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Abstract. The vehicle routing problem with multiple trips consists in determining the 

routing of a fleet of vehicles where each vehicle can perform multiple routes during its 

workday. This problem is relevant in applications where the duration of each route is 

limited, for example when perishable goods are transported. In this work, we assume that 

a fixed-size fleet of vehicles is available and that it might not be possible to serve all 

customer requests, due to time constraints. Accordingly, the objective is first to maximize 

the number of served customers and then, to minimize the total distance traveled by the 

vehicles. An adaptive large neighborhood search, exploiting the ruin-and-recreate 

principle, is proposed for solving this problem. The various destruction and reconstruction 

operators take advantage of the hierarchical nature of the problem by working either at the 

customer, route or workday level. Computational results on Euclidean instances, derived 

from well-known benchmark instances, demonstrate the benefits of this multi-level 

approach. 
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1 Introduction

Studies on the classical vehicle routing problem (VRP) and its many variants repre-
sent a significant fraction of the operations research literature [20]. However, most
studies assume that a vehicle can do no more than a single route during a given
scheduling period (typically, a day). In this work, we consider a vehicle routing
problem where a vehicle is allowed to perform multiple routes (VRPM) starting
from and ending at a central depot. Furthermore, each customer has an associated
time window for service (VRPMTW). The vehicle can arrive at the customer loca-
tion before the lower bound of the time window, and must wait up to this lower
bound, but is not allowed to arrive after the upper bound. These problems arise,
for example, in e-grocery services where perishable goods are delivered to customers
who must be on-site. This application leads to multiple short vehicle routes, where
the last customer in each route must be visited within a given time limit from the
start of the route.

One of the first study on the VRPM is found in Taillard et al. [19]. First, differ-
ent solutions to the classical VRP are produced with a tabu search heuristic. Then,
the routes obtained are combined to form workdays for the vehicles by heuristically
solving a bin packing problem, an idea previously found in [7]. Due to the heuristic
nature of the bin packing solutions, one or more workdays might extend over the
scheduling period, leading to overtime which is penalized in the objective. In [6], the
authors report a tabu search heuristic for solving a real-world application where ad-
ditional characteristics are taken into account, like an heterogeneous fleet of vehicles
with limited access restrictions, maximum legal driving time per day (penalized, if
there is overtime), etc... In a later work [5], the same authors apply a streamlined
version of their tabu search heuristic on the vehicle routing instances with multiple
trips used in [19]. The results show that their algorithm is competitive with Taillard
et al.’s method. A multi-phase heuristic, similar in spirit to [19], but using a more
involved bin packing heuristic, is proposed in [11]. In this work, a savings-based
construction method and a (giant) tour partitioning method are first applied to
generate a pool of VRP solutions. The routes obtained are then used to produce
solutions to the VRPM through the bin packing heuristic. It is worth noting that
different exchange heuristics are also applied to improve both the VRP and VRPM
solutions. A hybrid genetic algorithm for the VRPM is reported in [12], where the
genetic operators are specifically designed for multi-trip vehicle routing solutions.
A problem-solving method based on an adaptive memory made of elite solutions
[14], a concept related to the population-based approach of genetic algorithms, is
also reported in [10]. In [1], a site-dependent periodic vehicle routing problem is
described where a vehicle can perform more than one route per day over an horizon
of a few days. The problem is addressed with a tabu search heuristic.

Recently, an adaptive guidance algorithm was proposed for a variant of the
VRPMTW. This variant stems from a real-world distribution problem where differ-
ent types of pair-wise incompatible commodities must be delivered to customers [4].
A decomposition approach generates simpler subproblems which are then solved
with specific heuristics. Two adaptive guidance mechanisms are defined : one is
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based on penalization of critical time intervals (i.e., intervals where many routes
are strongly active) and improvement of routes with critical commodities (i.e., com-
modities that do not seem to be well packed across multiple routes). Finally, an
exact approach for the VRPMTW is reported in [2].

Here, the pervasive issue of a (possible) inability of the fixed-size fleet of vehi-
cles to accommodate all customers, due to the finite time horizon, is addressed by
visiting only a subset of customers rather than by allowing overtime. This approach
is required to account for the time window constraints that may preclude the ex-
istence of any feasible solution, even by considering overtime. An Adaptive Large
Neighborhood Search (ALNS) [13, 15] is proposed to address the VRPMTW. The
ALNS is designed to account for the hierarchical nature of the problem through the
application of operators that modify the current solution at the customer, route and
workday levels. It is empirically shown that this multi-level approach leads to much
better solutions than the classical customer-based approach. The rest of the paper
is organized as follows. The problem is first precisely defined in section 2. Then, our
algorithm is described in section 3. Computational results are reported in section 4
and a conclusion follows.

2 Problem definition

Our problem can be stated as follows. We have a directed graph G = (V, A), where
V = {0, 1, 2, ..., n} is the set of customer vertices with the depot 0 and where A

is the arc set. With each customer i ∈ V − {0} is associated a gain gi, a demand
qi, a service or dwell time si and a time window [ai, bi], where ai and bi are the
earliest and latest time, respectively, to begin the service (with a0 = 0 and b0 =∞).
Thus, a vehicle has to wait if it arrives at customer i before ai. With each arc
(i, j) ∈ A is associated a distance dij and a travel time tij (in this work, distances
and travel times are the same). We also have a set K = 1, 2, ..., m of vehicles, each
of capacity Q, to deliver goods from the depot to customers. The duration of each
route is limited by forcing the last customer to be served within tmax time units of
the route start time. This restriction leads to short routes that must be combined
and sequenced to form vehicle workdays. Also, a setup time for loading the vehicle,
noted σr, is associated with each route r in the solution. Here, the setup time is
proportional to the sum of service times over all customers in the route.

The objective considered is hierarchical: first, the number of served customers is
maximized (by maximizing the total gain, assuming a gain of 1 for every customer);
second, for the same number of customers, the total distance traveled by the vehicles
is minimized. A complete mathematical description of this problem can be found in
[2].
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3 Problem-solving methodology

ALNS extends the large neighborhood search framework of Shaw [17], a problem-
solving approach which can also be related to the ruin-and-recreate principle [16].
The basic idea is to search for a better solution at each iteration by destroying
a part of the current solution and by reconstructing it in a different way. When
solving VRPs, a new solution is typically obtained by first removing a number of
customers and then by reinserting these customers into the solution. In general, a
number of destruction and reconstruction operators are available and a destruction-
reconstruction pair is randomly chosen at each iteration. In the adaptive extension, a
weight is associated with each operator and the selection probability of an operator is
related to its weight, which is adjusted during the search based on its past successes.

The problem structure, where a vehicle workday is made of a sequence of trips
and where each trip is made of a sequence of customers, is exploited by applying
destruction operators at the workday, route and customer levels, in this order. This
approach is described in pseudo-code in Algorithm 1. The idea is to go from gross
(high-level) to fine (low-level) refinements. In this algorithm, an initial feasible
solution s is first constructed. Then, a destruction and a reconstruction operator are
probabilistically chosen based on their current weights. The destruction operators
are first selected at the workday level, then at the route level and finally at the
customer level, where each level is explored for a number of consecutive iterations.
At each iteration, a new solution is obtained by applying the destruction operator
followed by the reconstruction operator on the current solution s. The new solution
s′ is then submitted to an acceptance rule. If accepted, the new solution becomes
the current solution, otherwise the current solution does not change. After exploring
a given level, the weights associated with the applied operators are adjusted. This
is repeated until a termination criterion is met and the best solution found s∗ is
returned. In the following, each component of this algorithmic framework will be
explained in detail.

3.1 Construction of the initial solution

An insertion heuristic, where all routes and workdays grow in parallel, is used to
obtain an initial solution, see Algorithm 2. Based on a given ordering, each customer
is considered in turn and inserted at its best feasible insertion place over every route
in every workday, including a new (empty) workday if one is still available. In this
work, the best insertion place corresponds to the smallest detour in distance, where
the detour is dji + dil − djl for the insertion of customer i between j and l. If there
is no feasible insertion place for customer i, then each route is considered in turn
and split into two subroutes, with an additional copy of the depot between the two
subroutes. This is illustrated in Figure 1, where the square stands for the depot and
the black circle for the customer to be inserted. Once the original route is split, the
insertion of the customer can take place in any of the two new routes. Each route is
split in every possible way (i.e., at every customer location along the route) to find
the best insertion place. If there is still no feasible insertion place, then customer i
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Algorithm 1 ALNS

1. construct a feasible solution s;
2. s∗ ← s;
3. initialize weights;
4. while the stopping criterion is not met do

4.1 for L = workday, route, customer do

4.1.1 for I iterations do

a. probabilistically select a destruction operator at level L

and a reconstruction operator based on their current weights;
b. apply the destruction and reconstruction operators to s

to obtain s′;
c. if s′ satisfies the acceptance criterion then

- s← s′;
- if s′ is better than s∗ then s∗ ← s′;

4.1.2 adjust weights;
5. return s∗.

split

Figure 1: Split

is put in a list of (temporarily) unserved customers. The split procedure proved to
be particularly useful when the infeasibility is due to the tmax constraint.

During this insertion procedure, the vehicle schedule based on the latest feasible
departure times from the depot is considered to reduce as much as possible route
durations. Let us assume that route r is the last route in a vehicle workday. This
route is described by the sequence (0r

d = ir0, i
r
1, i

r
2, ..., i

r
nr

, irnr+1 = 0r
e), where 0r

d and
0r

e stand for the departure from and return to the depot, respectively, and nr is the
number of customers in the route.

To determine the latest schedule of that route, denoted by the latest feasible
time to begin service tirj at each customer irj , j = 1, ..., nr, a backward sweep of the
route is first applied from irnr+1 = 0r

e to ir0 = 0r
d as follows:

tirnr+1
← birnr+1

,
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Algorithm 2 Construction heuristic

1. L← {1, 2, ..., n};
2. while (L 6= ∅) do

2.1 randomly select customer i ∈ L;
2.2 insert customer i at its best feasible insertion place in the solution;
2.3 if there is no feasible insertion place in the solution then

2.3.1 for each route k in the solution apply split(i, k);
2.4 L← L− {i}.

tirj ← min{tirj+1
− tirj irj+1

− sirj
, birj
}, j = irnr

, ..., ir0.

Once the latest departure time from the depot tir0 is obtained, a forward sweep is
applied from ir0 = 0r

d to irnr+1 = 0r
e to reset the tirj values and get the latest feasible

schedule:

tirj ← max{tirj−1
+ tirj−1irj

+ sirj−1
, airj
}, j = ir1, ..., i

r
nr+1.

The total route duration is tirnr+1
− tir0 , which is also the minimum duration,

because the waiting time is minimized by serving the route at the latest feasible
time. The whole procedure is then applied to the second-to-last route r − 1 by
setting

t
i
r−1
nr−1+1

← tir0 − σr.

This is repeated until the first route is done.

3.2 Destruction operators

Different destruction operators are defined at the customer, route and workday level.
They are described in the following.

3.2.1 Customer level

These operators remove a number n1 of individual customers from the current so-
lution.

Random customer removal. This is a very simple approach where the customers are
chosen at random.

Related customer removal. This operator is inspired from the one described by Shaw
in [17]. The main difference is that the proximity measure between two customers is
based on both spatial and temporal characteristics. This operator can be described
as follows (see Algorithm 3).

Starting with a randomly chosen request, which starts the whole procedure, the
removal of the next request is (probabilistically) biased toward those that are close
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Algorithm 3 Related customer removal

1. randomly select a customer j and remove it from the solution;
2. L← {j};
3. while | L |< n1 do

3.1 i← randomly select a customer in L;
3.2 for each customer j in the solution do

3.2.1 zij ← α · |ti − tj |+ β · dij ;
3.3 sort the zij ’s in non decreasing order and put them in list B;
3.4 choose a random number x between 0 and 1;
3.5 pos← ⌈| B | · xd⌉;
3.6 select customer j associated with the zij value at position pos in B

and remove it from the solution;
3.7 L← L ∪ {j};

4. return L

to one of the previously removed requests. The proximity between two customers
is based on a metric that accounts for both the geographical distance and the ab-
solute difference between the time of beginning of service at both customer locations,
weighted by parameters α and β, respectively. Parameter d in step 3.5 controls the
intensity of the bias. Namely, a high value for parameter d strongly favors the re-
moval of requests that are close to previously removed requests (and conversely).
Based on preliminary experiments, this parameter was set to 6.

3.2.2 Route level

These operators remove a number n2 of individual routes from the current solution.

Random route removal. This is a very simple approach where the routes are chosen
at random.

Related route removal. This is an adaptation of the corresponding customer-based
operator which is applied at the route level. Accordingly, the algorithmic framework
is very similar to the one found in Algorithm 3. First, a route is randomly chosen.
Then, the removal of the next route is (probabilistically) biased toward those that
are close to one of the previously removed routes.

Two different proximity measures between route rj and some previously removed
route ri have been considered, where it is assumed that a route is defined by its set
of customers.

1. GC : zij ← d(gri
grj

), where gri
amd grj

are the gravity centers of routes ri and

rj , respectively.

2. MinD : zij ← mink∈ri,l∈rj
dkl.

In the first case, the proximity is measured by the distance between the gravity
centers of routes ri and rj , where the latter is defined as the average location over
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Algorithm 4 Related route removal

1. randomly select a route rj and remove it from the solution;
2. L← {rj};
3. while | L |< n2 do

3.1 ri ← randomly select a route in L;
3.2 for each route rj in the solution do

3.2.1 zij ← compute the proximity measure between ri and rj ;
3.3 sort the zij ’s in non decreasing order and put them in list B;
3.4 choose a random number x between 0 and 1;
3.5 pos← ⌈| B | · xd⌉;
3.6 select route rj associated with the zij value at position pos in B

and remove it from the solution;
3.7 L← L ∪ {rj};

4. return L.

all customer locations in the route. In the second case, the proximity is measured
by the smallest distance between any pair of customers taken from routes ri and rj .

3.2.3 Workday level

A single operator is defined at the workday level. It simply removes n3 randomly
chosen workdays from the solution.

3.3 Insertion operators

After the application of a destruction operator, the customers that are not part
of the solution, either because they have just been removed or because there was
no feasible insertion place for them, are considered for reinsertion. Two different
insertion heuristics have been defined for this purpose.

3.3.1 Least-cost heuristic

This is the insertion heuristic used for constructing an initial solution (see Algorithm
2), except that it is applied only to customers that are not part of the solution.
Accordingly, the selection of the next customer is random and its insertion takes
place at the feasible location with minimum detour.

3.3.2 Regret-based heuristic

A second insertion heuristic has been devised to alleviate the myopic behavior of
the least-cost heuristic. This is done by defining a reinsertion order based on a
regret measure. For a given customer, the 2-regret heuristic computes the minimum
feasible detour in each workday. Then, it considers the difference between the detour
in the second best and best workday. If this difference is large, the corresponding
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customer gets high priority for reinsertion because a large cost is incurred if its best
workday becomes infeasible (due to the insertion of other customers). A generalized
variant considers the minimum detour in each workday and sums up the differences,
over all workdays, between the minimum detour in the workday and the overall
minimum detour.

More formally, let us assume that the minimum detour when customer i is in-
serted in workday k is detourik and that the overall minimum detour is obtained
when customer i is inserted in workday k∗. Then, the generalized regret measure of
customer i is:

gen regreti =
∑

k=1,...,m

(detourik − detourik∗) .

At each iteration, the customer with the maximum regret measure is selected
for reinsertion at the feasible insertion place with minimum detour.

3.4 Acceptance criterion

The criterion for accepting or rejecting a new solution is the one used in simulated
annealing [9]. That is, the new solution s′ is accepted over the current solution s if
s′ is better than s. Otherwise, it is accepted with probability

e−
f(s′)−f(s)

T

where T is the temperature parameter and f is the objective function. Starting
from some initial value, the temperature is lowered from one iteration to the next
by setting T ← c · T . Clearly, the probability of accepting a non-improving solution
diminishes with the value of T , as the algorithm unfolds. This behavior allows
the algorithm to progressively settle in a (hopefully) good local optimum. In our
experiments, the starting temperature was set to 1.05 · f(s0), where s0 is the initial
solution, and c to 0.99975, as suggested in [15].

3.5 Adaptive mechanism

The ALNS applies a removal and an insertion operator at each iteration on the
current solution. The adaptive mechanism is aimed at choosing the removal and
insertion operators in a way that accounts for their previous outcomes. A weight
is associated with each operator for this purpose. Let us assume that we have h

insertion operators, each with a weight wj , j = 1, ..., h. The insertion operator i is
then selected with probability

wi
∑h

j=1 wj

, i = 1, ..., h.

That is, the probability of selecting a given operator increases with its weight. Start-
ing with a unit weight for each insertion operator, the weights are updated after a
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number of consecutive iterations (200 iterations in our implementation), called a
segment. The weights at the start of a given segment sg are based on those used in
the previous segment sg − 1 and are computed as follows:

w
sg
i = γ · wsg−1

i + (1− γ) · πsg−1
i ,

where γ has a value between 0 and 1 and π
sg−1
i is the score of operator i at the

end of segment sg − 1. This score, reset to zero at the beginning of each segment,
is incremented when insertion operator i is used at a given iteration t to produce a
new solution. More precisely, the new score at iteration t + 1 becomes

πt+1
i = πt

i +























σ1 if a new best solution has been produced,

σ2 if the solution produced is better than the current solution,

σ3 if the solution produced is accepted,

but is worse than the current solution,

where σ1, σ2 and σ3 are parameters.

Parameter γ controls the inertia in the weight update equation. When γ is close
to 1, the history prevails and the weights do not change much. Conversely, when γ

is close to 0, the update is driven by the most recent score.

The same approach is also used to update the weights of the removal operators
at each level.

3.6 Termination criterion

The termination criterion is based on a fixed number of 24,000 iterations. This
number has been chosen to allow convergence even on the largest test instances.

4 Computational Results

Solomon’s 100-customer VRPTW instances [18], as well as the 200-, 400-, 600-,
800- and 1,000-customer instances of Gehring and Homberger [8], were used to test
our algorithm. In these Euclidean instances, the travel time between two customer
locations is the same as the Euclidean distance. There are six different classes of
instances depending on the location of the customers (R: random; C: clustered; RC:
mixed) and width of the scheduling horizon (1: short horizon; 2: long horizon). In
this study, instances of type 1 have been discarded due to the short horizon that does
not allow a significant number of routes to be sequenced to form a workday. Results
are thus reported for R2 (11 instances), C2 (8 instances) and RC2 (8 instances). All
tests were run on an AMD Opteron 3.1 GHz with 16 GB of RAM.

Solomon’s instances, as well as Gehring and Homberger’s VRPTW instances
had to be modified to fit our problem. In particular, tmax was set to 100 to gen-
erate multiple routes for each vehicle. The customer coordinates of Gehring and
Homberger’s instances were also normalized to fit within a 100 X 100 Euclidean

An Adaptive Large Neighborhood Search for a Vehicle Routing Problem with Multiple Trips

CIRRELT-2010-08 9



100 iterations 200 iterations 400 iterations
% % CPU % CPU % CPU

dstr. size unsv. dist. (s) unsv. dist. (s) unsv. dist. (s)

100 28.1 1938.0 42.8 27.8 1923.5 42.4 28.1 1924.9 44.7
05-35 400 28.0 10940.6 671.6 28.1 10938.0 678.5 28.3 10938.2 671.6

800 30.2 22713.3 2822.9 30.6 22698.9 2898.5 30.3 22830.2 2867.9

100 31.4 1950.9 44.6 32.2 1949.2 44.8 31.5 1960.7 46.8
35-65 400 29.9 11157.0 745.0 30.0 11185.9 740.3 29.8 11258.1 755.9

800 30.9 22915.8 2966.8 30.9 22976.3 2990.6 31.0 22850.0 2938.1

100 34.0 1966.7 48.5 33.7 1963.7 45.7 35.6 1989.3 52.3
65-95 400 30.3 11277.1 823.6 30.0 11199.6 807.9 30.1 11230.7 806.7

800 30.5 22896.3 3228.2 30.4 22774.4 3285.2 30.4 22677.3 3224.2

Table 1: Impact of % of destruction and number of iterations at each level

square, as in Solomon’s instances. Furthermore, the service or dwell time at each
customer was set to 10 in all instances. The number of vehicles was set to 3 for
the 100-customer instances, and this number was increased to 6, 12, 18, 24 and 30
for the 200-, 400-, 600-, 800- and 1,000-customer instances, respectively, to obtain
instances with approximately the same degree of difficulty.

In the following, some parameter sensitivity results are presented. Then, the
final results on the whole test set are reported. A comparison with known optimal
solutions on small instances with no more than 40 customers are also reported at
the end.

4.1 Parameter sensitivity

We have studied the impact of the number of consecutive iterations at each level
and percentage of destruction (% dstr.) on the algorithmic performance. To this
end, we have used a test set made of the RC2 instances with 100, 400 and 800
customers. The results are shown in Table 1. We have considered 100, 200 and 400
consecutive iterations at each level (i.e., 300, 600 and 1200 iterations for the whole
workday-route-customer level sequence). Three different intervals for the percentage
of destruction of the current solution were also tested, namely [5%, 35%], [35%, 65%]
and [65%, 95%]. When a removal operator is chosen, a percentage value is uniformly
randomly selected in the corresponding interval and applied at the appropriate level.
For each possible combination of the two parameters and for each problem size, Table
1 shows the average percentage of unserved customers (% unsv.), total distance
(dist.) and computation time in seconds (CPU ).

Not surprisingly, the computation time increases with the percentage of destruc-
tion because it is more costly to reinsert a larger number of customers into the
current solution. Furthermore, solution quality tends to degrade. Based on the
results shown in Table 1, the best combination is a percentage of destruction in the
interval [5%, 35%] and 200 consecutive iterations at each level (i.e., 600 iterations
for the whole workday-route-customer sequence and 40 such sequences over 24,000
iterations). This setting has been used in the following sections.
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4.2 Results

Based on the best parameter setting identified in section 4.1, different variants of
our ALNS have been applied to the whole set of test instances. These results are
reported in Table 2. As indicated in this table, five different variants have been
considered: Cb only uses the customer-based removal operators, Cb/Rb uses both
the customer- and route-based removal operators while Cb/Rb/W uses all removal
operators. Two variants of Cb/Rb/W have also been tested: Cb/Rb1/W, where
the related route removal operator using the MinD proximity measure is discarded
(thus, only the random route removal and the related route removal using the GC
measure are considered) and Cb/Rb2/W, where the related route removal using the
GC measure is discarded (thus, only the random route removal and the related
route removal using the MinD measure are considered). In each entry, we show
the percentage of unserved customers (%), the total distance and the computation
time in seconds (s), in this order. These results are averaged over all sizes for each
problem class in Table 3.

The first observation is that the exploitation of a multi-level scheme is very
beneficial when compared to the classical customer-based approach. By introducing
a route level, the percentage of unserved customers is reduced by 7.81%, 8.22% and
6.92% on problem classes RC, R and C, respectively. An additional improvement,
although less important, is also obtained by introducing the workday level.

The differences observed between Cb/Rb1/W and Cb/Rb2/W also indicate that
the related route removal operator using the MinD proximity measure is superior
to the one using the gravity center-based measure. Also, by comparing Cb/Rb2/W
and Cb/Rb/W, a single related route removal operator based on the MinD measure
provides better results than the use of the two operators concurrently.

4.3 Comparison with optimal solutions

The best ALNS variant Cb/Rb2/W has been applied to small instances for which
the optimum is known and reported in [2]. These instances have been created by
considering only subsets of 25 and 40 customers in Solomon’s original instances [18].
The reported optima have been obtained with tmax = 75 and a fleet of 2 vehicles.
Table 4 reports average results obtained over all instances of given class and size.
On the 25-customer instances, ALNS is quasi-optimal. All customers are served and
the gap in total distance does not exceed 1%. On the 40-customer instances of type
RC and C, ALNS is also close to the optimum. On the three instances of type R, a
difference of 2.5% is observed with regard to the percentage of unserved customers
and a gap of 16% with regard to the total distance. But, these average gaps are
largely due to only one particular instance, for which 3 customers are left unserved
by ALNS (no unserved customer in the optimal solution) and a gap close to 30% is
observed in total distance.
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size class Cb Cb/Rb Cb/Rb/W Cb/Rb1/W Cb/Rb2/W

27.0% 25.5% 24.8% 25.6% 25.7%
RC 1909.6 1892.9 1894.2 1900.4 1899.2

27.8s 29.0s 27.9s 27.5s 28.1s
13.5% 11.5% 10.9% 12.2% 10.9%

100 R 1866.1 1828.8 1828.1 1838.8 1828.6
29.9s 35.5s 32.7s 34.3s 33.5s
0.0% 0.0% 0.0% 0.0% 0.0%

C 2393.0 2239.6 2269.3 2221.3 2232.9
41.2s 36.0s 42.8s 46.7s 43.2s

20.3% 14.6% 12.3% 12.8% 12.4%
RC 8690.8 9202.2 9205.9 9262.9 9218.3

130.1s 148.5s 135.3s 143.3s 140.3s
13.5% 7.4% 6.4% 6.4% 6.2%

200 R 10360.2 10577.7 11126.6 11239.8 11103.7
125.6s 131.9s 129.4s 157.3s 126.9s
3.1% 0.0% 0.0% 0.0% 0.0%

C 9994.1 9750.4 9818.9 9806.7 9730.3
103.0s 110.0s 138.1s 125.0s 126.2s

33.8% 25.6% 23.2% 23.2% 22.4%
RC 9633.5 10310.4 10279.3 10311.8 10128.0

500.0s 522.8s 475.1s 488.9s 460.4s
18.4% 8.5% 6.3% 6.5% 6.2%

400 R 11784.2 12102.1 12766.0 12903.3 12657.7
511.9s 526.5s 438.4s 496.5s 427.7s
7.6% 0.2% 0.1% 0.1% 0.0%

C 11425.1 11949.6 11256.8 11921.0 10937.2
471.4s 466.0s 349.3s 385.7s 340.0s

32.7% 21.8% 21.2% 21.1% 20.4%
RC 14170.0 14384.5 15860.2 15831.1 15577.9

1170.8s 1211.5s 1127.4s 1099.3s 1114.2s
20.4% 10.4% 6.4% 6.5% 6.4%

600 R 17023.7 18903.3 19270.8 19400.4 19089.2
1281.5s 1291.4s 1025.0s 1139.1s 1009.1s
23.3% 13.0% 10.1% 10.5% 9.9%

C 14187.8 14225.4 14667.9 14803.7 14626.0
1184.2s 1360.4s 1046.9s 1129.8s 1028.5s

36.5% 26.1% 25.0% 25.2% 24.3%
RC 18353.3 18878.8 20772.6 20921.4 20858.5

1938.4s 1993.2s 1818.2s 1955.7s 1842.8s
22.2% 11.3% 8.0% 8.3% 7.9%

800 R 22270.1 23890.9 26192.8 26402.5 26136.9
2088.4s 2125.2s 1691.2s 1834.0s 1678.3s
37.9% 26.9% 25.0% 24.8% 24.9%

C 14333.8 14271.9 14427.7 14454.6 14441.1
1861.7s 2071.3s 1857.1s 1810.6s 1747.4s

37.5% 30.3% 27.3% 27.5% 26.3%
RC 22063.0 25157.9 25635.0 25584.2 25368.3

3008.5s 3331.5s 3050.5s 2899.5s 2855.2s
24.7% 14.2% 10.6% 10.8% 10.3%

1000 R 26862.1 28876.2 30700.5 30845.8 30732.2
3377.0s 3358.1s 2730.8s 2943.5s 2718.8s
49.6% 39.8% 36.9% 36.9% 36.5%

C 14994.9 14670.6 14700.3 14637.2 14587.6
2508.9s 2804.8s 2819.6s 2807.1s 2602.4s

Table 2: Average results by problem classes and sizes
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class Cb Cb/Rb Cb/Rb/W Cb/Rb1/W Cb/Rb2/W
31.8% 24.0% 22.3% 22.6% 21.9%

RC 12470.0 13304.5 13941.2 13968.6 13841.7
1129.3s 1206.1s 1105.7s 1102.4s 1073.5s
18.8% 10.6% 8.1% 8.5% 8.0%

R 15027.7 16029.8 16980.8 17115.4 16924.7
1235.7s 1244.7s 1007.9s 1100.8s 999.0s
20.2% 13.3% 12.0% 12.0% 11.9%

C 11221.5 11184.6 11190.2 11307.4 11092.5
1028.4s 1141.4s 1042.3s 1050.8s 981.3s

Table 3: Average results over all sizes for each problem class

Cb/Rb2/W Optimal
# % %

size class instances unsv. distance unsv. distance
RC 5 0.0 844.1 0.0 844.0

25 R 11 0.0 624.1 0.0 620.1
C 7 0.0 635.6 0.0 629.1

RC 3 13.9 1386.4 13.3 1377.5
40 R 3 3.3 1289.0 0.8 1071.6

C 3 0.0 1105.0 0.0 1093.0

Table 4: Comparison with optimal solutions
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5 Conclusion

This paper has described an adaptation of the ALNS framework based on the hierar-
chical structure of the vehicle routing problem with multiple trips. Empirical results
demonstrate that it is very beneficial to apply operators at the customer, route and
workday levels, as opposed to the classical approach where only customer-based
operators are used.
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