.697 0.574 437 692.10 186 522.27 212 584.80  389 742.30

12  0.620  0.332  0.594 0.717 513 701.10 511 222.40 150 799.50  582 472.40

13  0.537  0.557  0.692 0.651 383 118.90 339 387.51 628 090.60  360 660.80

14  0.557  0.323  0.712 0.601 392 304.40 204 577.88 222 496.50  484 860.10

15  0.454  0.399  0.446 0.687 295 233.40 229 246.97 323 578.20  478 322.30

16  0.445  0.470  0.641 0.340 580 496.40 375 471.21 179 963.50  257 489.90

17  0.574  0.551  0.624 0.447 181 006.80 237 834.66 551 386.10  434 396.60

18  0.370  0.475  0.557 0.746 592 438.70 168 292.81 188 276.50  2 674 379.00

19  1.999  1.527  2.133 2.325 569 874.80 150 470.88 72 786.93  161 817.70

20  1.650  1.242  1.781 2.364 1 123 301.00 1 803 871.25 313 188.70  1 263 710.00

21  0.908  0.630  1.772 2.012 473 377.90 249 512.59 113 630.10  316 860.30

22  1.995  1.870  2.104 2.404 458 685.10 337 507.82 156 754.90  324 274.40

23  2.145  1.733  1.967 1.942 845 836.40 2 191 214.54 108 060.20  476 611.80

24  1.764  2.749  2.080 1.238 992 909.60 235 369.80 1 684 962.00  164 338.40

25  1.888  1.994  2.085 2.192 291 074.40 309 170.51 130 402.40  472 616.10

26  1.799  2.066  1.849 2.067 489 798.30 182 270.73 226 413.70  208 221.50

27  1.730  2.046  1.919 2.408 369 338.50 308 601.90 225 657.90  339 285.20

 

 

Table 3: ANOVA for backorders (Bij). 

 Controllable Factors and 
Interactions 

Contribution 
(%) 

Probability of F 
(%) F Pooling

1 Control Level 97.7644 100.0000 875.3431  
2 Planning Horizon    X 
3 Control Level x Planning Horizon    X 
4 Planning Method 0.1990 95.4041 4.5602  
5 Control Level x Planning Method 0.5363 98.9169 5.7968  
6 Planning Horizon x Planning Method 0.0466 73.3119 1.4172  
 Error 1.4536    
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Table 4: ANOVA for the daily average inventory (Iij). 

 Controllable Factors and 
Interactions 

Contribution 
(%) 

Probability of F 
(%) F Pooling

1 Control Level 0.9744 79.3747 1.7708  
2 Planning Horizon 2.3982 91.1471 2.8973  
3 Control Level x Planning Horizon 18.126 99.8712 8.1699  
4 Planning Method    X 
5 Control Level x Planning Method 39.7672 99.9995 32.4604  
6 Planning Horizon x Planning Method 22.3018 99.9887 18.6433  

 Error 16.4325    
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Figure 4: Contribution of all factors and interactions. 

 

Figure 4 leads us to believe that the Control Level can be considered almost as 

the unique source of backorder variation, representing more than 97% of the 

contribution, with a confidence of 100%, while the remaining factors and interactions 

have little influence (less than 1%  each, with at least 73% of confidence). Note that 

we performed pooling for the Planning Horizon and for the interaction Control Level 

and Planning Horizon, since they have a negligible influence on the performance. 

Consequently their variations were incorporated into the error category. Also, from 

this table we conclude that the experimental error is responsible for a small amount of 

variation, lower than 1.5%. This indicates that only approximately 1.5% of the 

variation cannot be explained by the model. This raises the importance of the Control 

Level for backorders, since we know from practice that when control is performed 
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more frequently, all interferences from the modelled uncertainties are reduced.  

Hence, more time to recover from any problems engendered by these uncertainties is 

available, avoiding backorders. 

The situation is not as clear for the daily average inventory. Table 4 points out 

that the controllable factors have little influence when configured solely. The most 

important factor is the planning horizon, which contributes approximately for only 

2.4% of the variations, at 99% of confidence. The Control Level, in opposition to the 

backorder point of view, contributes to no more than 1%, with a confidence of almost 

80%. Due to its negligible contribution, the Planning Method was pooled into the 

error. However, this second analysis leads us to understand that these controllable 

factors have a considerably large effect when configured together, due to the fact that 

interactions play an important role from the point of view of the daily average 

inventory. For example, with almost 100% of confidence, we can affirm that the 

interaction Control Level and Planning Method roughly contributes to 40% of the 

variations; that the interaction between the Planning Horizon and the Planning 

Method influences more than 22% of the inventory variations; and that the interaction 

between Control Level and the Planning Horizon has a contribution higher than 18%. 

Briefly, interactions are responsible for more than 80% of the variation. 

Although this appears to be quite interesting, we would like to draw attention 

to the fact that the ANOVA for the daily average inventory indicates that about 16% 

of the variation cannot be explained by the controllable factors in question and their 

corresponding main interactions. Possibly these variations are related to the unique 

achievable second order interaction (i.e., among Control Level, Planning Horizon and 

Planning Method). This interaction is not evaluated here due to the limitations of the 

Taguchi approach, as discussed previously. In addition, many variations were 
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introduced into the system through uncertainties related to supply, manufacturing, and 

demand.  

Despite this limitation, interestingly, this second analysis indicates that if one 

desires to reduce inventories, we cannot consider only one isolated factor. Instead, a 

set of factors has to be taken into account at the same time due to the fact that one can 

potentiate others. 

In order to define the optimum combination of factors, we provided an effect 

graph in Figure 5 and a set of interaction graphs in Figure 6 and Figure 7. 

 

    

Figure 5: The plot for SN ratio for backorders and daily average inventory. 

 

Figure 5 illustrates the graphs of effect for three relevant controllable factors in 

terms of backorders and daily average inventory. As we opted to prioritize customer 

service, we start with the most relevant factor for backorders. Because the objective of 

the Taguchi approach is to maximize the SN ratio, we can conclude that the best 

Control Level is seven days for both KPI (level 1). This is quite logical since tighter 

control makes it possible to detect problems earlier in the supply chain, thus avoiding 

backorders for example. The slopes of both curves also indicate that the control level 

is much more relevant for backorders than for the daily average inventory, and that 
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we can improve supply chain performance by improving the frequency of the control 

level performed. 

The analysis of the impact of the control level on the supply chain 

performance indicates to us possible interesting gains, as shown in Table 5. 

Table 5: Possible gains by reconfiguring the control level. 

Control 
Level 

Average Bij 
(days)

Average Iij 
(bfm/days)

7 days  0,27  394 436,89 
14 days  0,54 429 210,33
21 days  1,90  503 938,29 

 

Table 5 indicates that the most frequent control level can provide important 

performance gains, i.e. up to 255% in terms of backorder and up to 17% in terms of 

daily average inventory. 

In terms of planning horizons, by investigating Figure 5, it is obvious that no 

influence exists for the backorders because the curve is almost a horizontal line, so 

little could be done to improve the daily average inventory by changing the planning 

horizon exclusively. Consequently, we cannot select the optimum planning horizon by 

means of the main effect graphs because its interactions need to be studied first. 

Finally, the effects graph for the planning method indicates that it is not a relevant 

factor to be analyzed in isolation. Similarly, we would have to review interactions if 

we want to find an optimal configuration. 
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Figure 6: SN ratio for backorders: three possible interactions. 

 

The three interactions curves in Figure 6 are not totally parallel, but neither do 

they have intersection points. This indicates that little or no interactions are present 

for the backorder analysis, confirming the ANOVA of Table 3. These curves are of no 

help in deciding the optimum for the planning horizon and planning method. It will be 

necessary to employ interaction graphs for the daily average inventory, as depicted in 

Figure 7. 

 

Figure 7: SN ratio for daily average inventory: three possible interactions. 

 

Figure 7 helps us conclude that strong interactions are certainly present 

because all curves have intersections with their pairs. By analyzing the interaction 

“control level x planning horizon”, it is possible to see that, when control level is set 

to 1 (as decided previously), planning horizon 1 (21 days) and 3 (63 days) have high 

SN ratios, while the planning horizon number 2 (14 days) has a low SN ratio. We 

decided to select the planning horizon of 63 days to favour larger planning horizons 
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so as to anticipate long term demand. The best planning method can now be 

determined by inspecting the remaining interaction graphs. When inspecting the 

interaction “control level x planning method”, and since we previously determined 

that the optimum control level is seven days (level 1), we can say that the best control 

method to be used is the second one, i.e. the “urgency-directed forward planning”. In 

the interaction “planning horizon x planning method” the best planning method is also 

the second one when the planning horizon is the third one. 

Therefore, the optimum θ* is {c = 7 days, h = 63 days, m = urgency-directed 

forward planning}. Next, we performed a confirmatory experiment to verify whether 

conclusions adhere to a selected confidence interval. According to the number of 

replications chosen and the risk of rejection selected, we determine the resulting 

confidence interval. With two replications and a risk of rejection of 1%, one can 

verify that the optimal setting is confirmed for both backorders and daily average 

inventory for confidence intervals of 8.6604 dB ≤ B ≤ 12.2370 dB and -112.1908 dB 

≤ I ≤ -104.3074 dB. 

Finally, in order to perform a preliminary statistical test to verify the presence 

of a second order factor interaction for the daily average inventory, we selected part 

of the simulation results of the 108 experiments performed before constructing a full-

factorial design analysis, because it is the best experimental design to analyze 

interactions. In this case, to have a full-factorial matrix, we reduced the experimental 

region of the Taguchi design. We selected only two control levels (the extreme cases, 

i.e. 7 days and 21 days), two planning horizons (21 days and 63 days), and the two 

original planning methods. This reduced the original matrix to 32 experiments, 

instead of 108. Results of this full-factorial design analysis using the software SAS® 

indicates that a possible second order interaction has a p value of 0.0013, meaning 
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that we have appreciable evidence of this effect, with a F = 13.1548 > 4.0467, 

suggesting that this effect is significant. The problem with this analysis is that its R2 is 

only 54.13%, indicating that only half of the variations are explained by the model. 

Despite the fact that we have evidence to believe that a second order interaction 

exists, this preliminary study suggests that further experiments will be necessary to 

confirm it with more certainty. 

9. Conclusions 

This paper demonstrates the possibility and the relevance of testing supply chain 

tactics prior to their implementation through simulations performed in a d-APS 

system for the softwood lumber industry. To implement supply chain tactics is not a 

simple task, since it involves many parameters to be tested under several different 

supply chain uncertainties. By testing some policies through agent-based experiments, 

supply chain analysts can obtain reliable knowledge about new ways of creating 

value, without large investments. This ability is particularly important in rapidly 

changing and uncertain environments, where new ideas can be tested before 

committing more resources to them. In this sense, a d-APS system, notably the 

FORAC experimental planning platform, supported by our simulation modelling 

methodology, has shown great potential. It represents a realistic environment for 

sophisticated simulations in the selected industry sector, in which a set of agents 

mimicking supply chain units interact with each other and make intelligent decisions, 

considering both local and global supply chain objectives and constraints under 

typical business uncertainties. 

In terms of simulation results for the lumber industry, perhaps the most 

important findings concern how to improve service levels to customers. The first 

analysis leads us to understand that supply chain control levels play quite a relevant 
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role in defining robust service levels, while the supply chain planning horizon and 

method do not contribute significantly in this context. We identified that the more 

frequently control is performed, the more efficient the supply chain will be. In 

addition, from the supply chain inventory level point of view, we verified that the 

tactical rules related to control levels, planning horizon and planning methods have to 

be configured together if one desires to maximize their contribution for a robust 

supply chain system capable of coping with uncertainties from the business 

environment. 

Due to the methodological limitations of the Taguchi experimental design, the 

second analysis (daily average inventory) is not able to explain about 16% of the 

variations in terms of inventory levels. We believe that most of this variation can be 

related to second order interaction among all the tactical policies selected for this 

study. Further experiments, together with other methodological approaches, will be 

necessary to refine these findings and confirm this hypothesis. Moreover, it is 

important to note that the validation experiments were done only for the experimental 

region delimited by the characteristics of this study, i.e., the region covered by 

different factor levels. This can limit the generalization of these experiments for a 

larger experimental region. For generalizing this experiment, one can perform more 

simulations, including adding more factors, levels, and uncertainties; as long as other 

experimental design methodologies can be applied, such as the RSM approach. 

Finally, it is important to note that, despite the fact that both results and 

methodology are validated for a softwood lumber case, the authors strongly believe 

that other industry sectors would benefit from this approach and from the experience 

gained from the statistical results discussed, mainly those that have important 

stochastic behaviours in terms of supply, demand and manufacturing operations, as 
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well as those having a divergent production process, like the softwood lumber 

industry. 
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